WO2004072858A1 - Condition identifying metod and condition identifying system - Google Patents

Condition identifying metod and condition identifying system Download PDF

Info

Publication number
WO2004072858A1
WO2004072858A1 PCT/JP2004/000344 JP2004000344W WO2004072858A1 WO 2004072858 A1 WO2004072858 A1 WO 2004072858A1 JP 2004000344 W JP2004000344 W JP 2004000344W WO 2004072858 A1 WO2004072858 A1 WO 2004072858A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform data
state
identification
state identification
parameter
Prior art date
Application number
PCT/JP2004/000344
Other languages
French (fr)
Japanese (ja)
Inventor
Ho Jinyama
Original Assignee
Ho Jinyama
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ho Jinyama filed Critical Ho Jinyama
Priority to JP2005504927A priority Critical patent/JPWO2004072858A1/en
Publication of WO2004072858A1 publication Critical patent/WO2004072858A1/en

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing

Definitions

  • the present invention relates to a state identification method and a state identification system for performing half-state I] definition signal identification of an object in the fields of equipment diagnosis, infrastructure facility diagnosis, medical diagnosis, voice recognition, and pattern recognition. .
  • Background technology
  • State discrimination is performed by using the time-series signal measured for state discrimination as it is for fast Fourier transform processing ⁇ envelope processing and feature parameters ⁇ information theory (for example, reference (3)) . 3. Problems to be solved by the invention
  • the pocket-sized portable identification device not only takes a very long time due to complicated signal processing and learning processing due to limitations in calculation capacity and memory capacity, but also requires high accuracy. In many cases, it is not possible to deal with the state identification problem.
  • Method (3) is a method generally used in the field of state identification.
  • the sampling frequency is high, and if the measurement time is long, an enormous amount of waveform data must be processed. Therefore, processing by a pocket-sized portable identification device is difficult. 4. Means to solve the problem
  • the process of learning and constructing a state identification function that requires a long processing time with a complicated processing algorithm has a high calculation capability and a large memory capacity. It can be performed on a large computer, and the elements required for the state identification function constructed by learning on the computer can be transferred to the portable identification device, and the state can be quickly identified using the portable identification device.
  • characteristic waveform data obtained by removing noise from waveform data measured for state identification is converted into parameter waveform data, and parameter data is obtained. Since the data waveform data also serves to compress the characteristic waveform data on the time scale, the state can be quickly identified using the parameter waveform data.
  • a learning process in which the processing algorithm is complicated and requires a long processing time is performed by a computer having a high computational capacity and a large memory capacity.
  • the necessary elements for the state identification function constructed by the learning in the above are transferred to the portable identification device, and the signal measurement and the state identification can be performed quickly using the portable identification device.
  • the characteristic waveform data acquired for state identification is converted into parameter waveform data, and the role of the parameter waveform data is to compress the characteristic waveform data on a time scale. Therefore, the state can be quickly identified using the parameter waveform data. 6. Best mode for carrying out the invention
  • FIG. 1 shows a processing flow of the present invention.
  • FIG. 2 is a configuration diagram of hardware for realizing the state identification system shown in FIG.
  • FIG. 3 is an example of a circuit diagram of the portable identification device.
  • 1 is a sensor
  • 2 is an amplifier
  • 3 is a filter
  • 4 is a processing unit
  • 5 is a result display
  • 6 is data RAM
  • 7 is an AD converter
  • 8 is a DC port
  • 9 is SCI
  • 10 denotes one chip
  • 11 denotes a flash ROM
  • 12 denotes an external computer.
  • state identification is also referred to as “state diagnosis”, but in this specification, it will be referred to as “state identification”.
  • the state identification function is constructed using these waveform data.
  • the standard condition is generally normal, but other conditions are abnormal.
  • Waveform data is measured and acquired according to the characteristic frequency band of each state to be identified.
  • signals indicating the characteristics of the abnormalities appear in low, medium, and high frequency regions, respectively.
  • the feature parameters used for the conversion include dimensional feature parameters and non-dimensional feature parameters (for example, reference (6)).
  • Fig. 5 (a) shows raw waveform data measured in the outer ring damage state of a bearing
  • Fig. 5 (b) shows characteristic waveform data with noise removed
  • Fig. 5 (c) shows dimensional special parameters.
  • This is the parameter waveform data calculated by (effective value). Since the number of raw waveform data is 8192, but the number of RMS parameter waveform data is only 128, the effect of data compression can be confirmed.
  • the number of feature waveform data used when calculating parameter waveform data is calculated by the following formula.
  • f x is the characteristic frequency to be analyzed
  • f m is the sampling frequency of the time-series waveform data.
  • the number of characteristic waveform data used when calculating parameter waveform data is calculated by the following formula.
  • f. It is characterized (path) frequency during the outer ring wound state, f m is the sampling frequency of the time-series waveform data.
  • the spectrum of the parameter waveform data of the effective value obtained by FFT to identify the bearing state is shown in Fig. 5 (d).
  • the frequency of the first peak in the spectrum in Fig. 5 (d) is 110Hz, which matches the characteristic (path) frequency of the bearing when the outer ring is in a damaged state, so it can be determined that the bearing is in the "outer ring damaged state”.
  • Fig. 5 (e) shows the parameter waveform data calculated using the dimensionless feature parameters (effective value ratio, that is, the ratio of the section effective value of the waveform data to the total effective value). It is also possible to judge that the outer ring is in the injured state from the star in Fig. 5 (e) (Fig. 5 (f)).
  • Pij is the ith feature parameter, which is a value obtained from the feature waveform data (or ⁇ is parameter waveform data) extracted at the jth time.
  • n is the number of types of feature parameters, and m is the number of measurements of waveform data.
  • du is the occurrence rate of the i-th state corresponding to the j-th row of the input data.
  • the characteristic parameters obtained from the characteristic waveform data (or parameter waveform data) in state a and state b are respectively Then, the input data is obtained as follows.
  • is the number of types of feature parameters
  • m is the number of times of measurement of waveform data.
  • Good feature parameters that can distinguish between state a and state b are determined by genetic algorithms.
  • the good feature parameters obtained by the genetic algorithm are called GA feature parameters.
  • An example of a specific method is shown in (for example, Reference (9)).
  • the antecedent (input) and consequent (conclusion) of fuzzy inference are characterized by It is determined using waveform data (or parameter waveform data).
  • waveform data or parameter waveform data
  • each state is identified using characteristic waveform data or nomometer waveform data. Establish knowledge to identify.
  • a state identification function can be constructed by learning for a portable identification device.
  • Examples of constructing the state identification function include the case of a neural network (for example, reference (8)), the case of a GA feature parameter (for example, reference (9)), and the case of fuzzy identification (for example, reference (8)). 10))).
  • the elements required for the state identification function to be transferred from the computer to the portable identification device are weighting factors in the case of a neural network or a multi-valued dual network, and are calculated by a genetic algorithm in the case of GA feature parameters. This is a good GA feature parameter and state judgment criterion for state identification, and a membership function for identification inference in the case of a fuzzy identification mechanism.
  • the portable identification device After receiving the elements required for the state identification function transferred from the computer, the portable identification device constructs the state identification function so that it can identify the state independently. For example, in the case of a neural network, a trained neural network obtained by a computer is prepared so that it can be executed by a portable identification device, and measurement conditions of waveform data and determination criteria for state identification are set. Put. 2 -2 Perform status identification
  • the signal measurement, noise elimination and parameter waveform data calculation for the target object are actually performed by the above-mentioned computer during learning (1-1 to: 1-4). Content).
  • the signal identification and the state identification are performed by executing the state identification function obtained by the computer learning on the portable identification device.
  • the identification result obtained by the portable identification device is displayed on the display unit of the portable identification device, and the state identification result is shown. If necessary, the waveform data measured at the time of state identification and the state identification result are stored in a portable identification device and transferred to a computer, after which further cause analysis and state trend management are performed by the computer. 7. Examples of implementation
  • FIG. 1 an example of construction of a state identification system using a multi-valued neural network is shown.
  • Figure 6 shows the target bearing and a microphone for signal measurement. There are four states to be distinguished: normal, rolling body wound, inner ring wound, and outer ring wound.
  • the waveform data used when learning the state identification function is shown in the figure. 6 is waveform data of an acoustic signal measured at a distance of lm from the target bearing shown in FIG. After removing noise from the sound signal measured by a bandpass filter (5 kHz 40 kHz), the signal was normalized by the following equation.
  • X ' is discrete waveform data of measured signals, mu and S each X'; the mean value and the standard deviation of.
  • parameter waveform data as shown in FIG. 5 is not obtained.
  • learning and identification may be performed by obtaining the parameter waveform data shown in FIG. 5 and then obtaining the following characteristic parameters.
  • I is the absolute mean
  • is the total number of data.
  • is the average value of the maximum value (peak value) of the waveform.
  • is the average of the 10 maximum values of the waveform c -6-
  • ⁇ ⁇ is the standard deviation value of the maximum value. 7
  • Figure ⁇ shows examples of characteristic parameter (Pi to p) values obtained from characteristic waveform data (30 each) in each state.
  • the feature parameter value is converted into an integer by the following equation.
  • Fiber ( ( n 22) where the number of occurrences of k sets of parameter-like value states in tok 1 is ⁇ .
  • ⁇ Pi i is ⁇ 2, 5, 12, 1, 12, 4, 9, 16, 17, 3, 5 ⁇
  • if state k occurs three times and states other than state k occur seven times the probability of state k at that time (occurrence rate ) Is 0.3
  • the probability (occurrence rate) of the state other than state k is 0.7.
  • Figure 8 shows an example of the learning data for the obtained state identification function (multi-valued neural network). Redundant parts of the input data were removed using the rough set described in (8).
  • FIG. 9 shows an example of a multi-valued neural network for discriminating the state of a bearing.
  • the computer learned the multi-valued neural network shown in Fig. 9. Then, the weighting factor of the learned multi-valued neural network is transferred to the portable identification device.
  • the portable identification device After receiving the weighting factors of the multi-valued neural network, the portable identification device is prepared to execute the learned multi-valued neural network shown in Fig. 9.
  • the identification result shown in FIG. 10 is obtained.
  • a combination of feature parameter values ⁇ 3, 2, 1, 16, 14, 17, 16, 3, 4 ⁇ obtained from waveform data measured in a normal state is a learned multi-valued neural network.
  • the likelihood (occurrence rate) of each state output from the multi-valued neural network is normal: 0.79, rolling body wound: 0.34, inner ring wound: 0.46, outer ring wound: 0.34. Status ".
  • the identification results of other states are shown in FIG.
  • Fig. 11 shows characteristic waveform data and parameter waveform data extracted from acceleration signals measured in the four states (normal state, outer ring injury, inner ring injury, and rolling body injury) to be identified in the rotating machine in Fig. 6.
  • a sampling frequency (f m) is 25600Hz features waveform data path frequency of the outer ring wound because it is 54 Hz, the number of feature waveform data to be used when calculating the parameter waveform data according to the equation (2) is 241 did. Since the number of points in the characteristic waveform data is 32768 and the number of points in the parameter waveform data is only 136, the efficiency of the state identification process is improved.
  • the sequential state identification shown in FIG. 13 is performed.
  • a special feature parameter for identifying each state is required. Therefore, using a genetic algorithm (GA) or genetic programming (GP), we search and find good GA special parameters to identify each state.
  • GA genetic algorithm
  • GP genetic programming
  • G feature parameters for discriminating inner ring injury status
  • the portable identification device After the portable identification device receives each G ⁇ feature parameter and judgment criterion, at the time of state identification, it performs state identification using each GA feature parameter and judgment criterion according to the signal measurement and state identification execution procedure shown in Fig. 1. For example, an identification result is obtained.
  • Figure 13 shows an example of acceleration waveform data and spectra of four states (normal, eccentric, worn, and local flaws) measured to identify the state of a gear device of a rotating machine.
  • the effective frequency domain feature parameters for identifying the four states of this rotating machine are P ⁇ P ⁇ Ps ⁇ .
  • f is the frequency
  • f ⁇ is 1/2 of the sampling frequency
  • F ⁇ (f) is the spectrum
  • the characteristic waveform data is a spectrum of 5 kHz or less for identifying a normal state, and a spectrum of 8 kHz or less for identifying other states.
  • the feature parameters used to identify each state are as shown in Fig.14.
  • the variation and ambiguity of these feature parameters are examined by statistical theory and possibility, and a membership function (criterion) for state identification is created.
  • the characteristic parameter Pl for normal state identification determined by potential theory, the membership functions of p 2 p (x) is shown in FIG. 1 5 and FIG 6.
  • the probability distribution function obtained from the characteristic waveform data obtained during actual state identification (the “membership function at the time of identification” in FIGS. 15 and 16) is called the “membership function at the normal state”.
  • the results were matched with "membership function of the state is not the normal state", identification result of the P l:
  • the state is determined to be “non-normal state”.
  • the computer selects characteristic parameters for identifying each state by checking the performance, creates a membership function (judgment criterion) for state identification, and then transfers it to the portable identification device.
  • each portable device After the portable identification device receives each feature parameter and membership function (judgment criterion), at the time of state identification, each portable device identifies each feature parameter and membership function (judgment criterion) according to the state identification execution procedure shown in FIG. If it is used to identify the state, an identification result can be obtained. 8. Brief description of drawings
  • FIG. 1 is a flowchart showing the processing flow of the present invention.
  • FIG. 2 is a graph showing the configuration of the hardware of the present invention, and the symbols in the figure are as follows.
  • Fig. 3 is a graph showing the construction of the portable identification device, and the symbols in the figure are as follows.
  • FIG. 4 is a graph showing an example of characteristic waveform data in each frequency domain.
  • FIG. 5 is a graph showing an example of parameter waveform data and an example of state identification.
  • Figure 6 is a graph showing a rotating machine.
  • FIG. 7 is a table showing an example of characteristic parameter values.
  • Figure 8 is a table showing an example of learning data for a multi-valued neural network (state identification function).
  • FIG. 9 is a diagram illustrating an example of a multilevel neural network for discriminating the state of a bearing.
  • FIG. 10 is a table showing an example of the identification result by the multi-valued neural network.
  • FIG. 11 is a graph showing an example of characteristic waveform data and parameter waveform data in each state of the bearing.
  • FIG. 12 is a flowchart showing the flow of sequential state identification for identifying each state of the bearing.
  • FIG. 13 is a graph showing an example of vibration acceleration waveform data and a spectrum in each state of the gear.
  • FIG. 14 is a flowchart showing a flow of sequential state identification for identifying each state of the gear.
  • Fig. 15 is a graph showing an example of the membership function of the characteristic parameter p i for identifying the normal state of the gear.
  • Figure 1 6 is a graph showing an example of the membership function of the characteristic parameter p 2 for identifying the normal state of the gear.
  • Patent publication 2 0 0 0—1 7 1 2 9 1
  • Peng CHEN, Toshio TOYOTA Extraction Method of Failure Signal by Genetic Algorithm and the Application to Inspection and Diagnosis Robot, IEICE TRANSACTIONS on Fundamenta ⁇ s of ectronics, Communications and Computer Science, VOL.E78—A, No. 12 , pp. 1622-1626, 1995.
  • Patent publication 2 0 0 1-1 8 0 7 0 2
  • Peng Chen, Toshio Toyoda Genetic programming for self-repetition of characteristic parameters in the frequency domain, J .; «Memoir of Papers (C), Vol. 65 No. 633, ⁇ ⁇ 1946-1953, 1998.
  • Peng CHEN, Toshio TOYOTA Sequential Self-reorganization Method of Symptom Parameters and Identification Method of Membership Function for Fuzzy Diagnosis, Proceedings of FUZZ-IEEE '97, Vol. 2, pp. 433-440, 1997.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

A simple-to-use, high-in-diagnosis-accuracy, high-in-processing-speed, portable diagnosis system used for on-side condition diagnosing needs to be provided. A condition identifying method and a condition identifying system which execute the learning step of diagnosis functions by means of a computer having a high calculating power and a large memory capacity, transfer to a pocket-size portable diagnosis device elements necessary for diagnosis functions constituted by learning at the computer, and quickly perform a condition diagnosis using the portable diagnosis device. In addition, since feature waveform data obtained by removing noises from waveform data measured for diagnosing is converted into parameter waveform data in order to efficiently process information for condition diagnosis to allow parameter waveform data to play a role of compressing a measured signal on a time scale, a quick condition diagnosis is possible using parameter waveform data.

Description

明細書 状態識別方法及び状態識別システム  Description State identification method and state identification system
-. 技術分野 -. Technical field
本発明は、 設備診断、 インフラ施設診断、 医療診断、 音声認識及びパターン認識など の分野において、 対象物の状態半 I]定ゃ信号識別を行うための状態識別方法及び状態識別 システムに関するものである。 二. 背景技術  The present invention relates to a state identification method and a state identification system for performing half-state I] definition signal identification of an object in the fields of equipment diagnosis, infrastructure facility diagnosis, medical diagnosis, voice recognition, and pattern recognition. . 2. Background technology
従来の状態診断は、 次のように行われる。  Conventional state diagnosis is performed as follows.
( 1 ) 計算機で状態識別処理を行う (例えば、 参考文献 (1 ) ) 。 なお、 本明 細書記載の 「計算機」 とは実用上ポケットサイズで実現しにくい情報処 理装置のことである。  (1) Perform state identification processing on a computer (for example, reference (1)). The “computer” described in this specification is an information processing device that is practically difficult to realize with a pocket size.
( 2 ) ポケットサイズの携帯式識別装置で全ての状態識別処理を行う (例えば、 参考文献 (2 ) )。  (2) All state identification processing is performed by a pocket-sized portable identification device (for example, reference (2)).
( 3 ) 状態識別のために測定された時系列信号をそのまま高速フーリエ変換処 理ゃ包絡線処理や特徴パラメータゃ情報理論などに用いることにより状 態識別を行う (例えば、 参考文献 (3 ) )。 三. 発明が解決しょうとする課題  (3) State discrimination is performed by using the time-series signal measured for state discrimination as it is for fast Fourier transform processing 線 envelope processing and feature parameters ゃ information theory (for example, reference (3)) . 3. Problems to be solved by the invention
しかしながら、 前記従来の諸手法には次のような問題があった。  However, the conventional methods have the following problems.
第( 1 )の方法では、複雑な信号処理や学習処理や識別処理などが容易に行えるため、 知能ィヒ状態識別システムが構築し易いが、 携帯式 (ポケットサイズ) の識別装置として 実現することが困難な場合がある。  In the first method, complicated signal processing, learning processing, and identification processing can be easily performed, so that an intelligent Eich state identification system can be easily constructed. However, it should be realized as a portable (pocket size) identification apparatus. Can be difficult.
第 (2 ) の方法では、 ポケットサイズの携帯型識別装置は計算能力やメモリ容量など の制限により複雑な信号処理や学習処理などのために非常に時間がかかるだけでなく、 高精度が要求される状態識別問題に対応できない場合が多い。  In the second method, the pocket-sized portable identification device not only takes a very long time due to complicated signal processing and learning processing due to limitations in calculation capacity and memory capacity, but also requires high accuracy. In many cases, it is not possible to deal with the state identification problem.
第 (3 ) の方法は、 状態識別の分野で一般的に用いられる方法である力 波形データ を測定する時にサンプリング周波数が高く、 測定時間が長い場合、 膨大な量の波形デー タの処理を必要とするため、ポケットサイズの携帯型識別装置による処理は困難である。 四. 課題を解決するための手段  Method (3) is a method generally used in the field of state identification. When measuring force waveform data, the sampling frequency is high, and if the measurement time is long, an enormous amount of waveform data must be processed. Therefore, processing by a pocket-sized portable identification device is difficult. 4. Means to solve the problem
上記に述べたような問題点を解決するために、 本発明においては、 処理アルゴリズム が複雑で、 長い処理時間を必要とする状態識別機能の学習 '構築過程を、 計算能力が高 くメモリ容量が大きい計算機で行い、 計算機での学習により構築された状態識別機能に 必要な要素を携帯型識別装置に転送し、 携帯型識別装置を用いて迅速に状態識別を行う ことができる。 また、 携帯型識別装置により得られた波形データと識別結果を計算機に 転送して、 計算機により原因分析や状態傾向管理などのより高度な処理を行うこともで ぎる。  In order to solve the problems described above, in the present invention, the process of learning and constructing a state identification function that requires a long processing time with a complicated processing algorithm has a high calculation capability and a large memory capacity. It can be performed on a large computer, and the elements required for the state identification function constructed by learning on the computer can be transferred to the portable identification device, and the state can be quickly identified using the portable identification device. In addition, it is possible to transfer the waveform data obtained by the portable identification device and the identification result to a computer, and perform more advanced processing such as cause analysis and state trend management by the computer.
更に状態識別の情報処理を効率的に行うには、 状態識別のために測定された波形デー タから雑音を除去して得た特徴波形データをパラメータ波形データに変換し、 パラメ一 タ波形データが特徴波形データを時間スケールにおける圧縮する役割をも果たすので、 パラメータ波形データを用いて状態識別を迅速に行うことができる。 五. 発明の効果 Furthermore, in order to efficiently perform information processing for state identification, characteristic waveform data obtained by removing noise from waveform data measured for state identification is converted into parameter waveform data, and parameter data is obtained. Since the data waveform data also serves to compress the characteristic waveform data on the time scale, the state can be quickly identified using the parameter waveform data. 5. Effects of the Invention
本発明においては、 現場で対象物の状態識別を効率的に行うために、 処理アルゴリズ ムが複雑で長い処理時間を必要とする学習過程を、 計算能力が高くメモリ容量が大きい 計算機で行い、 計算機での学習により構築された状態識別機能に必要な要素を携帯型識 別装置に転送し、 携帯型識別装置を用いて迅速に信号計測と状態識別を行うことができ る。 また、 携帯型識別装置により得られた状態識別時の波形データと識別結果を計算機 に転送して、 計算機により原因分析や状態傾向管理などのより高度な処理を行うことも できる。  In the present invention, in order to efficiently identify the state of an object in the field, a learning process in which the processing algorithm is complicated and requires a long processing time is performed by a computer having a high computational capacity and a large memory capacity. The necessary elements for the state identification function constructed by the learning in the above are transferred to the portable identification device, and the signal measurement and the state identification can be performed quickly using the portable identification device. In addition, it is possible to transfer the waveform data at the time of state identification and the identification result obtained by the portable identification device to a computer, and to perform more advanced processing such as cause analysis and state tendency management by the computer.
更に状態識別のための情報処理を効率的に行うために、 状態識別のために取得した特 徴波形データをパラメータ波形データに変換し、 パラメータ波形データが特徴波形デー タを時間スケールにおける圧縮する役割を果たすので、 パラメータ波形データを用いて 状態識別を迅速に行うことができる。 六. 発明を実施するための最良の形態  Further, in order to efficiently perform information processing for state identification, the characteristic waveform data acquired for state identification is converted into parameter waveform data, and the role of the parameter waveform data is to compress the characteristic waveform data on a time scale. Therefore, the state can be quickly identified using the parameter waveform data. 6. Best mode for carrying out the invention
図 1は本発明の処理の流れを示す。 図 2は図 1に示す状態識別システムを実現するた めのハードウェアの構成図である。 図 3は携帯型識別装置の回路図の一例である。 図 3 には、 1はセンサ、 2はアンプ、 3はフィルタ、 4は処理部、 5は結果表示器、 6はデ ータ用 RAM、 7は AD変換器、 8は D Cポート、 9は S C I、 1 0は1チップ€? 11、 1 1はフラッシュ R OM、 1 2は外部計算機である。  FIG. 1 shows a processing flow of the present invention. FIG. 2 is a configuration diagram of hardware for realizing the state identification system shown in FIG. FIG. 3 is an example of a circuit diagram of the portable identification device. In Figure 3, 1 is a sensor, 2 is an amplifier, 3 is a filter, 4 is a processing unit, 5 is a result display, 6 is data RAM, 7 is an AD converter, 8 is a DC port, and 9 is SCI Reference numeral 10 denotes one chip, 11 denotes a flash ROM, and 12 denotes an external computer.
以下には図 1に示す信号計測と状態識別の処理の流れを説明する。  The flow of signal measurement and state identification processing shown in FIG. 1 will be described below.
なお、 設備診断分野や医療診断分野では、 「状態識別」 のことを 「状態診断」 とも言 うが、 本明細書では統一に 「状態識別」 と記する。  In the field of equipment diagnosis and medical diagnosis, “state identification” is also referred to as “state diagnosis”, but in this specification, it will be referred to as “state identification”.
1 · 計算機での学習による状態識別機能の構築 1 · Construction of a state identification function by learning on a computer
1-1. 識別すべき状態の設定 1-1. Setting the state to be identified
識別すべき諸状態の特徴を反映する波形データが測定できる場合、 これらの波形デー タを用いて状態識別機能の構築を行う。 設備診断や医療診断の場合、 一般に基準状態は 正常状態であるが、 他の状態は異常状態という。  If waveform data that reflects the characteristics of various states to be identified can be measured, the state identification function is constructed using these waveform data. In the case of equipment diagnosis and medical diagnosis, the standard condition is generally normal, but other conditions are abnormal.
1-2 信号の計測  1-2 Signal measurement
識別すべき各状態の特徴周波数帯域に応じて波形データを計測して取得する。 例えば、 設備診断の場合、 図 4に示すように各種異常状態が発生した時、 異常の特徴を示す信号 はそれぞれ低、 中、 高周波数領域に現れる。 雑音の影響を小さくするために、 信号計測 時に識別すべき異常状態によって波形データをこれらの低、 中、 高周波数領域に分けて 測定する必要がある。  Waveform data is measured and acquired according to the characteristic frequency band of each state to be identified. For example, in the case of equipment diagnosis, when various abnormal conditions occur, as shown in Fig. 4, signals indicating the characteristics of the abnormalities appear in low, medium, and high frequency regions, respectively. In order to reduce the effects of noise, it is necessary to measure the waveform data separately for these low, medium, and high frequency regions depending on the abnormal state to be identified at the time of signal measurement.
1-3 雑音除去による特 ί敫波形データの抽出  1-3 Extraction of waveform data by noise removal
異常状態の早期検出のために、 測定された波形データから更に雑音を除去し特徴波形 データを抽出する必要がある。 雑音除去する方法はこれまでに多く報告されている (例 えば、 参考文献 (4 ) 、 (5 ) ) 。  For early detection of abnormal conditions, it is necessary to further remove noise from the measured waveform data and extract characteristic waveform data. Many methods for removing noise have been reported so far (for example, references (4) and (5)).
1-4 パラメータ波形の算出 波形データを計測して得る時にサンプリング周波数が高く、 測定時間が長い場合、 波 形データの量が膨大になり、 状態識別処理のために時間がかかり、 状態識別の効率が悪 くなる。 そこで、 抽出された特徴波形データをパラメータ波形データに変換した後、 パ ラメータ波形データを用レ、て状態識別を行う。 変換に用いる特徴パラメータは有次元特 徴パラメータと無次元特徴パラメータがある (例えば、 参考文献 (6 ) ) 。 1-4 Calculation of parameter waveform If the sampling frequency is high and the measurement time is long when measuring and obtaining waveform data, the amount of waveform data becomes enormous, it takes time for the state identification processing, and the efficiency of the state identification deteriorates. Therefore, after extracting the extracted characteristic waveform data into parameter waveform data, the state is identified using the parameter waveform data. The feature parameters used for the conversion include dimensional feature parameters and non-dimensional feature parameters (for example, reference (6)).
例えば、 図 5 (a)はある軸受の外輪傷状態で測定した生波形データであり、 図 5 (b)は雑 音を除去した特徴波形データであり、 図 5 (c)は有次元特徵パラメータ (実効値) で算出 されたパラメータ波形データである。 生の波形データの数が 8192個であるのに対して、 実効値のパラメータ波形データの数はわずか 128個であるから、 データ圧縮の効果が確 認できる。 パラメータ波形データを計算する時に用いる特徴波形データ数は次の式で計 算される。  For example, Fig. 5 (a) shows raw waveform data measured in the outer ring damage state of a bearing, Fig. 5 (b) shows characteristic waveform data with noise removed, and Fig. 5 (c) shows dimensional special parameters. This is the parameter waveform data calculated by (effective value). Since the number of raw waveform data is 8192, but the number of RMS parameter waveform data is only 128, the effect of data compression can be confirmed. The number of feature waveform data used when calculating parameter waveform data is calculated by the following formula.
M = 5〜 ( 1 ) 2fx M = 5 to (1) 2f x
ここで、 fxは解析したい特徴周波数であり、 fmは時系列波形データのサンプリング周 波数である。 Here, f x is the characteristic frequency to be analyzed, f m is the sampling frequency of the time-series waveform data.
例えば、 軸受の状態識別の場合は、 パラメータ波形データを計算する時に用いる特徴 波形データの数は次の式で計算される。  For example, in the case of bearing state identification, the number of characteristic waveform data used when calculating parameter waveform data is calculated by the following formula.
M = 5〜~ ( 2 ) 2f0 M = 5 ~~ (2) 2f 0
ここで、 f。は外輪傷状態時の特徴 (パス) 周波数であり、 fmは時系列波形データのサ ンプリング周波数である。 Where f. It is characterized (path) frequency during the outer ring wound state, f m is the sampling frequency of the time-series waveform data.
軸受の状態を識別するために、 FFTにより求めた実効値のパラメータ波形データのス ぺクトルを図 5 (d)に示す。 図 5 (d)のスぺクトルにある 1番目のピークの周波数は 110Hz で、 該軸受の外輪傷状態時の特徴 (パス) 周波数と一致するから、 「外輪傷状態」 であ ると判定できる。  The spectrum of the parameter waveform data of the effective value obtained by FFT to identify the bearing state is shown in Fig. 5 (d). The frequency of the first peak in the spectrum in Fig. 5 (d) is 110Hz, which matches the characteristic (path) frequency of the bearing when the outer ring is in a damaged state, so it can be determined that the bearing is in the "outer ring damaged state". .
同様に、 図 5 (e)は無次元特徴パラメータ (実効値比、 つまり、 波形データの区間実効 値と全体実効値との比) で算出されたパラメータ波形データを示す。 図 5 (e)のスぺタト ル (図 5 ( f ) ) からも 「外輪傷状態」 であると判定できる。  Similarly, Fig. 5 (e) shows the parameter waveform data calculated using the dimensionless feature parameters (effective value ratio, that is, the ratio of the section effective value of the waveform data to the total effective value). It is also possible to judge that the outer ring is in the injured state from the star in Fig. 5 (e) (Fig. 5 (f)).
1-5 諸状態を識別するための知識の確立 1-5 Establishing knowledge to identify various states
(1) ニューラルネットワーク、 或いは、 多値ニューラルネットワークの場合 ニューラルネットワーク、 或いは、 多値ニューラルネットワークにより状態識別を行う ために、 特徴波形データ (或いは、 パラメータ波形データ) の特徴を表す有限個の指標 を計算する必要がある。 このような指標を 「特徴パラメータ」 という. 従来特徴パラメ ータは数多く定義されている (例えば、 参考文献 (7 ) )  (1) In the case of a neural network or a multi-valued neural network In order to identify a state using a neural network or a multi-valued neural network, a finite number of indices indicating the characteristics of the characteristic waveform data (or parameter waveform data) are used. Need to calculate. Such an index is called a “feature parameter.” Many feature parameters have been defined in the past (for example, reference (7)).
ニューラルネットワーク、或いは、多値ニューラルネットワークを学習させるために、 次のような入力データと教師データが必要である。 入力データ (3) To train a neural network or a multi-valued neural network, the following input data and teacher data are required. Input data (3)
教師データ (4)
Figure imgf000006_0001
Teacher data (4)
Figure imgf000006_0001
ここで、 Pijは第 i番目の特徴パラメータで、 第 j回目に抽出された特徴波形データ (或 レ、は、パラメータ波形データ)で求めた値である。 nは特徴パラメータの種類数であり、 mは波形データの測定回数である。 duは入力データの第 j行に対応する第 i番目の状態 の発生率である。 入力データと教師データの求め方の例は (例えば、 参考文献 (8) ) に示している。 Here, Pij is the ith feature parameter, which is a value obtained from the feature waveform data (or レ is parameter waveform data) extracted at the jth time. n is the number of types of feature parameters, and m is the number of measurements of waveform data. du is the occurrence rate of the i-th state corresponding to the j-th row of the input data. An example of how to obtain input data and teacher data is shown in (for example, Reference (8)).
(2) G A特 ί敷パラメータの場合  (2) G A special case
状態 a時と状態 b時の特徴波形データ (或いは、 パラメータ波形データ) で求めた特 徴パラメータをそれぞれ
Figure imgf000006_0002
と とすると、 入力データは次のように求められる。
The characteristic parameters obtained from the characteristic waveform data (or parameter waveform data) in state a and state b are respectively
Figure imgf000006_0002
Then, the input data is obtained as follows.
状態 a時の入力データ :
Figure imgf000006_0003
Input data at state a:
Figure imgf000006_0003
pib)U pゆ) ,η 状態 b時の入力データ Ρ y (6) p ib) U p)), η Input data in state b Ρ y (6)
Ρ Ρ
ここで、 ηは特徴パラメータの種類数であり、 mは波形データの測定回数である。 状態 aと状態 bとを識別できる良好な特徴パラメータは遺伝的ァルゴリズムにより 求められる。 なお、 遺伝的アルゴリズムにより求めた良好な特徴パラメータを G A特徴 パラメータと呼ぶ。 具体的な求め方の例は (例えば、 参考文献 (9) ) に示している。  Here, η is the number of types of feature parameters, and m is the number of times of measurement of waveform data. Good feature parameters that can distinguish between state a and state b are determined by genetic algorithms. The good feature parameters obtained by the genetic algorithm are called GA feature parameters. An example of a specific method is shown in (for example, Reference (9)).
(3) フアジィ識別機構の場合  (3) In the case of fuzzy identification mechanism
フアジィ識別機構の場合、 フアジィ推論の前件部 (入力) と後件部 (結論) は、 特徴 波形データ (或いは、 パラメータ波形 ータ) を用いて求められる。 具体的な求め方はIn the case of the fuzzy identification mechanism, the antecedent (input) and consequent (conclusion) of fuzzy inference are characterized by It is determined using waveform data (or parameter waveform data). The specific way of finding is
(例えば、 参考文献 (1 0 ) ) に示している。 (For example, reference (10)).
( 4 ) その他の方法  (4) Other methods
上記に示した 3種類の状態識別方法以外に他の方法もあるが、 レヽずれにしても状態識 別機能を構築するために、 特徴波形データ、 或いは、 ノ メータ波形データを用いて各 状態を識別するための知識を確立しておく。  There are other methods besides the three types of state identification methods described above.However, in order to construct a state identification function even in the case of a deviation, each state is identified using characteristic waveform data or nomometer waveform data. Establish knowledge to identify.
1-6 状態識別機能を学習により構築する 1-6 Building a state identification function by learning
上記に説明したように、 各状態を識別するための知識を確立しておくと、 携帯型識別 装置のために、 状態識別機能を学習により構築できる。 状態識別機能を構築する例は、 ニューラルネットワークの場合 (例えば、 参考文献 ( 8 ) ) に、 G A特徴パラメータの 場合 (例えば、 参考文献 (9 ) ) に、 フアジィ識別の場合 (例えば、 参考文献 (1 0 ) ) に示している。  As described above, if knowledge for identifying each state is established, a state identification function can be constructed by learning for a portable identification device. Examples of constructing the state identification function include the case of a neural network (for example, reference (8)), the case of a GA feature parameter (for example, reference (9)), and the case of fuzzy identification (for example, reference (8)). 10))).
1- 7 状態識別機能に必要な要素を携帯型識別装置への転送  1- 7 Transfer necessary elements for status identification function to portable identification device
計算機から携帯型識別装置へ転送する、 状態識別機能に必要な要素は、 ニューラルネ ットワーク、 或いは、 多値二ユーラルネットワークの場合は重み係数であり、 G A特徴 パラメータの場合は遺伝的アルゴリズムにより求めた状態識別用の良好な GA特徴パラ メータと状態判定基準であり、 ファジィ識別機構の場合は識別推論用のメンバ一シップ 関数である。  The elements required for the state identification function to be transferred from the computer to the portable identification device are weighting factors in the case of a neural network or a multi-valued dual network, and are calculated by a genetic algorithm in the case of GA feature parameters. This is a good GA feature parameter and state judgment criterion for state identification, and a membership function for identification inference in the case of a fuzzy identification mechanism.
2 . 帯型識別装置による状態識別の準備と実行 2. Preparation and execution of state identification by band type identification device
2 - 1 識別の準備  2-1 Preparation for identification
計算機から転送された、 状態識別機能に必要な要素を受け取った後、 携帯型識別装置 が単独で状態識別を行うために状態識別機能を構築する。 例えば、 ニューラルネットヮ ークの場合、 計算機で得られた学習済みのニューラルネットを携帯型識別装置で実行で きるように準備し、 波形データの測定条件及び状態識別時の判定基準を設定して置く。 2 -2 状態識別の実行  After receiving the elements required for the state identification function transferred from the computer, the portable identification device constructs the state identification function so that it can identify the state independently. For example, in the case of a neural network, a trained neural network obtained by a computer is prepared so that it can be executed by a portable identification device, and measurement conditions of waveform data and determination criteria for state identification are set. Put. 2 -2 Perform status identification
携帯型識別装置の状態識別機能を備えた後、 実際に対象物に対して信号の計測、 雑音 の除去及びパラメータ波形データの算出は上述の計算機での学習時 (1-1〜: 1-4の内容) と同じである。 計算機での学習により得られた状態識別機能を携帯型識別装置で実行さ せることにより信号計測と状態識別を行う。  After the portable identification device is equipped with the state identification function, the signal measurement, noise elimination and parameter waveform data calculation for the target object are actually performed by the above-mentioned computer during learning (1-1 to: 1-4). Content). The signal identification and the state identification are performed by executing the state identification function obtained by the computer learning on the portable identification device.
2 3 状態識別結果の表示及ぴ計算機への識別結果転送 2 3 Display of status identification result and transfer of identification result to computer
携帯型識別装置で得られた識別結果を携帯型識別装置の表示部に表示させ、 状態識別 結果を示す。 また、 必要があれば、 状態識別時に計測した波形データと状態識別結果を 携帯型識別装置に蓄えて、 計算機に転送した後、 計算機で更に原因分析や状態傾向管理 を行う。 七. 実施の実例  The identification result obtained by the portable identification device is displayed on the display unit of the portable identification device, and the state identification result is shown. If necessary, the waveform data measured at the time of state identification and the state identification result are stored in a portable identification device and transferred to a computer, after which further cause analysis and state trend management are performed by the computer. 7. Examples of implementation
1 . 多値ニューラルネットワークの例  1. Multi-valued neural network example
図 1に示す流れに従って、 多値ニューラルネットワークを用いた状態識別システムの 構築例を示す。  According to the flow shown in Fig. 1, an example of construction of a state identification system using a multi-valued neural network is shown.
図 6は対象の軸受と信号計測用のマイクを示す。 識別すべき状態は,正常,転動体傷, 内輪傷,外輪傷の 4状態である。状態識別機能の学習を行う時に用いた波形データは、図 6に示す対象の軸受から lm離れたところで計測した音響信号の波形データである。 ま た,バンドパスフィルタ(5kHz 40kHz)で測定した音響信号からの雑音除去を行った後、 次式で正規ィヒした。 Figure 6 shows the target bearing and a microphone for signal measurement. There are four states to be distinguished: normal, rolling body wound, inner ring wound, and outer ring wound. The waveform data used when learning the state identification function is shown in the figure. 6 is waveform data of an acoustic signal measured at a distance of lm from the target bearing shown in FIG. After removing noise from the sound signal measured by a bandpass filter (5 kHz 40 kHz), the signal was normalized by the following equation.
Xi =^ (7) Xi = ^ (7)
1 S 1 S
ここで、 X';は測定した信号の離散波形データであり、 μと Sはそれぞれ X' ;の平均 値と標準偏差である。 Here, X '; is discrete waveform data of measured signals, mu and S each X'; the mean value and the standard deviation of.
なお、 この例では、 サンプリング周波数が 40kHzで 1個の波形データ数が 4096であ るので、 図 5に示すようなパラメータ波形データを求めていない。 なお、 1個の波形デ ータ数が多い場合、 図 5に示すパラメータ波形データを求めてから、 次に示す特徴パラ メータを求めて学習と識別を行ってもよい。  In this example, since the sampling frequency is 40 kHz and the number of pieces of waveform data is 4096, parameter waveform data as shown in FIG. 5 is not obtained. When the number of pieces of waveform data is large, learning and identification may be performed by obtaining the parameter waveform data shown in FIG. 5 and then obtaining the following characteristic parameters.
特徴波形データから算出された状態識別用の特徴パラメータは次に示す 11個である。  The following 11 state identification feature parameters were calculated from the feature waveform data.
ここで、 here,
N  N
I は絶対平均値で, Νはデータの総数である。  I is the absolute mean, and Ν is the total number of data.
Figure imgf000008_0001
Figure imgf000008_0001
は標準偏差である。 Is the standard deviation.
Ν  Ν
L - 3 L- 3
i=l (11) i = l (11)
P, P,
2 ( ^1)σ3 2 (^ 1) σ 3
Ν  Ν
L ι"=1« - μ)4 L ι "= 1«-μ) 4
( -1)σ4 (12)
Figure imgf000008_0002
(-1) σ 4 (12)
Figure imgf000008_0002
ここで、 ρは波形の極大値 (ピーク値) の平均値である。Here, ρ is the average value of the maximum value (peak value) of the waveform.
Figure imgf000008_0003
Figure imgf000008_0003
.で、 μ は波形の 10個の最大値の平均値である c
Figure imgf000008_0004
-6- ここで、 σρは極大値の標準偏差値である。 7
Where μ is the average of the 10 maximum values of the waveform c
Figure imgf000008_0004
-6- Here, σ ρ is the standard deviation value of the maximum value. 7
ここで、 と aLはそれぞれ極小値 (谷値) の平均ィ直と標準偏^ j直である。 Where and a L are the mean and the standard deviation ^ j of the local minimum (valley value), respectively.
Figure imgf000009_0001
Figure imgf000009_0001
2ST i=X  2ST i = X
(18) (18)
Kb2
Figure imgf000009_0002
Kb 2
Figure imgf000009_0002
Ριο— (19)
Figure imgf000009_0003
Ριο— (19)
Figure imgf000009_0003
図 Ίは各状態での特徴波形データ (それぞ 30個) により求めた特徴パラメータ(Pi〜p ) の値の例を示す。  Figure Ί shows examples of characteristic parameter (Pi to p) values obtained from characteristic waveform data (30 each) in each state.
特徴パラメータ値を次の式により整数化する。  The feature parameter value is converted into an integer by the following equation.
P i
Figure imgf000009_0004
i max{p } - min{P - wP i) -to.5] (2 l) ここで, int[x]は Xの小数点を切り捨て, 整数を求める関数である。 Np iは max{Pij}力ら minfci までの分割数を示す。 この例では、 m=120, i = 1-11である。
P i
Figure imgf000009_0004
i max {p}-min { P -w P i ) -to.5] (2 l) where int [x] is a function that rounds down the decimal point of X and calculates an integer. N pi indicates the number of divisions from max { Pij } force to minfci. In this example, m = 120 and i = 1-11.
特徴パラメータの値の組合わせと状態 kの発生率 (可能性度合) との関係は次式で計 算される。  The relationship between the combination of characteristic parameter values and the occurrence rate (degree of possibility) of state k is calculated by the following equation.
tok 1 の 八 雖パラメ—タ状の値態の k組の発合生わせ回数が赚である纖 ( (n22) 例えば、 〜Pi iの値の組合わせが {2, 5, 12, 1, 12, 4, 9, 16, 17, 3, 5}の時、 状態 kが 3回 発生し、 状態 k以外の状態が 7回発生したとすると、 その時の状態 kの可能性度合 (発 生率)が 0.3で、状態 kでない状態の可能性度合(発生率) が 0.7である。 このように、 求めた状態識別機能 (多値ニューラルネットワーク) の学習用データの一例を図 8に示 す。 なお、 入力データの冗長部分は (例えば、 参考文献 (8) ) に記述のラフ集合によ り除去した。 Fiber ( ( n 22) where the number of occurrences of k sets of parameter-like value states in tok 1 is 赚. For example, the combination of values of ~ Pi i is {2, 5, 12, 1, 12, 4, 9, 16, 17, 3, 5}, if state k occurs three times and states other than state k occur seven times, the probability of state k at that time (occurrence rate ) Is 0.3, and the probability (occurrence rate) of the state other than state k is 0.7.Figure 8 shows an example of the learning data for the obtained state identification function (multi-valued neural network). Redundant parts of the input data were removed using the rough set described in (8).
ここで軸受の状態識別用の多値ニューラルネットワークの例として図 9に示す。 図 8 に示す学習用のデータを用いて、 計算機で図 9に示す多値ニューラルネットワークを学 習させ、 学習済みの多値ニューラルネットワークの重み係数を携帯型識別装置に転送す る。 FIG. 9 shows an example of a multi-valued neural network for discriminating the state of a bearing. Using the learning data shown in Fig. 8, the computer learned the multi-valued neural network shown in Fig. 9. Then, the weighting factor of the learned multi-valued neural network is transferred to the portable identification device.
携帯型識別装置は多値ニューラルネットワークの重み係数を受け取った後、 図 9に示 す学習済みの多値ニューラルネットワークを実行できるように準備しておく。 状態識別 の時、 図 1に示す信号計測と状態識別の実行手順に従って図 9に示す多値ニューラルネ ットワークを実行すれば、図 10に示す識別結果が得られる。図 10において、例えば、 正常状態で測定した波形データから求めた特徴パラメータの値の組合わせ {3, 2, 1, 16, 14, 17, 16, 3, 4}を学習済みの多値ニューラルネットワークに入力すれば、 多値 ニューラルネットワークから出力された各状態の可能性度合(発生率)は、正常: 0.79、 転動体傷: 0.34、 内輪傷: 0.46、外輪傷: 0.34であるので、 「正常状態」 と判定できる。 同様に、 他の状態の識別結果も図 10に示している。  After receiving the weighting factors of the multi-valued neural network, the portable identification device is prepared to execute the learned multi-valued neural network shown in Fig. 9. At the time of state identification, if the multi-valued neural network shown in FIG. 9 is executed according to the signal measurement and state identification execution procedure shown in FIG. 1, the identification result shown in FIG. 10 is obtained. In FIG. 10, for example, a combination of feature parameter values {3, 2, 1, 16, 14, 17, 16, 3, 4} obtained from waveform data measured in a normal state is a learned multi-valued neural network. , The likelihood (occurrence rate) of each state output from the multi-valued neural network is normal: 0.79, rolling body wound: 0.34, inner ring wound: 0.46, outer ring wound: 0.34. Status ". Similarly, the identification results of other states are shown in FIG.
2. GA特徴パラメータの例 (参考文献 (9) ) 2. Examples of GA feature parameters (Reference (9))
図 1に示す流れに従って、 GA特徴パラメータを用いた状態識別システムの構築例を 示す。  According to the flow shown in Fig. 1, an example of construction of a state identification system using GA feature parameters will be shown.
図 11は図 6の回転機械において識別すべき 4状態 (正常状態、 外輪傷、 内輪傷、 転 動体傷) で測定された加速度信号から抽出した特徴波形データとパラメータ波形データ を示す。 特徴波形データのサンプリング周波数 (fm) は 25600Hzで、 外輪傷のパス周波 数は 54Hzであるので、式(2) によればパラメータ波形データを計算する時に用いる特 徴波形データの数は 241でした。 特徴波形データの点数が 32768に対して、 パラメータ 波形データの点数がわずか 136であるので、 状態識別処理の効率が高められる。 Fig. 11 shows characteristic waveform data and parameter waveform data extracted from acceleration signals measured in the four states (normal state, outer ring injury, inner ring injury, and rolling body injury) to be identified in the rotating machine in Fig. 6. At a sampling frequency (f m) is 25600Hz features waveform data path frequency of the outer ring wound because it is 54 Hz, the number of feature waveform data to be used when calculating the parameter waveform data according to the equation (2) is 241 did. Since the number of points in the characteristic waveform data is 32768 and the number of points in the parameter waveform data is only 136, the efficiency of the state identification process is improved.
これらの状態を識別するために、パラメータ波形データを用いて式(8)〜式(15) の P P2, P3, P4, P5. P6の値を算出する。 To identify these conditions, calculates the PP 2, the value of P 3, P 4, P 5 . P 6 of the formula (8) to Formula (15) using the parameter waveform data.
各状態を効率的に識別するために、図 13に示す逐次的な状態識別を行う。この場合、 各状態を識別するための専用の特徴パラメータが必要である。 そこで、 遺伝的アルゴリ ズム (GA) 、 或いは、 遺伝的プログラミング (GP) を用いて各状態を識別するため の良好な G A特 ί敷パラメータを探索して求める。 例えば、 図 13に示す 4状態を識別す るために求めた G Α特徴パラメータは次に示す。  To identify each state efficiently, the sequential state identification shown in FIG. 13 is performed. In this case, a special feature parameter for identifying each state is required. Therefore, using a genetic algorithm (GA) or genetic programming (GP), we search and find good GA special parameters to identify each state. For example, the GΑ feature parameters obtained to identify the four states shown in Fig. 13 are as follows.
正常状態識別用の GA特徴パラメータ:  GA feature parameters for normal state identification:
PN = (Pi + Ρ5)Ρβ/ Pl+ 2P4/ P3)X{P4/ Pi' (P4P6 ) } (23) 外輪傷状態識別用の G A特徴パラメータ
Figure imgf000010_0001
P N = (Pi + Ρ 5 ) / β / Pl + 2 P4 / P3) X {P4 / Pi '(P4P6)} (23) GA feature parameters for discriminating outer ring injury
Figure imgf000010_0001
内輪傷状態識別用の G Α特徴パラメータ  G Α feature parameters for discriminating inner ring injury status
S=(AP4 6 3)x 2Ζρ533 5 (25) 転動体傷状態識別用の G Α特徴パラメ一 S = (AP 4 6 3 ) x 2 Ζρ 5 ) 33 5 (25) G 識別 feature parameter for identifying rolling element wound state
5)X 2 3)°·335 0·75 (26) 更に、 これらの GA特徴パラメータのばらつきや曖昧性を統計理論や可能性により調 ベ、 状態識別用の判定基準を作成する。 例えば、 '正常状態識別用の G Α特徴パラメータ PNが近似的に正規分布に従うとし、 正常状態時の PNの平均値と標準偏差を/ ½と σ Νとす ると、 実際の状態識別時に ΡΝの値が次の条件式を満足すれば、 約 99. 9%の確信度で 「正 常状態」 と判定する。 そうでなければ、 約 99. 9%の確信度で 「正常状態でない」 と判定 する。 5) X 2 3) ° · 33 + Ρ 5 0 · 75 (26) In addition, these GA characteristic parameters of variation and statistical theory and potential by regulating base ambiguity creates a criterion for state identification. For example, 'G Α feature parameter for normal state identification And P N is approximately follows a normal distribution, if you the average value and the standard deviation / ½ and sigma New for P N in the normal state, the value of the New [rho during the identification actual state satisfies the following condition Then, it is judged as “normal state” with about 99.9% confidence. Otherwise, it is judged as “not normal” with about 99.9% confidence.
β Ν- 3 σ ΝΝ< μ Ν+ 3 σ Ν ^ ' ) このように、 計算機で求めた各 G A特徴パラメータ及び判定基準を携帯型識別装置に 転送する。 β Ν - 3 σ Ν <Ρ Ν <μ Ν + 3 σ Ν ^ ') Thus, forward each GA characteristic parameters and criteria determined by the computer to the portable identification device.
携帯型識別装置が各 G Α特徴パラメータ及び判定基準を受け取った後、 状態識別の時、 図 1に示す信号計測と状態識別の実行手順に従って各 G A特徴パラメータ及び判定基準 を用いて状態識別を行えば、 識別結果が得られる。  After the portable identification device receives each G Α feature parameter and judgment criterion, at the time of state identification, it performs state identification using each GA feature parameter and judgment criterion according to the signal measurement and state identification execution procedure shown in Fig. 1. For example, an identification result is obtained.
3 . フアジィ識別機構の例 3. Example of fuzzy identification mechanism
図 1に示す流れに従って、 フアジィ識別機構を用いた状態識別システムの構築例を示 す (参考文献 (1 0 ) ) 。  According to the flow shown in Fig. 1, an example of construction of a state identification system using a fuzzy identification mechanism is shown (references (10)).
図 1 3はある回転機械の歯車装置の状態識別を行うために測定した 4状態 (正常、 偏 心、 磨耗、 局所傷) の加速度波形データとスペクトルの例を示す。 これらの状態を識別 する知識を準備するために調べた結果、 この回転機械の 4状態を識別するために有効な 周波数領域の特徴パラメータは次の P^P^ Ps^である。  Figure 13 shows an example of acceleration waveform data and spectra of four states (normal, eccentric, worn, and local flaws) measured to identify the state of a gear device of a rotating machine. As a result of examining the knowledge to identify these states, the effective frequency domain feature parameters for identifying the four states of this rotating machine are P ^ P ^ Ps ^.
Figure imgf000011_0001
Figure imgf000011_0001
こで Here
Figure imgf000011_0002
Figure imgf000012_0001
Figure imgf000011_0002
Figure imgf000012_0001
ここで、 f は周波数で、 f ^はサンプリング周波数の 1 / 2で、 F〗 ( f ) はスぺクト ルである。  Here, f is the frequency, f ^ is 1/2 of the sampling frequency, and F〗 (f) is the spectrum.
この場合、 図 1 4に示すような流れで状態識別を行う。 特徴波形データは正常状態を 識別する場合は 5 kHz以下のスぺクトル、他の状態を識別する場合は 8 kHz以下のスぺク トルである。 また、 各状態を識別するために用いる特徴パラメータは図 1 4に示すとお りである。  In this case, state identification is performed according to the flow shown in FIG. The characteristic waveform data is a spectrum of 5 kHz or less for identifying a normal state, and a spectrum of 8 kHz or less for identifying other states. The feature parameters used to identify each state are as shown in Fig.14.
更に、 これらの特徴パラメータのばらつきや曖昧性を統計理論や可能性により調べ、 状態識別用のメンバーシップ関数 (判定基準) を作成する。 例えば、 可能性理論により 求めた正常状態識別用の特徴パラメータ Pl、p2のメンバーシップ関数 p(x)は図 1 5と図 1 6に示す。 例えば、 実際の状態識別時に得た特徴波形データから求めた可能性分布関 数 (図 1 5と図 1 6の中の 「識別時のメンバーシップ関数」 ) を 「正常状態のメンバー シップ関数」と「正常状態でない状態のメンバーシップ関数」とマッチングさせた結果、 Plによる識別結果: Furthermore, the variation and ambiguity of these feature parameters are examined by statistical theory and possibility, and a membership function (criterion) for state identification is created. For example, the characteristic parameter Pl for normal state identification determined by potential theory, the membership functions of p 2 p (x) is shown in FIG. 1 5 and FIG 6. For example, the probability distribution function obtained from the characteristic waveform data obtained during actual state identification (the “membership function at the time of identification” in FIGS. 15 and 16) is called the “membership function at the normal state”. the results were matched with "membership function of the state is not the normal state", identification result of the P l:
正常状態の可能性度合 =0. 95  Probability of normal condition = 0.95
正常状態でない状態の可能性度合 =0. 8  Possibility of abnormal state = 0.8
p2による識別結果: p 2 by the identification result:
正常状態の可能性度合 =0. 4  Possibility of normal condition = 0.4
正常状態でない状態の可能性度合 =0. 99  Probability of abnormal state = 0.99
最終的にファジィ推論のルールにより、  Finally, according to the rules of fuzzy inference,
正常状態の可能性度合 =minimum{0. 95, 0. 4}=0. 4  Possibility of normal state = minimum {0. 95, 0.4} = 0.4
正常状態でなレ、状態の可能性度合 =minimum{0. 8, 0. 99} =0. 8  Normal state, possibility of state = minimum {0. 8, 0. 99} = 0.8
従って、正常状態の可能性度合より正常状態でない状態の可能性度合の方が大きいので、 「正常状態でない状態」 と判定する。  Accordingly, since the possibility of the abnormal state is greater than the possibility of the normal state, the state is determined to be “non-normal state”.
他の状態の識別も同様に図 1 4の流れに従って行うことが出来る。  The other states can be similarly identified according to the flow of FIG.
以上のように、 計算機で各状態を識別するための特徴パラメータを性能の確認により 選択し、 状態識別のメンバーシップ関数 (判定基準) を作成した後、 携帯型識別装置に 転送する。  As described above, the computer selects characteristic parameters for identifying each state by checking the performance, creates a membership function (judgment criterion) for state identification, and then transfers it to the portable identification device.
携帯型識別装置が各特徴パラメータ及びメンバーシップ関数(判定基準) を受け取つ た後、 状態識別の時、 図 1に示す状態識別の実行手順に従って各特徴パラメータ及ぴメ ンパーシップ関数 (判定基準) を用いて状態識別を行えば、 識別結果が得られる。 八. 図面の簡単な説明  After the portable identification device receives each feature parameter and membership function (judgment criterion), at the time of state identification, each portable device identifies each feature parameter and membership function (judgment criterion) according to the state identification execution procedure shown in FIG. If it is used to identify the state, an identification result can be obtained. 8. Brief description of drawings
図 1は本発明の処理流れを示すフローチャートである。 FIG. 1 is a flowchart showing the processing flow of the present invention.
図 2は本発明のハードウエアの構成を示すグラフであり、図中の符号は次の通りである。 1 センサ、 2 信号計測装置、 3 計算機、 4 携帯型識別装置、 5 センサ 図 3は携帯型識別装置の構築を示すグラフであり、 図中の符号は次の通りである。 FIG. 2 is a graph showing the configuration of the hardware of the present invention, and the symbols in the figure are as follows. 1 sensor, 2 signal measuring device, 3 computer, 4 portable identification device, 5 sensor Fig. 3 is a graph showing the construction of the portable identification device, and the symbols in the figure are as follows.
1 センサ、 2 アンプ、 3 フィルタ、 4 処理部、 5 結果表示器、 6 データ用 RAM, 7 AD変觸、 8 D Cポート、 9 S C I , 1 0 1チップ C P U、 1 1 フラッシュ R〇M、 1 2 外部計算機。 1 sensor, 2 amplifiers, 3 filters, 4 processing section, 5 result display, 6 data RAM, 7 AD touch, 8 DC port, 9 SCI, 101 chip CPU, 1 1 Flash R〇M, 1 2 External calculator.
図 4は各周波数領域の特徴波形データの例を示すグラフである。 FIG. 4 is a graph showing an example of characteristic waveform data in each frequency domain.
図 5はパラメータ波形データの例及び状態識別の例を示すグラフである。 FIG. 5 is a graph showing an example of parameter waveform data and an example of state identification.
図 6は回転機械を示すグラフである。 Figure 6 is a graph showing a rotating machine.
図 7は特徴パラメータの値の例を示すテーブルである。 FIG. 7 is a table showing an example of characteristic parameter values.
図 8は多値ニューラルネットワーク (状態識別機能) の学習用のデータ例を示すテープ ルである。 Figure 8 is a table showing an example of learning data for a multi-valued neural network (state identification function).
図 9は軸受の状態識別用の多値ニューラノレネットワークの例を示すダラフである。 FIG. 9 is a diagram illustrating an example of a multilevel neural network for discriminating the state of a bearing.
図 1 0は多値ニューラルネットワークによる識別結果の例を示すテーブルである。 FIG. 10 is a table showing an example of the identification result by the multi-valued neural network.
図 1 1は軸受の各状態における特徴波形データとパラメータ波形データとの例を示すグ ラフである。 FIG. 11 is a graph showing an example of characteristic waveform data and parameter waveform data in each state of the bearing.
図 1 2は軸受の各状態を識別するための逐次的な状態識別の流れを示すフローチヤ一ト である。 FIG. 12 is a flowchart showing the flow of sequential state identification for identifying each state of the bearing.
図 1 3は歯車の各状態における振動加速度波形データとスぺク トルとの例を示すダラフ である。 FIG. 13 is a graph showing an example of vibration acceleration waveform data and a spectrum in each state of the gear.
図 1 4は歯車の各状態を識別するための逐次的な状態識別の流れを示すフローチヤ一ト である。 FIG. 14 is a flowchart showing a flow of sequential state identification for identifying each state of the gear.
図 1 5は歯車の正常状態を識別するための特徴パラメータ p iのメンパーシップ関数の 例を示すグラフである。 Fig. 15 is a graph showing an example of the membership function of the characteristic parameter p i for identifying the normal state of the gear.
図 1 6は歯車の正常状態を識別するための特徴パラメータ p 2のメンバーシップ関数の 例を示すグラフである。 参考文献 Figure 1 6 is a graph showing an example of the membership function of the characteristic parameter p 2 for identifying the normal state of the gear. References
( 1 ) 特許公開平 9— 3 3 2 9 8  (1) Patent publication Hei 9—3 3 2 9 8
( 2 ) 特許公開 2 0 0 0— 1 7 1 2 9 1  (2) Patent publication 2 0 0 0—1 7 1 2 9 1
( 3 ) 特許公開平 7— 3 1 8 4 5 7  (3) Patent publication 7--3 1 8 4 5 7
( 4 ) 豊田利夫, 陳 鵬, 溝田武人:スペク トルの統計的検定による故障信号の抽出、 日本精密工学会誌、 第 58卷, 第 6号、 pp. 1041- 1046、 1992.  (4) Toshio Toyoda, Peng Chen, Taketo Mizoda: Extraction of fault signal by statistical test of spectrum, Journal of the Japan Society of Precision Engineering, Vol. 58, No. 6, pp. 1041-1046, 1992.
( 5 ) Peng CHEN, Toshio TOYOTA : Extraction Method of Failure Signal by Genetic Algorithm and the Application to Inspection and Diagnosis Robot, IEICE TRANSACTIONS on Fundamenta丄 s of 上 ectronics, Communications and Computer Science, VOL. E78— A, No. 12, pp. 1622-1626, 1995.  (5) Peng CHEN, Toshio TOYOTA: Extraction Method of Failure Signal by Genetic Algorithm and the Application to Inspection and Diagnosis Robot, IEICE TRANSACTIONS on Fundamenta 丄 s of ectronics, Communications and Computer Science, VOL.E78—A, No. 12 , pp. 1622-1626, 1995.
( 6 ) 特許公開 2 0 0 1— 1 8 0 7 0 2  (6) Patent publication 2 0 0 1-1 8 0 7 0 2
( 7 ) 陳 鵬, 豊田利夫:遺伝的プログラミングによる周波数領域の特徴パラメータの 自己再糸且織化, 日; «械論文集 (C編) , Vol. 65 No. 633, ρ· 1946- 1953, 1998.  (7) Peng Chen, Toshio Toyoda: Genetic programming for self-repetition of characteristic parameters in the frequency domain, J .; «Memoir of Papers (C), Vol. 65 No. 633, ρ · 1946-1953, 1998.
( 8 ) 陳 朋§、 豊田利夫:ラフ集合による診断知識の獲得法および線形補間型二ユーラ ルネットワークによる故障診断法、設備管理学会誌、第 9巻、第 3号、 p. 383-388、 1997. (8) Tomo Chen, Toshio Toyoda: A method for acquiring diagnostic knowledge using rough sets and a fault diagnosis method using linear interpolation type dual networks, Journal of the Society of Equipment Management, Vol. 9, No. 3, p. 383-388, 1997.
( 9 ) Peng CHEN, Toshio TOYOTA : Sequential Self-reorganization Method of Symptom Parameters and Identification Method of Membership Function for Fuzzy Diagnosis, Proceedings of FUZZ-IEEE' 97, Vol. 2, pp. 433-440, 1997. (9) Peng CHEN, Toshio TOYOTA: Sequential Self-reorganization Method of Symptom Parameters and Identification Method of Membership Function for Fuzzy Diagnosis, Proceedings of FUZZ-IEEE '97, Vol. 2, pp. 433-440, 1997.
( 1 0 ) 陳 鵬、 馮 芳、 豊田利夫:特徴周波数帯域の抽出及び可能性理論による設備 異常の逐次診断法、 日本信頼性学会誌、 第 24卷、 第 4号、 pp. 311- 321, 2002.  (10) Chen Peng, Feng Fang, Toyoda Toshio: Extraction of characteristic frequency bands and sequential diagnosis of equipment abnormalities based on possibility theory, Journal of Japan Society for Reliability Studies, Vol. 24, No. 4, pp. 311-321, 2002.

Claims

請求の範囲 The scope of the claims
1 . 現場で対象物の状態識別をポケットサイズの携帯型識別装置で実現するために、 携帯型識別装置が具備すべき状態識別機能を、 実測された波形データを用いて、 計算機 で学習させることにより構築する第 1ステップと、 前記計算機で構築された状態識別機 能に必要な要素を携帯型識別装置に転送する第 2ステップと、 前記要素を用いて、 前記 状態識別機能と同じ状態識別機能を前記携帯型識別装置に構築する第 3ステツプと、 前 記携帯型識別装置を用いて対象物の状舞識別を行う第 4ステップと、 前記携帯型識別装 置で取得した波形データ及び得られた!!別結果を計算機に転送する第 5ステップと、 前 記計算機で更に必要な原因分析や状態予測を行う第 6ステップとを有することを特徴と する状態識別方法及び状態識別システム。 1. In order to realize the state identification of an object on site with a pocket-sized portable identification device, the computer must learn the state identification function that the portable identification device should have, using the measured waveform data. A second step of transferring elements required for the state identification function constructed by the computer to a portable identification device, and a state identification function identical to the state identification function using the elements. A third step of constructing the object in the portable identification device, a fourth step of identifying the behavior of the object using the portable identification device, waveform data acquired by the portable identification device, and obtained data. Was! ! A state identification method and state identification system, comprising: a fifth step of transferring another result to a computer; and a sixth step of performing a necessary cause analysis and state prediction in the computer.
2 . 上記第 1項に記載の第 1ステップと第 2ステップにおいて、 対象物に対して予め 識別すべき諸状態を決定する第 1工程と、 前記諸状態の特徴を反映する波形データを複 数の周波数帯域にぉレ、て測定して取得する第 2工程と、 前記波形データから雑音が除去 された特徴波形データを得る第 3工程と、 前記特徴波形データを用いて前記諸状態を識 別するための知識を確立する第 4工程と、 前記知識を学習することにより前記諸状態を 識別するための状態識別機能を構築する第 5工程と、 前記状態識別機能に必要な要素を 携帯型識別装置に転送する第 6工程と、 を有することを特徴とする状態識別機能の学習 方法。  2. In the first step and the second step described in the above item 1, a first step of determining various states to be identified in advance with respect to the object, and a plurality of waveform data reflecting the characteristics of the various states. A second step of measuring and acquiring the waveform data in the same frequency band, a third step of obtaining characteristic waveform data from which noise has been removed from the waveform data, and identifying the various states using the characteristic waveform data. A fourth step of establishing knowledge for establishing the state, a fifth step of establishing a state identification function for identifying the various states by learning the knowledge, and a portable identification of elements required for the state identification function. A method for learning a state identification function, comprising: a sixth step of transferring to a device.
3 . 上記第 1項に記載の第 3ステップと第 4ステップにおいて、 前記状態識別機能に 必要な要素を受け取る第 1工程と、 前記要素を用いて状態識別機能を構築する第 2工程 と、 対象物の信号計測と状態識別を行うための計測条件と識別条件を設定する第3工程 と、 対象物の波形データを複数の周波数帯域において測定して取得する第 4工程と、 前 記波形データから雑音が除去された特徴波形データを得る第 5工程と、 前記特徴波形デ ータを用いて前記状態識別機能により状態識別を行う第 6工程と、 前記識別の結果を表 示する第 7工程とを有することを特徴とする状態識別方法。 3. In the third step and the fourth step described in the above item 1, a first step of receiving an element necessary for the state identification function, a second step of constructing a state identification function using the element, A third step of setting measurement conditions and identification conditions for signal measurement and state identification of an object, a fourth step of measuring and acquiring waveform data of an object in a plurality of frequency bands, and A fifth step of obtaining characteristic waveform data from which noise has been removed, a sixth step of performing state identification by the state identification function using the characteristic waveform data, and a seventh step of displaying the result of the identification. A state identification method comprising:
4 . 上記第 1項に記載の方法において、 前記状態識別機能を構築する時にニューラル ネットワーク、 或いは、 多値ニューラルネットワーク、 或いは、 GA特徴パラメータ、 或いは、 フアジィ識別機構を用いることを特徴とする状態識別方法及び状態識別システ ムの構築方法。  4. The method according to item 1, wherein the state identification function is constructed using a neural network, a multi-valued neural network, a GA feature parameter, or a fuzzy identification mechanism. Method and construction method of state identification system.
5 . 上記第 1項に記載の方法において、 前記状態識別機能に必要な要素は、 二ユーラ ルネットワーク、 或いは、 多値二ユーラルネットワークの場合は重み係数であり、 G A 特徴パラメータの場合は遣伝的アルゴリズムにより求めた識別用の良好な G A特徴パラ メータと状態判定基準であり、 ファジィ識別機構の場合はメンバーシップ関数であるこ とを特徴とする状態識別システムの構築方法。  5. In the method described in the above item 1, the element required for the state identification function is a weighting factor in the case of a dual network or a multi-valued dual network, and a factor in the case of a GA feature parameter. A method for constructing a state identification system that is characterized by good GA feature parameters and state determination criteria for identification obtained by a genetic algorithm, and a membership function in the case of a fuzzy identification mechanism.
6 . 上記第 2項に記載の第 4工程、 及び上記第 3項に記載の第 6工程において、 前記 波形データの測定条件に応じて、 前記特徴波形データを更にパラメータ波形データに変 換し、 パラメータ波形データを用いて前記状態識別機能を構築することを特徴とする状 態識別方法と状態識別システムの構築方法。  6. In the fourth step described in the second item and the sixth step described in the third item, the characteristic waveform data is further converted into parameter waveform data in accordance with a measurement condition of the waveform data, A state identification method and a state identification system construction method, wherein the state identification function is constructed using parameter waveform data.
7 . 上記第 6項に記載の方法において、 前記パラメータ波形データは、 有次元特徴パ ラメータで算出されたパラメータ波形データと、 無次元特徴パラメータで算出されたパ ラメータ波形データであることを特徴とするパラメータ波形データの算出方法。 7. The method according to item 6, wherein the parameter waveform data includes parameter waveform data calculated by a dimensional feature parameter and parameter waveform data calculated by a non-dimensional feature parameter. A method for calculating parameter waveform data, which is parameter waveform data.
8 . 上記第 6項に記載の方法において、 前記パラメータ波形データを求めるための前 記特徴波形データ数を決定する方法。  8. The method according to the above item 6, wherein the number of characteristic waveform data for determining the parameter waveform data is determined.
9 . 対象物の波形データを取得するためのセンサー、 信号計測装置、 計算機、 携帯型 識別装置を備えた、 対象物の信号計測と状態識別を行う状態識別システムであって、 該状態識別システムは、 上記第 1項に記載の方法を実行することを特徴とする。  9. A state identification system for measuring a signal and identifying a state of an object, comprising a sensor, a signal measuring device, a computer, and a portable identification device for acquiring waveform data of the object. The method according to the first aspect is performed.
1 0 . 対象物の波形データを取得するためのセンサ、 アンプ、 フィルタ、 処理部、 デ ータ保存用メモリ及び表示出力装置を備えた、 対象物の信号計測と状態識別を行う携帯 型識別装置であって、該装置は、上記第 3項に記載の方法を実行することを特徴とする。 10. Portable identification device equipped with a sensor, amplifier, filter, processing unit, data storage memory, and display output device for acquiring waveform data of the object, which performs signal measurement and state identification of the object Wherein the apparatus performs the method of item 3 above.
PCT/JP2004/000344 2003-01-17 2004-01-16 Condition identifying metod and condition identifying system WO2004072858A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005504927A JPWO2004072858A1 (en) 2003-01-17 2004-01-16 State identification method and state identification system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-10163 2003-01-17
JP2003010163 2003-01-17

Publications (1)

Publication Number Publication Date
WO2004072858A1 true WO2004072858A1 (en) 2004-08-26

Family

ID=32866187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000344 WO2004072858A1 (en) 2003-01-17 2004-01-16 Condition identifying metod and condition identifying system

Country Status (3)

Country Link
JP (1) JPWO2004072858A1 (en)
CN (1) CN100375076C (en)
WO (1) WO2004072858A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051982A (en) * 2005-08-19 2007-03-01 Japan Science & Technology Agency Method and apparatus for evaluating object of diagnosis
JP2016211227A (en) * 2015-05-08 2016-12-15 キャタピラー エス エー アール エル Work machine controller and control method
JP2017504087A (en) * 2013-11-13 2017-02-02 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Hierarchical self-learning system for computerized clinical diagnosis support
JP2019117430A (en) * 2017-12-26 2019-07-18 株式会社クボタ Portable diagnosis device, data management method, control program, and diagnosis system
CN112308038A (en) * 2020-11-25 2021-02-02 哈尔滨工业大学 Mechanical equipment fault signal identification method based on classroom type generation confrontation network model

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108225768B (en) * 2016-12-15 2019-09-20 唐智科技湖南发展有限公司 A method of diagnosis bearing axially abrades and extends failure and reduce the failure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187973A (en) * 1991-04-09 1993-07-27 Texas Instr Inc <Ti> System and apparatus for estimation, monitoring, diagnosis and maintenance using portable computer system and radio communication

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1373432A (en) * 2001-02-28 2002-10-09 曾立彬 Method and system for recognizing personal characteristics of scrip

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187973A (en) * 1991-04-09 1993-07-27 Texas Instr Inc <Ti> System and apparatus for estimation, monitoring, diagnosis and maintenance using portable computer system and radio communication

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN PENG ET AL: "Identeki programing ni yoru shuhasu ryoiki no tokucho parameter no jiko saisoshikika", NIHON KIKAI RONBUNSHU, vol. 65, no. 633, 25 May 1999 (1999-05-25), pages 1946 - 1953, XP002982528 *
CHEN PENG ET AL: "Rough shugo ni yoru shindan chishiki no kakutokuho oyobi senkei hokangata neural network ni yoru kosho shindanho", JOURNAL OF THE SOCIETY OF PLANT ENGINEERS JAPAN, vol. 9, no. 3, pages 383 - 388, XP002982529 *
CHEN PENG ET AL: "Sequential Slf-reorganizating method of symptom parameters and identification method of membership function for fuzzy diagnosis", PROCEEDINGS OF FUZZ-IEEE'97, vol. 1, 30 June 1997 (1997-06-30), pages 433 - 440, XP004208514 *
CHEN PENG ET AL: "Tokucho shuhasu taiiki no chushutsu oyobi kanosei riron ni yoru setsubi ijo no chikuji shindanho", THS JOURNAL OF RELIABILITY ENGINEERING ASSOCIATION OF JAPAN, vol. 24, no. 4, 2 May 2002 (2002-05-02), pages 311 - 321, XP002982530 *
TOYOTA TOSHIO ET AL: "Spectrum no tokeiteki kentei ni yoru kosho shingo no yushutsu", NIHON SEIMITSU KOGAKU KAISHI, vol. 58, no. 6, 30 June 1992 (1992-06-30), pages 1041 - 1046, XP002982527 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051982A (en) * 2005-08-19 2007-03-01 Japan Science & Technology Agency Method and apparatus for evaluating object of diagnosis
JP2017504087A (en) * 2013-11-13 2017-02-02 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Hierarchical self-learning system for computerized clinical diagnosis support
US11361849B2 (en) 2013-11-13 2022-06-14 Koninklijke Philips N.V. Hierarchical self-learning system for computerized clinical diagnostic support
JP2016211227A (en) * 2015-05-08 2016-12-15 キャタピラー エス エー アール エル Work machine controller and control method
US10767345B2 (en) 2015-05-08 2020-09-08 Caterpillar Sarl Device and method for controlling work machine
JP2019117430A (en) * 2017-12-26 2019-07-18 株式会社クボタ Portable diagnosis device, data management method, control program, and diagnosis system
CN112308038A (en) * 2020-11-25 2021-02-02 哈尔滨工业大学 Mechanical equipment fault signal identification method based on classroom type generation confrontation network model
CN112308038B (en) * 2020-11-25 2022-09-27 哈尔滨工业大学 Mechanical equipment fault signal identification method based on classroom type generation confrontation network model

Also Published As

Publication number Publication date
CN1757022A (en) 2006-04-05
CN100375076C (en) 2008-03-12
JPWO2004072858A1 (en) 2006-06-01

Similar Documents

Publication Publication Date Title
Roy et al. Autocorrelation aided random forest classifier-based bearing fault detection framework
CN108435819B (en) Energy consumption abnormity detection method for aluminum profile extruder
CN111337767B (en) Fault analysis method for resonant wave speed reducer
CN112052712B (en) Power equipment state monitoring and fault identification method and system
CN114708885A (en) Fan fault early warning method based on sound signals
WO2004072858A1 (en) Condition identifying metod and condition identifying system
CN109828548B (en) Performance degradation characteristic evaluation method based on time series change mutation point detection
CN114878172A (en) Method and system for extracting temperature signal characteristics of marine main engine cylinder
WO2004068078A1 (en) State judging method, and state predicting method and device
WO2000070310A1 (en) Signal identification device using genetic algorithm and on-line identification system
CN117807551A (en) Heart rate abnormality capturing method and system based on intelligent ring
JP2002323371A (en) Sound diagnostic device and sound diagnostic method
CN114548555B (en) Axial flow compressor stall surge prediction method based on deep autoregressive network
CN116522237A (en) Rolling bearing fault diagnosis method based on parallel convolution neural network
CN116224950A (en) Intelligent fault diagnosis method and system for self-organizing reconstruction of unmanned production line
Dey et al. Autocorrelation based feature extraction for bearing fault detection in induction motors
CN114492543A (en) Partial discharge classification and identification method based on time-frequency domain characteristics
CN112237433A (en) Electroencephalogram signal abnormity monitoring system and method
JP2012177653A (en) Acoustic diagnosis method, program, and device
CN112114215A (en) Transformer aging evaluation method and system based on error back propagation algorithm
CN111506045A (en) Fault diagnosis method based on single-value intelligent set correlation coefficient
CN111985380B (en) Bearing degradation process state monitoring method, system, equipment and storage medium
Chang et al. Bearing Fault Diagnosis Based on an Advanced Method: ID-CNN-LSTM
CN115308631B (en) Fault diagnosis method and system for new energy automobile power battery pack
CN114184367B (en) Rotary mechanical equipment fault diagnosis method, device, equipment and readable storage medium

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005504927

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20048059298

Country of ref document: CN

122 Ep: pct application non-entry in european phase