JP5927652B2 - Optical monitor and vacuum deposition apparatus using the same - Google Patents

Optical monitor and vacuum deposition apparatus using the same Download PDF

Info

Publication number
JP5927652B2
JP5927652B2 JP2012157691A JP2012157691A JP5927652B2 JP 5927652 B2 JP5927652 B2 JP 5927652B2 JP 2012157691 A JP2012157691 A JP 2012157691A JP 2012157691 A JP2012157691 A JP 2012157691A JP 5927652 B2 JP5927652 B2 JP 5927652B2
Authority
JP
Japan
Prior art keywords
monitor
chopper
optical monitor
chopper plate
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012157691A
Other languages
Japanese (ja)
Other versions
JP2014019887A (en
Inventor
健介 簗瀬
健介 簗瀬
藤原 隆行
隆行 藤原
三千夫 高橋
三千夫 高橋
Original Assignee
株式会社昭和真空
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社昭和真空 filed Critical 株式会社昭和真空
Priority to JP2012157691A priority Critical patent/JP5927652B2/en
Publication of JP2014019887A publication Critical patent/JP2014019887A/en
Application granted granted Critical
Publication of JP5927652B2 publication Critical patent/JP5927652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明は膜厚測定用の光学モニタ及びそれを用いた真空蒸着装置に関する。   The present invention relates to an optical monitor for measuring a film thickness and a vacuum deposition apparatus using the same.

特許文献1は光学モニタを搭載した真空蒸着装置の一例を開示する。同文献の真空蒸着装置は、モニタ部(21)、基板ドーム(22)、及びモニタガラス(41)を備える。蒸発源からの蒸発材料は、基板ドームの中心部に設けられたモニタ窓(42)の開口窓(42a)を介してモニタガラス下面の堆積領域に堆積される。モニタ部は投光部(43)、ミラー(44)及び受光部(47)を備え、投光部からの光はミラー(44a)で反射されてモニタガラスに入射され、モニタガラスからの反射光がミラー(44b)で反射されて受光部に入射される。不図示の演算手段によって、各波長における反射光の強度に基づいてモニタガラス上の堆積材料の膜厚測定が行われる。   Patent Document 1 discloses an example of a vacuum vapor deposition apparatus equipped with an optical monitor. The vacuum vapor deposition apparatus of the same document includes a monitor unit (21), a substrate dome (22), and a monitor glass (41). The evaporation material from the evaporation source is deposited on the deposition region on the lower surface of the monitor glass through the opening window (42a) of the monitor window (42) provided at the center of the substrate dome. The monitor unit includes a light projecting unit (43), a mirror (44), and a light receiving unit (47), and light from the light projecting unit is reflected by the mirror (44a) and incident on the monitor glass, and reflected light from the monitor glass. Is reflected by the mirror (44b) and enters the light receiving section. The film thickness of the deposited material on the monitor glass is measured based on the intensity of the reflected light at each wavelength by a calculation means (not shown).

また、上記のような光学モニタにおいて、モニタガラスへの堆積量を減少させるためのチョッパ板が設けられる場合がある。図8Aはチョッパ板が設けられた従来の光学モニタ105を示す。光学モニタ105は、モニタガラス10、マスク15、投光部21、受光部22及びチョッパ板130を備える。図8Bに示すように、チョッパ板130には放射状にスリット133が設けられ、回転軸Xに関して回転される。スリット133はモニタガラス10の堆積領域11の前面を通過するように配置される。投光部21はモニタガラス10の堆積領域11の裏面の測定領域12に測定光を入射し、受光部22は測定領域12からの反射光R1を受光する。そして、不図示の演算手段において、受光部22で受光された反射光の強度に基づいてモニタガラス上の堆積材料の膜厚測定が行われる。   In the optical monitor as described above, a chopper plate may be provided for reducing the amount of deposition on the monitor glass. FIG. 8A shows a conventional optical monitor 105 provided with a chopper plate. The optical monitor 105 includes a monitor glass 10, a mask 15, a light projecting unit 21, a light receiving unit 22, and a chopper plate 130. As shown in FIG. 8B, slits 133 are provided radially on the chopper plate 130 and rotated about the rotation axis X. The slit 133 is disposed so as to pass through the front surface of the deposition region 11 of the monitor glass 10. The light projecting unit 21 enters measurement light into the measurement region 12 on the back surface of the deposition region 11 of the monitor glass 10, and the light receiving unit 22 receives the reflected light R 1 from the measurement region 12. Then, in the calculation means (not shown), the film thickness of the deposited material on the monitor glass is measured based on the intensity of the reflected light received by the light receiving unit 22.

特開2007−270332号公報JP 2007-270332 A

しかし、図8A及び8Bに示すような光学モニタにおいては、以下のような問題があった。
第1に、図8Aに示すように、投光部21から出射された光が、モニタガラス10だけでなくチョッパ板130にも反射して、反射光R1´が受光部22に入射することが問題となる。即ち、受光部22において、測定領域12での反射率に直接関係する反射光R1だけでなく、当該反射率に関係しない光R1´も受光されるために膜厚測定精度が低下するという問題があった。ここで、例えば、チョッパ板130の裏面(図の上面)に粗面加工等の反射防止加工を施せば、加工当初はチョッパ板130における反射を防止できる。しかし、その後の蒸着処理において、蒸発材料がチョッパ板130の裏面側に回り込み、堆積するにつれて加工面が平坦化し、反射防止加工の効果が減殺されていく。このように、チョッパ板130の裏面の反射防止加工は有効な対策とはならない。そのため、継続的に蒸着処理が行われる場合でもチョッパ板裏面での反射を確実に防止できる構成が必要となる。
However, the optical monitor as shown in FIGS. 8A and 8B has the following problems.
First, as shown in FIG. 8A, the light emitted from the light projecting unit 21 is reflected not only on the monitor glass 10 but also on the chopper plate 130, and the reflected light R <b> 1 ′ enters the light receiving unit 22. It becomes a problem. That is, the light receiving unit 22 receives not only the reflected light R1 directly related to the reflectance in the measurement region 12, but also the light R1 ′ not related to the reflectance, so that the film thickness measurement accuracy is lowered. there were. Here, for example, if antireflection processing such as roughening is performed on the back surface (upper surface in the drawing) of the chopper plate 130, reflection at the chopper plate 130 can be prevented at the beginning of processing. However, in the subsequent vapor deposition process, the evaporation material goes around to the back side of the chopper plate 130, and as it is deposited, the processing surface becomes flat and the effect of the antireflection processing is diminished. Thus, the antireflection processing on the back surface of the chopper plate 130 is not an effective measure. For this reason, a configuration is required that can reliably prevent reflection on the back surface of the chopper plate even when the vapor deposition process is continuously performed.

第2に、光学モニタにおいては、モニタガラス10の堆積領域11には、蒸発物が均一に堆積される必要がある。しかし、図8Bに示すチョッパ板130においては、スリット133の幅がその放射方向において一定であるため、堆積領域11においては、チョッパ板130の中心側よりも周縁部側で遮蔽率が大きくなる(即ち、開放率が小さくなる)。従って、図8Cに示すように、堆積領域11において、チョッパ板130の中心側部分11aよりも周縁部側部分11bの膜厚が小さくなり、略同心円状の膜斑が発生してしまう。そして、この膜斑のために、測定精度及びその再現性が低下するという問題があった。   Secondly, in the optical monitor, the evaporated material needs to be uniformly deposited in the deposition region 11 of the monitor glass 10. However, in the chopper plate 130 shown in FIG. 8B, since the width of the slit 133 is constant in the radial direction, in the deposition region 11, the shielding rate is larger on the peripheral side than on the center side of the chopper plate 130 ( That is, the open rate becomes small). Therefore, as shown in FIG. 8C, the film thickness of the peripheral side portion 11b is smaller than the central side portion 11a of the chopper plate 130 in the deposition region 11, and a substantially concentric film spot is generated. And, due to the film spots, there is a problem that the measurement accuracy and the reproducibility thereof are lowered.

そこで、本発明は、チョッパ板を用いた光学モニタ装置において、測定光のチョッパ板裏面による反射を確実に防止して膜厚測定精度を向上することを課題とする。また、本発明は、モニタガラスの堆積領域における膜斑を防止して測定精度及びその再現性を向上することを課題とする。   Therefore, an object of the present invention is to improve the film thickness measurement accuracy by reliably preventing the reflection of measurement light from the back surface of the chopper plate in an optical monitor device using a chopper plate. Moreover, this invention makes it a subject to prevent the film spot in the deposition area | region of monitor glass, and to improve a measurement precision and its reproducibility.

本発明の第1の側面は、蒸発源に対向配置される膜厚測定用の光学モニタであって、所定領域に蒸発源からの蒸着材料が堆積されるように設置されるモニタガラス、スリットを有し、所定領域を蒸発源に対して遮蔽及び露出させるチョッパ板、及びモニタガラスの所定領域の裏面に位置する測定領域に光を入射させるとともに反射光を受光し、反射光の特性に基づいて膜厚を演算する測定部を備える。チョッパ板は、少なくとも所定領域に対応する部分においてモニタガラスに対して傾斜されたテーパー部を有する。   A first aspect of the present invention is an optical monitor for measuring a film thickness that is disposed to face an evaporation source, and includes a monitor glass and a slit installed so that vapor deposition material from the evaporation source is deposited in a predetermined region. The chopper plate that shields and exposes the predetermined area from the evaporation source, and makes the light incident on the measurement area located on the back surface of the predetermined area of the monitor glass and receives the reflected light, and based on the characteristics of the reflected light A measurement unit for calculating the film thickness is provided. The chopper plate has a tapered portion that is inclined with respect to the monitor glass at least in a portion corresponding to the predetermined region.

例えば、チョッパ板が回転軸に対して回転可能に構成され、スリットが回転軸に関して放射状に形成され、テーパー部とモニタガラスの離隔距離がチョッパ板の外縁部側に向けて増大するように形成される。   For example, the chopper plate is configured to be rotatable with respect to the rotation axis, the slits are formed radially with respect to the rotation axis, and the separation distance between the taper portion and the monitor glass is increased toward the outer edge side of the chopper plate. The

また、テーパー部がチョッパ板の外縁部に設けられ、チョッパ板がモニタガラスに対して平行に往復移動可能に構成され、複数のスリットが該往復移動方向に配列され、テーパー部とモニタガラスとの離隔距離がチョッパ板の往復移動方向に直交する方向に増加または減少するようにしてもよい。 Further, the taper portion is provided at the outer edge portion of the chopper plate , the chopper plate is configured to be able to reciprocate in parallel with the monitor glass, and a plurality of slits are arranged in the reciprocating direction, and the taper portion and the monitor glass are The separation distance may be increased or decreased in a direction perpendicular to the reciprocating direction of the chopper plate .

ここで、スリットの開口幅が回転軸側から外縁部側に向けて増加するように形成されることが好ましい。   Here, the opening width of the slit is preferably formed so as to increase from the rotating shaft side toward the outer edge side.

また、チョッパ板が回転軸に対して回転可能に構成され、スリットが回転軸に関して放射状に形成され、テーパー部とモニタガラスの離隔距離がチョッパ板の外縁部側に向けて減少するように形成されるようにしてもよい。   Further, the chopper plate is configured to be rotatable with respect to the rotation axis, the slits are formed radially with respect to the rotation axis, and the separation distance between the taper portion and the monitor glass is reduced toward the outer edge side of the chopper plate. You may make it do.

本発明の第2の側面は、蒸発源、上記の光学モニタ、処理基板を保持する基板ホルダ、並びに蒸発源、光学モニタ装置及び基板ホルダを内包する真空槽を備えた真空蒸着装置である。   The second aspect of the present invention is a vacuum deposition apparatus including an evaporation source, the above-described optical monitor, a substrate holder that holds a processing substrate, and a vacuum chamber that encloses the evaporation source, the optical monitor device, and the substrate holder.

ここで、真空槽及び基板ホルダが略円筒形であり、基板ホルダの内側面に処理基板が保持され、蒸発源及び光学モニタが基板ホルダの内面側に配置され、基板ホルダが円筒軸を中心として回転されるように構成される。   Here, the vacuum chamber and the substrate holder are substantially cylindrical, the processing substrate is held on the inner surface of the substrate holder, the evaporation source and the optical monitor are arranged on the inner surface side of the substrate holder, and the substrate holder is centered on the cylindrical axis. Configured to be rotated.

本発明の実施例による真空蒸着装置を示す正面図である。It is a front view which shows the vacuum evaporation system by the Example of this invention. 図1Aの真空蒸着装置をA−A´で切った矢視図である。It is the arrow line view which cut | disconnected the vacuum evaporation system of FIG. 1A by AA '. 図1Aの真空蒸着装置をB−B´で切った矢視図である。It is the arrow line view which cut the vacuum evaporation system of Drawing 1A with BB '. 本発明の実施例による光学モニタの概略正面図である。It is a schematic front view of the optical monitor by the Example of this invention. 本発明の実施例によるチョッパ板の概略平面図である。It is a schematic plan view of the chopper board by the Example of this invention. 本発明の実施例による光学モニタを説明する図である。It is a figure explaining the optical monitor by the Example of this invention. 本発明の実施例によるチョッパ板の鳥瞰図である。It is a bird's-eye view of the chopper board by the Example of this invention. 本発明の第1の変形例によるチョッパ板を説明する図である。It is a figure explaining the chopper board by the 1st modification of this invention. 本発明の第2の変形例によるチョッパ板を説明する図である。It is a figure explaining the chopper board by the 2nd modification of this invention. 本発明の第3の変形例によるチョッパ板を説明する図である。It is a figure explaining the chopper board by the 3rd modification of this invention. 本発明の第4の変形例によるチョッパ板を説明する図である。It is a figure explaining the chopper board by the 4th modification of this invention. 本発明の第4の変形例によるチョッパ板を説明する図である。It is a figure explaining the chopper board by the 4th modification of this invention. 従来の光学モニタを示す図である。It is a figure which shows the conventional optical monitor. 従来の光学モニタにおけるチョッパ板を示す図である。It is a figure which shows the chopper board in the conventional optical monitor. 従来の光学モニタを説明する図である。It is a figure explaining the conventional optical monitor.

実施例.
図1Aに本発明の実施例による真空蒸着装置1の正面図を示し、図1B及び1Cに真空蒸着装置1をそれぞれA−A´及びB−B´から見た矢視図を示す。図1Aは真空槽正面扉を省略する。真空蒸着装置1は、真空槽2、蒸発源3、基板ホルダ4及び光学モニタ5を備える。本実施例における真空槽2は略円筒形であり、正面図において真空槽2の直径上の位置に蒸発源3及び光学モニタ5が対向配置される。
Example.
FIG. 1A shows a front view of a vacuum deposition apparatus 1 according to an embodiment of the present invention, and FIGS. 1B and 1C show arrow views of the vacuum deposition apparatus 1 as viewed from AA ′ and BB ′, respectively. FIG. 1A omits the vacuum chamber front door. The vacuum deposition apparatus 1 includes a vacuum chamber 2, an evaporation source 3, a substrate holder 4, and an optical monitor 5. The vacuum chamber 2 in the present embodiment is substantially cylindrical, and the evaporation source 3 and the optical monitor 5 are arranged to face each other at a position on the diameter of the vacuum chamber 2 in the front view.

本実施例では蒸発源3は2つの蒸発源3a及び3bからなり、真空槽2を真空引きした後に2種類の蒸着材料を、時間を切替えて又は同時に蒸発させることができる。なお、本実施例では蒸発源3が2つの蒸発源からなる構成としたが、蒸発源の数は1又は3以上であってもよい。基板ホルダ4も円筒形であり、真空槽2の内側面に沿って配置され、その内面には処理対象となる基板が保持される。蒸発源3から基板への均一な蒸着を行うため、基板ホルダ4は円筒軸を中心に回転される。なお、本実施例における基板ホルダ4は円筒形状であるが、内面に基板を保持して真空槽2内で回転可能なものであれば多角柱形状であってもよい。光学モニタ5については後述する。   In this embodiment, the evaporation source 3 includes two evaporation sources 3a and 3b, and after the vacuum chamber 2 is evacuated, two kinds of vapor deposition materials can be evaporated at different times or simultaneously. In this embodiment, the evaporation source 3 is composed of two evaporation sources, but the number of evaporation sources may be 1 or 3 or more. The substrate holder 4 is also cylindrical and is disposed along the inner surface of the vacuum chamber 2, and a substrate to be processed is held on the inner surface. In order to perform uniform vapor deposition from the evaporation source 3 to the substrate, the substrate holder 4 is rotated around a cylindrical axis. Although the substrate holder 4 in this embodiment is cylindrical, it may be polygonal as long as the substrate is held on the inner surface and can be rotated in the vacuum chamber 2. The optical monitor 5 will be described later.

基板への光学膜の形成工程では、まず、蒸発源3に蒸着材料が充填されるとともに処理対象基板(不図示)が基板ホルダ4に設置され、真空槽2が真空引きされる。真空状態において、基板ホルダ4が回転されるとともに蒸着源3から蒸着材料の蒸発が開始される。蒸着処理が進むにつれて、蒸着材料が基板及び後述のモニタガラスに堆積する。光学モニタ5が、モニタガラスに蒸着された膜厚を測定し、測定される膜厚、チョッパの遮蔽率等から基板上に形成された膜の厚さを算出する。そして、光学モニタ5において測定される膜厚が所定値に達した時点で蒸着処理が停止される。なお、真空槽2、蒸発源3、基板ホルダ4及び光学モニタ5の各動作は不図示の制御手段によって統括制御されるようにしてもよい。   In the step of forming the optical film on the substrate, first, the evaporation source 3 is filled with the vapor deposition material, the substrate to be processed (not shown) is placed on the substrate holder 4, and the vacuum chamber 2 is evacuated. In the vacuum state, the substrate holder 4 is rotated and evaporation of the vapor deposition material is started from the vapor deposition source 3. As the vapor deposition process proceeds, the vapor deposition material is deposited on the substrate and a monitor glass described below. The optical monitor 5 measures the film thickness deposited on the monitor glass, and calculates the thickness of the film formed on the substrate from the measured film thickness, the chopper shielding rate, and the like. The vapor deposition process is stopped when the film thickness measured by the optical monitor 5 reaches a predetermined value. The operations of the vacuum chamber 2, the evaporation source 3, the substrate holder 4, and the optical monitor 5 may be comprehensively controlled by a control unit (not shown).

図2Aに、本実施例の光学モニタ5の正面図を示す。光学モニタ5は、モニタガラス10、マスク15、測定部20及びチョッパ板30を備える。図2Bにチョッパ板30の平面図を示し、図2Cにモニタガラス10、マスク15及びチョッパ板30の位置関係を示す。   FIG. 2A shows a front view of the optical monitor 5 of the present embodiment. The optical monitor 5 includes a monitor glass 10, a mask 15, a measuring unit 20, and a chopper plate 30. FIG. 2B shows a plan view of the chopper plate 30, and FIG. 2C shows the positional relationship among the monitor glass 10, the mask 15, and the chopper plate 30.

図2A−2Cを参照すると、モニタガラス10は円盤状又は環状であり、回転軸Yに関して回転される。モニタガラス10は堆積領域11を除いて、蒸発源3に対してマスク15によって遮蔽される。言い換えると、蒸発源3に対して露出される堆積領域11はマスク15の開口によって画定され、その全面をチョッパ板30のスリット33が通過するように構成される。堆積領域11の裏面が測定領域12となり、双方の領域は上記回転軸Yに関する回転動作によって蒸着処理毎にモニタガラス10上で変更することができる。   Referring to FIGS. 2A-2C, the monitor glass 10 is disk-shaped or annular and is rotated about the rotation axis Y. The monitor glass 10 is shielded from the evaporation source 3 by a mask 15 except for the deposition region 11. In other words, the deposition region 11 exposed to the evaporation source 3 is defined by the opening of the mask 15, and the slit 33 of the chopper plate 30 passes through the entire surface. The back surface of the deposition region 11 becomes the measurement region 12, and both regions can be changed on the monitor glass 10 for each deposition process by the rotation operation about the rotation axis Y.

測定部20は、投光部21、受光部22及び演算部23を備える。投光部21は測定光を測定領域12に向けて出射し、受光部22はその反射光R1を受光する。演算部23は受光部22で受光された反射光R1の特性、即ち、各波長における強度に基づいて堆積領域11に堆積された蒸着材料の膜厚測定を行う。   The measurement unit 20 includes a light projecting unit 21, a light receiving unit 22, and a calculation unit 23. The light projecting unit 21 emits measurement light toward the measurement region 12, and the light receiving unit 22 receives the reflected light R1. The calculation unit 23 measures the film thickness of the vapor deposition material deposited in the deposition region 11 based on the characteristic of the reflected light R1 received by the light receiving unit 22, that is, the intensity at each wavelength.

チョッパ板30は図3にも示すように円盤状であり、不図示の駆動源によって回転軸Xに対して回転される。チョッパ板30は同心円状に形成されたセンター部31及びテーパー部32からなり、テーパー部32には放射状にスリット33が形成される。即ち、チョッパ板30が回転されることによりスリット33が堆積領域11の前面を通過する。なお、図面ではスリット33はテーパー部32のみに形成されているが、スリット33はテーパー部32からセンター部31まで延在されていてもよい。   The chopper plate 30 has a disk shape as shown in FIG. 3 and is rotated with respect to the rotation axis X by a drive source (not shown). The chopper plate 30 includes a center portion 31 and a tapered portion 32 formed concentrically, and slits 33 are radially formed in the tapered portion 32. That is, the slit 33 passes through the front surface of the deposition region 11 by rotating the chopper plate 30. In the drawing, the slit 33 is formed only in the tapered portion 32, but the slit 33 may extend from the tapered portion 32 to the center portion 31.

ここで、図2Aに示すように、テーパー部32は、チョッパ板30とモニタガラス10の離隔距離がチョッパ板30の周縁部側に向けて増大するように形成される。このテーパー部32の傾斜角(テーパー部32とモニタガラス10がなす角)は3度〜45度程度、より好ましくは5度〜15度程度であればよい。実施例ではテーパー部32とモニタガラス10がなす角は9度に設定している。但し、センター部31とモニタガラス10のなす角は任意である。ここで、投光部21からモニタガラス10を透過してテーパー部32に入射された測定光は、テーパー部32で反射されると反射光R2を形成する。図2Aに示すように、測定光が入射される部分がテーパー状であることによって、反射光R2は堆積領域11ではなくマスク15の方向に進み、受光部22に入射されることはない。従って、測定部20の膜厚測定において、反射光R1のみに基づいて膜厚測定を行うことができ、膜厚測定精度を向上することができる。   Here, as shown in FIG. 2A, the tapered portion 32 is formed such that the separation distance between the chopper plate 30 and the monitor glass 10 increases toward the peripheral edge side of the chopper plate 30. The inclination angle of the tapered portion 32 (the angle formed by the tapered portion 32 and the monitor glass 10) may be about 3 to 45 degrees, more preferably about 5 to 15 degrees. In the embodiment, the angle formed by the tapered portion 32 and the monitor glass 10 is set to 9 degrees. However, the angle between the center portion 31 and the monitor glass 10 is arbitrary. Here, the measurement light that has passed through the monitor glass 10 from the light projecting portion 21 and entered the tapered portion 32 forms reflected light R <b> 2 when reflected by the tapered portion 32. As shown in FIG. 2A, the portion where the measurement light is incident is tapered, so that the reflected light R <b> 2 proceeds in the direction of the mask 15, not the deposition region 11, and is not incident on the light receiving unit 22. Therefore, in the film thickness measurement of the measurement unit 20, the film thickness can be measured based only on the reflected light R1, and the film thickness measurement accuracy can be improved.

また、スリット33の各々は、その開口幅が、回転軸X側から外縁部側に向けて増加するように略扇形に形成される。これにより、堆積領域11におけるチョッパ板30による遮蔽率(即ち、スリット33による開口率)が均一となり、堆積領域11に堆積される蒸着物の膜厚が均一となる。従って、従来の構成(図8A−8C)で問題となっていた堆積領域における膜斑の発生が防止され、モニタ精度及びその再現性が向上する。なお、スリット33の開口幅及びその拡がり角度(長手方向に対する開口幅の変化)、長さ、本数等は所望の遮蔽率(開口率)に従って選択される。   Each of the slits 33 is formed in a substantially sector shape so that the opening width thereof increases from the rotation axis X side toward the outer edge portion side. Thereby, the shielding rate by the chopper plate 30 in the deposition region 11 (that is, the aperture ratio by the slit 33) becomes uniform, and the film thickness of the deposited material deposited in the deposition region 11 becomes uniform. Therefore, the occurrence of film spots in the deposition region, which has been a problem with the conventional configuration (FIGS. 8A to 8C), is prevented, and the monitoring accuracy and reproducibility thereof are improved. The opening width of the slit 33 and its spreading angle (change in opening width with respect to the longitudinal direction), length, number, etc. are selected according to a desired shielding rate (opening ratio).

変形例.
上記実施例においては、チョッパ板のテーパー部が蒸発源側に傾斜する構成を示したが、チョッパ板の構成はこれに限られない。具体的には、チョッパ板が、少なくとも堆積領域11を遮蔽する部分において、モニタガラス10に対して傾斜されたテーパー部を有していればよい。以下に、図4−6並びに図7A及び7Bを参照してチョッパ板の変形例を示す。
Modified example.
In the said Example, although the taper part of the chopper board showed the structure inclined to the evaporation source side, the structure of a chopper board is not restricted to this. Specifically, the chopper plate may have a tapered portion that is inclined with respect to the monitor glass 10 at least in a portion that shields the deposition region 11. Below, the modification of a chopper board is shown with reference to FIGS. 4-6 and FIG. 7A and 7B.

変形例1.
図4に、第1の変形例のチョッパ板40を含む光学モニタ5を示す。チョッパ板40は、同心円状に形成されたセンター部41、テーパー部42及びエッジ部44からなり、回転軸Xに対して回転される。スリット43がセンター部41からテーパー部42を経てエッジ部44にかけて、回転軸Xに関して放射状に形成される。ここで、投光部21からモニタガラス10を透過してテーパー部42に入射された測定光は、テーパー部42で反射されると、上記実施例と同様に、マスク15に向けて反射される反射光R2を形成する。
Modification 1
FIG. 4 shows an optical monitor 5 including the chopper plate 40 of the first modification. The chopper plate 40 includes a center part 41, a tapered part 42, and an edge part 44 formed concentrically, and is rotated with respect to the rotation axis X. The slits 43 are formed radially with respect to the rotation axis X from the center portion 41 through the tapered portion 42 to the edge portion 44. Here, when the measurement light that has passed through the monitor glass 10 from the light projecting unit 21 and is incident on the tapered portion 42 is reflected by the tapered portion 42, it is reflected toward the mask 15 in the same manner as in the above embodiment. The reflected light R2 is formed.

本変形例でも、チョッパ板40からの反射光R2は受光部22に入射されることはなく、測定部20の膜厚測定において、反射光R1のみに基づいて膜厚測定を行うことができ、膜厚測定精度を向上することができる。また、本変形例では、チョッパ板40(エッジ部44)の外縁部が実施例におけるチョッパ板30(テーパー部32)の外縁部よりもマスク15に近い位置に配置されるので、蒸着材料がマスク15とチョッパ板40の外縁部の隙間から堆積領域11に入り込んでしまうのを抑制することができる。これにより、モニタ精度の更なる向上が期待できる。但し、スリット43の拡がり角度を、センター部41、テーパー部42及びエッジ部44の各部間の段差に応じて調整する必要がある。   Also in this modification, the reflected light R2 from the chopper plate 40 is not incident on the light receiving unit 22, and in the film thickness measurement of the measuring unit 20, the film thickness can be measured based only on the reflected light R1, The film thickness measurement accuracy can be improved. Further, in this modification, the outer edge portion of the chopper plate 40 (edge portion 44) is disposed at a position closer to the mask 15 than the outer edge portion of the chopper plate 30 (taper portion 32) in the embodiment. 15 and the outer edge of the chopper plate 40 can be prevented from entering the deposition region 11. Thereby, further improvement in monitor accuracy can be expected. However, it is necessary to adjust the spread angle of the slit 43 according to the steps between the center portion 41, the tapered portion 42, and the edge portion 44.

変形例2.
図5に、第2の変形例のチョッパ板50を含む光学モニタ5を示す。チョッパ板50は、同心円状に形成されたセンター部51及びテーパー部52からなり、回転軸Xに対して回転される。スリット53がチョッパ回転軸Xに関して放射状にテーパー部52に形成される。本変形例では、チョッパ板50とモニタガラス10の離隔距離がチョッパ板50の周縁部側に向けて減少するようにテーパー部52が形成される。ここで、投光部21からモニタガラス10を透過してテーパー部52に入射された測定光は、テーパー部52で反射されると、マスク15に向けて反射される反射光R3を形成する。
Modification 2
FIG. 5 shows an optical monitor 5 including a chopper plate 50 of a second modification. The chopper plate 50 includes a center portion 51 and a tapered portion 52 formed concentrically, and is rotated with respect to the rotation axis X. The slits 53 are formed in the tapered portion 52 radially with respect to the chopper rotation axis X. In the present modification, the tapered portion 52 is formed so that the separation distance between the chopper plate 50 and the monitor glass 10 decreases toward the peripheral edge side of the chopper plate 50. Here, the measurement light that has passed through the monitor glass 10 from the light projecting portion 21 and entered the tapered portion 52 forms reflected light R <b> 3 that is reflected toward the mask 15 when reflected by the tapered portion 52.

本変形例でも、チョッパ板50からの反射光R3は受光部22に入射されることはなく、測定部20の膜厚測定において、反射光R1のみに基づいて膜厚測定を行うことができ、膜厚測定精度を向上することができる。また、本変形例では、テーパー部52の外縁部が第1の変形例よりも更にマスク15に近い位置に形成されるので、蒸着材料がマスク15とチョッパ板外縁部の隙間から堆積領域11に入り込んでしまう状態を、第1の変形例に比べて更に抑制することができる。これにより、モニタ精度の更なる向上が期待できる。但し、ここでも、スリット53の拡がり角度を、テーパー部52の傾斜に応じて調整する必要がある。   Also in this modification, the reflected light R3 from the chopper plate 50 is not incident on the light receiving unit 22, and in the film thickness measurement of the measurement unit 20, the film thickness can be measured based only on the reflected light R1, The film thickness measurement accuracy can be improved. In the present modification, the outer edge of the tapered portion 52 is formed at a position closer to the mask 15 than in the first modification, so that the vapor deposition material enters the deposition region 11 from the gap between the mask 15 and the outer edge of the chopper plate. The state of entering can be further suppressed as compared with the first modification. Thereby, further improvement in monitor accuracy can be expected. However, also here, it is necessary to adjust the spread angle of the slit 53 according to the inclination of the tapered portion 52.

変形例3.
図6に、第3の変形例のチョッパ板60の平面図を示す。チョッパ板60は、放射状に延在する複数の山部65a(一点破線)及び谷部65b(破線)からなり、回転軸Xに対して回転される。スリット63は谷部65bに形成される。本変形例では、山部65aと谷部65bの間の領域がテーパー部となる。ここで、投光部21からモニタガラス10を透過してテーパー部(65aと65bの間)に入射された測定光は、マスク15に向けて反射され、受光部22には到達しない。従って、上記実施例と同様の効果が得られる。
Modification 3
In FIG. 6, the top view of the chopper board 60 of the 3rd modification is shown. The chopper plate 60 includes a plurality of crests 65a (one-dot broken line) and troughs 65b (broken line) extending radially, and is rotated about the rotation axis X. The slit 63 is formed in the valley 65b. In the present modification, a region between the peak portion 65a and the valley portion 65b is a tapered portion. Here, the measurement light that has passed through the monitor glass 10 from the light projecting portion 21 and entered the tapered portion (between 65 a and 65 b) is reflected toward the mask 15 and does not reach the light receiving portion 22. Therefore, the same effect as the above embodiment can be obtained.

なお、本変形例では、谷部65bにスリット63が形成される構成を示したが、山部65aにスリットが形成される構成としてもよい。但し、蒸着処理を累積的に行う結果として谷部65bに蒸着材料が堆積してしまう可能性(これにより堆積物によって反射された光が受光部22に到達してしまう可能性)を考慮すると、谷部65bにスリット63を設ける方が好ましい。   In this modification, the configuration in which the slit 63 is formed in the valley portion 65b is shown, but the configuration in which the slit is formed in the peak portion 65a may be adopted. However, in consideration of the possibility that the vapor deposition material is deposited on the valley portion 65b as a result of cumulatively performing the vapor deposition process (the possibility that the light reflected by the deposit reaches the light receiving unit 22), It is preferable to provide the slit 63 in the valley 65b.

変形例4.
上記実施例及び変形例においては、円盤状のチョッパ板が回転される構成を示したが、本変形例ではチョッパ板が往復移動される構成を示す。
図7A及び図7Bに、第4の変形例のチョッパ板70を含む光学モニタ5の正面図及びチョッパ板70の平面図をそれぞれ示す。チョッパ板70は、方形のプレートを二分したベース部71及びテーパー部72からなり、テーパー部72は、各々が傾斜方向沿って形成されたスリット73を有する。テーパー部72とモニタガラス10の離隔距離はテーパー部72の先端側に向かって増大する。チョッパ板70はスリット73の配列方向(矢印の方向)に、モニタガラス10に対して平行に往復移動される。
Modification 4
In the said Example and modification, the structure by which a disk-shaped chopper board is rotated was shown, However, In this modification, the structure by which a chopper board is reciprocated is shown.
7A and 7B show a front view of the optical monitor 5 including the chopper plate 70 of the fourth modification and a plan view of the chopper plate 70, respectively. The chopper plate 70 is composed of a base portion 71 and a tapered portion 72 that bisect a rectangular plate, and the tapered portion 72 has slits 73 each formed along an inclined direction. The separation distance between the tapered portion 72 and the monitor glass 10 increases toward the distal end side of the tapered portion 72. The chopper plate 70 is reciprocated in parallel with the monitor glass 10 in the direction in which the slits 73 are arranged (the direction of the arrows).

本変形例でも、チョッパ板70からの反射光R2は受光部22に入射されることはなく、測定部20の膜厚測定において、反射光R1のみに基づいて膜厚測定を行うことができ、膜厚測定精度を向上することができる。また、本変形例の構成は、変形例1−3の構成にも適用することができる。即ち、方形のチョッパ板を、変形例1に適用してチョッパ板の一部分(スリット配列方向に平行でかつ堆積領域に対応する部分)が傾斜する構成としてもよいし、変形例2に適用してテーパー部がベース部に対してモニタガラス側に傾斜する(テーパー部とモニタガラスの離隔距離はテーパー部の先端側に向かって減少する)構成としてもよいし、変形例3に適用してチョッパ板移動方向と垂直な方向に延在する山部と谷部を形成し、谷部(又は山部)にスリットが形成される構成としてもよい。   Also in this modification, the reflected light R2 from the chopper plate 70 is not incident on the light receiving unit 22, and in the film thickness measurement of the measuring unit 20, the film thickness can be measured based only on the reflected light R1, The film thickness measurement accuracy can be improved. Further, the configuration of this modification can also be applied to the configuration of Modification 1-3. That is, a rectangular chopper plate may be applied to the first modification, and a part of the chopper plate (part parallel to the slit arrangement direction and corresponding to the deposition region) may be inclined, or may be applied to the second modification. The taper portion may be inclined to the monitor glass side with respect to the base portion (the separation distance between the taper portion and the monitor glass decreases toward the tip end side of the taper portion). It is good also as a structure which forms the peak part and trough part extended in the direction perpendicular | vertical to a moving direction, and forms a slit in a trough part (or peak part).

以上のように、上記実施例及び変形例によると、チョッパ板を用いた光学モニタ装置において、測定光のチョッパ板裏面による反射の影響をなくして膜厚測定精度を向上することができる。また、モニタガラスの堆積領域における膜斑を防止してモニタ精度及びその再現性を向上することができる。   As described above, according to the above-described embodiments and modifications, in the optical monitor device using the chopper plate, it is possible to improve the film thickness measurement accuracy by eliminating the influence of the measurement light reflected from the back surface of the chopper plate. In addition, it is possible to improve the monitor accuracy and reproducibility by preventing film spots in the deposition area of the monitor glass.

1.真空蒸着装置
2.真空槽
3.蒸発源
4.基板ホルダ
5.光学モニタ
10.モニタガラス
11.堆積領域
12.測定領域
15.マスク
20.測定部
21.投光部
22.受光部
23.演算部
30.チョッパ板
31.センター部
32.テーパー部
33.スリット
40.チョッパ板
41.センター部
42.テーパー部
43.スリット
44.エッジ部
50.チョッパ板
51.センター部
52.テーパー部
53.スリット
60.チョッパ板
63.スリット
65a.山部
65b.谷部
70.チョッパ板
71.ベース部
72.テーパー部
73.スリット
1. 1. Vacuum deposition apparatus 2. Vacuum chamber Evaporation source 4. 4. substrate holder Optical monitor 10. Monitor glass 11. Deposition region 12. Measurement area 15. Mask 20. Measurement unit 21. Projecting unit 22. Light receiving unit 23. Calculation unit 30. Chopper board 31. Center part 32. Taper portion 33. Slit 40. Chopper board 41. Center part 42. Taper portion 43. Slit 44. Edge part 50. Chopper board 51. Center part 52. Taper portion 53. Slit 60. Chopper plate 63. Slit 65a. Yamabe 65b. Tanibe 70. Chopper board 71. Base part 72. Taper portion 73. slit

Claims (7)

蒸発源に対向配置される膜厚測定用の光学モニタであって、
所定領域に前記蒸発源からの蒸着材料が堆積されるように設置されるモニタガラス、
スリットを有し、前記所定領域を前記蒸発源に対して遮蔽及び露出させるチョッパ板、及び
前記モニタガラスの前記所定領域の裏面に位置する測定領域に光を入射させるとともに反射光を受光し、該反射光の特性に基づいて膜厚を演算する測定部
を備え、
前記チョッパ板が、少なくとも前記所定領域に対応する部分において前記モニタガラスに対して傾斜されたテーパー部を有する光学モニタ。
An optical monitor for measuring a film thickness disposed opposite to an evaporation source,
A monitor glass installed so that the vapor deposition material from the evaporation source is deposited in a predetermined area;
A chopper plate that has a slit, shields and exposes the predetermined area from the evaporation source, and makes light incident on a measurement area located on the back surface of the predetermined area of the monitor glass and receives reflected light; It has a measuring unit that calculates the film thickness based on the characteristics of the reflected light,
An optical monitor in which the chopper plate has a tapered portion inclined with respect to the monitor glass at least in a portion corresponding to the predetermined region.
請求項1に記載の光学モニタにおいて、前記チョッパ板が回転軸に対して回転可能に構成され、前記スリットが該回転軸に関して放射状に形成され、前記テーパー部と前記モニタガラスの離隔距離が前記チョッパ板の外縁部側に向けて増大するように形成された光学モニタ。   The optical monitor according to claim 1, wherein the chopper plate is configured to be rotatable with respect to a rotation axis, the slits are formed radially with respect to the rotation axis, and a separation distance between the tapered portion and the monitor glass is the chopper. An optical monitor formed to increase toward the outer edge side of the plate. 請求項1に記載の光学モニタにおいて、前記チョッパ板が回転軸に対して回転可能に構成され、前記スリットが該回転軸に関して放射状に形成され、前記テーパー部と前記モニタガラスの離隔距離が前記チョッパ板の外縁部側に向けて減少するように形成された光学モニタ。   The optical monitor according to claim 1, wherein the chopper plate is configured to be rotatable with respect to a rotation axis, the slits are formed radially with respect to the rotation axis, and a separation distance between the tapered portion and the monitor glass is the chopper. An optical monitor formed so as to decrease toward the outer edge side of the plate. 請求項1に記載の光学モニタにおいて、
前記テーパー部が前記チョッパ板の外縁部に設けられ、
前記チョッパ板が前記モニタガラスに対して平行に往復移動可能に構成され、複数の前記スリットが該往復移動方向に配列され、
前記テーパー部と該モニタガラスとの離隔距離は、前記チョッパ板の往復移動方向に直交する方向に増加または減少する
光学モニタ。
The optical monitor according to claim 1.
The tapered portion is provided at an outer edge of the chopper plate;
The chopper plate is configured to reciprocate in parallel with the monitor glass, and the plurality of slits are arranged in the reciprocating direction,
An optical monitor , wherein a separation distance between the tapered portion and the monitor glass increases or decreases in a direction orthogonal to a reciprocating direction of the chopper plate .
請求項2に記載の光学モニタにおいて、前記スリットの開口幅が前記回転軸側から前記外縁部側に向けて増加するように形成された光学モニタ。   The optical monitor according to claim 2, wherein an opening width of the slit is formed so as to increase from the rotating shaft side toward the outer edge portion side. 前記蒸発源、請求項1に記載の光学モニタ、処理基板を保持する基板ホルダ、並びに該蒸発源、該光学モニタ装置及び該基板ホルダを内包する真空槽を備えた真空蒸着装置。   A vacuum deposition apparatus comprising: the evaporation source; the optical monitor according to claim 1; a substrate holder that holds a processing substrate; and a vacuum chamber that contains the evaporation source, the optical monitor device, and the substrate holder. 請求項6に記載の真空蒸着装置において、前記真空槽及び前記基板ホルダが略円筒形であり、該基板ホルダの内側面に前記処理基板が保持され、前記蒸発源及び前記光学モニタが該基板ホルダの内面側に配置され、該基板ホルダが円筒軸を中心として回転されるように構成された真空蒸着装置。   7. The vacuum vapor deposition apparatus according to claim 6, wherein the vacuum chamber and the substrate holder are substantially cylindrical, the processing substrate is held on an inner surface of the substrate holder, and the evaporation source and the optical monitor are the substrate holder. A vacuum deposition apparatus arranged on the inner surface side of the substrate and configured to be rotated about a cylindrical axis.
JP2012157691A 2012-07-13 2012-07-13 Optical monitor and vacuum deposition apparatus using the same Active JP5927652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012157691A JP5927652B2 (en) 2012-07-13 2012-07-13 Optical monitor and vacuum deposition apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012157691A JP5927652B2 (en) 2012-07-13 2012-07-13 Optical monitor and vacuum deposition apparatus using the same

Publications (2)

Publication Number Publication Date
JP2014019887A JP2014019887A (en) 2014-02-03
JP5927652B2 true JP5927652B2 (en) 2016-06-01

Family

ID=50195142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012157691A Active JP5927652B2 (en) 2012-07-13 2012-07-13 Optical monitor and vacuum deposition apparatus using the same

Country Status (1)

Country Link
JP (1) JP5927652B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397859A (en) * 1989-09-08 1991-04-23 Toshiba Corp Evaporating device
US6390019B1 (en) * 1998-06-11 2002-05-21 Applied Materials, Inc. Chamber having improved process monitoring window
JP2000008164A (en) * 1998-06-25 2000-01-11 Toray Ind Inc Production of base material with thin film and production device therefor
JP4049458B2 (en) * 1998-09-14 2008-02-20 株式会社シンクロン Thin film thickness measuring apparatus and thin film thickness measuring method
JP2004069490A (en) * 2002-08-06 2004-03-04 Showa Shinku:Kk Film thickness measuring method and device for optical thin film
JP4737760B2 (en) * 2006-03-31 2011-08-03 株式会社昭和真空 Vacuum deposition equipment

Also Published As

Publication number Publication date
JP2014019887A (en) 2014-02-03

Similar Documents

Publication Publication Date Title
TWI437227B (en) Apparatuses and methods for analysis of a sample
JP4971383B2 (en) X-ray diffraction method and X-ray diffraction apparatus
EP2921571B1 (en) Vacuum vapor deposition apparatus
KR101918952B1 (en) Film-forming apparatus and temperature measuring method
US20080056442A1 (en) X-ray analysis apparatus
CN109075058A (en) Wafer profile for etch system
JP4936333B2 (en) Vacuum deposition equipment
JP2018028470A (en) X-ray diffraction device
EP2778665A1 (en) X-ray analyzing system for x-ray scattering analysis
JP5927652B2 (en) Optical monitor and vacuum deposition apparatus using the same
JP2019174586A (en) Optical irradiation device
WO2018101023A1 (en) X-ray reflectivity measurement device
JPH09229879A (en) X-ray apparatus
CN115786869A (en) Optical monitoring mechanism and film coating device
WO2015004755A1 (en) Optical film thickness measurement device, thin film forming device, and method for measuring film thickness
US7471763B2 (en) Fluorescent X-ray analysis apparatus
JP6879461B2 (en) Thin-film mask, thin-film mask with frame, thin-film mask preparation, method for manufacturing organic semiconductor elements, and method for manufacturing organic EL display
CN115874278A (en) Laser pulse coating device for monocrystal epitaxial film and preparation method
KR20200068811A (en) Laser processing apparatus
KR20100106982A (en) Method of increasing the operation lifetime of a collector optics arranged in an irradiation device and corresponding irradiation device
JP6489322B2 (en) Ion beam etching system
TW201814070A (en) Deposition apparatus
EP4222291A1 (en) System and method for controlling film thickness, and film deposition system and method using same
JP5492173B2 (en) Diffraction X-ray detection method and X-ray diffraction apparatus
JP2006118940A (en) Method and device for detecting obliquely emitted x-ray

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160405

R150 Certificate of patent or registration of utility model

Ref document number: 5927652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250