JP5783808B2 - Abnormal sound diagnosis device - Google Patents

Abnormal sound diagnosis device Download PDF

Info

Publication number
JP5783808B2
JP5783808B2 JP2011124111A JP2011124111A JP5783808B2 JP 5783808 B2 JP5783808 B2 JP 5783808B2 JP 2011124111 A JP2011124111 A JP 2011124111A JP 2011124111 A JP2011124111 A JP 2011124111A JP 5783808 B2 JP5783808 B2 JP 5783808B2
Authority
JP
Japan
Prior art keywords
region
frequency distribution
time frequency
time
abnormal sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011124111A
Other languages
Japanese (ja)
Other versions
JP2012251851A (en
Inventor
阿部 芳春
芳春 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011124111A priority Critical patent/JP5783808B2/en
Priority to TW101116321A priority patent/TWI451070B/en
Priority to KR1020120049142A priority patent/KR101280802B1/en
Priority to CN201210176444.1A priority patent/CN102809493B/en
Publication of JP2012251851A publication Critical patent/JP2012251851A/en
Application granted granted Critical
Publication of JP5783808B2 publication Critical patent/JP5783808B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

本発明は、マイクロホン(以下マイクと称す)や振動センサで収集された信号の時間周波数分析によって運転中の機器の異常音の発生の可能性を判定する装置に関する。特に、複数の機器から構成されるシステムにおいて運転時に発生する多岐多様な異常音を診断する異常音診断装置に関する。   The present invention relates to an apparatus for determining the possibility of occurrence of abnormal sound in a device being operated by time-frequency analysis of signals collected by a microphone (hereinafter referred to as a microphone) or a vibration sensor. In particular, the present invention relates to an abnormal sound diagnosis apparatus that diagnoses a wide variety of abnormal sounds generated during operation in a system composed of a plurality of devices.

従来の異常音を診断する異常音診断装置に関する第1の技術として、判定対象物からの振動データを時間周波数分析処理により得られる時間周波数分布から非定常振動の強度が設定値以上となる時刻の非定常振動データを抽出し、この抽出された非定常振動データに基づいて異音発生の可能性を判定するもの(特許文献1)、時間周波数解析結果の各周波数における振動発生頻度を、その周波数における最大振幅と振動発生閾値との積で求まる振動発生判定振幅値以上であるデータの時間割合を計算してその周波数の発生頻度として算出するもの(特許文献2)、時系列スペクトルから異音成分の等高線で示される強度の大きい領域を算出し、この領域から異音成分を含むスペクトル列のみを抜き出すもの(特許文献3)などがある。   As a first technique related to an abnormal sound diagnosis apparatus for diagnosing a conventional abnormal sound, the time at which the intensity of the unsteady vibration becomes a set value or more from the time frequency distribution obtained by the time frequency analysis processing of vibration data from the determination object is obtained. Unsteady vibration data is extracted, and the possibility of occurrence of abnormal noise is determined based on the extracted unsteady vibration data (Patent Document 1). Calculating the time ratio of data that is equal to or greater than the vibration generation determination amplitude value obtained by the product of the maximum amplitude and the vibration generation threshold value in Japanese Patent Application Laid-Open No. 2003-259542 (Patent Document 2), an abnormal sound component from the time series spectrum There is a technique in which a region having a high intensity indicated by the contour lines is calculated and only a spectrum sequence including an abnormal sound component is extracted from this region (Patent Document 3).

また、従来の異常音を診断する異常音診断装置に関する第2の技術として、特定の既知異常事象に着目し、それらの発生の有無を確認する専用処理手段と、既知異常事象が発生しない場合に汎用的な雑音解析を行い、この解析結果を正常時と比較し不特定の未知異常事象を検出し、未知異常事象が検出された場合、正常状態からの変化を検出するための処理手順を生成して専用処理手段に与えるもの(特許文献4)がある。   Further, as a second technique related to an abnormal sound diagnosis apparatus for diagnosing a conventional abnormal sound, attention is paid to specific known abnormal events, and dedicated processing means for confirming the occurrence of such abnormal events and when no known abnormal events occur. Perform general-purpose noise analysis, compare this analysis result with normal, detect unspecified unknown abnormal event, and generate processing procedure to detect change from normal state when unknown abnormal event is detected Then, there is what is given to the dedicated processing means (Patent Document 4).

特許第3885297号公報Japanese Patent No. 3885297 特許第4373350号公報Japanese Patent No. 4373350 特許第4262878号公報Japanese Patent No. 4262878 特開平6-309580号公報JP-A-6-309580

従来の第1の技術は、周波数分析結果に現れる特定の異常音成分の出現パターンに特化した各種の閾値に基づいて異常を検出する構成としているため、それぞれ単独の構成では多様な帯域幅や継続時間を有する異常音成分を等しく高精度で診断することはできないという問題があった。また、時間周波数分布の強度が大きい領域を観測データからボトムアップに求めるもので、必ずしも最適な診断結果が得られるという保証がないという問題もあった。
一方、従来の第2の技術は、未知異常事象を診断するためには、未知異常事象に対する診断手順をあらかじめ専用処理手段に登録する必要があるという問題があった。
本発明は上記のような問題点を解決するためなされたもので、専用の診断手順を専用処理手段に登録する必要がなく、最適な診断結果が得られるという保証があり、周波数分析結果に含まれる多様な帯域幅や継続時間を有する異常音成分を等しく高精度で検出する方法を提供することを目的とする。
Since the conventional first technique is configured to detect an abnormality based on various threshold values specialized for the appearance pattern of a specific abnormal sound component appearing in the frequency analysis result, each individual configuration has various bandwidths and There is a problem in that abnormal sound components having a duration cannot be diagnosed equally accurately. In addition, there is a problem in that there is no guarantee that an optimal diagnosis result is always obtained because a region where the intensity of the time frequency distribution is large is obtained from the observation data from the bottom up.
On the other hand, the second conventional technique has a problem that a diagnostic procedure for an unknown abnormal event needs to be registered in advance in the dedicated processing means in order to diagnose the unknown abnormal event.
The present invention has been made to solve the above problems, and it is not necessary to register a dedicated diagnostic procedure in the dedicated processing means, and there is a guarantee that an optimal diagnostic result can be obtained, which is included in the frequency analysis result. It is an object of the present invention to provide a method for detecting abnormal sound components having various bandwidths and durations with high accuracy.

本発明に係る異常音診断装置は、
検査対象機器が発生する音または振動の波形データを取込む波形データ取得手段と、
上記波形データを時間周波数分析し、一方の軸を時間軸に、他方の軸を周波数軸にした時間周波数分布を求める時間周波数分析手段と、
上記時間周波数分布の時間軸と周波数軸の座標値によって規定し、事前に前記検査対象機器を分析して得た機器からの発生異常音成分の時間周波数分布における出現領域の形状を規定する事前知識に基づいた複数の領域を生成し、上記時間周波数分布の定常状態とは異なる変動成分が含まれる領域を抽出する領域抽出手段と、
上記抽出領域に含まれる時間周波数分布に基づいて異常の判定を行い出力する判定手段とを備え
上記領域抽出手段は、上記時間周波数分布の定常状態とは異なる変動成分が含まれる領域を領域候補として抽出する領域候補生成部と、上記領域候補に含まれる時間周波数分布と正常時の時間周波数分布の関係から凝縮度を求める評価部とを備え、上記凝縮度が大きい領域候補を抽出領域として出力する。
The abnormal sound diagnosis apparatus according to the present invention is:
Waveform data acquisition means for capturing waveform data of sound or vibration generated by the device to be inspected;
Time frequency analysis of the waveform data, time frequency analysis means for obtaining a time frequency distribution with one axis as a time axis and the other axis as a frequency axis;
Prior knowledge specifying the shape of the appearance region in the time frequency distribution of the abnormal sound component generated from the device obtained by analyzing the inspection target device in advance, which is defined by the time axis of the time frequency distribution and the coordinate value of the frequency axis. A region extracting means for generating a plurality of regions based on the above and extracting a region including a variation component different from the steady state of the time frequency distribution;
A determination means for determining and outputting an abnormality based on the time-frequency distribution included in the extraction region ,
The region extraction means includes a region candidate generation unit that extracts a region including a variation component different from the steady state of the time frequency distribution as a region candidate, a time frequency distribution included in the region candidate, and a normal time frequency distribution. provided from the relationships and evaluation unit for determining the degree of condensation, it outputs the degree of condensation is greater region candidate extraction region.

本発明係る異常音診断装置によれば、
時間周波数分布から、時間周波数について連続して形成する時間周波数の領域を抽出する手段を設けることにより、周波数分析結果に現れる、多様な帯域幅や継続時間を有する異常音成分を、専用の診断手順を登録する必要がなく、等しく高精度で診断することができるという効果を奏する。
According to abnormal sound diagnostic apparatus according to the present invention,
Dedicated diagnostic procedures for abnormal sound components with various bandwidths and durations appearing in frequency analysis results by providing means for extracting time frequency regions that are continuously formed from the time frequency distribution. There is no need to register the system, and the diagnosis can be performed with high accuracy.

本発明の異常音診断装置を示す機能ブロック構成図である。It is a functional block block diagram which shows the abnormal sound diagnostic apparatus of this invention. 複数機器からの音を走査する場合の時間周波数分布例の特性図である。It is a characteristic view of the time frequency distribution example in the case of scanning the sound from a plurality of devices. 時間周波数分布の領域に関する事前知識の説明図である。It is explanatory drawing of prior knowledge regarding the area | region of a time frequency distribution. 本発明の実施の形態1における処理の流れ図である。It is a flowchart of the process in Embodiment 1 of this invention.

実施の形態1.
本実施の形態は、検査対象システムを構成する機器の発する異常な音圧を診断する装置として、パーソナルコンピュータ(以下PCと称す)上のソフトウェアとして実装され、正常時の波形を取込む学習モードと試験時の波形を取込む診断モードを有する。測定者はマイクないし振動センサ等を検査対象機器に設置し、そのマイクないし振動センサ等をPCのUSB(Universal Serial Bus)インタフェースの入力端子に接続して、学習モード時と診断モード時の操作を行う。
Embodiment 1 FIG.
The present embodiment is implemented as software on a personal computer (hereinafter referred to as a PC) as a device for diagnosing abnormal sound pressure generated by devices constituting a system to be inspected. It has a diagnostic mode for capturing waveforms during testing. The measurer installs a microphone or vibration sensor on the inspection target device, connects the microphone or vibration sensor to the input terminal of the USB (Universal Serial Bus) interface of the PC, and operates in the learning mode and diagnostic mode. Do.

検査対象システムとして、例えば、エレベータの乗車かごにマイクを取り付け、制御ケーブルを経由してマイクの信号を機械室に置いたPCに取込んで、乗車かごを往復運転することで、昇降路内の各機器の稼動音を診断する場合を例にとる。
特定の機器、例えば頂部返し車から異常音が発生すると、異常音を発生する機器以外が発生する稼動音、例えばガイドレール摺動音があるため、乗車かごがその異常音を発生する特定の機器に接近する時間帯、例えば乗車かごが頂部返し車に接近する時間帯(乗車かごの上昇時は測定区間の後半部分に、また、乗車かごの下降時は測定区間の前半部分)に、異常音の時間周波数成分が現れる。
また、カウンターウェイトから異常音が発生する場合は、乗車かごとカウンターウェイトがすれ違う時間帯である測定区間の中央部分に、異常音の時間周波数成分が現れる。
As a system to be inspected, for example, a microphone is attached to an elevator car, and the microphone signal is taken into a PC placed in a machine room via a control cable, and the passenger car is reciprocated, so that Take the case of diagnosing the operating sound of each device as an example.
When an abnormal sound is generated from a specific device, for example, a top return car, there is an operating sound generated by a device other than the device that generates the abnormal sound, for example, a guide rail sliding sound. When the car approaches the top return car, for example, when the car approaches the top return car (when the car goes up, it is in the second half of the measurement section, and when the car goes down, the first half of the measurement section) The time frequency component of appears.
In addition, when abnormal sound is generated from the counterweight, the time frequency component of the abnormal sound appears in the center of the measurement section, which is a time zone in which the counterweight and the passenger car pass each other.

また、異常音の周波数スペクトルの形状は、異常発生する機器や異常の原因によって異なり、占有する周波数範囲も多様である。一般に、上述のように、機器システムを走査するマイクから複数機器の稼動音を診断する場合、測定区間中に異常音成分が現れる時間範囲と周波数範囲は極めて複雑で多様なものとなっている。
図2はエレベータ各機器の異常音発生時の時間周波数分布を横軸に時間、縦軸に周波数をとり、各時刻と各周波数における分布の強度を濃淡で示している。点線は異常発生前の特定の機器の稼動音のマイクでの強度を示し、実線は異常となったその機器の稼動音の強度を示す。また、一点鎖線はその機器を含む全機器からの稼動音の合成された音のマイクでの強度を示している。(A)は頂部返し車から異常音が発生した場合、(B)はカウンターウェイトから異常音が発生した場合の例である。
Further, the shape of the frequency spectrum of the abnormal sound varies depending on the device in which the abnormality occurs and the cause of the abnormality, and the occupied frequency range is various. In general, as described above, when operating sounds of a plurality of devices are diagnosed from a microphone that scans a device system, the time range and frequency range in which abnormal sound components appear in a measurement section are extremely complex and diverse.
FIG. 2 shows the time frequency distribution when an abnormal sound occurs in each elevator device with time on the horizontal axis and frequency on the vertical axis, and the intensity of the distribution at each time and each frequency is shown in shades. The dotted line indicates the intensity of the operating sound of the specific device before the occurrence of the abnormality with the microphone, and the solid line indicates the intensity of the operating sound of the device that has become abnormal. The alternate long and short dash line indicates the intensity of the synthesized sound of operating sounds from all devices including the device. (A) is an example when abnormal sound is generated from the top return wheel, and (B) is an example when abnormal sound is generated from the counterweight.

図1は本発明の実施の形態1における異常音診断装置を示すブロック構成図である。
図1において、1はマイクや振動センサから出力される測定信号、2は増幅器と低域フィルタ回路とAD変換器を備え測定信号1をサンプリングしデジタル信号に変換して波形データ3を出力する波形取得部、4は波形データ3に時間窓を掛け時間窓を時間方向にずらしながら高速フーリエ変換(以下FFTと称す)演算により波形データ3を時間周波数分析し時間と周波数に対する強度を示すスペクトル値からなる時間周波数分布5を出力する時間周波数分析部である。
FIG. 1 is a block configuration diagram showing an abnormal sound diagnosis apparatus according to Embodiment 1 of the present invention.
In FIG. 1, 1 is a measurement signal output from a microphone or vibration sensor, 2 is a waveform that includes an amplifier, a low-pass filter circuit, and an AD converter, samples the measurement signal 1 and converts it into a digital signal, and outputs waveform data 3 The acquisition unit 4 applies a time window to the waveform data 3 and shifts the time window in the time direction to perform time-frequency analysis of the waveform data 3 by fast Fourier transform (hereinafter referred to as FFT), and from the spectrum value indicating the intensity with respect to time and frequency. It is a time frequency analysis part which outputs the time frequency distribution 5 which becomes.

6は時間周波数分布5の正常時における時間周波数分布6a(図には示されない)を記憶する正常時時間周波数分布記憶部、7は時間周波数分布5の試験時の時間周波数分布7a(図には示されない)を記憶する試験時時間周波数分布記憶部、8は事前知識8a(図には示されない)がテーブルとして記憶された事前知識記憶部、9は事前知識記憶部8の事前知識8aに基づいて決められた所定の領域候補10を生成する領域候補生成部、11は領域候補10について正常時時間周波数分布記憶部6の正常時時間周波数分布6aと試験時時間周波数分布記憶部7の試験時時間周波数分布7aとを参照して凝縮度12を算出し出力する評価部、13は凝縮度12に基づいて領域候補10の中から最適な領域候補を選択し抽出領域14として出力する領域抽出部、15は正常時時間周波数分布6a及び診断時時間周波数分布7aを参照し抽出領域14に含まれる時間周波数分布から異常音発生の可能性の度合いを示す異常度を計算し異常度16として出力する異常時計算部、17は異常度16に基づいて異常音の発生の可能性を判定し判定結果18を出力する判定部である。   Reference numeral 6 denotes a normal time frequency distribution storage unit for storing the time frequency distribution 6a (not shown in the figure) when the time frequency distribution 5 is normal, and reference numeral 7 denotes a time frequency distribution 7a during the test of the time frequency distribution 5 (shown in the figure). (Not shown) time frequency distribution storage unit at the time of testing, 8 is a prior knowledge storage unit in which prior knowledge 8a (not shown) is stored as a table, 9 is based on prior knowledge 8a of the prior knowledge storage unit 8 A region candidate generation unit 11 that generates the predetermined region candidate 10 determined in this manner, and 11 is a normal time frequency distribution 6a of the normal time frequency distribution storage unit 6 and a test time frequency distribution storage unit 7 during the test for the region candidate 10. An evaluation unit that calculates and outputs the condensation degree 12 with reference to the time frequency distribution 7a, and 13 is an area that selects an optimum area candidate from the area candidates 10 based on the condensation degree 12 and outputs it as the extraction area 14. The output unit 15 calculates the degree of abnormality indicating the possibility of occurrence of abnormal sound from the time frequency distribution included in the extraction region 14 with reference to the normal time frequency distribution 6a and the diagnostic time frequency distribution 7a. An abnormal time calculation unit 17 for outputting is a determination unit that determines the possibility of occurrence of abnormal sound based on the degree of abnormality 16 and outputs a determination result 18.

以下図4の処理の流れ図を参照し、動作を説明する。
学習モードまたは診断モードにおいて、波形取得部2は、マイクや振動センサから出力される測定信号1を、取得して増幅しAD変換することにより、サンプリング周波数32kHzの16ビットリニアPCM(pulse code modulation)のデジタル信号の波形データ3に変換する(ステップS1)。
時間周波数分析部4は、波形取得部2が出力する波形データ3に対して、1024点の時間窓を16msの間隔で時間方向にずらしながらフレームを切出し、各フレームに対してFFT演算により周波数スペクトルの時系列y(t,f)を求め、時間周波数分布5として出力する(ステップS2)。ここで、tは分析窓をずらすシフト間隔に対応する離散値をとる時刻、fはFFT演算の結果の周波数インデックスに対応する離散値をとる周波数を示す。なお、時間tおよび周波数fは、それぞれ、0≦t≦T,0≦f≦Fなる関係を満たす。ここで、Tは時間周波数分布5の時間方向の時間幅、Fは波形データ3のサンプリング周波数fsの1/2であるナイキスト周波数である(F=fs/2)。
The operation will be described below with reference to the flowchart of the processing in FIG.
In the learning mode or the diagnostic mode, the waveform acquisition unit 2 acquires, amplifies, and AD-converts the measurement signal 1 output from the microphone or vibration sensor, thereby obtaining a 16-bit linear PCM (pulse code modulation) with a sampling frequency of 32 kHz. Is converted into waveform data 3 of the digital signal (step S1).
The time frequency analysis unit 4 extracts a frame from the waveform data 3 output from the waveform acquisition unit 2 while shifting the time window of 1024 points in the time direction at intervals of 16 ms, and performs frequency calculation on each frame by FFT calculation. Is obtained as time-frequency distribution 5 (step S2). Here, t is a time at which a discrete value corresponding to the shift interval for shifting the analysis window is taken, and f is a frequency at which a discrete value corresponding to the frequency index as a result of the FFT operation is taken. The time t and the frequency f satisfy the relations 0 ≦ t ≦ T and 0 ≦ f ≦ F, respectively. Here, T is a time width in the time direction of the time frequency distribution 5, and F is a Nyquist frequency that is 1/2 of the sampling frequency fs of the waveform data 3 (F = fs / 2).

時間周波数分析部4により時間周波数分布5が算出されると、異常音診断装置は学習モード時かまたは診断モード時かを判断する(ステップS3)。
学習モード時であると、時間周波数分布5は正常時時間周波数分布6aとして正常時時間周波数分布記憶部6に転送され記憶される(ステップS4)。一方、ステップS3の判断結果が診断モード時であれば、時間周波数分布5は診断時時間周波数分布7aとして診断時時間周波数分布記憶部7に転送され記憶される(ステップS5)。
When the time frequency distribution 5 is calculated by the time frequency analysis unit 4, the abnormal sound diagnosis apparatus determines whether the time is the learning mode or the diagnosis mode (step S3).
In the learning mode, the time frequency distribution 5 is transferred to and stored in the normal time frequency distribution storage unit 6 as a normal time frequency distribution 6a (step S4). On the other hand, if the determination result in step S3 is in the diagnosis mode, the time frequency distribution 5 is transferred and stored in the diagnosis time frequency distribution storage unit 7 as the diagnosis time frequency distribution 7a (step S5).

次に、診断モード時の診断処理について動作を説明する。
領域候補生成部9は、事前知識8aに基づいて、領域候補10を生成する(ステップS6)。事前知識8aは、診断対象システムを構成する機器から発生する異常成分の時間周波数分布における出現領域の形状を規定するための知識であり、本装置の設計者が事前に対象を分析して得た知識を表し、本装置の領域候補生成部9が生成する領域候補としてテーブルの形式で事前知識記憶部8に格納されている。本例では、時間周波数分布の全領域に対して、全時間区間Tをn分割、かつ、全帯域Fをm分割して格子状の分割領域を得て、任意の格子線を辺とする矩形の領域を生成して、事前知識8aのテーブルとして事前知識記憶部8に格納される。
Next, the operation of the diagnosis process in the diagnosis mode will be described.
The area candidate generation unit 9 generates an area candidate 10 based on the prior knowledge 8a (step S6). The prior knowledge 8a is knowledge for prescribing the shape of the appearance region in the time-frequency distribution of abnormal components generated from the devices constituting the diagnosis target system, and was obtained by analyzing the target in advance by the designer of this apparatus. It represents knowledge and is stored in the prior knowledge storage unit 8 in the form of a table as region candidates generated by the region candidate generation unit 9 of this apparatus. In this example, the entire time interval T is divided into n and the entire band F is divided into m with respect to the entire region of the time frequency distribution to obtain a lattice-like divided region, and a rectangle having an arbitrary lattice line as a side. Are generated and stored in the prior knowledge storage unit 8 as a table of prior knowledge 8a.

図3は事前知識8aとして格子と生成される矩形の例をAとBで示す。矩形領域Aは時間区間の後半での中高域の周波数成分の短時間の時間周波数成分に対して最適な形状となっている。また、矩形領域Bは測定時間の前よりの時間区間で中間の周波数帯域で継続時間の長い時間周波数成分が発生する場合に対して最適な形状となっている。ここで、分割数n及びmを増加することにより、より詳細に領域の境界を表現することが可能である。ところで、格子状の分割領域における最初の第1/6時間区間と、最後の第6/6時間区間は、検査対象の動作速度が定格速度にくらべて遅いため、稼動音が十分発生しないことから、領域候補の生成から除くことも可能である。また、上記では、時間周波数分布の全領域に対して、全時間区間Tをn分割、かつ、全帯域Fをm分割して格子状の分割領域を得て、任意の格子線を辺とする矩形の領域を生成する例を説明したが、異常成分の時間周波数成分に対する事前知識によって、最適な形状として、上記の格子状の分割領域を選択するか選択しないかを組み合わせて任意の形状の領域も生成するようにしても良い。   FIG. 3 shows an example of a grid and a generated rectangle as prior knowledge 8a by A and B. The rectangular area A has an optimal shape for a short time frequency component of the middle and high frequency components in the latter half of the time interval. Further, the rectangular area B has an optimum shape for a case where a time frequency component having a long duration is generated in an intermediate frequency band in a time interval before the measurement time. Here, by increasing the number of divisions n and m, it is possible to express the boundary of the region in more detail. By the way, in the first 1/6 time section and the last 6/6 time section in the grid-like divided area, the operation speed of the inspection target is slower than the rated speed, so that the operation sound is not sufficiently generated. It is also possible to exclude it from the generation of region candidates. Further, in the above, for the entire region of the time frequency distribution, the entire time interval T is divided into n and the entire band F is divided into m to obtain a lattice-shaped divided region, and an arbitrary lattice line is set as an edge. Although an example of generating a rectangular region has been described, a region having an arbitrary shape by combining whether or not to select the above-described grid-like divided region as an optimal shape based on prior knowledge of the time-frequency component of the abnormal component May also be generated.

評価部11は、領域候補10(以下、領域候補をRで表す)に対して、凝縮度E(R)12を算出する(ステップS7)。
凝縮度をE(R)は、試験時時間周波数分布をy(t,f)、正常時時間周波数分布をx(t,f)、矩形の領域をR=[t1,t2,f1,f2]とすると、これらに対する凝縮度をE(R)は式1に示される演算により求められる。ここで、t1,t2,f1,f2は、それぞれ、矩形領域Rの下限時間、上限時間、下限周波数、上限周波数である。また、矩形以外の領域候補Rに対しては、式1の代わりに、より一般的な式2に示される演算により求められる。ここで、記号(t,f)∈R*は抽出領域R*に含まれる離散時間t及び離散周波数fの組合せについて総和をとることを意味する。
The evaluation unit 11 calculates the condensation degree E (R) 12 for the region candidate 10 (hereinafter, the region candidate is represented by R) (step S7).
The degree of condensation is E (R), y (t, f) for the time frequency distribution during the test, x (t, f) for the normal time frequency distribution, and R = [t1, t2, f1, f2] for the rectangular area. Then, the degree of condensation for these is obtained by the calculation shown in Equation 1. Here, t1, t2, f1, and f2 are a lower limit time, an upper limit time, a lower limit frequency, and an upper limit frequency of the rectangular region R, respectively. Further, the region candidate R other than the rectangle is obtained by the calculation shown in the more general expression 2 instead of the expression 1. Here, the symbol (t, f) ∈ R * means that the sum of the combinations of the discrete time t and the discrete frequency f included in the extraction region R * is taken.

Figure 0005783808
Figure 0005783808

Figure 0005783808
Figure 0005783808

上式で、nは時間周波数分布の矩形領域に含まれるスペクトル値の標本数である。また、w(n)は、標本数nに応じた重み係数であり、例えば、標本数nのp乗根(pは例えば2)である。標本数nは領域の大きさとともに大きい値となり、前記重み係数w(n)は、領域の大きさとともに大きい値となるため、小さな領域に対する凝縮度E(R)は小さくなり、小さな領域に局在する外れ値が計算結果に与える影響を緩和するために用いる。また、関数φはスペクトル値を非線形に変換して、変換後の値の分布を正規分布に近づけるため、Box-Cox変換(一般化対数変換とも言う)または対数変換とする。Box-Cox変換は式3で表されパラメータγがγ=0のとき対数変換と一致する。   In the above equation, n is the number of spectral value samples included in the rectangular region of the time frequency distribution. Further, w (n) is a weighting factor corresponding to the number of samples n, and is, for example, the p-th root of the number of samples n (p is 2 for example). The number of samples n increases with the size of the region, and the weighting factor w (n) increases with the size of the region. Therefore, the degree of condensation E (R) for a small region is small, and the locality is small. It is used to mitigate the influence of existing outliers on the calculation results. Also, the function φ is a Box-Cox transformation (also referred to as a generalized logarithmic transformation) or a logarithmic transformation in order to nonlinearly transform the spectrum value and bring the distribution of the transformed value closer to a normal distribution. The Box-Cox transformation is expressed by Equation 3 and coincides with the logarithmic transformation when the parameter γ is γ = 0.

Figure 0005783808
Figure 0005783808

領域抽出部13は、各領域候補と各領域候補に対する凝縮度E(R)の関係を調べ、凝縮度E(R)が最も大きい値を示す領域候補を最適な抽出領域として選択して出力する(ステップS8)。各領域候補を{R1,R2,…,Rk}、それぞれの凝縮度を{E(R1),E(R2),…,E(Rk)}、最適な領域候補をR*とすると、R*は式4の演算により求められる。ここで、自然数のkは領域候補の数である。   The region extraction unit 13 examines the relationship between each region candidate and the degree of condensation E (R) with respect to each region candidate, and selects and outputs a region candidate having the largest value of the degree of condensation E (R) as the optimum extraction region. (Step S8). Each region candidate is {R1, R2,..., Rk}, each degree of condensation is {E (R1), E (R2),..., E (Rk)}, and the most suitable region candidate is R *. Is obtained by the calculation of Equation 4. Here, the natural number k is the number of region candidates.

Figure 0005783808
Figure 0005783808

異常度計算部15は、正常時時間周波数分布x(t,f)及び試験時時間周波数分布y(t、f)のそれぞれの最適な抽出領域R*に含まれるスペクトル値から異常度を計算する(ステップS9)。いま、抽出領域R*が矩形領域であり、R*=[t1,t2,f1,f2]、異常度をa(R*)とするとき、異常度a(R*)は式5の演算により得られる数値である。ここで、t1,t2,f1,f2はすでに定義した通りである。   The degree-of-abnormality calculation unit 15 calculates the degree of abnormality from the spectrum values included in the respective optimum extraction regions R * of the normal time frequency distribution x (t, f) and the test time frequency distribution y (t, f). (Step S9). Now, when the extraction area R * is a rectangular area, R * = [t1, t2, f1, f2], and the degree of abnormality is a (R *), the degree of abnormality a (R *) is calculated by the calculation of Equation 5. This is the numerical value obtained. Here, t1, t2, f1, and f2 are as already defined.

Figure 0005783808
Figure 0005783808

上の式5において、Ψ(x)は変数xの非線形写像関数で例えば上述のBox-Cox変換などを用いることができる。g(t)は、領域R*の周波数f方向の累積値を単位周波数の数で除した値、すなわち時間tにおける周波数に関する標本平均であり、h(f)は、領域R*の時間t方向の累積値を単位時間の数で除した値、すなわち周波数fにおける時間に関する標本平均である。さらに、g〜(t)及びh〜(f)は、それぞれ、g(t)を時間tに関し、また、h(f)を周波数fに関して平滑化した結果の値である。平滑化は例えば移動平均を求めることで達成される。最終的に、異常度a(R*)は、移動平均後のg〜(t)の時間tに関する最大値と移動平均後のh〜(f)の周波数に関する最大値とのいずれかの最大値として求める。最大値の代わりに統計量である分位数を用いてもかまわないし、いずれか一方の値を異常度としてもかまわない。このような例を、式6のa(R*),a(R*),a(R*),a(R*),a(R*)などに示す。ここで、quantile({x},α)は系列{x}のα分位数を表す。αを1とおけば最大値max{x}と一致する。式6のαやβは1に近い値、例えば0.9とおいてもよい。 In Equation 5 above, Ψ (x) is a nonlinear mapping function of the variable x, and the above-described Box-Cox transformation or the like can be used, for example. g (t) is a value obtained by dividing the cumulative value of the region R * in the frequency f direction by the number of unit frequencies, that is, a sample average regarding the frequency at the time t, and h (f) is the time t direction of the region R *. Is a value obtained by dividing the accumulated value by the number of unit times, that is, a sample average with respect to time at the frequency f. Further, g to (t) and h to (f) are values obtained by smoothing g (t) with respect to time t and h (f) with respect to frequency f, respectively. Smoothing is achieved, for example, by obtaining a moving average. Finally, the degree of abnormality a (R *) is either the maximum value of the time t from g to (t) after the moving average or the maximum value of the frequency from h to (f) after the moving average. Asking. A quantile that is a statistic may be used instead of the maximum value, and either value may be used as the degree of abnormality. Such an example is shown in a 1 (R *), a 2 (R *), a 3 (R *), a 4 (R *), a 5 (R *), etc. in Formula 6. Here, quantile ({x}, α) represents the α quantile of the sequence {x}. If α is set to 1, it matches the maximum value max {x}. Α and β in Expression 6 may be close to 1, for example, 0.9.

Figure 0005783808
Figure 0005783808

また、別のより簡単な方法として、異常度a(R*)は、式7のa(R*)に示すように、抽出領域R*における正常時時間周波数分布の写像Ψ(x(t,f))の平均値と、抽出領域R*における試験時時間周波数分布の写像Ψ(y(t、f))の平均値との差)としても良い。 Further, as another simpler method, the degree of abnormality a (R *) is calculated by mapping the normal time frequency distribution Ψ (x (t (t)) in the extraction region R * as indicated by a 6 (R *) in Expression 7. , F)) and the average value of the map Ψ (y (t, f)) of the time frequency distribution during the test in the extraction region R *.

Figure 0005783808
Figure 0005783808

判定手段17は、異常度a(R*)と閾値を比較して異常度が閾値以上であるとき異常音が発生している可能性があると判定して、「アラーム」を判定結果18として出力する(ステップS10)。また、異常度が閾値未満のときは異常音は発生している可能性が低いと判定して、「正常」を判定結果18として出力する。   The determination unit 17 compares the degree of abnormality a (R *) with a threshold value, determines that there is a possibility that an abnormal sound is generated when the degree of abnormality is equal to or greater than the threshold value, and sets “alarm” as the determination result 18. Output (step S10). If the degree of abnormality is less than the threshold, it is determined that there is a low possibility that abnormal sound has occurred, and “normal” is output as the determination result 18.

上記実施の形態において、時間周波数分析部4はFFT演算により時間周波数分布5を出力する構成にされているが、FFTに限らず、ウェーブレット変換を用いても良い。
また、事前知識記憶部8に記憶される事前知識8aの矩形領域について、上限時間t2と下限時間t1の差t2−t1に下限tminを設けてもよい。すなわち、t2−t1≧tminとなる、矩形領域に限定して、事前知識記憶部8に格納される。
また、同様に、上限周波数f2と下限周波数f1の差f2−f1に下限fminを設けても良い。すなわち、f2−f1≧fminとなる、矩形領域に限定して、テーブル8に格納する。
さらに非線形関数は、解析的な関数のほかに、折れ線近似により非線形特性を持たせた関数でもよい。
In the above embodiment, the time-frequency analysis unit 4 is configured to output the time-frequency distribution 5 by FFT calculation, but is not limited to FFT, and wavelet transform may be used.
Further, for the rectangular area of the prior knowledge 8a stored in the prior knowledge storage unit 8, a lower limit tmin may be provided for the difference t2-t1 between the upper limit time t2 and the lower limit time t1. That is, it is stored in the prior knowledge storage unit 8 only in the rectangular area where t2−t1 ≧ tmin.
Similarly, a lower limit fmin may be provided for the difference f2-f1 between the upper limit frequency f2 and the lower limit frequency f1. That is, it is stored in the table 8 only in the rectangular area where f2−f1 ≧ fmin.
Furthermore, the nonlinear function may be a function having nonlinear characteristics by broken line approximation in addition to an analytical function.

以上のように本発明によれば、時間周波数分布から、時間周波数について連続して形成する時間周波数の領域を抽出する手段を設けることで、周波数分析結果に現れる、多様な帯域幅や継続時間を有する異常音成分を、専用の診断手順を登録する必要がなく、等しく高精度で診断することができるという効果を奏する。   As described above, according to the present invention, by providing means for extracting a time frequency region that is continuously formed with respect to the time frequency from the time frequency distribution, various bandwidths and durations appearing in the frequency analysis result can be reduced. It is not necessary to register a dedicated diagnostic procedure for the abnormal sound component, and the effect is that it can be diagnosed equally accurately.

また、領域の候補を生成する領域候補生成手段と、生成された領域の候補について、その良さ(凝縮度)を評価する評価手段と、良さ(凝縮度)が最も大きい領域を選択する手段を用いることにより、特定の異常音成分の出現パターンに特化した各種の閾値を用いることなく、領域候補生成手段が生成するすべての領域の候補の中から、評価値が最も良い最適な領域を抽出する作用がある。これにより、周波数分析結果に現れる、多様な帯域幅や継続時間を有する異常音成分を、専用の診断手順を登録する必要がなく、等しく高精度で診断することができるという効果を奏する。   In addition, a region candidate generation unit that generates a region candidate, an evaluation unit that evaluates the goodness (condensation degree) of the generated region candidate, and a unit that selects a region having the highest goodness (condensation degree) are used. Thus, the optimum region having the best evaluation value is extracted from all the region candidates generated by the region candidate generating unit without using various threshold values specialized for the appearance pattern of the specific abnormal sound component. There is an effect. Thereby, there is an effect that abnormal sound components having various bandwidths and durations appearing in the frequency analysis result can be diagnosed equally accurately with no need to register a dedicated diagnostic procedure.

また、候補領域の良さ(凝縮度)として、正常時の時間周波数分布からの変異量に対して、標本数に応じる数を重みとして掛けることによって、標本数が小さいほど重みが小さく、標本数が大きいほど重みが小さくなるため、仮に変異量が同じであれば、抽出される領域の標本数ができるだけ大きい(等価的に領域の面積が大きい)領域が選択されるという作用があるとともに、仮に変異量が大きくても標本数が小さい(等価的に領域の面積が小さい)領域の良さ(凝縮度)は小さくなるという作用がある。これによって、変異量と標本数の大きさとの両者がバランスよく大きい領域が抽出されるため、診断の精度が向上するという効果がある。   In addition, as the goodness of the candidate area (condensation degree), by multiplying the amount of variation from the normal time frequency distribution by the number corresponding to the number of samples as a weight, the smaller the number of samples, the smaller the weight and the number of samples The larger the weight, the smaller the weight. Therefore, if the amount of mutation is the same, the region with the largest number of samples to be extracted is selected as much as possible (equivalently, the area of the region is large). Even if the amount is large, there is an effect that the goodness (condensation degree) of the region where the number of samples is small (equivalently the area of the region is small) becomes small. As a result, a region in which both the amount of mutation and the size of the sample are large in a balanced manner is extracted, which has the effect of improving the accuracy of diagnosis.

また、正常時と比較する分布の特性パラメータとして、標本平均を用いる場合、標本の分布が正規分布に従う場合に意味のある結果が得られるが、実際のスペクトル値は非負の非対称な分布をなしているため、非線形変換によって、分布を正規分布に近づける作用があり、標本平均を用いても意味のある比較ができるようにする。これにより、領域の良さ(凝縮度)の評価が適切に行え、結果として適切に抽出された領域に基づいて異音の可能性を判定できるため、診断の精度が向上するという効果がある。   In addition, when the sample average is used as the characteristic parameter of the distribution compared with normal, a meaningful result is obtained when the distribution of the sample follows a normal distribution, but the actual spectrum value has a non-negative asymmetric distribution. Therefore, non-linear transformation has the effect of bringing the distribution closer to the normal distribution, and makes it possible to make a meaningful comparison using the sample average. Thereby, the goodness of the area (condensation degree) can be appropriately evaluated, and as a result, the possibility of abnormal noise can be determined based on the appropriately extracted area, so that the accuracy of diagnosis is improved.

また、凝縮度を求めるパラメータに領域候補に含まれる標本数に応じる数として、標本数に対する非線形な特性(圧縮特性)をもたせることにより、変異が小さいにもかかわらず、領域の標本数(等価的に面積)が極端に大きくなりすぎることを防止するように働く。これにより、抽出領域として、変異が大きく標本数も大きいバランスした領域を抽出でき、結果としてこれに基づく判定結果の診断の精度が向上するという効果がある。   In addition, by providing a non-linear characteristic (compression characteristic) with respect to the number of samples as a number according to the number of samples included in the region candidate as a parameter for determining the degree of condensation, the number of samples in the region (equivalent To prevent the area from becoming excessively large. Thereby, a balanced region having a large variation and a large number of samples can be extracted as the extraction region, and as a result, there is an effect that the accuracy of diagnosis of the determination result based on this can be improved.

また、生成する候補領域の形状を矩形に限定することにより、一般には、起こりえないと想定される矩形以外の形状の領域を誤って抽出しないように働く。これにより、抽出領域として、適切な領域を抽出でき、結果としてこれに基づく判定結果の診断の精度が向上するという効果がある。   Further, by limiting the shape of the candidate area to be generated to a rectangle, generally, it works so as not to mistakenly extract an area having a shape other than the rectangle that is assumed to be impossible. As a result, an appropriate region can be extracted as the extraction region, and as a result, the accuracy of diagnosis of the determination result based on this can be improved.

同様に、変動成分の時間周波数分布に関する事前知識を用いて、領域の形状を限定することにより、事前知識にないような領域を誤って抽出しないように作用する。これにより、抽出領域として、適切な領域を抽出でき、結果としてこれに基づく判定結果の診断の精度が向上するという効果がある。   Similarly, by limiting the shape of the region using the prior knowledge regarding the temporal frequency distribution of the fluctuation component, the region that does not exist in the prior knowledge is prevented from being erroneously extracted. As a result, an appropriate region can be extracted as the extraction region, and as a result, the accuracy of diagnosis of the determination result based on this can be improved.

同様に、機器の稼動状態に関する事前知識を用いて、領域の形状を限定することにより、事前知識にないような領域を誤って抽出しないように作用する。これにより、抽出領域として、適切な領域を抽出でき、結果としてこれに基づく判定結果の診断の精度が向上するという効果がある。   Similarly, by limiting the shape of the region using prior knowledge about the operating state of the device, the region that does not exist in the prior knowledge is prevented from being erroneously extracted. As a result, an appropriate region can be extracted as the extraction region, and as a result, the accuracy of diagnosis of the determination result based on this can be improved.

本発明の異常音診断装置は、複数の機器を組み合わせてなるシステム装置例えば、エレベータにおいてその異常状態の箇所を検出する検出装置として利用される可能性がある。   The abnormal sound diagnosis apparatus of the present invention may be used as a system apparatus that is a combination of a plurality of devices, for example, a detection apparatus that detects the location of an abnormal state in an elevator.

1;測定信号、2;波形取得部、3;波形データ、4;時間周波数分析部、5;時間周波数分布、6;正常時時間周波数分布記憶部、7;試験時時間周波数分布記憶部、8;事前知識記憶部、9;領域候補生成部、10;領域候補、11;評価部、12;凝縮度、13;領域抽出部、15;異常時計算部、17;判定部。   DESCRIPTION OF SYMBOLS 1; Measurement signal, 2; Waveform acquisition part, 3; Waveform data, 4; Time frequency analysis part, 5; Time frequency distribution, 6: Time frequency distribution memory part at normal time, 7: Time frequency distribution memory part at test time, 8 Prior knowledge storage unit, 9; region candidate generation unit, 10; region candidate, 11; evaluation unit, 12; condensation degree, 13; region extraction unit, 15;

Claims (5)

検査対象機器が発生する音または振動の波形データを取込む波形データ取得手段と、
上記波形データを時間周波数分析し、一方の軸を時間軸に、他方の軸を周波数軸にした時間周波数分布を求める時間周波数分析手段と、
上記時間周波数分布の時間軸と周波数軸の座標値によって規定し、事前に前記検査対象機器を分析して得た機器からの発生異常音成分の時間周波数分布における出現領域の形状を規定する事前知識に基づいた複数の領域を生成し、上記時間周波数分布の定常状態とは異なる変動成分が含まれる領域を抽出する領域抽出手段と、
上記抽出領域に含まれる時間周波数分布に基づいて異常の判定を行い出力する判定手段と
を備え
上記領域抽出手段は、
上記時間周波数分布の定常状態とは異なる変動成分が含まれる領域を領域候補として抽出する領域候補生成部と、
上記領域候補に含まれる時間周波数分布と正常時の時間周波数分布の関係から凝縮度を求める評価部と
を備え、上記凝縮度が大きい領域候補を抽出領域として出力する
ことを特徴とする異常音診断装置。
Waveform data acquisition means for capturing waveform data of sound or vibration generated by the device to be inspected;
Time frequency analysis of the waveform data, time frequency analysis means for obtaining a time frequency distribution with one axis as a time axis and the other axis as a frequency axis;
Prior knowledge specifying the shape of the appearance region in the time frequency distribution of the abnormal sound component generated from the device obtained by analyzing the inspection target device in advance, which is defined by the time axis of the time frequency distribution and the coordinate value of the frequency axis. A region extracting means for generating a plurality of regions based on the above and extracting a region including a variation component different from the steady state of the time frequency distribution;
Determination means for determining and outputting an abnormality based on the time-frequency distribution included in the extraction region, and
The region extracting means includes
A region candidate generation unit that extracts a region including a variation component different from the steady state of the time frequency distribution as a region candidate;
An evaluation unit that obtains the degree of condensation from the relationship between the time frequency distribution included in the region candidate and the time frequency distribution at normal time;
An abnormal sound diagnosis apparatus comprising: a region candidate having a high degree of condensation as an extraction region .
上記評価部は、凝縮度を、領域候補に含まれる時間周波数分布を非線形変換するとともに、非線形変換された時間周波数分布の特性パラメータと、同じく非線形変換された正常時の時間周波数分布の特性パラメータと上記領域候補に含まれる標本数に応じる数との演算により求めることを特徴とする請求項記載の異常音診断装置。 The evaluation unit nonlinearly converts the time frequency distribution included in the region candidate to the degree of condensation, and the characteristic parameter of the non-linearly converted time frequency distribution and the characteristic parameter of the normal time frequency distribution that is also non-linearly converted The abnormal sound diagnosis apparatus according to claim 1 , wherein the abnormal sound diagnosis apparatus is obtained by calculation with a number corresponding to the number of samples included in the region candidate. 上記評価部が、凝縮度を求めるための上記非線形変換は、強度に対して非線形特性を持つ変換関数を用いることを特徴とする請求項記載の異常音診断装置。 The abnormal sound diagnosis apparatus according to claim 2 , wherein the non-linear conversion for the evaluation unit to obtain the degree of condensation uses a conversion function having non-linear characteristics with respect to intensity. 上記評価部が、凝縮度を求めるための上記の領域候補に含まれる標本数に応じる数は、標本数に対して非線形特性を持つ関数を標本数に適用した数としたことを特徴とする請求項または請求項記載の異常音診断装置。 The number according to the number of samples included in the region candidate for calculating the degree of condensation by the evaluation unit is a number obtained by applying a function having nonlinear characteristics to the number of samples to the number of samples. The abnormal sound diagnosis apparatus according to claim 2 or claim 3 . 上記事前知識がテーブルとして記憶された事前知識記憶部を備え、
上記領域抽出手段は、上記事前知識記憶部に記憶されたテーブルの矩形の領域候補に基づいて生成することを特徴とする請求項乃至請求項のいずれか1項に記載の異常音診断装置。
A prior knowledge storage unit in which the prior knowledge is stored as a table;
Said region extraction means, abnormal sound diagnostic apparatus according to any one of claims 1 to 4, characterized in that to produce on the basis of the rectangular area candidates of the table stored in the pre-knowledge storage unit .
JP2011124111A 2011-06-02 2011-06-02 Abnormal sound diagnosis device Expired - Fee Related JP5783808B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011124111A JP5783808B2 (en) 2011-06-02 2011-06-02 Abnormal sound diagnosis device
TW101116321A TWI451070B (en) 2011-06-02 2012-05-08 Abnormal sound diagnostic equipment
KR1020120049142A KR101280802B1 (en) 2011-06-02 2012-05-09 Abnormal sound diagnostic equipment
CN201210176444.1A CN102809493B (en) 2011-06-02 2012-05-31 Abnormal sound diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011124111A JP5783808B2 (en) 2011-06-02 2011-06-02 Abnormal sound diagnosis device

Publications (2)

Publication Number Publication Date
JP2012251851A JP2012251851A (en) 2012-12-20
JP5783808B2 true JP5783808B2 (en) 2015-09-24

Family

ID=47233256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011124111A Expired - Fee Related JP5783808B2 (en) 2011-06-02 2011-06-02 Abnormal sound diagnosis device

Country Status (4)

Country Link
JP (1) JP5783808B2 (en)
KR (1) KR101280802B1 (en)
CN (1) CN102809493B (en)
TW (1) TWI451070B (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103177732B (en) * 2013-03-26 2015-05-20 航天科技控股集团股份有限公司 Sound comparison processing detection system and detection method based on digital signal processor (DSP)
JP6236282B2 (en) * 2013-10-21 2017-11-22 株式会社日立ハイテクノロジーズ Abnormality detection apparatus, abnormality detection method, and computer-readable storage medium
JP6038347B2 (en) * 2013-11-08 2016-12-07 三菱電機株式会社 Abnormal sound diagnosis device
US20160327522A1 (en) * 2014-02-17 2016-11-10 Mitsubishi Electric Corporation Abnormal sound detection device, abnormal processing-machine-sound detection system, and abnormal sound detection method
KR101602046B1 (en) * 2014-07-02 2016-03-09 울산대학교 산학협력단 Method and apparatus for selecting generating function for diagnosing fault of bearing
CN104089791A (en) * 2014-07-28 2014-10-08 郑州航空工业管理学院 Improved injury locating and injury degree recognizing method based on vibration
JP6250198B2 (en) * 2015-02-03 2017-12-20 三菱電機株式会社 Abnormal sound diagnosis apparatus, abnormal sound diagnosis system, abnormal sound diagnosis method, and abnormal sound diagnosis program
CN106646205A (en) * 2015-10-30 2017-05-10 国网山西省电力公司电力科学研究院 Random big-disturbance signal removing algorithm for analyzing circuit breaker fault through sound and vibration combination
WO2017098601A1 (en) * 2015-12-09 2017-06-15 三菱電機株式会社 Deteriorated-portion estimating device, deteriorated-portion estimating method, and diagnosis system for movable object
JP5954605B1 (en) * 2015-12-14 2016-07-20 富士ゼロックス株式会社 Diagnostic device, diagnostic system and program
JP5954604B1 (en) * 2015-12-14 2016-07-20 富士ゼロックス株式会社 Diagnostic device, diagnostic system and program
JP6444851B2 (en) * 2015-12-24 2018-12-26 ファナック株式会社 Control device having learning function for detecting cause of noise generation
JP6540962B2 (en) * 2016-02-02 2019-07-10 富士ゼロックス株式会社 Diagnostic device, diagnostic system and program
US11513000B2 (en) 2016-12-12 2022-11-29 Rorze Corporation Waveform analysis device and waveform analysis method
WO2019220620A1 (en) * 2018-05-18 2019-11-21 日本電気株式会社 Abnormality detection device, abnormality detection method, and program
JP2020046211A (en) * 2018-09-14 2020-03-26 株式会社椿本チエイン Diagnostic device and method for diagnosis
KR102249113B1 (en) * 2019-05-08 2021-05-10 (주)제이에스시스템 Automatic equipment failure prediction system in smart factory
JP7001200B2 (en) * 2019-06-06 2022-01-19 三菱電機ビルテクノサービス株式会社 Analysis equipment
CN110308203B (en) * 2019-06-14 2021-05-14 江南大学 Feather-proof fabric auditory style detection device and detection method based on vibration signals
JP7092818B2 (en) * 2020-03-25 2022-06-28 株式会社日立製作所 Anomaly detection device
CN112098102B (en) * 2020-09-04 2022-12-20 常州工学院 Internal combustion engine abnormal sound identification and diagnosis method based on EWT-SCWT
JP7472012B2 (en) 2020-12-29 2024-04-22 株式会社日立製作所 Abnormal signal extraction device
CN113432709B (en) * 2021-06-25 2023-08-08 湖南工业大学 Visual mechanical fault diagnosis method based on graphics
CN116608908B (en) * 2023-07-21 2023-10-27 四川省华盾防务科技股份有限公司 Fast-jump frequency source abnormity monitoring system and method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701008A (en) * 1984-08-10 1987-10-20 Motorola, Inc. Optical waveguide including superstrate of niobium or silicon oxynitride and method of making same
JPH06309580A (en) * 1993-04-27 1994-11-04 Toshiba Corp Monitor and diagnosis device for plant
JP3211615B2 (en) * 1995-04-06 2001-09-25 日産自動車株式会社 Machine operation noise abnormality judgment method
JPH1048037A (en) * 1996-08-08 1998-02-20 Meidensha Corp Monitoring system
JP3449194B2 (en) * 1997-01-28 2003-09-22 松下電工株式会社 Method and apparatus for diagnosing abnormalities in rotating equipment
JP3885297B2 (en) 1997-07-04 2007-02-21 マツダ株式会社 Abnormal sound determination device and abnormal sound determination method
JP3651351B2 (en) * 2000-03-27 2005-05-25 日産自動車株式会社 Machine abnormality inspection device
JP4262878B2 (en) * 2000-09-28 2009-05-13 石川島運搬機械株式会社 Rotating machine abnormal sound diagnosis processing method
JP2005037293A (en) * 2003-07-17 2005-02-10 Hitachi Building Systems Co Ltd Method of diagnosing abnormality
JP4319101B2 (en) * 2004-07-08 2009-08-26 株式会社日立製作所 Moving object abnormality detection system
JP4744826B2 (en) * 2004-08-18 2011-08-10 東芝エレベータ株式会社 Elevator abnormality diagnosis device
JP4373350B2 (en) 2005-02-15 2009-11-25 株式会社日立製作所 Shaft vibration monitoring system
CN100587416C (en) * 2006-01-30 2010-02-03 日产自动车株式会社 Abnormal noise correction verification apparatus and method
JP5063005B2 (en) * 2006-02-01 2012-10-31 株式会社ジェイテクト Sound or vibration abnormality diagnosis method and sound or vibration abnormality diagnosis device
TW200907307A (en) * 2007-08-15 2009-02-16 China Steel Corp Method of detecting abnormal condition of vibration sensor
TWI474023B (en) * 2008-12-10 2015-02-21 Ind Tech Res Inst Diagnosis method for diagnosing fault in operation of a motor fault and diagnosis device using the same
JP2010266327A (en) * 2009-05-14 2010-11-25 Denso Corp Facility diagnosis device and facility diagnosis method

Also Published As

Publication number Publication date
TWI451070B (en) 2014-09-01
JP2012251851A (en) 2012-12-20
CN102809493B (en) 2015-06-24
CN102809493A (en) 2012-12-05
KR20120135035A (en) 2012-12-12
TW201300742A (en) 2013-01-01
KR101280802B1 (en) 2013-07-05

Similar Documents

Publication Publication Date Title
JP5783808B2 (en) Abnormal sound diagnosis device
JP5930789B2 (en) Abnormal sound diagnosis device
US10228994B2 (en) Information processing system, information processing method, and program
JP6038347B2 (en) Abnormal sound diagnosis device
JP6103899B2 (en) Failure location estimation device
JPWO2016125256A1 (en) Abnormal sound diagnosis apparatus, abnormal sound diagnosis system, abnormal sound diagnosis method, and abnormal sound diagnosis program
JP6904418B2 (en) Information processing equipment, information processing system, information processing method, and program
US10585130B2 (en) Noise spectrum analysis for electronic device
JP2001318031A (en) Method for diagnosing abnormality of device
JP7002417B2 (en) Equipment abnormality diagnosis device and abnormality diagnosis method
US10716514B1 (en) System and method for optimized independent component selection for automated signal artifact removal to generate a clean signal
JP6887374B2 (en) Vibration analysis system and vibration analysis method
CN106898031A (en) A kind of method of reeling off raw silk from cocoons for high-precision optical fiber measurement
JP2000046893A (en) Abnormality diagnostic system and method
JP7492443B2 (en) Pattern classification device, elevator sound diagnostic system, and pattern classification method Elevator sound diagnostic device and elevator sound diagnostic method
JP4049331B2 (en) Method and apparatus for evaluating diagnostic object
RU2209410C1 (en) Method of diagnosis of bearings
JP6298527B2 (en) Body sound analysis apparatus, body sound analysis method, computer program, and recording medium
JP6811168B2 (en) Power supply deterioration judgment method, power supply deterioration evaluation method, power supply deterioration judgment device, power supply deterioration evaluation device, and program
JPH0883265A (en) Vibration signal analyzer
CN109711036B (en) Evaluation method of flight control system test result
JP2021053460A (en) Respiratory sound analysis apparatus, respiratory sound analysis method, computer program, and recording medium
WO2018159572A1 (en) Psychiatric disorder diagnosis device and psychiatric disorder data generation device
CN116953340A (en) Data processing system and method for testing packaged circuit
CN116712089A (en) Epileptiform discharge enriching epileptiform interval and method for predicting focus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150721

R150 Certificate of patent or registration of utility model

Ref document number: 5783808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees