JP2007051982A - Method and apparatus for evaluating object of diagnosis - Google Patents

Method and apparatus for evaluating object of diagnosis Download PDF

Info

Publication number
JP2007051982A
JP2007051982A JP2005239061A JP2005239061A JP2007051982A JP 2007051982 A JP2007051982 A JP 2007051982A JP 2005239061 A JP2005239061 A JP 2005239061A JP 2005239061 A JP2005239061 A JP 2005239061A JP 2007051982 A JP2007051982 A JP 2007051982A
Authority
JP
Japan
Prior art keywords
state
signal
measurement
evaluation
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005239061A
Other languages
Japanese (ja)
Other versions
JP4049331B2 (en
Inventor
Ho Jinyama
鵬 陳山
Takayoshi Yamamoto
隆義 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Mie University NUC
Original Assignee
Japan Science and Technology Agency
Mie University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Mie University NUC filed Critical Japan Science and Technology Agency
Priority to JP2005239061A priority Critical patent/JP4049331B2/en
Publication of JP2007051982A publication Critical patent/JP2007051982A/en
Application granted granted Critical
Publication of JP4049331B2 publication Critical patent/JP4049331B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02827Elastic parameters, strength or force

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation method which enables accurate evaluation of the state of an object of evaluation to automatically determine the presence of abnormalities or the like, and to provide an evaluation apparatus. <P>SOLUTION: The change the degrees of reference state signal, acquired preliminarily from the object of evaluation and the measuring state signal acquired at measurement are calculated by statistical inspection or the like, by using the statistical values of frequency spectral components and the state of the evaluation target is determined, on the basis of the inspection result. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、評価対象物の状態を評価するための技術に係り、特に、評価対象物から検出した振動や音,AE信号等の状態信号を利用して評価対象物の状態を高い信頼性をもって効率的に評価することの出来る、診断対象物の新規な評価方法および評価装置に関するものである。
The present invention relates to a technique for evaluating the state of an evaluation object, and in particular, the state of the evaluation object is highly reliable using state signals such as vibrations, sounds, and AE signals detected from the evaluation object. The present invention relates to a novel evaluation method and evaluation apparatus for a diagnostic object that can be efficiently evaluated.

各種の装置やシステム,自然物などにおいては、その状態を把握して正常か非正常かを判定したり、メンテナンスの必要性を判定したりすることが必要となる場合がある。具体的には、例えば、NC加工機等の工作機械や半導体製造プラント等の生産設備、発電所のタービン等のシステム、エアコンや冷蔵庫等の家電製品、崩壊の危険性のある山野等においては、安定した作動を継続的に実現させたり、危険発生を未然に回避するために、その状態が正常か否かを判定することが有効である。   In various devices, systems, natural objects, etc., it may be necessary to determine the normal or abnormal state by determining the state thereof, or to determine the necessity of maintenance. Specifically, for example, in machine tools such as NC processing machines, production facilities such as semiconductor manufacturing plants, turbines in power plants, home appliances such as air conditioners and refrigerators, and Yamano where there is a risk of collapse, In order to continuously realize a stable operation and to avoid occurrence of danger, it is effective to determine whether or not the state is normal.

ところが、このような各種の評価対象物における状態は、外部から人が観察するだけでは容易に判断し難い場合が多い。   However, it is often difficult to easily determine the state of such various evaluation objects simply by observing from outside.

そこで、従来から、評価対象物の状態を反映する状態反映信号として、例えば音や振動,AE信号等を検出して、この状態反映信号を解析することで、評価対象物における異常の発生を速やかに検知することが提案されている。なお、状態反映信号の解析方法としては、状態反映信号の最大値を観察して閾値を超えたピーク値の検出をもって異常と判定するピーク値解析や、状態反映信号からフーリエ演算によって得られる特定周波数成分の検出をもって異常を判定する周波数解析などが知られている。(特許文献1参照)   Therefore, conventionally, as a state reflection signal reflecting the state of the evaluation object, for example, sound, vibration, AE signal or the like is detected, and this state reflection signal is analyzed, so that the occurrence of an abnormality in the evaluation object can be quickly detected. It has been proposed to detect. The state reflection signal is analyzed by observing the maximum value of the state reflection signal and detecting a peak value exceeding the threshold value to determine that there is an abnormality, or a specific frequency obtained from the state reflection signal by Fourier calculation. Frequency analysis and the like for determining an abnormality by detecting a component are known. (See Patent Document 1)

ところで、評価対象物から加速度センサやボイスコイル等で検出される状態反映信号には、評価対象物の状態に関係のない多くの雑音信号が含まれる。そこで、評価対象物の状態を高精度に判定して判定結果の信頼性を高めるために、かかる雑音信号を除去することが要求される。そのために、従来では、一般に、ローパスフィルタやハイパスフィルタ、バンドパスフィルタを用いて、状態反映信号から雑音信号を除いて、評価対象物の状態を反映すると考えられる特定周波数域の信号だけを抽出し、この抽出した特定周波数域の信号を解析するようにしている。   By the way, the state reflection signal detected from the evaluation object by an acceleration sensor, a voice coil, or the like includes many noise signals that are not related to the state of the evaluation object. Therefore, in order to determine the state of the evaluation object with high accuracy and increase the reliability of the determination result, it is required to remove such a noise signal. For this reason, conventionally, by using a low-pass filter, a high-pass filter, or a band-pass filter, a noise signal is removed from the state-reflecting signal and only a signal in a specific frequency range that is considered to reflect the state of the evaluation object is extracted. The extracted signal in the specific frequency range is analyzed.

しかしながら、このようなフィルタを用いて状態反映信号から特定周波数域の信号だけを取り出した場合、果して本当に評価対象物の状態を反映する信号だけが抽出されているか否かは、明確でない。蓋し、フィルタによるカットオフ周波数の決定は、専ら経験的或いは試行錯誤的に行われているに過ぎないのである。   However, when only a signal in a specific frequency region is extracted from the state reflection signal using such a filter, it is not clear whether only a signal that really reflects the state of the evaluation object is extracted. The determination of the cut-off frequency by the filter is performed only empirically or by trial and error.

それ故、従来の状態評価方法や状態評価装置は、その使用に際して熟練を要するものであり、また、判定結果の客観的な信頼性や安定性が、必ずしも高く無かった。しかも、熟練者が操作した場合でも、評価対象物の状態判定に有意な信号までも、除去されている可能性は否定できず、果して効率的な判定が実現できているか否かという疑問を完全に拭い去ることは出来なかったのである。   Therefore, the conventional state evaluation method and state evaluation device require skill when used, and the objective reliability and stability of the determination result are not necessarily high. Moreover, even if a skilled person operates the signal, it is impossible to deny the possibility that even a signal that is significant in determining the state of the evaluation object has been removed. It was not possible to wipe it off.

特開2002−372400号公報JP 2002-372400 A

ここにおいて、本発明は、上述せる如き事情を背景にして為されたものであって、その解決課題とするところは、評価対象物の状態を容易に且つ精度良く判定して異常の発生を高い信頼性をもって検出することを可能にし得る、評価対象物の新規な評価方法および評価装置を提供することにある。
Here, the present invention has been made in the background as described above, and the problem to be solved is that the state of the evaluation object can be easily and accurately determined and the occurrence of abnormality is high. An object of the present invention is to provide a novel evaluation method and evaluation apparatus for an evaluation object that can be detected with reliability.

以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体および図面に記載されたもの、或いはそれらの記載から当業者が把握することの出来る発明思想に基づいて認識されるものであることが理解されるべきである。   Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible. Further, aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification and drawings, or an invention that can be understood by those skilled in the art from those descriptions. It should be understood that it is recognized based on thought.

(評価対象物の評価方法に関する本発明の態様1)
評価対象物の評価方法に関する本発明の態様1は、評価対象物から検出した状態反映信号に基づいて該評価対象物の状態を評価するに際して、判定基準とする状態下において前記状態反映信号を前記評価対象物から検出することにより単位時間長に亘る基準状態信号を複数得て、それら複数の基準状態信号に関してそれぞれ周波数スペクトル情報を得る一方、測定対象とする状態下において前記状態反映信号を前記評価対象物から検出することにより単位時間長に亘る測定状態信号を少なくとも一つ得て、該測定状態信号に関して周波数スペクトル情報を得、更に、該基準状態信号に関して得た周波数スペクトル情報と、該測定状態信号に関して得た周波数スペクトル情報とについて、それぞれ統計値を求めて、それら基準状態信号に基づく統計値と測定状態信号に基づく統計値との相違の程度に基づいて、前記評価対象物における測定対象状態を評価するようにした診断対象物の評価方法にある。
(Aspect 1 of the present invention relating to an evaluation method of an evaluation object)
In the aspect 1 of the present invention relating to the evaluation method of the evaluation object, when the state of the evaluation object is evaluated based on the state reflection signal detected from the evaluation object, the state reflection signal is used under the condition as a determination criterion. A plurality of reference state signals over a unit time length are obtained by detecting from the evaluation object, and frequency spectrum information is obtained for each of the plurality of reference state signals, while the state reflection signal is evaluated under the state to be measured. At least one measurement state signal over a unit time length is obtained by detecting from an object, frequency spectrum information is obtained with respect to the measurement state signal, frequency spectrum information obtained with respect to the reference state signal, and the measurement state For each frequency spectrum information obtained for the signal, a statistical value is obtained and based on the reference state signal. Based on the degree of difference between the statistical value based on a total value as the measurement state signal, in the evaluation method of diagnosis target object so as to evaluate the measured state of the evaluation object.

このような本発明方法に従えば、評価対象物の正常状態などの基準状態を判定基準として、測定対象となる状態を評価することが可能となる。要するに、測定状態において、基準状態から変化した部分だけを対象として、評価対象物の状態を評価することが出来る。それ故、従来手法のように予めフィルタ手段を用いて一義的に設定した周波数域の信号を全て除去してしまう必要が無い。   According to such a method of the present invention, it is possible to evaluate a state to be measured using a reference state such as a normal state of an evaluation object as a determination criterion. In short, in the measurement state, the state of the evaluation object can be evaluated only for the portion that has changed from the reference state. Therefore, it is not necessary to remove all the signals in the frequency range uniquely set in advance using the filter means as in the conventional method.

従って、本発明方法によれば、操作する者の意図によって情報信号が不用意に削除されてしまうことが防止されるのであり、評価に際して有意な信号を、容易に且つ効率的に取り出すことが可能となる。そして、取り出した状態信号に基づいて、評価対象物の状態を高精度に判定することが可能となるのである。   Therefore, according to the method of the present invention, it is possible to prevent the information signal from being inadvertently deleted by the intention of the operator, and it is possible to easily and efficiently extract a significant signal for evaluation. It becomes. The state of the evaluation object can be determined with high accuracy based on the extracted state signal.

加えて、本発明方法においては、評価対象物の基準状態信号を複数取得し、それらの統計値(平均値や分散など)を用いて状態を評価するようにしたことから、評価結果において一層の信頼性と安定性の向上が図られ得る。   In addition, in the method of the present invention, a plurality of reference state signals of the evaluation object are obtained, and the state is evaluated using their statistical values (average value, variance, etc.). Reliability and stability can be improved.

より詳細な態様を例示すれば、本発明に係る評価方法は、次のような態様を採り得る。先ず、対象物の状態を判定するために、基準状態(判定基準とする状態)で測定した信号(基準状態信号)をFFTによりスペクトルを求め、各周波数におけるスペクトル成分の統計値(平均値や分散など)を前もって求めておく。次に、状態診断を行うために、測定対象とする状態下で新たに測定した信号(測定状態信号)をFFTによりスペクトルを求め、各周波数において前もって求められた基準状態のスペクトル成分の統計値(平均値や分散など)を用いて、各周波数のスペクトル成分が基準状態時のスペクトルに対する変化の度合を統計検定等(例えば、後述のスペクトル成分差演算値)により求める。更に、変化の大きいスペクトル成分を抽出して、周波数領域の特徴パラメータ(例えば、後述の特徴パラメータ)を用いて状態変化の有無や状態種類の同定を行う。   If a more detailed aspect is illustrated, the evaluation method according to the present invention may take the following aspects. First, in order to determine the state of an object, a spectrum of a signal (reference state signal) measured in a reference state (determination reference state) is obtained by FFT, and a statistical value (average value or variance) of spectrum components at each frequency. Etc.) in advance. Next, in order to perform a state diagnosis, a spectrum of a signal (measurement state signal) newly measured under a state to be measured is obtained by FFT, and a statistical value of a spectrum component of a reference state obtained in advance at each frequency ( The degree of change of the spectrum component of each frequency with respect to the spectrum in the reference state is obtained by a statistical test or the like (for example, a spectral component difference calculation value described later). Further, a spectral component having a large change is extracted, and the presence / absence of a state change and the state type are identified using a frequency domain feature parameter (for example, a feature parameter described later).

なお、評価対象物の評価方法に関する本発明の態様1では、(e)前記基準状態信号における前記単位時間長と、前記測定状態信号における前記単位時間長を同じにすることが、一般に採用される。   In the aspect 1 of the present invention relating to the evaluation method of the evaluation object, it is generally employed that (e) the unit time length in the reference state signal is the same as the unit time length in the measurement state signal. .

このように基準状態信号と測定状態信号の単位時間長を揃えることで、両状態信号の検出条件を一層近づけることが出来る。それ故、それら基準状態信号と測定状態信号から得られる両統計値の比較に基づく判定精度の更なる向上も図られ得る。尤も、本発明では、このように両信号の時間長を同じに揃えなくても対応処理することも可能である。   Thus, by aligning the unit time lengths of the reference state signal and the measurement state signal, the detection conditions for both state signals can be made closer. Therefore, it is possible to further improve the determination accuracy based on the comparison of both statistical values obtained from the reference state signal and the measurement state signal. However, in the present invention, it is possible to perform the corresponding processing even if the time lengths of both signals are not equal to each other.

(評価対象物の評価方法に関する本発明の態様2)
評価対象物の評価方法に関する本発明の態様2は、前述の態様1に係る評価方法であって、前記判定基準とする状態下において前記状態反映信号として所定の時間長さの信号を取得して該状態反映信号を一定の分割時間長で複数に分割することにより複数の前記基準状態信号を得ると共に、前記測定対象とする状態下において前記状態反映信号として所定の時間長さの信号を取得して該状態反映信号を一定の分割時間長で複数に分割することにより複数の前記測定状態信号を得ることを、特徴とする。
(Aspect 2 of the present invention relating to an evaluation method of an evaluation object)
Aspect 2 of the present invention relating to an evaluation method of an evaluation object is the evaluation method according to aspect 1 described above, wherein a signal having a predetermined time length is acquired as the state reflection signal under a state as the determination criterion. A plurality of the reference state signals are obtained by dividing the state reflection signal into a plurality of parts with a constant division time length, and a signal having a predetermined time length is obtained as the state reflection signal under the state to be measured. Then, a plurality of the measurement state signals are obtained by dividing the state reflection signal into a plurality of parts with a constant division time length.

本態様に従えば、それぞれ複数の基準状態信号と測定状態信号を、容易に且つ効率的に取得することが出来る。そして、このように基準状態信号だけでなく測定状態信号も、複数得ることにより、それぞれの統計値の相違に基づく判定精度の更なる向上も図られ得る。   According to this aspect, it is possible to easily and efficiently acquire a plurality of reference state signals and measurement state signals. Further, by obtaining a plurality of measurement state signals in addition to the reference state signal in this way, it is possible to further improve the determination accuracy based on the difference between the respective statistical values.

(評価対象物の評価方法に関する本発明の態様3)
評価対象物の評価方法に関する本発明の態様3は、前述の態様2に係る評価方法であって、前記判定基準とする状態下において取得した前記状態反映信号を複数に分割するに際して、分割して得られた前記基準状態信号の複数におけるそれぞれのデータの絶対値の平均値および標準偏差が近似的に等しくなるように、前記分割時間長を設定すると共に、前記測定対象とする状態下において取得した前記状態反映信号を複数に分割するに際して、分割して得られた前記測定状態信号の複数におけるそれぞれのデータの絶対値の平均値および標準偏差が近似的に等しくなるように、前記分割時間長を設定することを、特徴とする。
なお、それぞれのデータの絶対値の平均値および標準偏差が近似的に等しくなるとは、下記の〔数1〕を満足し得る状態となることをいう。
(ただし、i≠j,j=1〜Nで、Mi とMj はそれぞれi番目とj番目の分割データの数で、t(α,∞)はt分布の確率密度関数が上側確率αに対するパーセント点である。また、α=0.00001〜0.9であり、より好ましくは0.005〜0.3とされる。)
(Aspect 3 of the present invention relating to an evaluation method of an evaluation object)
Aspect 3 of the present invention relating to the evaluation method of the evaluation object is the evaluation method according to aspect 2 described above, and is divided when dividing the state reflection signal acquired under the condition used as the criterion. The division time length is set so that the average value and the standard deviation of the absolute values of the respective data in the plurality of obtained reference state signals are approximately equal, and obtained under the state to be measured. When dividing the state reflection signal into a plurality, the division time length is set so that the average value and the standard deviation of the absolute values of the respective data in the plurality of measurement state signals obtained by the division are approximately equal. It is characterized by setting.
In addition, that the average value and the standard deviation of the absolute values of each data are approximately equal means that the following [Formula 1] can be satisfied.
(Where i ≠ j, j = 1 to N, M i and M j are the numbers of the i-th and j-th divided data, respectively, and t (α, ∞) is the probability density function of the t distribution is the upper probability α (Also, α = 0.00001 to 0.9, and more preferably 0.005 to 0.3.)

本態様に従えば、複数の基準状態信号と複数の測定状態信号が、何れも、近似的に定常信号とされることとなり、基準状態信号および測定状態信号を何れもより高精度に取得することが可能となる。特に、測定状態信号が、全体の時間長に亘ってみると非定常信号である場合でも、その分割時間長を充分に短く設定して、上述の条件(それぞれのデータの絶対値の平均値および標準偏差が等しい)を満足するように分割することで、近似的に定常信号として得ることが可能となるのである。   According to this aspect, each of the plurality of reference state signals and the plurality of measurement state signals is approximately a steady signal, and both the reference state signal and the measurement state signal are obtained with higher accuracy. Is possible. In particular, even when the measurement state signal is a non-stationary signal over the entire time length, the division time length is set to be sufficiently short, and the above conditions (the average value of the absolute value of each data and By dividing so as to satisfy (equal standard deviation), it is possible to obtain approximately a steady signal.

(評価対象物の評価方法に関する本発明の態様4)
評価対象物の評価方法に関する本発明の態様4は、前述の態様1乃至3の何れか一の態様に係る評価方法であって、前記基準状態信号に関する周波数スペクトル情報の前記統計値と、前記測定状態信号に関する周波数スペクトル情報の前記統計値として、それぞれ、平均値および標準偏差を採用することを、特徴とする。
(Aspect 4 of the present invention relating to an evaluation method of an evaluation object)
Aspect 4 of the present invention relating to an evaluation method for an evaluation object is the evaluation method according to any one of the aforementioned aspects 1 to 3, wherein the statistical value of the frequency spectrum information related to the reference state signal and the measurement An average value and a standard deviation are employed as the statistical values of the frequency spectrum information related to the state signal, respectively.

本態様に従えば、統計値として平均値と標準偏差を採用することにより、基準状態信号と測定状態信号のそれぞれの周波数スペクトル情報を効率的に且つ容易に把握することが出来る。それ故、かかる統計値を採用することで、例えば後述の態様7に例示するように、基準状態信号の周波数スペクトル情報と測定状態信号の周波数スペクトル情報との相違(変化の度合)を、有利に評価することが可能となる。   According to this aspect, the frequency spectrum information of the reference state signal and the measurement state signal can be grasped efficiently and easily by adopting the average value and the standard deviation as the statistical values. Therefore, by adopting such a statistical value, for example, as illustrated in Aspect 7 to be described later, the difference (degree of change) between the frequency spectrum information of the reference state signal and the frequency spectrum information of the measurement state signal is advantageously reduced. It becomes possible to evaluate.

(評価対象物の評価方法に関する本発明の態様5)
評価対象物の評価方法に関する本発明の態様5は、前述の態様1乃至4の何れか一の態様に係る評価方法であって、前記基準状態信号に基づく統計値と前記測定状態信号に基づく統計値との相違の程度を評価するために、それら両統計値における周波数スペクトル成分の差の大きさを表すスペクトル成分差演算値を用いることを、特徴とする。
(Aspect 5 of the present invention relating to an evaluation method of an evaluation object)
Aspect 5 of the present invention relating to an evaluation method for an evaluation object is the evaluation method according to any one of the aforementioned aspects 1 to 4, wherein the statistical value based on the reference state signal and the statistical value based on the measured state signal In order to evaluate the degree of difference from the values, a spectral component difference calculation value representing the magnitude of the difference between the frequency spectral components in both statistical values is used.

本態様においては、例えば、基準状態と測定状態で全体としての振動レベルが殆ど変化していなくても、振動周波数成分が変化しているような場合にも、その変化を把握して、異常等を検出することも可能となる。特に本態様は、次の態様6や態様7としてより好適に実現される。   In this mode, for example, even if the vibration level component is changing even if the vibration level as a whole is hardly changed between the reference state and the measurement state, the change is grasped and abnormality is detected. Can also be detected. In particular, this aspect is more suitably realized as the following aspects 6 and 7.

(評価対象物の評価方法に関する本発明の態様6)
評価対象物の評価方法に関する本発明の態様6は、前述の態様5に係る評価方法において、前記スペクトル成分差演算値として、周波数スペクトル成分毎に下式:〔数2〕で求められる識別指標:DIおよび周波数スペクトル成分毎に下式:〔数3〕で求められる平均値差:DAの少なくとも一方を採用することを、特徴とする。
(Aspect 6 of the present invention relating to an evaluation method of an evaluation object)
Aspect 6 of the present invention relating to an evaluation method for an evaluation object is an identification index obtained by the following formula: [Equation 2] for each frequency spectrum component as the spectrum component difference calculation value in the evaluation method according to aspect 5 described above: It is characterized in that at least one of the average value difference: DA obtained by the following formula: [Equation 3] is adopted for each DI and frequency spectrum component.

(評価対象物の評価方法に関する本発明の態様7)
評価対象物の評価方法に関する本発明の態様7は、前述の態様5又は6に係る評価方法において、前記スペクトル成分差演算値に関して閾値を設定し、該閾値よりも該スペクトル成分差演算値が大きいか否かを判定して、その判定結果に基づいて状態変化の特徴を反映する特徴スペクトル成分を抽出し、この特徴スペクトル成分を利用して前記評価対象物における測定対象状態を評価することを、特徴とする。
(Aspect 7 of the present invention relating to an evaluation method of an evaluation object)
Aspect 7 of the present invention relating to the evaluation method of the evaluation object is the evaluation method according to aspect 5 or 6 described above, wherein a threshold is set for the calculated spectral component difference, and the calculated spectral component difference is larger than the threshold. Determining whether or not, extracting a characteristic spectrum component reflecting the characteristic of the state change based on the determination result, and evaluating the measurement target state in the evaluation object using this characteristic spectrum component, Features.

本態様においては、基準状態に比して変化のあった周波数スペクトル成分だけを効率的に対象として、状態の異常等を的確に且つ一層簡単に判定することが可能となる。   In this aspect, it is possible to accurately and more easily determine an abnormal state or the like by efficiently targeting only the frequency spectrum component that has changed compared to the reference state.

(評価対象物の評価方法に関する本発明の態様8)
評価対象物の評価方法に関する本発明の態様8は、前述の態様7に係る評価方法において、以下の(1)〜(8)に記載の特徴パラメータの少なくとも一つを用いて前記特徴スペクトル成分の特徴を把握することにより、前記評価対象物における測定対象状態を評価することを、特徴とする。
(1)下式で求められる「残存スペクトルパワー」
(2)下式で求められる「スペクトル残存パワー」
(3)下式で求められる「平均特徴周波数」
(4)下式で求められる「単位時間あたり時間平均をクロースする頻度」
(5)下式で求められる「波形の安定指数」
(6)下式で求められる「変動率」
(7)下式で求められる「歪度」
(8)下式で求められる「尖度」
(Aspect 8 of the present invention relating to the evaluation method of the evaluation object)
Aspect 8 of the present invention relating to an evaluation method for an evaluation object is the evaluation method according to aspect 7 described above, wherein at least one of the characteristic parameters described in (1) to (8) below is used. It is characterized by evaluating the measurement object state in the evaluation object by grasping the characteristic.
(1) “Residual spectrum power” calculated by the following formula
(2) "Spectrum residual power" calculated by the following formula
(3) "Average characteristic frequency" calculated by the following formula
(4) “Frequency of closing time average per unit time” calculated by the following formula
(5) “Waveform stability index” calculated by the following formula
(6) “Variation rate” calculated by the following formula
(7) “Strain” found by the following formula
(8) “kurtosis” calculated by the following formula

本態様においては、特徴スペクトル成分の特徴を数式を用いて的確に把握することが可能となり、評価対象物の状態を一層効率的に判定することが可能となる。   In this aspect, it is possible to accurately grasp the characteristics of the characteristic spectrum component using mathematical formulas, and it is possible to more efficiently determine the state of the evaluation object.

(評価対象物の評価方法に関する本発明の態様9)
評価対象物の評価方法に関する本発明の態様9は、前述の態様1乃至8の何れか一の態様に係る評価方法において、任意の無次元特徴パラメータをM個(p1 〜pM )を選び、かかるM個の特徴パラメータから下式:
で表される統合特徴パラメータ:Zを採用し、
前記評価対象物における前記基準状態として、互いに異なる2種類の状態である状態n及び状態aを選定し、該状態nにおいて得たN個の前記基準状態信号と該状態aにおいて得たN個の前記基準状態信号とに基づいてそれぞれ該統合特徴パラメータ:Zni,Zai(i=1〜N)を求め、更に、該状態nにおけるN個の該統合特徴パラメータ:Zniの平均値:μZn及び標準偏差:SZnと、該状態aにおけるN個の該統合特徴パラメータ:Zaiの平均値:μZa及び標準偏差:SZaを用いて、下式:
で表される絶対判定基準:DIZ を求める一方、
前記評価対象物の測定対象状態で得た前記測定状態信号に基づいて前記統合特徴パラメータ:Zを求めて、
以下の判定条件I及び判定条件IIに示されるMAミニマックス絶対判定法に従い、前記評価対象物における測定対象状態を評価することを、特徴とする。
判定条件I:μZn>μZaならば、Z>DIZ のときに前記状態n,Z<DIZ のときに前記状態a。
判定条件II:μZn<μZaならば、Z<DIZ のときに前記状態n,Z>DIZ のときに前記状態a。
(Aspect 9 of the present invention relating to an evaluation method of an evaluation object)
Aspect 9 of the present invention relating to the evaluation method of the evaluation object is the evaluation method according to any one of the aforementioned aspects 1 to 8, wherein M (p 1 to p M ) arbitrary dimensionless feature parameters are selected. From the M feature parameters, the following formula:
The integrated feature parameter represented by: Z is adopted,
As the reference state in the evaluation object, two different states, state n and state a, are selected, and the N reference state signals obtained in the state n and the N pieces obtained in the state a are obtained. The integrated feature parameters: Z ni and Z ai (i = 1 to N) are obtained based on the reference state signal, respectively, and an average value of the N integrated feature parameters: Z ni in the state n: μ Zn and standard deviation: S Zn and, N pieces of the integrating feature parameters in the state a: average value of Z ai: mu Za and standard deviation: with S Za, the following equation:
While obtaining the absolute criterion: DI Z
Based on the measurement state signal obtained in the measurement target state of the evaluation object, the integrated feature parameter: Z is obtained,
According to the MA minimax absolute determination method shown in the following determination condition I and determination condition II, the measurement object state in the evaluation object is evaluated.
Determination condition I: If μ Zn > μ Za , state n when Z> DI Z , state a when Z <DI Z.
Judgment condition II: If μ ZnZa , state n when Z <DI Z , state a when Z> DI Z.

本態様において、一般に、状態n及び状態aは、何れも、判定結果として得ようとするカテゴリ等が選択される。より具体的に例示すると、状態nとして正常状態が選定されると共に、状態aとして異常状態が選定される。この他、状態n及び状態aとして互いに異なる異常状態を選定しても良い。要するに、本態様では、その判定結果として、評価対象物における測定対象状態が、予め基準状態として選択した二つの状態:状態n,状態aのうち、何れの状態であるかを判定するものであるから、判定結果として得たい二つの異なる状態が、これら二つの基準状態:状態n,状態aとして選択されることとなる。   In this aspect, generally, for the state n and the state a, a category or the like to be obtained as a determination result is selected. More specifically, a normal state is selected as the state n, and an abnormal state is selected as the state a. In addition, different abnormal states may be selected as the state n and the state a. In short, in this aspect, as the determination result, it is determined which of the two states selected in advance as the reference state: the state n and the state a is the measurement target state in the evaluation object. Therefore, two different states to be obtained as determination results are selected as these two reference states: state n and state a.

一方、測定対象状態では、得られた測定状態信号から統合特徴パラメータ:Zが求められる。そして、このZ値と、上述の二つの基準状態:状態n,状態aの情報から得られた絶対判定基準:DIZ の値との関係を考慮して、測定対象状態が、二つの基準状態:状態n,状態aの何れの状態にあるのかが判定されることとなる。 On the other hand, in the measurement target state, an integrated feature parameter: Z is obtained from the obtained measurement state signal. Then, taking into account the relationship between this Z value and the above-described two reference states: the information of absolute state criterion: DI Z obtained from the information of state n and state a, the measurement target state is two reference states. : It is determined whether the state is the state n or the state a.

なお、本態様において、統合特徴パラメータ:Zを求めるに際して考慮される無次元の特徴パラメータ:p1 〜pM としては、基準状態信号と測定状態信号との各統計値の相違の差の程度を反映した適当なパラメータが採用可能であり、より好適には前記特徴スペクトル成分を反映した適当なパラメータが採用可能されることとなり、更に好適には前述の態様8における(1)〜(9)の特徴パラメータの中から適宜に適当なものが適当な数だけ選択される。何れか2つを選択しても良いし、9個全部を選択しても良い。測定対象状態の評価状態に応じて、或いは測定対象の種類等に応じて、例えば過去の判定経験データや実験結果等を考慮して選択される。また、統合特徴パラメータ:Zにおけるaの値は、各対応する特徴パラメータにおいて考慮する重み付けの割合に応じて、例えば過去の判定経験データや実験結果等を参考にして適当に設定される定数である。 In this embodiment, the dimensionless feature parameters: p 1 to p M that are considered when obtaining the integrated feature parameter: Z are degrees of difference in statistical values between the reference state signal and the measurement state signal. Appropriate reflected parameters can be adopted, more suitably appropriate parameters reflecting the characteristic spectrum components can be adopted, and more preferably, the above-described aspects (1) to (9) in the aspect 8 can be adopted. An appropriate number is appropriately selected from the characteristic parameters. Either two may be selected, or all nine may be selected. The selection is made in accordance with the evaluation state of the measurement target state or the type of the measurement target in consideration of, for example, past determination experience data and experimental results. In addition, the value of a in the integrated feature parameter Z is a constant that is appropriately set with reference to, for example, past determination experience data and experimental results, according to the weighting ratio to be considered in each corresponding feature parameter. .

(評価対象物の評価方法に関する本発明の態様10)
評価対象物の評価方法に関する本発明の態様10は、前述の態様9に係る評価方法において、前記絶対判定基準:DIZ に代えて下式:
で表される相対判定基準:DIZn,DIZaを採用し、
前記判定条件I及び判定条件IIに代えて、以下の判定条件IIIに示されるMAミニマックス相対判定法に従い、前記評価対象物における測定対象状態を評価することを、特徴とする。
判定条件III:DIZn<DIZaならば前記状態n,DIZn>DIZaならば前記状態a。
(Aspect 10 of the present invention relating to an evaluation method of an evaluation object)
Embodiment 10 of the present invention relates to method for evaluating evaluation target is the evaluation method according to the embodiment 9 described above, the absolute criterion: lower instead of DI Z formula:
Relative criteria represented by: DI Zn , DI Za are adopted,
Instead of the determination condition I and the determination condition II, the measurement object state in the evaluation object is evaluated according to the MA minimax relative determination method shown in the following determination condition III.
Determination Condition III: State n if DI Zn <DI Za , State a if DI Zn > DI Za .

上述の本発明の態様9および10に従えば、何れも、有効で且つ簡易な統合特徴パラメータによる判定が実現可能となる。なお、これらの判定が有効であることは、二つの基準状態として状態nとして正常状態を採用すると共に、状態aとして異常状態を採用した、後述の実施例3からも明らかである。   According to the above-described aspects 9 and 10 of the present invention, any effective and simple determination based on the integrated feature parameter can be realized. The effectiveness of these determinations is also apparent from Example 3 to be described later, in which the normal state is adopted as the state n as the two reference states and the abnormal state is adopted as the state a.

(評価対象物の評価装置に関する本発明の態様11)
評価対象物の評価方法に関する本発明の態様11は、前述の態様1乃至10の何れか一の態様に係る評価方法において、前記状態反映信号から前記基準状態信号および前記測定状態信号を得るに際して、信号の増幅と雑音の除去と対象周波数帯域フィルタリングの少なくとも一つの信号処理を行うことを、特徴とする。
(Aspect 11 of the present invention relating to an evaluation object evaluation apparatus)
Aspect 11 of the present invention relating to the evaluation method of the evaluation object is the evaluation method according to any one of the aforementioned aspects 1 to 10, wherein the reference state signal and the measurement state signal are obtained from the state reflection signal. It is characterized by performing at least one signal processing of signal amplification, noise removal, and target frequency band filtering.

本態様においては、評価対象物から検出された状態反映信号において、状態評価に際して考慮されるべきでない情報を事前に取り除くことができる。これにより、状態評価の精度を更に向上させることが可能となる。   In this aspect, information that should not be considered in the state evaluation can be removed in advance from the state reflection signal detected from the evaluation object. Thereby, it becomes possible to further improve the accuracy of state evaluation.

(評価対象物の評価装置に関する本発明の態様1)
評価対象物の評価装置に関する本発明の態様1の特徴とするところは、(a)評価対象物から、その状態を反映した情報を含む状態反映信号を検出する状態反映信号検出手段と、(b)前記評価対象物の判定基準とする状態下において前記状態反映信号検出手段で検出された前記状態反映信号から単位時間長に亘る基準状態信号の複数を取得する基準状態信号取得手段と、(c)該基準状態信号取得手段で取得した前記基準状態信号について周波数スペクトル情報を求める基準スペクトル情報演算手段と、(d)該基準スペクトル情報演算手段で求めた前記基準状態信号の周波数スペクトル情報の統計値を求める基準状態統計値演算手段と、(e)前記評価対象物の測定対象とする状態下において前記状態反映信号検出手段で検出された前記状態反映信号から単位時間に亘る測定状態信号を取得する測定状態信号取得手段と、(f)該測定状態信号取得手段で取得した前記測定状態信号について周波数スペクトル情報を求める測定スペクトル情報演算手段と、(g)該測定スペクトル情報演算手段で求めた前記測定状態信号の周波数スペクトル情報の統計値を求める測定状態統計値演算手段と、(h)前記基準状態統計値演算手段で求めた統計値と、前記測定状態統計値演算手段で求めた統計値とを比較演算する比較演算手段と、(i)比較演算手段によって得られた比較演算結果から、前記評価対象物の状態を判定する判定手段と、(j)該判定手段による判定結果を外部に表示する表示手段とを、含んで構成されている診断対象物の評価装置にある。
(Aspect 1 of the present invention relating to an evaluation apparatus for an evaluation object)
A feature of the aspect 1 of the present invention relating to the evaluation object evaluation apparatus is that (a) a state reflection signal detecting means for detecting a state reflection signal including information reflecting the state from the evaluation object; And (c) a reference state signal acquisition unit for acquiring a plurality of reference state signals over a unit time length from the state reflection signal detected by the state reflection signal detection unit under a state as a determination reference for the evaluation object; ) Reference spectrum information calculation means for obtaining frequency spectrum information for the reference state signal acquired by the reference state signal acquisition means; and (d) a statistical value of the frequency spectrum information of the reference state signal obtained by the reference spectrum information calculation means. And (e) the state reflected signal detecting means detected by the state reflected signal detecting means in a state to be measured by the evaluation object. Measurement state signal acquisition means for acquiring a measurement state signal over a unit time from the state reflection signal, and (f) measurement spectrum information calculation means for obtaining frequency spectrum information for the measurement state signal acquired by the measurement state signal acquisition means, (G) a measurement state statistical value calculation unit that calculates a statistical value of frequency spectrum information of the measurement state signal obtained by the measurement spectrum information calculation unit; and (h) a statistical value obtained by the reference state statistical value calculation unit; A comparison calculation means for comparing and calculating the statistical value obtained by the measurement state statistical value calculation means; (i) a determination means for determining the state of the evaluation object from the comparison calculation result obtained by the comparison calculation means; (J) The diagnostic object evaluation apparatus includes display means for displaying the determination result by the determination means to the outside.

本態様に従う構造とされた評価装置においては、前述の如き本発明方法を有利に実施することが出来るのであり、それによって、前述の本発明方法によって得られるのと同様な効果を得ることが可能となる。   In the evaluation apparatus having the structure according to this aspect, the method of the present invention as described above can be advantageously performed, and thereby the same effect as that obtained by the method of the present invention can be obtained. It becomes.

特に、本態様において、(a)状態反映信号検出手段としては、例えば加速度センサや歪センサ等の力センサ,ボイスコイル等の音センサなどのセンサを評価対象物に装着して電気的な振動信号を採取するものの他、例えば自動車用内燃機関等のように制御コンピュータを備えているものを評価対象物とする場合には、該評価対象物自体が備えている制御系を状態反映信号検出手段として利用して、かかる制御系における適当な信号を状態反映信号として利用することも可能である。   In particular, in this aspect, (a) as the state reflection signal detection means, for example, a sensor such as a force sensor such as an acceleration sensor or a strain sensor, or a sound sensor such as a voice coil is attached to the evaluation object, and an electrical vibration signal is detected. In addition, the control system provided in the evaluation object itself is used as the state reflection signal detection means when the evaluation object is provided with a control computer such as an internal combustion engine for automobiles. It is also possible to use an appropriate signal in such a control system as a state reflection signal.

また、本態様において、(b)基準状態信号取得手段および(e)測定状態信号取得手段は、(a)状態反映信号検出手段で得た状態反映信号を予め設定した一定の時間で分割する信号処理装置によって構成され得る。また、(c)基準スペクトル情報演算手段および(f)測定スペクトル情報演算手段は、必要に応じてA/D変換器を用いて信号処理したデータを、高速フーリエ演算(FFT演算)による演算手段で処理する構成によって有利に実現され得る。また、(d)基準辞意歌い統計値演算手段および(g)測定状態統計値演算手段、(h)比較演算手段、(i)判定手段は、何れも、ROM等に予め記憶されたプログラムに従って演算処理を行うCPU等を利用して構成された演算処理装置によって有利に構成される。更に、(j)表示手段は、判定結果を人が認識可能に表示するものであれば良く、CRTや液晶モニタ等の画像表示装置の他、音による表示装置や、光による表示装置など、各種のものが採用可能であり、それらを適宜に組み合わせて採用しても良い。   Further, in this aspect, (b) the reference state signal acquisition unit and (e) the measurement state signal acquisition unit are signals that divide the state reflection signal obtained by the state reflection signal detection unit at a predetermined time. It can be constituted by a processing device. In addition, (c) the reference spectrum information calculation means and (f) the measured spectrum information calculation means use the calculation means based on the fast Fourier calculation (FFT calculation) for the data processed with the A / D converter as necessary. Depending on the processing arrangement, it can be advantageously realized. In addition, (d) reference recitation singing value calculation means, (g) measurement state statistic value calculation means, (h) comparison calculation means, and (i) determination means are all calculated according to a program stored in advance in a ROM or the like. It is advantageously configured by an arithmetic processing unit configured using a CPU or the like that performs processing. Further, (j) the display means only needs to display the determination result so that it can be recognized by a person. In addition to an image display device such as a CRT or a liquid crystal monitor, various display devices such as a sound display device and a light display device can be used. Can be employed, and may be employed in appropriate combination.

そして、このことから明らかなように、本発明に従う構造とされた評価装置は、センサ等によって構成される状態反映信号検出手段の他を、コンピュータ等によって構成することが出来るのであり、それによって、人手による面倒な調節や処理の操作をいちいち必要とすることなく、自動的に且つ高速で、評価の処理実行が可能とされる。   As is clear from this, the evaluation apparatus having the structure according to the present invention can be configured by a computer or the like in addition to the state reflected signal detection means configured by a sensor or the like, thereby Evaluation processing can be performed automatically and at high speed without requiring manual adjustments and processing operations.

また、本態様において好適には、(d)基準状態統計値演算手段で求められた周波数スペクトル情報の統計値を記憶する記憶手段を設けて、その後に(g)測定状態統計値演算手段で適宜に求められる周波数スペクトル情報の統計値と、(h)比較演算手段で演算処理するに際して、かかる記憶手段に記憶した統計値を利用するようにされる。   Further, in this aspect, preferably, (d) a storage unit that stores the statistical value of the frequency spectrum information obtained by the reference state statistical value calculating unit is provided, and thereafter (g) the measurement state statistical value calculating unit appropriately And (h) the statistical value stored in the storage means when the calculation process is performed by the comparison calculation means.

(評価対象物の評価装置に関する本発明の態様2)
評価対象物の評価装置に関する本発明の態様2は、前述の態様1に係る評価装置において、更に、(k)前記状態反映信号検出手段で検出された前記状態反映信号が定常信号か非定常信号かを判別する信号判別手段と、(l)該信号判別手段によって該状態反映信号が非定常信号であるとされた場合には、該状態反映信号を近似的に定常信号として処理できるように、分割後の各データの絶対値の平均値および標準偏差が近似的に等しくなるだけの短い時間長に該状態反映信号を分割することにより、前記基準状態信号や前記測定状態信号を得る信号分割手段と、からなる定常信号化手段を設けたことを、特徴とする。
なお、近似的に等しくなるとは、下記の〔数19〕を満足し得る状態となることをいう。
(ただし、i≠j,j=1〜Nで、Mi とMj はそれぞれi番目とj番目の分割データの数で、t(α,∞)はt分布の確率密度関数が上側確率αに対するパーセント点である。また、α=0.00001〜0.9であり、より好ましくは0.005〜0.3とされる。)
(Aspect 2 of the present invention relating to an evaluation apparatus for an evaluation object)
Aspect 2 of the present invention relating to an evaluation apparatus for an evaluation object is the evaluation apparatus according to aspect 1, further comprising: (k) whether the state reflected signal detected by the state reflected signal detecting means is a steady signal or an unsteady signal. And (l) when the state reflection signal is determined to be an unsteady signal by the signal discrimination means, so that the state reflection signal can be processed approximately as a steady signal. Signal dividing means for obtaining the reference state signal and the measurement state signal by dividing the state reflection signal into a short time length so that the average value and standard deviation of the absolute values of the divided data are approximately equal. And a stationary signal converting means.
Note that being approximately equal means that the following [Equation 19] can be satisfied.
(Where i ≠ j, j = 1 to N, M i and M j are the numbers of the i-th and j-th divided data, respectively, and t (α, ∞) is the probability density function of the t distribution is the upper probability α (Also, α = 0.00001 to 0.9, and more preferably 0.005 to 0.3.)

本態様においては、例えば状態反映信号が非定常信号の場合でも、それを充分に短い時間長に分割することで近似的に定常信号として扱うことが可能となり、本発明に従う統計処理に基づく評価を適用することが出来るのである。
In this aspect, for example, even if the state reflection signal is a non-stationary signal, it can be treated as a stationary signal approximately by dividing it into a sufficiently short time length, and evaluation based on statistical processing according to the present invention can be performed. It can be applied.

上述した本発明の各態様の説明および後述する本発明の実施形態の説明から明らかなように、本発明においては、評価対象物の状態の変化有無の判定および状態種類の同定を、複雑な人手の操作を必要とすることなく簡易に、且つ高精度に行うことができる。   As is clear from the description of each aspect of the present invention described above and the description of the embodiment of the present invention described later, in the present invention, the determination of the presence or absence of a change in the state of the evaluation object and the identification of the state type are performed by complicated human resources. This operation can be performed easily and with high accuracy without the need for this operation.

よって、例えば、本発明は実際の状態診断やパターン認識などの分野において、高精度の状態診断アルゴリズムを提供でき、計算機による状態診断の自動化および診断装置の実現に役立つ。
Therefore, for example, the present invention can provide a highly accurate condition diagnosis algorithm in the field of actual condition diagnosis and pattern recognition, and is useful for automation of condition diagnosis by a computer and realization of a diagnosis apparatus.

以下、本発明を更に具体的に明らかにするために、本発明の実施形態について説明する。先ず、図1には、本発明の一実施形態としての状態診断方法における、状態信号としての各種信号のデータ処理の流れが示されている。状態信号としては、公知の各種センサ等の信号測定手段により測定された振動信号,音響信号,AE(Acoustic Emission)信号等が好適に用いられる。   Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described. First, FIG. 1 shows a flow of data processing of various signals as state signals in the state diagnosis method as one embodiment of the present invention. As the status signal, a vibration signal, an acoustic signal, an AE (Acoustic Emission) signal, or the like measured by a signal measuring unit such as various known sensors is preferably used.

図1に示すように、データ処理の流れは「診断の準備」と「診断の実行」に大きく分けられる。ここで、この流れに沿って、詳細なアルゴリズムを解説する。   As shown in FIG. 1, the flow of data processing is roughly divided into “preparation for diagnosis” and “execution of diagnosis”. Here, we will explain the detailed algorithm along this flow.

1.診断の準備
(1)基準状態と周波数帯域を決定する。
基準状態とは、診断対象物(評価対象物)の状態変化の有無を判定するときに参照となる状態である。例えば、設備診断の場合、基準状態は「正常状態」とされる場合が多い。
また、ここで言う周波数帯域とは、診断に際して考慮する最小周波数から最大周波数までの周波数範囲であり、診断すべき各状態の特徴スペクトルがこの周波数範囲で求められるものである。
1. Preparation for diagnosis (1) Determine the reference state and frequency band.
The reference state is a state used as a reference when determining whether or not there is a change in the state of the diagnostic object (evaluation object). For example, in the case of equipment diagnosis, the reference state is often “normal state”.
Further, the frequency band referred to here is a frequency range from the minimum frequency to the maximum frequency considered in diagnosis, and the characteristic spectrum of each state to be diagnosed is obtained in this frequency range.

(2)基準状態の信号を計測する。
以降の統計処理ができるように、診断対象物に装着した加速度センサ等によって、診断対象物の状態を反映した信号(基準信号)を、十分な時間長で計測する。この基準信号を、後述するように適当な時間長で分割することによって、単位時間長に亘る基準状態信号を取得する。また、診断対象物の特徴に応じて、その診断に考慮すべき振動周波数を予め検討した結果等に基づいて、サンプリング周波数を決定する。
(2) Measure the signal in the reference state.
A signal (reference signal) reflecting the state of the diagnostic object is measured with a sufficient length of time by an acceleration sensor or the like attached to the diagnostic object so that subsequent statistical processing can be performed. By dividing this reference signal by an appropriate time length as will be described later, a reference state signal over a unit time length is acquired. Further, the sampling frequency is determined based on the result of the examination in advance of the vibration frequency to be considered for the diagnosis according to the characteristics of the diagnostic object.

(3)上記基準信号が定常信号の場合、各周波数において、基準状態のスペクトルを求める。ここで、定常信号とは、信号の平均値と分散が時間とともにほぼ一定の信号である。
すなわち、充分な時間長で計測して得た上記基準信号を、N回に等分割することにより、N個の基準状態信号を取得する。そして、かかるN個の基準状態信号のそれぞれについて、FFTにより周波数スペクトルを求める。統計理論により、N>5とすることが望ましい。
(3) When the reference signal is a stationary signal, the spectrum of the reference state is obtained at each frequency. Here, the stationary signal is a signal whose average value and variance of the signal are substantially constant with time.
That is, the N reference state signals are obtained by equally dividing the reference signal obtained by measurement with a sufficient length of time into N times. Then, a frequency spectrum is obtained by FFT for each of the N reference state signals. According to statistical theory, it is desirable that N> 5.

(4)非定常信号の場合、測定した信号を近似的に定常信号として処理できるように、短い時間長の信号(分割データと呼ぶ)に分割する。分割データの時間長(分割時間長と呼ぶ)は次のように決定される。
まず、N個の分割データの信号レベルの絶対値(絶対値データと呼ぶ)を求める。N個の分割データのそれぞれにおける絶対値データの平均値と標準偏差をそれぞれμ1 〜μN とS1 〜SN とすると、有意水準αを与えて、仮説μ1 =μ2=・・・=μi =・・・=μN を検定する。すなわち、この仮説が成り立つまで、分割時間長を短くしていく。
たとえば、有意水準αが与えられた場合、次に示す数式が成り立てば、上記の仮説が成り立つ。
ここで、i≠j,i,j= 1〜Nで、Mi とMj はそれぞれiとj番目の分割データの数で、t(α,∞)はt分布の確率密度関数が上側確率αに対するパーセント点である。一般にα=0. 00001〜0. 9であり、より好ましくは0.005〜0.3 とされる。
(4) In the case of an unsteady signal, the measured signal is divided into short time-length signals (referred to as divided data) so that the measured signal can be processed approximately as a steady signal. The time length of the divided data (called the divided time length) is determined as follows.
First, an absolute value (referred to as absolute value data) of signal levels of N divided data is obtained. When N pieces respectively mu 1 the average value and the standard deviation of the absolute value data in each data segment of ~Myu N and S 1 to S N, giving significance level alpha, the hypothesis μ 1 = μ 2 = ··· = Μ i = ... = μ N is tested. That is, the division time length is shortened until this hypothesis holds.
For example, when the significance level α is given, the above hypothesis is established if the following mathematical formula is established.
Here, i ≠ j, i, j = 1 to N, M i and M j are the numbers of the i-th and j-th divided data, respectively, and t (α, ∞) is the probability density function of the t distribution is the upper probability. Percentage point for α. In general, α = 0.00001 to 0.9, and more preferably 0.005 to 0.3.

(5)分割したN個の基準状態信号のそれぞれについて、周波数スペクトルを、上記の(3)と同じように求める。 (5) For each of the divided N reference state signals, the frequency spectrum is obtained in the same manner as (3) above.

(6)各周波数において、基準状態の周波数スペクトル成分の統計値を求める。
各周波数において、基準状態のスペクトル成分の典型的な統計値は次のようなものである。周波数fi における第j番目の基準状態のスペクトル成分をFj (fi )とし、i= 1〜Iとする。Iは、周波数スペクトルの分割数である。
1)平均値
次に示す数式により平均値が求められる。
2)標準偏差
次に示す数式により標準偏差が求められる。
(6) At each frequency, the statistical value of the frequency spectrum component in the reference state is obtained.
At each frequency, typical statistics of the spectral components in the reference state are as follows: The spectrum component of the j-th reference state at the frequency f i is F j (f i ), and i = 1 to I. I is the number of divisions of the frequency spectrum.
1) Average value An average value is calculated | required by the numerical formula shown next.
2) Standard deviation The standard deviation is obtained by the following mathematical formula.

(7)基準状態のスペクトル成分の統計値をデータベースに蓄える。
上記の(6)で求めた基準状態のスペクトル成分の統計値を、記憶手段としてのRAMや各種の記憶デバイス等で構成されたデータベースに蓄えておき、後述の状態診断のために用いるようにする。
(7) The statistical values of the spectral components in the reference state are stored in the database.
The statistical values of the spectral components of the reference state obtained in the above (6) are stored in a database constituted by a RAM as storage means, various storage devices, etc., and used for state diagnosis described later. .

2.診断の実行
(1)状態診断のための信号を計測する。
基準状態と同様な計測条件(採用する検出手段(センサ)や該検出手段の診断対象物への取付位置などの各種条件)および同様な周波数帯域で信号(測定信号)を計測する。測定信号の計測時間長は最短で基準状態の信号の計測時間長の1/Nとする(Nは、前述の基準信号を分割して得た基準状態信号の数)。より好適には、統計学上の理論から、測定信号の計測時間長を、基準状態の信号の計測時間長の5/N以上とする。
2. Execution of diagnosis (1) A signal for state diagnosis is measured.
Signals (measurement signals) are measured in the same measurement conditions as the reference state (various conditions such as the detection means (sensor) to be used and the mounting position of the detection means on the diagnostic object) and the same frequency band. The measurement signal length of the measurement signal is the shortest and 1 / N of the measurement time length of the reference signal (N is the number of reference signal obtained by dividing the reference signal). More preferably, based on statistical theory, the measurement time length of the measurement signal is set to 5 / N or more of the measurement time length of the signal in the reference state.

(2)定常信号の場合、各周波数fi において、基準状態のスペクトル成分に対する変化の度合を統計検定等により決定する。ここで、定常信号とは、信号の平均値と分散が時間とともにほぼ一定の信号である。
すなわち、上述の基準信号の処理と同様に、所定の時間長で計測して得た測定信号を、適当数に等分割することにより、適当数の測定状態信号を取得する。そして、かかる適当数の測定状態信号のそれぞれについて、FFTにより周波数スペクトルを求める。
(2) In the case of a stationary signal, the degree of change with respect to the spectrum component in the reference state is determined by statistical test or the like at each frequency f i . Here, the stationary signal is a signal whose average value and variance of the signal are substantially constant with time.
That is, similarly to the above-described processing of the reference signal, an appropriate number of measurement state signals are acquired by equally dividing a measurement signal obtained by measurement with a predetermined time length into an appropriate number. Then, the frequency spectrum is obtained by FFT for each of the appropriate number of measurement state signals.

(3)非定常信号の場合、測定した信号を近似的に定常信号として処理できるように、十分に短い時間長に分割することにより、適当数の測定状態信号を取得する。分割理論は、上述の基準信号の処理と同様である。 (3) In the case of an unsteady signal, an appropriate number of measurement state signals are obtained by dividing the measured signal into a sufficiently short time length so that the measured signal can be processed approximately as a steady signal. The division theory is the same as the processing of the reference signal described above.

(4)分割した各信号のスペクトルFu (fi )を、上述の基準状態信号と同じように求める。 (4) The spectrum F u (f i ) of each divided signal is obtained in the same manner as the above-described reference state signal.

(5)各周波数において、基準状態のスペクトル成分に対する変化の度合を、前述の〔数21〕,〔数22〕に示した統計値(平均値及び標準偏差)により評価する。変化の度合を評価するには、次のような方法が好適に用いられる。 (5) At each frequency, the degree of change with respect to the spectrum component in the reference state is evaluated by the statistical values (average value and standard deviation) shown in the above [Equation 21] and [Equation 22]. In order to evaluate the degree of change, the following method is preferably used.

1)識別指標法
識別指標DIは次式により定義される。
ここで、μ1 、μ2 は、それぞれ互いに異なる二つの状態(状態1,状態2)のもとでの周波数スペクトル成分の平均値であり、σ1 とσ2 は、その標準偏差である。
このとき、診断のために計測した信号の、周波数fi におけるスペクトル成分Fu (fi )の平均値と標準偏差は、それぞれ次のように表される。
i= 1〜Iとすると、識別指標DI(fi )は以下に示す式により求められる。
要するに、識別指標DI(fi )が大きければ大きいほど、周波数fi において基準状態のスペクトル成分との差が大きい。
なお、診断のために計測した測定信号の時間長が基準信号の時間長の1/ Nである場合、周波数fi におけるスペクトル成分Fu (fi )の平均値と標準偏差を求めることが出来ない。そこで、周波数fi におけるスペクトル成分Fu (fi )を用いて、識別指標DI(fi )を次に示す式により求める。
1) Identification index method The identification index DI is defined by the following equation.
Here, μ 1 and μ 2 are average values of frequency spectrum components under two different states (state 1 and state 2), and σ 1 and σ 2 are standard deviations thereof.
At this time, the average value and the standard deviation of the spectrum component F u (f i ) at the frequency f i of the signal measured for diagnosis are expressed as follows.
When i = 1 to I, the identification index DI (f i ) is obtained by the following equation.
In short, the greater the identification index DI (f i ), the greater the difference from the spectral component in the reference state at the frequency f i .
When the time length of the measurement signal measured for diagnosis is 1 / N of the time length of the reference signal, the average value and standard deviation of the spectrum component F u (f i ) at the frequency f i can be obtained. Absent. Therefore, using the spectrum component F u (f i ) at the frequency f i , the identification index DI (f i ) is obtained by the following equation.

2)平均値差の検定法
平均値差DA(fi )の最大推定値を次に示す式により求める。
ここで、以下に示す値は標準正規分布の確率密度関数が下側確率α/ 2に対するパーセント点であり、一般に、αは0. 02〜0. 2とする。
u は、周波数fi におけるスペクトル成分Fu (fi )の平均値及び標準偏差を求めるときに用いたデータの数である。この平均値及び標準偏差はそれぞれ次のように表される。
平均値差DA(fi )は識別指標DI(fi )と同様に両者のスペクトル成分差の大きさを表すが、データの個数NとNu が5より大きいことが望ましい。
2) Mean value difference test method The maximum estimated value of the mean value difference DA (f i ) is obtained by the following equation.
Here, the values shown below are percentage points of the probability density function of the standard normal distribution with respect to the lower probability α / 2, and generally α is set to 0.02 to 0.2.
N u is the number of data used when obtaining the average value and standard deviation of the spectral component F u (f i ) at the frequency f i . The average value and standard deviation are expressed as follows.
The average value difference DA (f i ) represents the magnitude of the spectral component difference between the two, similarly to the identification index DI (f i ), but it is desirable that the number of data N and N u is greater than 5.

(6)各周波数において、基準状態のスペクトル成分に対する測定状態での変化の度合が大きいスペクトル成分Fu (fi )を抽出するための閾値を決める。
識別指標DI(fi )の閾値は一般に1〜12、より望ましくは3〜5とし、平均値差DA(fi )の閾値は次に示す式のように定義する。
すなわち、平均値差DA(fi )と識別指標DI(fi )は上記の閾値より大きければ、周波数fi において基準状態のスペクトル成分との差が大きいと見なす。
(6) At each frequency, a threshold value for extracting a spectral component F u (f i ) having a large degree of change in the measurement state with respect to the spectral component in the reference state is determined.
The threshold value of the identification index DI (f i ) is generally 1 to 12, more preferably 3 to 5, and the threshold value of the average value difference DA (f i ) is defined as the following equation.
That is, if the average value difference DA (f i ) and the identification index DI (f i ) are larger than the above threshold, it is considered that the difference from the spectrum component in the reference state is large at the frequency f i .

(7)各周波数において、基準状態のスペクトル成分に対する変化の度合が大きいスペクトル成分Fu (fi )を抽出する。
周波数fi において設定した平均値差DA(fi )或いは識別指標DI(fi )の閾値を超えない場合、現在のスペクトル成分Fu (fi )をゼロにし、それ以外のスペクトル成分Fu (fi )は状態変化の特徴を反映するスペクトルとして抽出される。
(7) At each frequency, a spectral component F u (f i ) having a large degree of change with respect to the spectral component in the reference state is extracted.
When the threshold value of the average value difference DA (f i ) or the identification index DI (f i ) set at the frequency f i is not exceeded, the current spectral component F u (f i ) is set to zero and the other spectral component F u is set. (F i ) is extracted as a spectrum reflecting the characteristics of the state change.

(8)抽出したスペクトル成分の特徴を表すための周波数領域の特徴パラメータを計算する。
周波数領域の特徴パラメータとしては、以下に示すpf1〜pf9が好適に求められる。
(8) A feature parameter in the frequency domain for expressing the feature of the extracted spectral component is calculated.
As characteristic parameters in the frequency domain, the following p f1 to p f9 are preferably obtained.

1)残存スペクトルパワー
次に示す式により残存スペクトルパワーpf1が求められる。
ここで、Fu (fi )は周波数fi において設定した平均値差DA(fi )或いは識別指標DI(fi )の閾値を超えないスペクトル成分である。
1) Residual spectral power The residual spectral power p f1 is obtained by the following equation.
Here, F u (f i ) is a spectral component that does not exceed the threshold value of the average value difference DA (f i ) or the identification index DI (f i ) set at the frequency f i .

2)スペクトル残存パワー
次に示す式によりスペクトル残存パワーpf2が求められる。
ここで、Fu (fi )は周波数fi において設定した平均値差DA(fi )或いは識別指標DI(fi )の閾値を超えないスペクトル成分であるか、或いは、全スペクトル成分である。以下、数式14〜数式22に示すpf3〜pf9においても同様である。
2) Spectral residual power The spectral residual power pf2 is obtained by the following equation.
Here, F u (f i ) is a spectral component that does not exceed the threshold value of the average value difference DA (f i ) or the identification index DI (f i ) set at the frequency f i , or is a total spectral component. . Hereinafter, the same applies to the p f3 ~p f9 shown in Equation 14 to Equation 22.

3)平均特徴周波数
次に示す式により平均特徴周波数pf3が求められる。
3) Average characteristic frequency The average characteristic frequency pf3 is obtained by the following equation.

4)単位時間あたり時間平均をクロースする頻度
次に示す式により単位時間あたり時間平均をクロースする頻度pf4が求められる。
4) Frequency of closing time average per unit time Frequency f f4 of closing time average per unit time is obtained by the following formula.

5)波形の安定指数
次に示す式により波形の安定指数pf5が求められる。
5) Waveform Stability Index The waveform stability index pf5 is obtained from the following equation.

6)変動率
次に示す式により変動率pf6が求められる。
ここで、pf6における各パラメータは次に示すそれぞれの数式により求められる。
6) Fluctuation rate Fluctuation rate pf6 is obtained by the following equation.
Here, each parameter in pf6 is obtained by the following formulas.

7)歪度
次に示す式により歪度pf7が求められる。
7) Skewness The skewness pf7 is obtained by the following equation.

8)尖度
次に示す各式により尖度pf8,pf9がそれぞれ求められる。
8) Kurtosis The kurtosis p f8 and p f9 are obtained by the following equations.

(9)各特徴パラメータの値を用いて状態変化の有無および状態種類の同定を行う。
時間領域、或いは周波数領域の特徴パラメータの値が計算されたら、状態変化の有無の診断、或いは状態種類の同定を行う。ここでは、特徴パラメータの統合法が好適に用いられる。例として、以下の非特許文献1において開示されている「遺伝的プログラミングによる周波数領域の特徴パラメータの自己再組織化」、非特許文献2において開示されている「主成分分析法」と「判別分析法」などがある。
(9) The presence / absence of the state change and the state type are identified using the value of each feature parameter.
When the value of the characteristic parameter in the time domain or the frequency domain is calculated, the presence / absence of state change is diagnosed or the state type is identified. Here, a feature parameter integration method is preferably used. Examples include “self-reorganization of frequency domain feature parameters by genetic programming” disclosed in the following Non-Patent Document 1, “principal component analysis method” and “discriminant analysis” disclosed in Non-Patent Document 2. Law ".

陳,豊田:遺伝的プログラミングによる周波数領域の特徴パラメータの自己再組織化,日本機械学会論文集(C編),65(633),pp. 1946−1953,1999.Chen, Toyoda: Self-reorganization of frequency domain feature parameters by genetic programming, Transactions of the Japan Society of Mechanical Engineers (C), 65 (633), pp. 1946-1953, 1999. 脇本和昌ら著:パソコン統計解析ハンドブックII多変量解析編、共立出版株式会社、1984.Wakimoto Kazumasa et al .: PC Statistical Analysis Handbook II Multivariate Analysis, Kyoritsu Publishing Co., Ltd., 1984.

ここで、状態信号が定常信号(AE信号)の場合における、本発明の本発明の一実施形態としての状態診断方法を用いた状態診断の例を示す。   Here, an example of state diagnosis using the state diagnosis method according to an embodiment of the present invention when the state signal is a steady signal (AE signal) will be described.

図2(a)は周波数帯域を0〜500kHzに設定して測定した基準状態(ここで「正常状態」とする)の時系列信号の例である。
図2(b)は基準状態のスペクトルの例である
図2(c)と(d)は基準状態のスペクトルの平均値と標準偏差である。なお、基準状態の平均値と標準偏差を求めるために、15の基準状態の時系列信号を用いた。
図2(e)と(f)はそれぞれ、診断のために測定した時系列信号と、そのスペクトルの例である。
図2(g)は数式7により求めた識別指標DI(fi )である。
この例では、診断すべき状態は「正常状態」と「異常状態」との2状態である。また、診断すべきケース数は30である。
図2(i)は識別指標DI(fi )の閾値を3として、各診断時に測定した時系列データのスペクトルを用いて求めた、数式12で表される残存スペクトルパワーpf1を示す。
FIG. 2A shows an example of a time-series signal in a reference state (here, “normal state”) measured with the frequency band set to 0 to 500 kHz.
FIG. 2B is an example of the spectrum in the reference state. FIGS. 2C and 2D are the average value and standard deviation of the spectrum in the reference state. In addition, in order to obtain the average value and standard deviation of the reference state, time series signals of 15 reference states were used.
FIGS. 2E and 2F are examples of a time-series signal measured for diagnosis and its spectrum, respectively.
FIG. 2 (g) is an identification index DI (f i ) obtained by Equation 7.
In this example, there are two states to be diagnosed: a “normal state” and an “abnormal state”. The number of cases to be diagnosed is 30.
FIG. 2 (i) shows the residual spectrum power p f1 represented by Equation 12 obtained using the spectrum of the time series data measured at the time of each diagnosis with the threshold value of the identification index DI (f i ) being 3.

この例では、データ番号1,2,5,6,7,8,9,15,17,19,21,25,26,28,29が「正常状態」で、3,4,10,11,12,13,14,16,18,20,22 ,23,24,27,30が「異常状態」である。   In this example, the data numbers 1, 2, 5, 6, 7, 8, 9, 15, 17, 19, 21, 25, 26, 28, 29 are “normal”, and 3, 4, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 27, 30 are "abnormal conditions".

図2(i)により、「正常状態」の残存スペクトルパワーpf1がほぼ0になっているのに対して、「異常状態」の残存スペクトルパワーpf1が大きいことが分かる。この場合、「異常状態」の最小残存スペクトルパワーpf1の値が約0. 002であるから、残存スペクトルパワーpf1の閾値を0. 0015に設定すれば、「正常状態」と「異常状態」との識別ができる。
FIG. 2 (i) shows that the remaining spectrum power p f1 in the “normal state” is almost 0, whereas the remaining spectrum power p f1 in the “abnormal state” is large. In this case, since the value of the minimum residual spectral power p f1 in the “abnormal state” is about 0.002, if the threshold value of the residual spectral power p f1 is set to 0.0015, “normal state” and “abnormal state”. Can be identified.

ここで、状態信号が非定常信号(AE信号)の場合における、本発明の一実施形態としての状態診断方法を用いた状態診断の例を示す。   Here, an example of a state diagnosis using the state diagnosis method as one embodiment of the present invention when the state signal is an unsteady signal (AE signal) will be described.

図3は「正常状態」と「異常状態」の非定常信号の例を示すものである。これらの信号は特に後半の部分に非定常性が強い。よって、後半の波形データを3分割にして処理を行った。
図4は図3の時系列波形の分割部に対応する「正常状態」と「異常状態」のスペクトルの例を示す。
図5は各分割部に対応する「正常状態」と「異常状態」のスペクトルの平均値を示す。
図6は、前例と同様に識別指標DI(fi )の閾値を3として、各分割部の時系列データのスペクトルを用いて求めた、数式12により求められるスペクトル残存パワーpf2を示す。
FIG. 3 shows an example of unsteady signals of “normal state” and “abnormal state”. These signals are particularly unsteady in the latter half. Therefore, the latter half of the waveform data was divided into three for processing.
FIG. 4 shows an example of spectra of “normal state” and “abnormal state” corresponding to the time-series waveform division unit of FIG.
FIG. 5 shows the average value of the spectra of “normal state” and “abnormal state” corresponding to each division unit.
FIG. 6 shows the spectrum remaining power pf2 obtained by Expression 12 obtained using the spectrum of the time series data of each division unit with the threshold value of the identification index DI (f i ) set to 3 as in the previous example.

この例でも、データ番号1,2,5,6,7,8,9,15,17,19,21,25,26,28,29が「正常状態」であり、3,4,10,11,12,13,14,16,18,20,22 ,23,24,27,30が「異常状態」である。図6により、「正常状態」のスペクトル残存パワーpf2がほぼ0になっているのに対して、「異常状態」のスペクトル残存パワーpf2が大きいことが分かる。 Also in this example, data numbers 1, 2, 5, 6, 7, 8, 9, 15, 17, 19, 21, 25, 26, 28, 29 are “normal states”, and 3, 4, 10, 11 , 12, 13, 14, 16, 18, 20, 22, 23, 24, 27, 30 are "abnormal conditions". FIG. 6 shows that the spectrum remaining power p f2 in the “normal state” is almost 0, whereas the spectrum remaining power p f2 in the “abnormal state” is large.

この場合、第1,2,3分割における「異常状態」の最小スペクトル残存パワーpf2の値がそれぞれ約0. 08,0. 02,0. 03であるから、スペクトル残存パワーpf2の閾値をそれぞれ0. 07,0. 01,0. 02に設定すれば、「正常状態」と「異常状態」との識別ができる。 In this case, about the value of the minimum spectral residual power p f2 of the "abnormal state" in the first, second, and third dividing each 0. 08,0. 02,0. 03 is because the threshold of the spectral residual power p f2 If they are set to 0.07, 0.01, and 0.02, respectively, it is possible to distinguish between “normal state” and “abnormal state”.

図7は第1,2,3分割における「正常状態」と「異常状態」のスペクトル残存パワーpf2の平均値を示す。この場合、「異常状態」のスペクトル残存パワーpf2の最小平均値が約0. 05であるから、スペクトル残存パワーpf2の閾値を0. 04に設定すれば、「正常状態」と「異常状態」との識別ができる。
FIG. 7 shows an average value of the spectrum remaining power pf2 in the “normal state” and the “abnormal state” in the first, second, and third divisions. In this case, since the minimum mean value of the spectrum remaining power p f2 of the "abnormal state" is about 0.05, by setting the threshold value of the spectral residual power p f2 to 0.04, the "normal state", "abnormal state Can be identified.

ここで、周波数領域の特徴パラメータの統合による状態診断の例を示す。   Here, an example of state diagnosis by integration of frequency domain feature parameters is shown.

図8(a)と(b)はそれぞれ周波数帯域を0〜50kHzに設定して測定した正常状態と異常状態の時系列信号(振動加速度)の例である。
図8(c)と(d)はそれぞれ正常状態と異常状態のスペクトルの例である。
正常状態と異常状態を識別するために、周波数領域の特徴パラメータpf3〜pf9を用いる。まず、図8(c)と(d)に示した正常状態と異常状態のスペクトルをそれぞれN回求める。これらのスペクトルを用いて、正常状態と異常状態のpf3〜pf9をそれぞれN個が求められる。
正準判別分析法によりpf3〜pf9を次に示す式によりに統合し、統合特徴パラメータZを求める。
FIGS. 8A and 8B are examples of time-series signals (vibration acceleration) in a normal state and an abnormal state, respectively, measured by setting the frequency band to 0 to 50 kHz.
FIGS. 8C and 8D are examples of spectra in a normal state and an abnormal state, respectively.
In order to distinguish between a normal state and an abnormal state, frequency domain characteristic parameters p f3 to p f9 are used. First, the normal state and abnormal state spectra shown in FIGS. 8C and 8D are obtained N times, respectively. Using these spectra, N are obtained for p f3 to p f9 in the normal state and the abnormal state, respectively.
By integrating canonical discriminant analysis, p f3 to p f9 are integrated into the following equation to obtain an integrated feature parameter Z.

この例では、a1 ,a2 ,a3 ,a4 ,a5 ,a6 ,a7 はそれぞれ−1. 24,−1. 62,−35. 78,8. 30,−0. 07,1. 91,−1. 24である。ここで、正常状態と異常状態のスペクトルで求めた統合特徴パラメータをそれぞれZniとZai(i= 1〜N)とする。ZniとZaiの平均値と標準偏差とそれぞれμZn、μZaとSZn、SZaとすると、状態の絶対判定基準DIZ は次式で与えられる。
In this example, a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , and a 7 are -1.24, -1.62, -33.58, 8.30, and -0.07, respectively. 1.91, -1.24. Here, the integrated feature parameters obtained from the normal state and abnormal state spectra are Z ni and Z ai (i = 1 to N), respectively. Assuming that the average value and standard deviation of Z ni and Z ai are μ Zn , μ Za and S Zn , and S Za , respectively, the absolute judgment criterion DI Z is given by the following equation.

すなわち、状態診断のとき、絶対判定基準DIZ を用いて状態を判定する方法は次の通りである。なお、この判定方法を、MAミニマックス判定法という。
μZn>μZaならば、Z>DIZ のとき、正常と判定し、Z<DIZ のとき、異常と判定する。
μZn<μZaならば、Z<DIZ のとき、正常と判定し、Z>DIZ のとき、異常と判定する。
That is, the method for determining the state using the absolute determination reference DI Z at the time of the state diagnosis is as follows. This determination method is called MA minimax determination method.
If mu Zn> mu Za, when Z> DI Z, and determined to be normal, when Z <DI Z, determined as abnormal.
If μ ZnZa, it is determined to be normal when Z <DI Z , and it is determined to be abnormal when Z> DI Z.

あるいは、次に示す各式により求められるそれぞれの相対状態判定基準DIZn,DIZaにより、状態判定を行う。
DIZn<DIZaならば、正常と判定し、DIZn>DIZaならば、異常と判定する。
Alternatively, the state is determined based on the relative state determination criteria DI Zn and DI Za obtained by the following equations.
If DI Zn <DI Za, it is determined as normal, and if DI Zn > DI Za, it is determined as abnormal.

図9には正常状態のデータで求めたDIZnとDIZaの値の例を示す。この場合、DIZn<DIZaであるから、正常と正しく判定できる。
図10には異常状態のデータで求めたDIZnとDIZaの値の例を示す。この場合、DIZn>DIZaであるから、異常と正しく判定できる。
FIG. 9 shows an example of DI Zn and DI Za values obtained from normal state data. In this case, since DI Zn <DI Za, it can be correctly determined as normal.
FIG. 10 shows an example of the values of DI Zn and DI Za obtained from the abnormal state data. In this case, since DI Zn > DI Za, it can be correctly determined as abnormal.

本発明の一実施形態としての状態診断方法を用いた診断装置の構成を、ブロック図によって概略的に図11に示す。   FIG. 11 is a block diagram schematically showing the configuration of a diagnostic apparatus using the state diagnostic method according to an embodiment of the present invention.

本装置は振動信号、音響信号、AE信号等を測定するための信号取得部10、測定した信号の増幅、雑音の除去、フィルタリング等のための信号処理部12、図1に示す状態診断の処理流れに従って状態を診断するための診断処理部14、診断の結果や状態情報を表示するための表示部16を含んで構成される。
This apparatus includes a signal acquisition unit 10 for measuring vibration signals, acoustic signals, AE signals, etc., a signal processing unit 12 for amplification of measured signals, noise removal, filtering, etc., and the state diagnosis processing shown in FIG. A diagnosis processing unit 14 for diagnosing the state according to the flow and a display unit 16 for displaying the diagnosis result and state information are included.

本発明に従う状態診断方法の一実施形態における状態診断処理の流れを示す図である。It is a figure which shows the flow of the state diagnostic process in one Embodiment of the state diagnostic method according to this invention. 定常信号(AE信号)と状態診断の例を示すグラフである。It is a graph which shows the example of a stationary signal (AE signal) and a state diagnosis. 正常状態と異常状態の非定常信号(AE信号)の例を示すグラフである。It is a graph which shows the example of the unsteady signal (AE signal) of a normal state and an abnormal state. 正常状態と異常状態の非定常信号(AE信号)のスペクトルの例を示すグラフである。It is a graph which shows the example of the spectrum of the unsteady signal (AE signal) of a normal state and an abnormal state. 非定常信号の各分割部に対応する正常状態と異常状態のスペクトルの平均値を示すグラフである。It is a graph which shows the average value of the spectrum of a normal state corresponding to each division part of an unsteady signal, and an abnormal state. 非定常信号の各分割部の時系列データのスペクトルに対応する正常状態と異常状態のスペクトル残存パワーを示すグラフである。It is a graph which shows the spectrum residual power of the normal state and abnormal state corresponding to the spectrum of the time series data of each division | segmentation part of an unsteady signal. 非定常信号の各分割部における正常状態と異常状態のスペクトル残存パワーの平均値を示すグラフである。It is a graph which shows the average value of the spectrum residual power of the normal state and abnormal state in each division part of an unsteady signal. 正常状態と異常状態の時系列信号(振動加速度)とスペクトルの例を示すグラフである。It is a graph which shows the example of the time series signal (vibration acceleration) of a normal state and an abnormal state, and a spectrum. 正常状態のデータを入力した時のDIZnとDIZaの値を示すグラフである。It is a graph which shows the value of DI Zn and DI Za when the data of a normal state are input. 異常状態のデータを入力した時のDIZnとDIZaの値を示すグラフである。It is a graph which shows the value of DI Zn and DI Za when the data of an abnormal condition are input. 本発明に従う診断方法を用いた診断装置の一実施形態を示す、診断装置の構成を示す図である。It is a figure which shows the structure of the diagnostic apparatus which shows one Embodiment of the diagnostic apparatus using the diagnostic method according to this invention.

符号の説明Explanation of symbols

10 信号取得部
12 信号処理部
14 診断処理部
16 表示部
DESCRIPTION OF SYMBOLS 10 Signal acquisition part 12 Signal processing part 14 Diagnosis processing part 16 Display part

Claims (13)

評価対象物から検出した状態反映信号に基づいて該評価対象物の状態を評価するに際して、
判定基準とする状態下において前記状態反映信号を前記評価対象物から検出することにより単位時間長に亘る基準状態信号を複数得て、それら複数の基準状態信号に関してそれぞれ周波数スペクトル情報を得る一方、
測定対象とする状態下において前記状態反映信号を前記評価対象物から検出することにより単位時間長に亘る測定状態信号を少なくとも一つ得て、該測定状態信号に関して周波数スペクトル情報を得、更に、
該基準状態信号に関して得た周波数スペクトル情報と、該測定状態信号に関して得た周波数スペクトル情報とについて、それぞれ統計値を求めて、それら基準状態信号に基づく統計値と測定状態信号に基づく統計値との相違の程度に基づいて、前記評価対象物における測定対象状態を評価することを特徴とする診断対象物の評価方法。
When evaluating the state of the evaluation object based on the state reflection signal detected from the evaluation object,
While obtaining a plurality of reference state signals over a unit time length by detecting the state reflection signal from the evaluation object under the condition as a determination reference, while obtaining frequency spectrum information for each of the plurality of reference state signals,
By obtaining at least one measurement state signal over a unit time length by detecting the state reflection signal from the evaluation object under the state to be measured, obtaining frequency spectrum information regarding the measurement state signal,
A statistical value is obtained for each of the frequency spectrum information obtained for the reference state signal and the frequency spectrum information obtained for the measurement state signal, and a statistical value based on the reference state signal and a statistical value based on the measurement state signal are calculated. A diagnostic object evaluation method, comprising: evaluating a measurement target state of the evaluation object based on a degree of difference.
前記判定基準とする状態下において前記状態反映信号として所定の時間長さの信号を取得して該状態反映信号を一定の分割時間長で複数に分割することにより複数の前記基準状態信号を得ると共に、
前記測定対象とする状態下において前記状態反映信号として所定の時間長さの信号を取得して該状態反映信号を一定の分割時間長で複数に分割することにより複数の前記測定状態信号を得る請求項1に記載の診断対象物の評価方法。
While obtaining a signal having a predetermined time length as the state reflection signal under the condition used as the determination reference, the state reflection signal is divided into a plurality of pieces with a predetermined division time length to obtain a plurality of the reference state signals. ,
A plurality of measurement state signals are obtained by acquiring a signal having a predetermined time length as the state reflection signal under the state to be measured and dividing the state reflection signal into a plurality of divisions with a predetermined division time length. Item 2. The diagnostic object evaluation method according to Item 1.
前記判定基準とする状態下において取得した前記状態反映信号を複数に分割するに際して、分割して得られた前記基準状態信号の複数におけるそれぞれのデータの絶対値の平均値:μおよび標準偏差:Sが、下式:〔数1〕を満足するように、前記分割時間長を設定すると共に、
前記測定対象とする状態下において取得した前記状態反映信号を複数に分割するに際して、分割して得られた前記測定状態信号の複数におけるそれぞれのデータの絶対値の平均値:μおよび標準偏差:Sも、下式:〔数1〕を満足するように、前記分割時間長を設定する請求項2に記載の診断対象物の評価方法。
(但し、i≠j,j=1〜Nで、Mi とMj はそれぞれi番目とj番目の分割データの数で、t(α,∞)はt分布の確率密度関数が上側確率αに対するパーセント点である。また、α=0.00001〜0.9である。)
When dividing the state reflection signal acquired under the condition to be used as the determination reference, the absolute value of each data in the plurality of the reference state signals obtained by the division: μ and the standard deviation: S However, the division time length is set so as to satisfy the following formula: [Equation 1],
When dividing the state reflection signal acquired under the condition to be measured into a plurality, the average value of the absolute value of each data in the plurality of measurement state signals obtained by division: μ and the standard deviation: S The diagnostic object evaluation method according to claim 2, wherein the division time length is set so as to satisfy the following formula: [Equation 1].
(Where i ≠ j, j = 1 to N, M i and M j are the numbers of the i-th and j-th divided data, respectively, and t (α, ∞) is the probability density function of the t distribution is the upper probability α (Percentage point for .alpha. = 0.00001 to 0.9.)
前記基準状態信号に関する周波数スペクトル情報の前記統計値と、前記測定状態信号に関する周波数スペクトル情報の前記統計値として、それぞれ、平均値および標準偏差を採用する請求項1乃至3の何れか一項に記載の診断対象物の評価方法。   4. The average value and the standard deviation are employed as the statistical value of the frequency spectrum information related to the reference state signal and the statistical value of the frequency spectrum information related to the measurement state signal, respectively. Method for evaluating diagnostic objects. 前記基準状態信号に基づく統計値と前記測定状態信号に基づく統計値との相違の程度を評価するために、それら両統計値における周波数スペクトル成分の差の大きさを表すスペクトル成分差演算値を用いる請求項1乃至4の何れか一項に記載の診断対象物の評価方法。   In order to evaluate the degree of difference between the statistical value based on the reference state signal and the statistical value based on the measurement state signal, a spectral component difference calculation value representing the magnitude of the difference between the frequency spectral components in both statistical values is used. The diagnostic object evaluation method according to any one of claims 1 to 4. 前記スペクトル成分差演算値として、周波数スペクトル成分毎に下式:〔数2〕で求められる識別指標:DIおよび周波数スペクトル成分毎に下式:〔数3〕で求められる平均値差:DAの少なくとも一方を採用する請求項5に記載の診断対象物の評価方法。
As the spectral component difference calculation value, for each frequency spectrum component, an identification index obtained by the following formula: [Equation 2]: DI and for each frequency spectrum component, an average value difference obtained by the following formula: [Equation 3]: at least of DA The diagnostic object evaluation method according to claim 5, wherein one of them is adopted.
前記スペクトル成分差演算値に関して閾値を設定し、該閾値よりも該スペクトル成分差演算値が大きいか否かを判定して、その判定結果に基づいて状態変化の特徴を反映する特徴スペクトル成分を抽出し、この特徴スペクトル成分を利用して前記評価対象物における測定対象状態を評価する請求項5又は6に記載の診断対象物の評価方法。   A threshold is set for the spectrum component difference calculation value, and it is determined whether or not the spectrum component difference calculation value is larger than the threshold, and a feature spectrum component reflecting the state change feature is extracted based on the determination result The diagnostic object evaluation method according to claim 5, wherein the measurement target state of the evaluation object is evaluated using the characteristic spectrum component. 以下の(1)〜(8)に記載の特徴パラメータの少なくとも一つを用いて前記特徴スペクトル成分の特徴を把握することにより、前記評価対象物における測定対象状態を評価する請求項7に記載の診断対象物の評価方法。
(1)下式で求められる「残存スペクトルパワー」
(2)下式で求められる「スペクトル残差パワー」
(3)下式で求められる「平均特徴周波数」
(4)下式で求められる「単位時間あたり時間平均をクロースする頻度」
(5)下式で求められる「波形の安定指数」
(6)下式で求められる「変動率」
(7)下式で求められる「歪度」
(8)下式で求められる「尖度」
The measurement target state in the evaluation object is evaluated by grasping the feature of the feature spectrum component using at least one of the feature parameters described in the following (1) to (8). Evaluation method for diagnostic objects.
(1) “Residual spectrum power” calculated by the following formula
(2) “Spectral residual power” calculated by the following formula
(3) "Average characteristic frequency" calculated by the following formula
(4) “Frequency of closing time average per unit time” calculated by the following formula
(5) “Waveform stability index” calculated by the following formula
(6) “Variation rate” calculated by the following formula
(7) “Strain” found by the following formula
(8) “kurtosis” calculated by the following formula
任意の無次元特徴パラメータをM個(p1 〜pM )選び、かかるM個の特徴パラメータから下式:
で表される統合特徴パラメータ:Zを採用し、
前記評価対象物における前記基準状態として、互いに異なる2種類の状態である状態n及び状態aを選定し、該状態nにおいて得たN個の前記基準状態信号と該状態aにおいて得たN個の前記基準状態信号とに基づいてそれぞれ該統合特徴パラメータ:Zni,Zai(i=1〜N)を求め、更に、該状態nにおけるN個の該統合特徴パラメータ:Zniの平均値:μZn及び標準偏差:SZnと、該状態aにおけるN個の該統合特徴パラメータ:Zaiの平均値:μZa及び標準偏差:SZaを用いて、下式:
で表される絶対判定基準:DIZ を求める一方、
前記評価対象物の測定対象状態で得た前記測定状態信号に基づいて前記統合特徴パラメータ:Zを求めて、
以下の判定条件I及び判定条件IIに示されるMAミニマックス絶対判定法に従い、前記評価対象物における測定対象状態を評価する請求項1乃至8の何れか一項に記載の診断対象物の評価方法。
判定条件I:μZn>μZaならば、Z>DIZ のときに前記状態n,Z<DIZ のときに前記状態a。
判定条件II:μZn<μZaならば、Z<DIZ のときに前記状態n,Z>DIZ のときに前記状態a。
Arbitrary dimensionless feature parameters are selected from M (p 1 to p M ), and the following formula is obtained from these M feature parameters:
The integrated feature parameter represented by: Z is adopted,
As the reference state in the evaluation object, two different states, state n and state a, are selected, and the N reference state signals obtained in the state n and the N pieces obtained in the state a are obtained. The integrated feature parameters: Z ni and Z ai (i = 1 to N) are obtained based on the reference state signal, respectively, and an average value of the N integrated feature parameters: Z ni in the state n: μ Zn and standard deviation: S Zn and, N pieces of the integrating feature parameters in the state a: average value of Z ai: mu Za and standard deviation: with S Za, the following equation:
While obtaining the absolute criterion: DI Z
Based on the measurement state signal obtained in the measurement target state of the evaluation object, the integrated feature parameter: Z is obtained,
The diagnostic object evaluation method according to any one of claims 1 to 8, wherein a measurement target state of the evaluation object is evaluated according to an MA minimax absolute determination method indicated by the following determination condition I and determination condition II. .
Determination condition I: If μ Zn > μ Za , state n when Z> DI Z , state a when Z <DI Z.
Judgment condition II: If μ ZnZa , state n when Z <DI Z , state a when Z> DI Z.
前記絶対判定基準:DIZ に代えて下式:
で表される相対判定基準:DIZn,DIZaを採用し、
前記判定条件I及び判定条件IIに代えて、以下の判定条件IIIに示されるMAミニマックス相対判定法に従い、前記評価対象物における測定対象状態を評価する請求項9に記載の診断対象物の評価方法。
判定条件III:DIZn<DIZaならば前記状態n,DIZn>DIZaならば前記状態a。
Absolute criteria: In place of DI Z :
Relative criteria represented by: DI Zn , DI Za are adopted,
The evaluation of the diagnostic object according to claim 9, wherein the measurement object state in the evaluation object is evaluated according to the MA minimax relative determination method shown in the following determination condition III instead of the determination condition I and the determination condition II. Method.
Determination Condition III: State n if DI Zn <DI Za , State a if DI Zn > DI Za .
前記状態反映信号から前記基準状態信号および前記測定状態信号を得るに際して、信号の増幅と雑音の除去と対象周波数帯域フィルタリングの少なくとも一つの信号処理を行う請求項1乃至10の何れか一項に記載の診断対象物の評価方法。   11. When obtaining the reference state signal and the measurement state signal from the state reflection signal, at least one signal processing of signal amplification, noise removal, and target frequency band filtering is performed. Method for evaluating diagnostic objects. 評価対象物から、その状態を反映した情報を含む状態反映信号を検出する状態反映信号検出手段と、
前記評価対象物の判定基準とする状態下において前記状態反映信号検出手段で検出された前記状態反映信号から単位時間長に亘る基準状態信号の複数を取得する基準状態信号取得手段と、
該基準状態信号取得手段で取得した前記基準状態信号について周波数スペクトル情報を求める基準スペクトル情報演算手段と、
該基準スペクトル情報演算手段で求めた前記基準状態信号の周波数スペクトル情報の統計値を求める基準状態統計値演算手段と、
前記評価対象物の測定対象とする状態下において前記状態反映信号検出手段で検出された前記状態反映信号から単位時間に亘る測定状態信号を取得する測定状態信号取得手段と、
該測定状態信号取得手段で取得した前記測定状態信号について周波数スペクトル情報を求める測定スペクトル情報演算手段と、
該測定スペクトル情報演算手段で求めた前記測定状態信号の周波数スペクトル情報の統計値を求める測定状態統計値演算手段と、
前記基準状態統計値演算手段で求めた統計値と、前記測定状態統計値演算手段で求めた統計値とを比較演算する比較演算手段と、
該比較演算手段によって得られた比較演算結果から、前記評価対象物の状態を判定する判定手段と、
該判定手段による判定結果を外部に表示する表示手段と
を、含んで構成されていることを特徴とする診断対象物の評価装置。
State reflected signal detection means for detecting a state reflected signal including information reflecting the state from the evaluation object;
Reference state signal acquisition means for acquiring a plurality of reference state signals over a unit time length from the state reflection signal detected by the state reflection signal detection means under a state as a determination reference for the evaluation object;
Reference spectrum information calculation means for obtaining frequency spectrum information for the reference state signal acquired by the reference state signal acquisition means;
Reference state statistic value calculating means for calculating a statistic value of frequency spectrum information of the reference state signal obtained by the reference spectrum information calculating means;
Measurement state signal acquisition means for acquiring a measurement state signal over a unit time from the state reflection signal detected by the state reflection signal detection means under a state to be measured of the evaluation object;
Measurement spectrum information calculation means for obtaining frequency spectrum information for the measurement state signal acquired by the measurement state signal acquisition means;
A measurement state statistic value calculating means for determining a statistic value of frequency spectrum information of the measurement state signal obtained by the measurement spectrum information calculating means;
A comparison calculation means for comparing and calculating the statistical value obtained by the reference state statistical value calculation means and the statistical value obtained by the measurement state statistical value calculation means;
Determination means for determining the state of the evaluation object from the comparison calculation result obtained by the comparison calculation means;
A diagnostic object evaluation apparatus comprising: display means for displaying the determination result by the determination means to the outside.
前記状態反映信号検出手段で検出された前記状態反映信号が定常信号か非定常信号かを判別する信号判別手段と、
該信号判別手段によって該状態反映信号が非定常信号であるとされた場合には、該状態反映信号を近似的に定常信号として処理できるように、分割後の各データの絶対値の平均値:μおよび標準偏差:Sが下式:〔数19〕を満足するだけの短い時間長に該状態反映信号を分割することにより、前記基準状態信号や前記測定状態信号を得る信号分割手段と、
(但し、i≠j,j=1〜Nで、Mi とMj はそれぞれi番目とj番目の分割データの数で、t(α,∞)はt分布の確率密度関数が上側確率αに対するパーセント点である。また、α=0.00001〜0.9である。)
からなる定常信号化手段を設けた請求項12に記載の診断対象物の評価装置。
Signal determining means for determining whether the state reflected signal detected by the state reflected signal detecting means is a stationary signal or an unsteady signal;
If the state reflection signal is determined to be an unsteady signal by the signal discriminating means, the average value of the absolute values of the divided data so that the state reflection signal can be processed approximately as a steady signal: μ and standard deviation: signal dividing means for obtaining the reference state signal and the measurement state signal by dividing the state reflected signal into a short time length that satisfies the following formula: [Equation 19];
(Where i ≠ j, j = 1 to N, M i and M j are the numbers of the i-th and j-th divided data, respectively, and t (α, ∞) is the probability density function of the t distribution is the upper probability α (Percentage point for .alpha. = 0.00001 to 0.9.)
The apparatus for evaluating a diagnostic object according to claim 12, further comprising a stationary signal converting means comprising:
JP2005239061A 2005-08-19 2005-08-19 Method and apparatus for evaluating diagnostic object Expired - Fee Related JP4049331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005239061A JP4049331B2 (en) 2005-08-19 2005-08-19 Method and apparatus for evaluating diagnostic object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005239061A JP4049331B2 (en) 2005-08-19 2005-08-19 Method and apparatus for evaluating diagnostic object

Publications (2)

Publication Number Publication Date
JP2007051982A true JP2007051982A (en) 2007-03-01
JP4049331B2 JP4049331B2 (en) 2008-02-20

Family

ID=37916522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005239061A Expired - Fee Related JP4049331B2 (en) 2005-08-19 2005-08-19 Method and apparatus for evaluating diagnostic object

Country Status (1)

Country Link
JP (1) JP4049331B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180063042A (en) * 2015-08-12 2018-06-11 로스 알라모스 내셔널 씨큐어리티 엘엘씨 Detection and monitoring of changes in metal structures using multi-mode acoustic signals
CN112182490A (en) * 2020-09-01 2021-01-05 华中科技大学 Reactor state diagnosis method and system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159231A (en) * 1993-11-05 1995-06-23 Kawasaki Steel Corp Deterioration diagnostic system for pump
WO2000070310A1 (en) * 1999-05-12 2000-11-23 Kyushu Kyohan Co., Ltd. Signal identification device using genetic algorithm and on-line identification system
JP2001330644A (en) * 2000-05-19 2001-11-30 Nec Corp Screening method and screening device, and recording medium
JP2002323371A (en) * 2001-04-27 2002-11-08 Toshiba Corp Sound diagnostic device and sound diagnostic method
JP2002372440A (en) * 2001-06-14 2002-12-26 Ho Jinyama Signal recording device having state judging method, device, and function
JP2004020193A (en) * 2002-06-12 2004-01-22 Takayoshi Yamamoto Method for diagnosing object facility, computer program, and device for diagnosing subject facility
JP2004020424A (en) * 2002-06-18 2004-01-22 Mitsubishi Chemicals Corp Processing method for vibration signal
WO2004068078A1 (en) * 2003-01-10 2004-08-12 Ho Jinyama State judging method, and state predicting method and device
WO2004072858A1 (en) * 2003-01-17 2004-08-26 Ho Jinyama Condition identifying metod and condition identifying system
JP2004347956A (en) * 2003-05-23 2004-12-09 Toshiba Corp Apparatus, method, and program for speech recognition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159231A (en) * 1993-11-05 1995-06-23 Kawasaki Steel Corp Deterioration diagnostic system for pump
WO2000070310A1 (en) * 1999-05-12 2000-11-23 Kyushu Kyohan Co., Ltd. Signal identification device using genetic algorithm and on-line identification system
JP2001330644A (en) * 2000-05-19 2001-11-30 Nec Corp Screening method and screening device, and recording medium
JP2002323371A (en) * 2001-04-27 2002-11-08 Toshiba Corp Sound diagnostic device and sound diagnostic method
JP2002372440A (en) * 2001-06-14 2002-12-26 Ho Jinyama Signal recording device having state judging method, device, and function
JP2004020193A (en) * 2002-06-12 2004-01-22 Takayoshi Yamamoto Method for diagnosing object facility, computer program, and device for diagnosing subject facility
JP2004020424A (en) * 2002-06-18 2004-01-22 Mitsubishi Chemicals Corp Processing method for vibration signal
WO2004068078A1 (en) * 2003-01-10 2004-08-12 Ho Jinyama State judging method, and state predicting method and device
WO2004072858A1 (en) * 2003-01-17 2004-08-26 Ho Jinyama Condition identifying metod and condition identifying system
JP2004347956A (en) * 2003-05-23 2004-12-09 Toshiba Corp Apparatus, method, and program for speech recognition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180063042A (en) * 2015-08-12 2018-06-11 로스 알라모스 내셔널 씨큐어리티 엘엘씨 Detection and monitoring of changes in metal structures using multi-mode acoustic signals
JP2019513217A (en) * 2015-08-12 2019-05-23 ロス アラモス ナショナル セキュリティ リミテッド ライアビリティ カンパニー Detection and monitoring of changes in metal structures using multimode acoustic signals
KR102417558B1 (en) 2015-08-12 2022-07-07 트리아드 내셔널 시큐리티, 엘엘씨 Detection and Monitoring of Changes in Metal Structures Using Multimode Acoustic Signals
CN112182490A (en) * 2020-09-01 2021-01-05 华中科技大学 Reactor state diagnosis method and system
CN112182490B (en) * 2020-09-01 2024-02-02 华中科技大学 Reactor state diagnosis method and system

Also Published As

Publication number Publication date
JP4049331B2 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
US10416126B2 (en) Machine fault prediction based on analysis of periodic information in a signal
CA2634328C (en) Method and system for trend detection and analysis
TWI587294B (en) Detection method of abnormal sound of apparatus and detection device
US9791422B2 (en) Analysis of periodic information in a signal
JP5106329B2 (en) Equipment abnormality diagnosis method and system
US20130148817A1 (en) Abnormality detection apparatus for periodic driving system, processing apparatus including periodic driving system, abnormality detection method for periodic driving system, and computer program
JP6792746B2 (en) State identification method by segment feature analysis of frequency domain
JP3382240B1 (en) Method of diagnosing target equipment, computer program, and apparatus for diagnosing target equipment
US11002641B2 (en) System for separating periodic amplitude peaks from non-periodic amplitude peaks in machine vibration data
US11635345B2 (en) System for separating periodic frequency of interest peaks from non-periodic peaks in machine vibration data
KR101663820B1 (en) Method and apparatus of machine diagnosis using sound signal
JP2019027814A (en) Method and device for analyzing vibration acoustic analysis and method and device for estimating abnormal part of apparatus
JP2021131241A (en) Diagnostic device, diagnostic method, and diagnostic program
JPWO2004068078A1 (en) State determination method, state prediction method and apparatus
JP3333494B2 (en) Device abnormality diagnosis method
JP2010266327A (en) Facility diagnosis device and facility diagnosis method
JP5017678B2 (en) Signal inspection method and signal inspection module
JP4049331B2 (en) Method and apparatus for evaluating diagnostic object
KR20150090950A (en) Method for estimating state of vibration machine
JP2017026509A (en) Fault diagnosis device and fault diagnosis method
JP2002090266A (en) Remaining life-predicting device
JP5354174B2 (en) Abnormality diagnosis system for machinery
JP4071161B2 (en) Deterioration diagnosis method for rotating machinery
JP2010203929A (en) Abnormality diagnostic system in mechanical equipment
JP2019045484A (en) State monitoring method, and state monitoring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees