JP5910719B1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
JP5910719B1
JP5910719B1 JP2014253256A JP2014253256A JP5910719B1 JP 5910719 B1 JP5910719 B1 JP 5910719B1 JP 2014253256 A JP2014253256 A JP 2014253256A JP 2014253256 A JP2014253256 A JP 2014253256A JP 5910719 B1 JP5910719 B1 JP 5910719B1
Authority
JP
Japan
Prior art keywords
indoor
air conditioning
temperature
air
thermo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014253256A
Other languages
English (en)
Other versions
JP2016114297A (ja
Inventor
良行 辻
良行 辻
堀 靖史
靖史 堀
麻里子 高倉
麻里子 高倉
祐輔 岡
祐輔 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014253256A priority Critical patent/JP5910719B1/ja
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to ES15869831T priority patent/ES2704101T3/es
Priority to TR2018/18984T priority patent/TR201818984T4/tr
Priority to PCT/JP2015/084264 priority patent/WO2016098626A1/ja
Priority to CN201580068416.XA priority patent/CN107003029B/zh
Priority to AU2015364970A priority patent/AU2015364970B2/en
Priority to EP15869831.6A priority patent/EP3236169B1/en
Priority to US15/535,689 priority patent/US10139144B2/en
Priority to SG11201704850YA priority patent/SG11201704850YA/en
Application granted granted Critical
Publication of JP5910719B1 publication Critical patent/JP5910719B1/ja
Publication of JP2016114297A publication Critical patent/JP2016114297A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

【課題】圧縮機を有する室外ユニットと複数の室内ユニットとが接続されることによって構成されており、各室内ユニットにおける室内温度が各室内ユニットにおける目標室内温度になるように空調運転を行う空気調和装置において、空調能力が過剰な状態での空調運転を抑えつつ、サーモ発停の頻度を十分に低減できるようにする。【解決手段】空気調和装置(1)の制御部(8)は、空調運転中のすべての室内ユニット(4a、4b、4c)における各室内温度が、空調運転中の各室内ユニット(4a、4b、4c)における目標室内温度を挟む所定の閾温度幅の範囲内にある場合に、空調能力の増加を要求している室内ユニットの要求値を除外して、空調能力の減少を要求している室内ユニットの要求値に基づいて、圧縮機(21)の回転数を制御する発停頻度低減回転数制御を行う。【選択図】図7

Description

本発明は、空気調和装置、特に、圧縮機を有する室外ユニットと複数の室内ユニットとが接続されることによって構成されており、各室内ユニットにおける室内温度が各室内ユニットにおける目標室内温度になるように空調運転を行う空気調和装置に関する。
従来より、圧縮機を有する室外ユニットと複数の室内ユニットとが接続されることによって構成された空気調和装置がある。そして、このような空気調和装置として、各室内ユニットにおける室内温度が、各室内ユニットにおける目標室内温度になるように空調運転(冷房運転や暖房運転)を行うものがある。このような空調運転においては、各室内ユニットにおける室内温度が目標室内温度に達して空調運転が不要になると、対応する室内ユニットの空調運転を休止する室内サーモオフが行われ、すべての室内ユニットが室内サーモオフの状態になると、圧縮機を停止する室外サーモオフが行われる。また、室外サーモオフ後に室内温度が目標室内温度から離れて空調運転が必要になると、圧縮機を再起動する室外サーモオンが行われるとともに、対応する室内ユニットの空調運転を再開する室内サーモオンが行われる。このため、各室内ユニットが要求する空調能力が小さく室内温度が目標室内温度に近い条件で空調運転がなされる場合には、室外サーモオフと室外サーモオンとを繰り返すサーモ発停が発生しやすくなる。
これに対して、特許文献1(特開平4−93558号公報)のように、サーモ発停の頻度を低減するために、圧縮機の停止(すなわち、室外サーモオフ)を禁止する時間を設定するようにした空気調和装置がある。
上記特許文献1のサーモ発停低減の手法では、圧縮機の停止(すなわち、室外サーモオフ)を禁止する時間を設定することによって、室外サーモオフの発生を抑えて、サーモ発停の頻度を低減することができる。
しかし、このような室外サーモオフを禁止する時間を設定する手法では、禁止時間を長くすると、各室内ユニットが要求する空調能力が小さくなり室内温度が空調運転の不要な温度になっても、圧縮機が停止されず、空調能力が過剰な状態での空調運転が継続されてしまうおそれがある。一方、禁止時間を短くすると、室外サーモオフの発生を抑えることができず、サーモ発停の頻度を十分に低減することができなくなるおそれがある。このように、室外サーモオフを禁止する時間を設定する手法では、空調能力が過剰な状態での空調運転を抑えつつ、サーモ発停の頻度を十分に低減できるようにすることが難しい。そして、空調能力が過剰な状態での空調運転やサーモ発停の頻度の増加は、圧縮機の消費動力の増大や運転効率の低下の原因になるため、できるだけ改善することが好ましい。
本発明の課題は、圧縮機を有する室外ユニットと複数の室内ユニットとが接続されることによって構成されており、各室内ユニットにおける室内温度が各室内ユニットにおける目標室内温度になるように空調運転を行う空気調和装置において、空調能力が過剰な状態での空調運転を抑えつつ、サーモ発停の頻度を十分に低減できるようにすることにある。
第1の観点にかかる空気調和装置は、圧縮機を有する室外ユニットと複数の室内ユニットとが接続されることによって構成されており、各室内ユニットにおける室内温度が各室内ユニットにおける目標室内温度になるように空調運転を行うものである。空気調和装置は、空調運転時に各室内ユニットにおける空調能力に関する要求値に基づいて圧縮機の回転数を制御する制御部を有している。そして、制御部は、空調運転中のすべての室内ユニットにおける各室内温度が、空調運転中の各室内ユニットにおける目標室内温度を挟む所定の閾温度幅の範囲内にある場合に、空調能力の増加を要求している室内ユニットの要求値を除外して、空調能力の減少を要求している室内ユニットの要求値に基づいて、圧縮機の回転数を制御する発停頻度低減回転数制御を行う。
ここでは、上記のような発停頻度低減回転数制御を行うことによって、圧縮機の回転数を低めに抑えて、空調能力を小さくしつつ、圧縮機の停止、すなわち、室外サーモオフの発生を抑えることができる。このため、各室内ユニットが要求する空調能力が小さく室内温度が目標室内温度に近い条件で空調運転がなされる場合に、空調能力を小さくしつつ、圧縮機の運転をできるだけ継続することができる。これにより、ここでは、空調能力が過剰な状態での空調運転を抑えつつ、サーモ発停の頻度を十分に低減することができる。
第2の観点にかかる空気調和装置は、第1の観点にかかる空気調和装置において、発停頻度低減回転数制御が、空調能力の減少を要求している室内ユニットの要求値のうち空調能力の減少の程度が最も小さい要求値に基づいて、圧縮機の回転数を制御するものである。
発停頻度低減回転数制御を行うにあたり、空調能力の減少を要求している室内ユニットの要求値をどのように使用するかによって、サーモ発停の頻度を低減する程度等が変わってくる。ここで、圧縮機の回転数を低めに抑えると、サーモ発停の頻度を低減する程度は良くなるが、空調能力の増加を要求している室内ユニットにおいて空調能力が不足しがちになる傾向が現れて、閾温度幅の範囲内まで目標室内温度に近づいていた室内温度が目標室内温度から離れて閾温度幅の範囲外になってしまうおそれがある。
そこで、ここでは、上記のように、空調能力の減少を要求している室内ユニットの要求値の中で空調能力の減少の程度が最も小さい要求値を使用するようにしている。このため、圧縮機の回転数を低めに抑えるとともに、空調能力の増加を要求している室内ユニットにおいて空調能力が不足しがちになる傾向をできるだけ抑えることができる。
尚、空調能力の減少を要求している室内ユニットの要求値をどのように使用するかについては、空調能力の減少を要求している室内ユニットの要求値の中で空調能力の減少の程度が最も大きい要求値を使用することも考えられるが、この場合には、圧縮機の回転数を非常に低く抑えることができるが、空調能力の増加を要求している室内ユニットにおいて空調能力が不足しがちになる傾向を抑えにくくなる。また、空調能力の減少を要求している室内ユニットの要求値の平均値を使用することも考えられるが、この場合には、圧縮機の回転数を低めに抑える程度や空調能力の増加を要求している室内ユニットにおいて空調能力が不足しがちになる傾向を抑える程度が、空調能力の減少の程度が最も小さい要求値を使用する場合と減少の程度が最も大きい要求値を使用する場合との中間程度になる。このように、発停頻度低減回転数制御を行うにあたり、空調能力の減少を要求している室内ユニットの要求値をどのように使用するかによって、サーモ発停の頻度を低減する程度等が変わってくる。そして、ここでは、空調能力の増加を要求している室内ユニットにおいて空調能力が不足しがちになる傾向を抑える程度を重視して、空調能力の減少を要求している室内ユニットの要求値の中で空調能力の減少の程度が最も小さい要求値を使用するようにしているのである。
第3の観点にかかる空気調和装置は、第1又は第2の観点にかかる空気調和装置において、閾温度幅が、空調運転を行っている室内ユニットの空調運転を休止する室内サーモオフ、及び、室内サーモオフの状態の室内ユニットの空調運転を再開する室内サーモオンのタイミングを規定するサーモ温度幅である。
ここでは、上記のように、閾温度幅をサーモ温度幅に一致させることによって、すべての室内ユニットが室内サーモオフになるまで、圧縮機の回転数を低めに抑えて、空調能力を小さくしつつ、圧縮機の停止、すなわち、室外サーモオフの発生を抑えることができる。
第4の観点にかかる空気調和装置は、第1〜第3の観点のいずれかにかかる空気調和装置において、制御部が、空調運転中の室内ユニットのうち、室内温度が閾温度幅の範囲外で、かつ、空調能力の増加を要求している室内ユニットが存在する場合に、空調能力の増加を要求している室内ユニットの要求値のうち空調能力の増加の程度が最も大きい要求値に基づいて、圧縮機の回転数を制御する通常回転数制御を行う。
ここでは、上記のような通常回転数制御及び発停頻度低減回転数制御を空調運転中の室内ユニットにおける室内温度に応じて切り換えることになる。すなわち、室内温度が閾温度幅の範囲外にあって空調能力が要求される室内ユニットが存在する場合には、空調能力の増加の程度が最も大きい要求値に基づいて圧縮機の回転数を制御して、室内温度を目標室内温度に速やかに近づけるようにする。そして、空調運転中のすべての室内ユニットにおける室内温度が閾温度幅の範囲内にあって各室内ユニットが要求する空調能力が小さくなっている場合には、空調能力の減少を要求している室内ユニットの要求値に基づいて圧縮機の回転数を制御して、空調能力を小さくしつつ、圧縮機の運転をできるだけ継続させるようにするのである。これにより、ここでは、空調運転において、室内温度を目標室内温度に速やかに近づけ、その後は、空調能力が過剰な状態での空調運転を抑えるとともにサーモ発停の頻度を低減することができる。
以上の説明に述べたように、本発明によれば、以下の効果が得られる。
第1の観点にかかる空気調和装置では、空調能力が過剰な状態での空調運転を抑えつつ、サーモ発停の頻度を十分に低減することができる。
第2の観点にかかる空気調和装置では、圧縮機の回転数を低めに抑えるとともに、空調能力の増加を要求している室内ユニットにおいて空調能力が不足しがちになる傾向をできるだけ抑えることができる。
第3の観点にかかる空気調和装置では、すべての室内ユニットが室内サーモオフになるまで、圧縮機の回転数を低めに抑えて、空調能力を小さくしつつ、圧縮機の停止、すなわち、室外サーモオフの発生を抑えることができる。
第4の観点にかかる空気調和装置では、空調運転において、室内温度を目標室内温度に速やかに近づけ、その後は、空調能力が過剰な状態での空調運転を抑えるとともにサーモ発停の頻度を低減することができる。
本発明の一実施形態にかかる空気調和装置の概略構成図である。 空気調和装置の制御ブロック図である。 空調運転中の各室内ユニットにおける室内温度と目標室内温度との関係を示す図(室内温度が目標室内温度から大きく離れている場合)である。 空調運転中の各室内ユニットにおける室内温度と目標室内温度との関係を示す図(サーモ温度幅の範囲内にある室内ユニットが存在する場合)である。 空調運転中の各室内ユニットにおける室内温度と目標室内温度との関係を示す図(すべての室内ユニットがサーモオフの状態になっている場合)である。 空調運転中の各室内ユニットにおける室内温度と目標室内温度との関係を示す図(すべての室内ユニットの室内温度がサーモ温度幅の範囲内にある場合)である。 発停頻度低減回転数制御を含む圧縮機の回転数制御を示すフローチャートである。 空調運転中の各室内ユニットにおける室内温度と目標室内温度との関係を示す図(発停頻度低減回転数制御を行う場合)である。
以下、本発明にかかる空気調和装置の実施形態について、図面に基づいて説明する。尚、本発明にかかる空気調和装置の実施形態の具体的な構成は、下記の実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
(1)空気調和装置の基本構成
図1は、本発明の一実施形態にかかる空気調和装置1の概略構成図である。空気調和装置1は、蒸気圧縮式の冷凍サイクル運転を行うことによって、ビル等の屋内の空調に使用される装置である。空気調和装置1は、主として、室外ユニット2と、複数台(ここでは、3台)の室内ユニット4a、4b、4cとが接続されることによって構成されている。ここで、室外ユニット2と複数の室内ユニット4a、4b、4cとは、液冷媒連絡管6及びガス冷媒連絡管7を介して接続されている。すなわち、空気調和装置1の蒸気圧縮式の冷媒回路10は、室外ユニット2と複数の室内ユニット4a、4b、4cとが冷媒連絡管6、7を介して接続されることによって構成されている。尚、室内ユニットの台数は、3台に限定されるものではなく、3台よりも多くても少なくてもよい。
<室内ユニット>
室内ユニット4a、4b、4cは、屋内に設置されている。室内ユニット4a、4b、4cは、冷媒連絡管6、7を介して室外ユニット2に接続されており、冷媒回路10の一部を構成している。
次に、室内ユニット4a、4b、4cの構成について説明する。尚、室内ユニット4b及び室内ユニット4cは、室内ユニット4aと同様の構成を有するため、ここでは、室内ユニット4aの構成のみ説明し、室内ユニット4b、4cの構成については、それぞれ、室内ユニット4aの各部を示す添字aの代わりに添字b又は添字cを付して、各部の説明を省略する。
室内ユニット4aは、主として、冷媒回路10の一部を構成する室内側冷媒回路10a(室内ユニット4b、4cでは、室内側冷媒回路10b、10c)を有している。室内側冷媒回路10aは、主として、室内膨張弁41aと、室内熱交換器42aとを有している。
室内膨張弁41aは、室内側冷媒回路10aを流れる冷媒を減圧して冷媒の流量の調節する弁である。室内膨張弁41aは、室内熱交換器42aの液側に接続された電動膨張弁である。
室内熱交換器42aは、冷媒の蒸発器や冷媒の放熱器として機能する熱交換器であり、多数の伝熱管及び多数のフィンによって構成されている。室内熱交換器42aの近傍には、室内熱交換器42aに室内空気を送るための室内ファン43aが設けられている。室内ファン43aによって室内熱交換器42aに対して室内空気を送風することにより、室内熱交換器42aでは、冷媒と室内空気との間で熱交換が行われるようになっている。室内ファン43aは、室内ファンモータ44aによって回転駆動されるようになっている。
また、室内ユニット4aには、各種のセンサが設けられている。室内熱交換器42aの液側には、液状態又は気液二相状態の冷媒の温度Trlaを検出する液側温度センサ45aが設けられている。室内熱交換器42aのガス側には、ガス状態の冷媒の温度Trgaを検出するガス側温度センサ46aが設けられている。室内ユニット4aの室内空気の吸入口側には、室内ユニット4aの室内熱交換器42aによって冷却又は加熱される空調空間の空気温度、すなわち、室内ユニット4における室内空気の温度(室内温度Tra)を検出する室内温度センサ47aが設けられている。また、室内ユニット4aは、室内ユニット4aを構成する各部の動作を制御する室内側制御部48aを有している。そして、室内側制御部48aは、室内ユニット4aの制御を行うために設けられたマイクロコンピュータやメモリ等を有しており、室内ユニット4aを個別に操作するためのリモートコントローラ49aとの間で制御信号等のやりとりを行ったり、室外ユニット2との間で制御信号等のやりとりを行うことができるようになっている。尚、リモートコントローラ49aは、ユーザーが空調運転に関する各種設定や運転/停止指令を行う機器である。また、室内温度センサ47aは、室内ユニット4a内ではなく、リモートコントローラ49aに設けられていてもよい。
<室外ユニット>
室外ユニット2は、屋外に設置されている。室外ユニット2は、冷媒連絡管6、7を介して室内ユニット4a、4b、4cに接続されており、冷媒回路10の一部を構成している。
次に、室外ユニット2の構成について説明する。
室外ユニット2は、主として、冷媒回路10の一部を構成する室外側冷媒回路10dを備えている。この室外側冷媒回路10dは、主として、圧縮機21と、四路切換弁22と、室外熱交換器23と、室外膨張弁25と、液側閉鎖弁26と、ガス側閉鎖弁27とを有している。
圧縮機21は、ケーシング内に図示しない圧縮要素及び圧縮要素を回転駆動する圧縮機モータ21aが収容された密閉型圧縮機である。圧縮機モータ21aは、図示しないインバータ装置を介して電力が供給されるようになっており、インバータ装置の出力周波数(すなわち、回転数)を変化させることによって、運転容量を可変することが可能になっている。
四路切換弁22は、冷媒の流れの方向を切り換えるための弁であり、空調運転の1つとしての冷房運転時には、室外熱交換器23を圧縮機21において圧縮された冷媒の放熱器として、かつ、室内熱交換器42a、42b、42cを室外熱交換器23において放熱した冷媒の蒸発器として機能させるために、圧縮機21の吐出側と室外熱交換器23のガス側とを接続するとともに圧縮機21の吸入側とガス冷媒連絡管7とを接続し(図1の四路切換弁22の実線を参照)、空調運転の1つとしての暖房運転時には、室内熱交換器42a、42b、42cを圧縮機21において圧縮された冷媒の放熱器として、かつ、室外熱交換器23を室内熱交換器42a、42b、42cにおいて放熱した冷媒の蒸発器として機能させるために、圧縮機21の吐出側とガス冷媒連絡管7とを接続するとともに圧縮機21の吸入側と室外熱交換器23のガス側とを接続することが可能である(図1の四路切換弁22の破線を参照)。
室外熱交換器23は、冷媒の放熱器や冷媒の蒸発器として機能する熱交換器であり、多数の伝熱管及び多数のフィンによって構成されている。室外熱交換器23の近傍には、室外熱交換器23に室外空気を送るための室外ファン28が設けられている。室外ファン28によって室外熱交換器23に対して室外空気を送風することにより、室外熱交換器23では、冷媒と室外空気との間で熱交換が行われるようになっている。室外ファン28は、室外ファンモータ28aによって回転駆動されるようになっている。
室外膨張弁25は、室外側冷媒回路10dを流れる冷媒を減圧する弁である。室外膨張弁25は、室外熱交換器23の液側に接続された電動膨張弁である。
液側閉鎖弁26及びガス側閉鎖弁27は、外部の機器・配管(具体的には、液冷媒連絡管6及びガス冷媒連絡管7)との接続口に設けられた弁である。液側閉鎖弁26は、室外膨張弁25に接続されている。ガス側閉鎖弁27は、四路切換弁22に接続されている。
また、室外ユニット2には、各種のセンサが設けられている。室外ユニット2には、圧縮機21の吸入圧力Psを検出する吸入圧力センサ29と、圧縮機21の吐出圧力Pdを検出する吐出圧力センサ30と、圧縮機21の吸入温度Tsを検出する吸入温度センサ31と、圧縮機21の吐出温度Tdを検出する吐出温度センサ32とが設けられている。吸入温度センサ31は、圧縮機21の吸入側に設けられている。室外熱交換器23の液側には、液状態又は気液二相状態の冷媒の温度Tolを検出する液側温度センサ33が設けられている。室外ユニット2の室外空気の吸入口側には、室外ユニット2における室外空気の温度(外気温度Ta)を検出する外気温度センサ34が設けられている。また、室外ユニット2は、室外ユニット2を構成する各部の動作を制御する室外側制御部35を有している。そして、室外側制御部35は、室外ユニット2の制御を行うために設けられたマイクロコンピュータ、メモリや圧縮機モータ21aを制御するインバータ回路等を有しており、室内ユニット4a、4b、4cの室内側制御部48a、48b、48cとの間で制御信号等のやりとりを行うことができるようになっている。
<冷媒連絡管>
冷媒連絡管6、7は、空気調和装置1を設置する際に、現地にて施工される冷媒管である。液冷媒連絡管6は、室外ユニット2の液側接続口(ここでは、液側閉鎖弁26)から延びており、途中で複数(ここでは、3台)の室内ユニット4a、4b、4cに分岐して、各室内ユニット4a、4b、4cの液側接続口(ここでは、室内膨張弁41a、41b、41cに接続される冷媒管)まで延びている。ガス冷媒連絡管7は、室外ユニット2のガス側接続口(ここでは、ガス側閉鎖弁27)から延びており、途中で複数(ここでは、3台)の室内ユニット4a、4b、4cに分岐して、各室内ユニット4a、4b、4cのガス側接続口(ここでは、室内熱交換器42a、42b、42cのガス側に接続される冷媒管)まで延びている。尚、冷媒連絡管6、7は、室外ユニット2及び室内ユニット4a、4b、4cの設置条件に応じて種々の長さや管径を有するものが使用される。
<制御部>
室内ユニット4a、4b、4cを個別に操作するためのリモートコントローラ49a、49b、49cと、室内ユニット4a、4b、4cの室内側制御部48a、48b、48cと、室外ユニット2の室外側制御部35とは、空気調和装置1全体の運転制御を行う制御部8を構成している。制御部8は、図2に示されるように、各種センサ29〜34、45a〜45c、46a〜46c、47a〜47c等の検出信号を受けることができるように接続されている。そして、制御部8は、これらの検出信号等に基づいて各種機器及び弁21a、22、25、28a、41a〜41c、44a〜44cを制御することによって、空調運転(冷房運転及び暖房運転)を行うことができるように構成されている。ここで、図2は、空気調和装置1の制御ブロック図である。
以上のように、空気調和装置1は、圧縮機21を有する室外ユニット2と複数(ここでは、3台)の室内ユニット4a、4b、4cとが接続されることによって構成されており、各室内ユニット4a、4b、4cにおける室内温度Tra、Trb、Trcが、各室内ユニット4a、4b、4cにおける室内温度の目標値である目標室内温度Tras、Trbs、Trcsになるように空調運転を行うものである。これらの目標室内温度Tras、Trbs、Trcsの設定は、ユーザーがリモートコントローラ49a、49b、49cを用いて行うようになっている。
(2)空気調和装置の基本動作及び基本制御
<基本動作>
次に、空気調和装置1の空調運転(冷房運転及び暖房運転)の基本動作について、図1を用いて説明する。
−冷房運転−
リモートコントローラ49a、49b、49cから冷房運転の指令がなされると、四路切換弁22が冷房運転状態(図1の四路切換弁22の実線で示された状態)に切り換えられて、圧縮機21、室外ファン28及び室内ファン43a、43b、43cが起動する。
すると、冷媒回路10内の低圧のガス冷媒は、圧縮機21に吸入されて圧縮されて高圧のガス冷媒となる。この高圧のガス冷媒は、四路切換弁22を経由して室外熱交換器23に送られる。室外熱交換器23に送られた高圧のガス冷媒は、冷媒の放熱器として機能する室外熱交換器21において、室外ファン28によって供給される室外空気と熱交換を行って冷却されることによって凝縮して、高圧の液冷媒となる。この高圧の液冷媒は、室外膨張弁25、液側閉鎖弁26及び液冷媒連絡管6を経由して、室外ユニット2から室内ユニット4a、4b、4cに送られる。
室内ユニット4a、4b、4cに送られた高圧の液冷媒は、室内膨張弁41a、41b、41cによって減圧されて、低圧の気液二相状態の冷媒となる。この低圧の気液二相状態の冷媒は、室内熱交換器42a、42b、42cに送られる。室内熱交換器42a、42b、42cに送られた低圧の気液二相状態の冷媒は、冷媒の蒸発器として機能する室内熱交換器42a、42b、42cにおいて、室内ファン43a、43b、43cによって供給される室内空気と熱交換を行って加熱されることによって蒸発して、低圧のガス冷媒となる。この低圧のガス冷媒は、ガス冷媒連絡管7を経由して、室内ユニット4a、4b、4cから室外ユニット2に送られる。
室外ユニット2に送られた低圧のガス冷媒は、ガス側閉鎖弁27及び四路切換弁22を経由して、再び、圧縮機21に吸入される。
−暖房運転−
リモートコントローラ49a、49b、49cから暖房運転の指令がなされると、四路切換弁22が暖房運転状態(図1の四路切換弁22の破線で示された状態)に切り換えられて、圧縮機21、室外ファン28及び室内ファン43a、43b、43cが起動する。
すると、冷媒回路10内の低圧のガス冷媒は、圧縮機21に吸入されて圧縮されて高圧のガス冷媒となる。この高圧のガス冷媒は、四路切換弁22、ガス側閉鎖弁27及びガス冷媒連絡管7を経由して、室外ユニット2から室内ユニット4a、4b、4cに送られる。
室内ユニット4a、4b、4cに送られた高圧のガス冷媒は、室内熱交換器42a、42b、42cに送られる。室内熱交換器42a、42b、42cに送られた高圧のガス冷媒は、冷媒の放熱器として機能する室内熱交換器42a、42b、42cにおいて、室内ファン43a、43b、43cによって供給される室内空気と熱交換を行って冷却されることによって凝縮して、高圧の液冷媒となる。この高圧の液冷媒は、室内膨張弁41a、41b、41cによって減圧される。室内膨張弁41a、41b、41cによって減圧された冷媒は、ガス冷媒連絡管7を経由して、室内ユニット4a、4b、4cから室外ユニット2に送られる。
室外ユニット2に送られた冷媒は、液側閉鎖弁27を経由して、室外膨張弁25に送られ、室外膨張弁25によって減圧されて、低圧の気液二相状態の冷媒となる。この低圧の気液二相状態の冷媒は、室外熱交換器23に送られる。室外熱交換器23に送られた低圧の気液二相状態の冷媒は、冷媒の蒸発器として機能する室外熱交換器23において、室外ファン28によって供給される室外空気と熱交換を行って加熱されることによって蒸発して、低圧のガス冷媒となる。この低圧のガス冷媒は、四路切換弁22を経由して、再び、圧縮機21に吸入される。
<基本制御>
上記の空調運転(冷房運転及び暖房運転)においては、各室内ユニット4a、4b、4cにおける室内温度Tra、Trb、Trcが、各室内ユニット4a、4b、4cにおける目標室内温度Tras、Trbs、Trcsになるように、以下のような空調能力(冷房能力及び暖房能力)の制御が行われる。
−冷房運転時−
空調運転が冷房運転である場合には、制御部8は、目標蒸発温度Tesに基づいて圧縮機21の容量を制御している。
圧縮機21の容量制御は、圧縮機21(より具体的には、圧縮機モータ21a)の回転数(運転周波数)を制御することによって行われる。具体的には、冷媒回路10の低圧Peに相当する冷媒の蒸発温度Teが目標蒸発温度Tesになるように、圧縮機21の回転数が制御される。ここで、低圧Peとは、冷房運転時において、室内膨張弁41a、41b、41cの出口から室内熱交換器42a、42b、42cを経由して圧縮機21の吸入側に至るまでの間を流れる低圧の冷媒を代表する圧力を意味している。ここでは、低圧Peとして、吸入圧力センサ29によって検出される冷媒圧力である吸入圧力Psが使用され、吸入圧力Psを冷媒の飽和温度に換算して得られる値が、冷媒の蒸発温度Teである。
圧縮機21の容量制御(回転数制御)おける目標蒸発温度Tesは、制御部8において、冷房運転中の各室内ユニット4a、4b、4cにおける冷房能力に関する要求値ΔQCa、ΔQCb、ΔQCcに基づいて決定されるようになっている。
具体的には、まず、冷房運転中の各室内温度Tra、Trb、Trcから各目標室内温度Tras、Trbs、Trcsを差し引くことによって、各温度差ΔTCra、ΔTCrb、ΔTCrcを得る。これらの温度差ΔTCra、ΔTCrb、ΔTCrcに基づいて、冷房運転中の各室内ユニット4a、4b、4cにおける冷房能力に関する要求値ΔQCa、ΔQCb、ΔQCcを演算する。ここで、温度差ΔTCra、ΔTCrb、ΔTCrcが正値の場合、すなわち、室内温度Tra、Trb、Trcが目標室内温度Tras、Trbs、Trcsまで達していない場合には、冷房能力の増加を要求していることを意味し、これらの絶対値が大きいほど、冷房能力の増加要求の程度が大きいことを意味する。一方、温度差ΔTCra、ΔTCrb、ΔTCrcが負値の場合、すなわち、室内温度Tra、Trb、Trcが目標室内温度Tras、Trbs、Trcsまで達している場合には、冷房能力の減少を要求していることを意味し、これらの絶対値が大きいほど、冷房能力の減少要求の程度が大きいことを意味する。このため、冷房能力に関する要求値ΔQCa、ΔQCb、ΔQCcも、温度差ΔTCra、ΔTCrb、ΔTCrcと同様に、冷房能力の増減の方向及びその程度を意味する値となる。
そして、冷房能力の増加が要求されている場合、すなわち、冷房能力に関する要求値ΔQCa、ΔQCb、ΔQCcが正値の場合には、増加の程度(要求値の絶対値)に応じて目標蒸発温度Tesを現在値よりも低くなるように決定して、これにより、圧縮機21の回転数を高くして冷房能力を増加させるのである。一方、冷房能力の減少が要求されている場合、すなわち、冷房能力に関する要求値ΔQCa、ΔQCb、ΔQCcが負値の場合には、減少の程度(要求値の絶対値)に応じて目標蒸発温度Tesを現在値よりも高くなるように決定して、これにより、圧縮機21の回転数を低くして冷房能力を減少させるのである。
ここで、冷房運転中の各室内ユニット4a、4b、4cにおいては、各温度差ΔTCra、ΔTCrb、ΔTCrcに応じて、種々の冷房能力の増減要求(要求値ΔQCa、ΔQCb、ΔQCc)がなされる。しかし、目標蒸発温度Tesは、すべての室内ユニット4a、4b、4cに共通の目標値である。このため、目標蒸発温度Tesは、すべての室内ユニット4a、4b、4cにおける冷房能力の増減要求を代表する値に決定せざるを得ない。そこで、冷房能力に関する要求値ΔQCa、ΔQCb、ΔQCcのうち最も目標蒸発温度Tesが低くなる要求値に基づいて目標蒸発温度Tesを決定している。例えば、冷房能力に関する要求値ΔQCa、ΔQCb、ΔQCcが各室内ユニット4a、4b、4cにおいて要求される蒸発温度である場合には、これらのうち最も低い要求値を目標蒸発温度Tesとして選択する。具体的には、室内ユニット4aにおいて要求される蒸発温度としての要求値ΔQCaが5℃であり、室内ユニット4bにおいて要求される蒸発温度としての要求値ΔQCbが7℃であり、室内ユニット4cにおいて要求される蒸発温度としての要求値ΔQCcが10℃である場合には、これらのうち最も低い要求値である要求値ΔQCaの5℃を目標蒸発温度Tesとして選択するのである。また、冷房能力に関する要求値ΔQCa、ΔQCb、ΔQCcが各室内ユニット4a、4b、4cにおいて要求される蒸発温度の増減の程度を示す値である場合には、これらのうち冷房能力が最も大きくなる要求値に基づいて目標蒸発温度Tesを決定する。具体的には、現状の目標蒸発温度Tesが12℃であり、冷房能力に関する要求値ΔQCa、ΔQCb、ΔQCcが蒸発温度をどのくらい低くするかを示すものとすると、室内ユニット4aにおいて要求される要求値ΔQCaが7℃、室内ユニット4bにおいて要求される要求値ΔQCaが5℃、室内ユニット4cにおいて要求される要求値ΔQCcが2℃である場合には、これらのうち最も大きい要求値である要求値ΔQCaの7℃を採用して、現状の目標蒸発温度Tes(=12℃)から差し引いて得られる温度(=5℃)を目標蒸発温度Tesとするのである。
尚、ここでは、冷媒の蒸発温度Teが目標蒸発温度Tesになるように圧縮機21の回転数を制御しているが、これに代えて、冷媒の蒸発温度Teに相当する低圧Pe(=吸入圧力Ps)が目標低圧Pesになるように、圧縮機21の回転数を制御してもよい。この場合には、要求値ΔQCa、ΔQCb、ΔQCcも低圧Peや目標低圧Pesに応じた値を使用することになる。
上記のような冷房能力の制御によって、各室内ユニット4a、4b、4cにおける室内温度Tra、Trb、Trcが、各室内ユニット4a、4b、4cにおける目標室内温度Tras、Trbs、Trcsに達すると、制御部8によって、以下のようなサーモ制御が行われる。
このサーモ制御は、各室内ユニット4a、4b、4cにおける目標室内温度Tras、Trbs、Trcsに対してサーモ温度幅を設定し、室内サーモオフ、室内サーモオン、室外サーモオフ、及び、室外サーモオンを行う。ここで、室内サーモオフとは、サーモ温度幅の範囲内において空調運転を行っている室内ユニットにおける室内温度がサーモ温度幅から外れた場合に、対応する室内ユニットの空調運転を休止することである。室内サーモオンとは、室内サーモオフの状態の室内ユニットにおける室内温度がサーモ温度幅から外れた場合に、対応する室内ユニットの空調運転を再開することである。室外サーモオフとは、空調運転を行っているすべての室内ユニットが室内サーモオフの状態になった場合に、圧縮機21を停止することである。室外サーモオンとは、室外サーモオフの状態において少なくとも1つの室内ユニットが室内サーモオンの状態になった場合に、圧縮機21を再起動することである。そして、ここでは、各室内ユニット4a、4b、4cにおけるサーモ温度幅の上限値Trax、Trbx、Trcxを、各目標室内温度Tras、Trbs、Trcsに上限幅ΔTax、ΔTbx、ΔTcxを加算した値とする。また、各室内ユニット4a、4b、4cにおけるサーモ温度幅の下限値Tran、Trbn、Trcnを、各目標室内温度Tras、Trbs、Trcsから下限幅ΔTan、ΔTbn、ΔTcnを差し引いた値とする。
例えば、冷房運転を行っている室内ユニットを室内ユニット4aとすると、上記の冷房能力の制御が行われることによって、室内ユニット4aにおける室内温度Traがサーモ温度幅から外れた場合には、制御部8は、対応する室内ユニット4aの冷房運転を休止する。より具体的には、制御部8は、冷房運転によって室内温度Traが下限値Tranまで低下した場合に、室内ユニット4aの室内膨張弁41aを閉止して、室内熱交換器42aに冷媒が流れないようにする。これにより、室内ユニット4aは、冷媒と室内空気との間の熱交換が行われない室内サーモオフの状態となる。また、制御部8は、室内ユニット4aと同様に、室内温度Trb、Trcが下限値Trbn、Trcnまで低下した場合には、室内ユニット4b、4cの室内膨張弁41b、41cを閉止して、室内ユニット4b、4cを室内サーモオフの状態にする。
次に、例えば、室内サーモオフの状態の室内ユニットを室内ユニット4aとすると、室内ユニット4aにおける室内温度Traがサーモ温度幅から外れた場合には、制御部8は、対応する室内ユニット4aの冷房運転を再開する。より具体的には、制御部8は、冷房運転を休止することによって室内温度Traが上限値Traxまで上昇した場合に、室内ユニット4aの室内膨張弁41aを開けて、室内熱交換器42aに冷媒が流れるようにする。これにより、室内ユニット4aは、冷媒と室内空気との間の熱交換が行われる室内サーモオンの状態となる。また、制御部8は、室内ユニット4aと同様に、室内サーモオフの状態の室内ユニット4b、4cの室内温度Trb、Trcが上限値Trbx、Trcxまで上昇した場合には、室内ユニット4b、4cの室内膨張弁41b、41cを開けて、室内ユニット4b、4cを室内サーモオンの状態にする。
また、例えば、冷房運転を行っている室内ユニットを室内ユニット4a、4b、4cとすると、すべての室内ユニット4a、4b、4cが室内サーモオフの状態になった場合には、制御部8は、圧縮機21を停止して、冷媒回路10内の冷媒の流れを止める。これにより、空気調和装置1は、冷房運転の運転指令はなされているものの、実質的には、冷房運転がすべて停止された状態となる。
次に、例えば、室外サーモオフの状態において室内サーモオンの状態になる室内ユニットを室内ユニット4aとすると、室内ユニット4aが室内サーモオンの状態になった場合に、制御部8は、圧縮機21を再起動する。より具体的には、制御部8は、冷房運転を休止し、かつ、圧縮機21を停止することによって室内温度Traが上限値Traxまで上昇した場合に、室内ユニット4aの室内膨張弁41aを開け、かつ、圧縮機21を起動して、冷媒回路10内、及び、室内熱交換器42aに冷媒が流れるようにする。これにより、空気調和装置1は、室外サーモオンの状態となり、室内ユニット4aは、室内サーモオンの状態となる。また、制御部8は、室内ユニット4aと同様に、室内温度Trb、Trcが上限値Trbx、Trcxまで上昇した場合には、室内ユニット4b、4cの室内膨張弁41b、41cを開け、かつ、圧縮機21を起動して、空気調和装置1を室外サーモオンの状態にし、室内ユニット4b、4cを室内サーモオンの状態にする。
−暖房運転時−
空調運転が暖房運転である場合には、制御部8は、目標凝縮温度Tcsに基づいて圧縮機21の容量を制御している。
圧縮機21の容量制御は、冷房運転時と同様に、圧縮機21(より具体的には、圧縮機モータ21a)の回転数(運転周波数)を制御することによって行われる。具体的には、冷媒回路10の高圧Pcに相当する冷媒の凝縮温度Tcが目標凝縮温度Tcsになるように、圧縮機21の回転数が制御される。ここで、高圧Pcとは、暖房運転時において、圧縮機21の吐出側から室内熱交換器42a、42b、42cを経由して室内膨張弁41a、41b、41cの入口に至るまでの間を流れる高圧の冷媒を代表する圧力を意味している。ここでは、高圧Pcとして、吐出圧力センサ30によって検出される冷媒圧力である吐出圧力Pdが使用され、吐出圧力Pdを冷媒の飽和温度に換算して得られる値が、冷媒の凝縮温度Tcである。
圧縮機21の容量制御(回転数制御)おける目標凝縮温度Tcsは、制御部8において、暖房運転中の各室内ユニット4a、4b、4cにおける暖房能力に関する要求値ΔQHa、ΔQHb、ΔQHcに基づいて決定されるようになっている。
具体的には、まず、暖房運転中の各目標室内温度Tras、Trbs、Trcsから各室内温度Tra、Trb、Trcを差し引くことによって、各温度差ΔTHra、ΔTHrb、ΔTHrcを得る。これらの温度差ΔTHra、ΔTHrb、ΔTHrcに基づいて、暖房運転中の各室内ユニット4a、4b、4cにおける暖房能力に関する要求値ΔQHa、ΔQHb、ΔQHcを演算する。ここで、温度差ΔTHra、ΔTHrb、ΔTHrcが正値の場合、すなわち、室内温度Tra、Trb、Trcが目標室内温度Tras、Trbs、Trcsまで達していない場合には、暖房能力の増加を要求していることを意味し、これらの絶対値が大きいほど、暖房能力の増加要求の程度が大きいことを意味する。一方、温度差ΔTHra、ΔTHrb、ΔTHrcが負値の場合、すなわち、室内温度Tra、Trb、Trcが目標室内温度Tras、Trbs、Trcsまで達している場合には、暖房能力の減少を要求していることを意味し、これらの絶対値が大きいほど、暖房能力の減少要求の程度が大きいことを意味する。このため、暖房能力に関する要求値ΔQHa、ΔQHb、ΔQHcも、温度差ΔTHra、ΔTHrb、ΔTHrcと同様に、暖房能力の増減の方向及びその程度を意味する値となる。
そして、暖房能力の増加が要求されている場合、すなわち、暖房能力に関する要求値ΔQHa、ΔQHb、ΔQHcが正値の場合には、増加の程度(要求値の絶対値)に応じて目標凝縮温度Tcsを現在値よりも高くなるように決定して、これにより、圧縮機21の回転数を高くして暖房能力を増加させるのである。一方、暖房能力の減少が要求されている場合、すなわち、暖房能力に関する要求値ΔQHa、ΔQHb、ΔQHcが負値の場合には、減少の程度(要求値の絶対値)に応じて目標凝縮温度Tcsを現在値よりも低くなるように決定して、これにより、圧縮機21の回転数を低くして暖房能力を減少させるのである。
ここで、暖房運転中の各室内ユニット4a、4b、4cにおいては、各温度差ΔTHra、ΔTHrb、ΔTHrcに応じて、種々の暖房能力の増減要求(要求値ΔQHa、ΔQHb、ΔQHc)がなされる。しかし、目標凝縮温度Tcsは、目標蒸発温度Tesと同様に、すべての室内ユニット4a、4b、4cに共通の目標値である。このため、目標凝縮温度Tcsは、すべての室内ユニット4a、4b、4cにおける暖房能力の増減要求を代表する値に決定せざるを得ない。そこで、暖房能力に関する要求値ΔQHa、ΔQHb、ΔQHcのうち最も目標凝縮温度Tcsが高くなる要求値に基づいて目標凝縮温度Tcsを決定している。例えば、暖房能力に関する要求値ΔQHa、ΔQHb、ΔQHcが各室内ユニット4a、4b、4cにおいて要求される凝縮温度である場合には、これらのうち最も高い要求値を目標凝縮温度Tcsとして選択する。具体的には、室内ユニット4aにおいて要求される凝縮温度としての要求値ΔQHaが45℃であり、室内ユニット4bにおいて要求される凝縮温度としての要求値ΔQHbが43℃であり、室内ユニット4cにおいて要求される凝縮温度としての要求値ΔQHcが40℃である場合には、これらのうち最も高い要求値である要求値ΔQHaの45℃を目標凝縮温度Tcsとして選択するのである。また、暖房能力に関する要求値ΔQHa、ΔQHb、ΔQHcが各室内ユニット4a、4b、4cにおいて要求される凝縮温度の増減の程度を示す値である場合には、これらのうち暖房能力が最も大きくなる要求値に基づいて目標凝縮温度Tcsを決定する。具体的には、現状の目標凝縮温度Tesが38℃であり、暖房能力に関する要求値ΔQHa、ΔQHb、ΔQHcが凝縮温度をどのくらい高くするかを示すものとすると、室内ユニット4aにおいて要求される要求値ΔQHaが7℃、室内ユニット4bにおいて要求される要求値ΔQHaが5℃、室内ユニット4cにおいて要求される要求値ΔQHcが2℃である場合には、これらのうち最も大きい要求値である要求値ΔQHaの7℃を採用して、現状の目標凝縮温度Tcs(=38℃)に加算して得られる温度(=45℃)を目標凝縮温度Tcsとするのである。
尚、ここでは、冷媒の凝縮温度Tcが目標凝縮温度Tcsになるように圧縮機21の回転数を制御しているが、これに代えて、冷媒の凝縮温度Tcに相当する高圧Pc(=吐出圧力Pd)が目標高圧Pcsになるように、圧縮機21の回転数を制御してもよい。この場合には、要求値ΔQHa、ΔQHb、ΔQHcも高圧Pcや目標高圧Pcsに応じた値を使用することになる。
上記のような暖房能力の制御によって、各室内ユニット4a、4b、4cにおける室内温度Tra、Trb、Trcが、各室内ユニット4a、4b、4cにおける目標室内温度Tras、Trbs、Trcsに達すると、制御部8によって、以下のようなサーモ制御が行われる。
このサーモ制御は、上記の冷房運転時と同様に、各室内ユニット4a、4b、4cにおける目標室内温度Tras、Trbs、Trcsに対してサーモ温度幅を設定し、室内サーモオフ、室内サーモオン、室外サーモオフ、及び、室外サーモオンを行うものである。
例えば、暖房運転を行っている室内ユニットを室内ユニット4aとすると、暖房能力の制御が行われることによって、室内ユニット4aにおける室内温度Traがサーモ温度幅から外れた場合には、制御部8は、対応する室内ユニット4aの暖房運転を休止する。より具体的には、制御部8は、暖房運転によって室内温度Traが上限値Traxまで上昇した場合に、室内ユニット4aの室内膨張弁41aを閉止して、室内熱交換器42aに冷媒が流れないようにする。これにより、室内ユニット4aは、冷媒と室内空気との間の熱交換が行われない室内サーモオフの状態となる。また、制御部8は、室内ユニット4aと同様に、室内温度Trb、Trcが上限値Trbx、Trcxまで上昇した場合には、室内ユニット4b、4cの室内膨張弁41b、41cを閉止して、室内ユニット4b、4cを室内サーモオフの状態にする。
次に、例えば、室内サーモオフの状態の室内ユニットを室内ユニット4aとすると、室内ユニット4aにおける室内温度Traがサーモ温度幅から外れた場合には、制御部8は、対応する室内ユニット4aの暖房運転を再開する。より具体的には、制御部8は、暖房運転を休止することによって室内温度Traが下限値Tranまで低下した場合に、室内ユニット4aの室内膨張弁41aを開けて、室内熱交換器42aに冷媒が流れるようにする。これにより、室内ユニット4aは、冷媒と室内空気との間の熱交換が行われる室内サーモオンの状態となる。また、制御部8は、室内ユニット4aと同様に、室内サーモオフの状態の室内ユニット4b、4cの室内温度Trb、Trcが下限値Trbn、Trcnまで低下した場合には、室内ユニット4b、4cの室内膨張弁41b、41cを開けて、室内ユニット4b、4cを室内サーモオンの状態にする。
また、例えば、暖房運転を行っている室内ユニットを室内ユニット4a、4b、4cとすると、すべての室内ユニット4a、4b、4cが室内サーモオフの状態になった場合には、制御部8は、圧縮機21を停止して、冷媒回路10内の冷媒の流れを止める。これにより、空気調和装置1は、暖房運転の運転指令はなされているものの、実質的には、暖房運転がすべて停止された状態となる。
次に、例えば、室外サーモオフの状態において室内サーモオンの状態になる室内ユニットを室内ユニット4aとすると、室内ユニット4aが室内サーモオンの状態になった場合に、制御部8は、圧縮機21を再起動する。より具体的には、制御部8は、暖房運転を休止し、かつ、圧縮機21を停止することによって室内温度Traが下限値Tranまで低下した場合に、室内ユニット4aの室内膨張弁41aを開け、かつ、圧縮機21を起動して、冷媒回路10内、及び、室内熱交換器42aに冷媒が流れるようにする。これにより、空気調和装置1は、室外サーモオンの状態となり、室内ユニット4aは、室内サーモオンの状態となる。また、制御部8は、室内ユニット4aと同様に、室内温度Trb、Trcが下限値Trbn、Trcnまで低下した場合には、室内ユニット4b、4cの室内膨張弁41b、41cを開け、かつ、圧縮機21を起動して、空気調和装置1を室外サーモオンの状態にし、室内ユニット4b、4cを室内サーモオンの状態にする。
このように、空調運転においては、その空調能力の制御として、圧縮機21の回転数制御(以下、「通常回転数制御」とする)、及び、サーモ制御が行われるようになっている。そして、空気調和装置1では、このような空調能力の制御によって、空調運転中の各室内ユニット4a、4b、4cにおける室内温度Tra、Trb、Trcが、各室内ユニット4a、4b、4cにおける目標室内温度Tras、Trbs、Trcsになるようにしている。
(3)発停頻度低減回転数制御
ここでは、上記の通常回転数制御及びサーモ制御を含む空調運転(冷房運転及び暖房運転)を行うことによって、各室内ユニット4a、4b、4cにおける室内温度Tra、Trb、Trcが、各室内ユニット4a、4b、4cにおける目標室内温度Tras、Trbs、Trcsになるように、空調能力(冷房能力及び暖房能力)が制御されるようになっている。
例えば、すべての室内ユニット4a、4b、4cが空調運転中の場合を想定すると、室内温度Tra、Trb、Trcが目標室内温度Tras、Trbs、Trcsから大きく離れた条件で空調運転がなされる場合には、通常回転数制御によって、各室内ユニット4a、4b、4cが要求する空調能力の要求値(冷房運転の場合は、ΔQCa、ΔQCb、ΔQCcであり、暖房運転の場合は、ΔQHa、ΔQHb、ΔQHcである)のうち空調能力の増加の程度が最も大きい要求値(ここでは、室内ユニット4bの要求値ΔQCb、ΔQHb)に基づいて、圧縮機21の回転数が高めに制御される(図3参照)。その後、室内温度Tra、Trb、Trcが目標室内温度Tras、Trbs、Trcsに近づくにつれて、各室内ユニット4a、4b、4cが要求する空調能力の要求値が小さくなるため、これに応じて圧縮機21の回転数が徐々に低くなり、やがて室内温度Tra、Trb、Trcが目標室内温度Tras、Trbs、Trcsを挟むサーモ温度幅の範囲内になる室内ユニット(ここでは、室内ユニット4c)が発生するようになる(図4参照)。そして、サーモ温度幅の範囲内において空調運転を行っている室内ユニットにおける室内温度がサーモ温度幅から外れると(すなわち、空調運転が不要になると)、サーモ制御によって、対応する室内ユニット(ここでは、室内ユニット4c)の空調運転を休止する室内サーモオフが行われ、さらに、すべての室内ユニット4a、4b、4cが室内サーモオフの状態になると、圧縮機21を停止する室外サーモオフが行われる(図5参照)。
ここで、空調運転中のすべての室内ユニット4a、4b、4cにおける各室内温度Tra、Trb、Trcがサーモ温度幅の範囲内にある場合がある(図6参照)。このような場合においては、空調能力が過剰な状態での空調運転が発生し、室外サーモオフと室外サーモオンとを繰り返すサーモ発停が発生しやすくなる。すなわち、空調運転中のすべての室内ユニット4a、4b、4cにおける各室内温度Tra、Trb、Trcがサーモ温度幅の範囲内にある場合においても通常回転数制御を行っていると、各室内ユニット4a、4b、4cが要求する空調能力の要求値のうち空調能力の増加の程度が最も大きい要求値(ここでは、室内ユニット4bの要求値ΔQCb、ΔQHb)に基づいて、圧縮機21の回転数が制御されることになる。このため、空調能力の減少を要求している室内ユニット(すなわち、サーモ温度幅の範囲内において空調運転を行っており、かつ、室内温度が目標室内温度に達している室内ユニット、ここでは、室内ユニット4a、4b)において、空調能力が過剰な状態での空調運転が発生し、室内サーモオフの状態になる室内ユニットが多くなり、やがてすべての室内ユニットが室内サーモオフの状態及び室外サーモオフの状態になる。その後、室内温度がサーモ温度幅から外れた室内ユニットが発生すると、室内サーモオンの状態及び室外サーモオンの状態になるが、空調運転が再開されるとすぐに空調運転中の室内ユニットにおける室内温度がサーモ温度幅の範囲内になるため、再び空調能力が過剰な状態での空調運転が発生して、すべての室内ユニットが室内サーモオフの状態及び室外サーモオフの状態になってしまうのである。
このように、空調運転中のすべての室内ユニット4a、4b、4cにおける各室内温度Tra、Trb、Trcがサーモ温度幅の範囲内にあるという室内温度Tra、Trb、Trcが目標室内温度Tras、Trbs、Trcsに近い条件では、空調能力が過剰な状態での空調運転が発生し、サーモ発停が発生しやすくなるのである。そして、このような空調能力が過剰な状態での空調運転やサーモ発停の頻度の増加は、圧縮機21の消費動力の増大や運転効率の低下の原因になるため、できるだけ改善することが好ましい。
そこで、空気調和装置1では、通常回転数制御及びサーモ制御を含む空調運転(冷房運転及び暖房運転)において、制御部8が、発停頻度低減回転数制御を行うようにしている。ここで、発停頻度低減回転数制御とは、空調運転中のすべての室内ユニット4a、4b、4cにおける各室内温度Tra、Trb、Trcが、空調運転中の各室内ユニット4a、4b、4cにおける目標室内温度Tras、Trbs、Trcsを挟む所定の閾温度幅の範囲内にある場合に、空調能力の増加を要求している室内ユニットの要求値を除外して、空調能力の減少を要求している室内ユニットの要求値に基づいて、圧縮機21の回転数を制御するものである。
次に、発停頻度低減回転数制御を含む圧縮機21の回転数制御について、図3〜図8を用いて説明する。ここで、図7は、発停頻度低減回転数制御を含む圧縮機21の回転数制御を示すフローチャートである。図8は、空調運転中の各室内ユニット4a、4b、4cにおける室内温度Tra、Trb、Trcと目標室内温度Tras、Trbs、Trcsとの関係を示す図(発停頻度低減回転数制御を行う場合)である。尚、ここでは、すべての室内ユニット4a、4b、4cが空調運転中の場合を想定して説明を行う。
まず、制御部8は、ステップST1において、空調運転中のすべての室内ユニット4a、4b、4cにおける各室内温度Tra、Trb、Trcが、空調運転中の各室内ユニット4a、4b、4cにおける目標室内温度Tras、Trbs、Trcsを挟む所定の閾温度幅(ここでは、サーモ温度幅)の範囲にあるかどうかを判定する。そして、空調運転中のすべての室内ユニット4a、4b、4cにおける各室内温度Tra、Trb、Trcが閾温度幅の範囲内にあるものと判定され、室内温度Tra、Trb、Trcが目標室内温度Tras、Trbs、Trcsに近い条件を満たす場合(図6及び図8参照)には、ステップST2の処理に移行する。
一方、ステップST1において、空調運転中のすべての室内ユニット4a、4b、4cにおける各室内温度Tra、Trb、Trcが閾温度幅の範囲内にあるものと判定されず、室内温度Tra、Trb、Trcが目標室内温度Tras、Trbs、Trcsに近い条件を満たさない場合には、室内温度Tra、Trb、Trcが閾温度幅の範囲外で、かつ、空調能力の増加を要求している室内ユニットが存在する場合(図3及び図4参照)であることから、ステップST4の通常回転数制御の処理に移行する。
ここで、ステップST4の通常回転数制御の処理は、既に説明した制御内容と同じである。すなわち、室内温度が閾温度幅の範囲外にあって空調能力が要求される室内ユニットが存在する場合には、空調能力の増加の程度が最も大きい要求値に基づいて圧縮機21の回転数を制御して、室内温度Tra、Trb、Trcを目標室内温度Tras、Trbs、Trcsに速やかに近づけるようにするのである。例えば、図3に示すように、空調運転中のすべての室内ユニット4a、4b、4cにおける各室内温度Tra、Trb、Trcが閾温度幅の範囲外で、かつ、空調能力の増加を要求している場合には、空調能力の増加を要求している室内ユニット4a、4b、4cの要求値のうち空調能力の増加の程度が最も大きい要求値(ここでは、室内ユニット4bの要求値ΔQCb、ΔQHb)に基づいて、目標蒸発温度Tesや目標凝縮温度Tcsを決定する。また、図4に示すように、空調運転中の一部の室内ユニット(図4においては、室内ユニット4a、4b)における各室内温度(図4においては、室内温度Tra、Trb)が閾温度幅の範囲外で、かつ、空調能力の増加を要求している場合には、空調能力の増加を要求している室内ユニット4a、4b、4cの要求値のうち空調能力の増加の程度が最も大きい要求値(ここでは、室内ユニット4bの要求値ΔQCb、ΔQHb)に基づいて、目標蒸発温度Tesや目標凝縮温度Tcsを決定する。そして、冷媒の蒸発温度Teが決定された目標蒸発温度Tesになるように、又は、冷媒の凝縮温度Tcが決定された目標凝縮温度Tcsになるように、圧縮機21の回転数を制御するのである。
次に、制御部8は、ステップST2において、空調運転中の室内ユニット4a、4b、4cのうち、空調能力の減少を要求している室内ユニットが存在するかどうかを判定する。そして、空調能力の減少を要求している室内ユニットが存在する場合(例えば、図6及び図8における室内ユニット4a、4c)には、ステップST3の発停頻度低減回転数制御の処理に移行する。
一方、ステップST2において、空調能力の減少を要求している室内ユニットが存在するものと判定されず、室内温度が閾温度幅の範囲内にはあるが、空調能力の増加を要求している室内ユニットしか存在しない場合には、ステップST4の通常回転数制御の処理に移行する。すなわち、この場合にも、室内温度が閾温度幅の範囲外にあって空調能力が要求される室内ユニットが存在する場合と同様に、ステップST4の通常回転数制御を行うことで、室内温度Tra、Trb、Trcを目標室内温度Tras、Trbs、Trcsに速やかに近づけるようにするのである。
次に、制御部8は、ステップST3において、空調能力の増加を要求している室内ユニットの要求値を除外して、空調能力の減少を要求している室内ユニットの要求値に基づいて、圧縮機21の回転数を制御する。例えば、空調運転中の室内ユニット4a、4b、4cのうち、室内ユニット4bが空調能力の増加を要求しており、かつ、室内ユニット4a、4cが空調能力の減少を要求している場合(図8参照)には、空調能力の増加を要求している室内ユニット4bの要求値ΔQCb、ΔQHbを除外して、空調能力の減少を要求している室内ユニット4aの要求値ΔQCa、ΔQHa及び室内ユニット4cの要求値ΔQCc、ΔQHcに基づいて、目標蒸発温度Tesや目標凝縮温度Tcsを決定する。そして、冷媒の蒸発温度Teが決定された目標蒸発温度Tesになるように、又は、冷媒の凝縮温度Tcが決定された目標凝縮温度Tcsになるように、圧縮機21の回転数を制御するのである。すなわち、ステップST4の通常回転数制御であれば、空調運転中の室内ユニット4a、4b、4cの要求値のうち、空調能力の増加を要求しており、かつ、最も大きな空調能力が得られる室内ユニット4bの要求値ΔQCb、ΔQHbに基づいて、目標蒸発温度Tesや目標凝縮温度Tcsを決定するところ、ここでは、空調能力の減少を要求している室内ユニット4aの要求値ΔQCa、ΔQHa及び室内ユニット4cの要求値ΔQCc、ΔQHcに基づいて、目標蒸発温度Tesや目標凝縮温度Tcsを決定するのである。
このような発停頻度低減回転数制御を行うことによって、空調運転中のすべての室内ユニット4a、4b、4cにおける各室内温度Tra、Trb、Trcがサーモ温度幅の範囲内にあるという室内温度Tra、Trb、Trcが目標室内温度Tras、Trbs、Trcsに近い条件において、目標蒸発温度Tesが高めに設定されるようになり、目標凝縮温度Tcsが低めに設定されるようになる。そうすると、圧縮機21の回転数を低めに抑えて、空調能力を小さくしつつ、圧縮機21の停止、すなわち、室外サーモオフの発生を抑えることができるようになる。
ここで、空調能力の減少を要求している室内ユニットが1つだけ存在する場合には、その室内ユニットの要求値に基づいて、目標蒸発温度Tesや目標凝縮温度Tcsを決定すればよい。しかし、空調能力の減少を要求している室内ユニットが複数存在する場合(図8参照)には、空調能力の減少を要求している室内ユニット4aの要求値ΔQCa、ΔQHa及び室内ユニット4cの要求値ΔQCc、ΔQHcをどのように使用するかによって、サーモ発停の頻度を低減する程度等が変わってくる。ここで、圧縮機21の回転数を低めに抑えると、サーモ発停の頻度を低減する程度は良くなるが、空調能力の増加を要求している室内ユニット4bにおいて空調能力が不足しがちになる傾向が現れて、閾温度幅の範囲内まで目標室内温度Trbsに近づいていた室内温度Trbが目標室内温度Trbsから離れて閾温度幅の範囲外になってしまうおそれがある。
そこで、ここでは、空調能力の減少を要求している室内ユニット4aの要求値ΔQCa、ΔQHa及び室内ユニット4cの要求値ΔQCc、ΔQHcのうち空調能力の減少の程度が最も小さい室内ユニット4aの要求値ΔQCa、ΔQHaに基づいて、目標蒸発温度Tesや目標凝縮温度Tcsを決定するようにしている。
これにより、圧縮機21の回転数を低めに抑えるとともに、空調能力の増加を要求している室内ユニット4bにおいて空調能力が不足しがちになる傾向をできるだけ抑えるようにしている。
(4)空気調和装置の特徴
空気調和装置1には、以下のような特徴がある。
<A>
ここでは、上記のように、空調運転中のすべての室内ユニットにおける各室内温度が、空調運転中の各室内ユニットにおける目標室内温度を挟む所定の閾温度幅の範囲内にある場合(図8参照)に、空調能力の増加を要求している室内ユニットの要求値を除外して、空調能力の減少を要求している室内ユニットの要求値に基づいて、圧縮機21の回転数を制御する発停頻度低減回転数制御を行うようにしている。
これにより、ここでは、圧縮機21の回転数を低めに抑えて、空調能力を小さくしつつ、圧縮機21の停止、すなわち、室外サーモオフの発生を抑えることができる。このため、各室内ユニットが要求する空調能力が小さく室内温度が目標室内温度に近い条件で空調運転がなされる場合に、空調能力を小さくしつつ、圧縮機21の運転をできるだけ継続することができる。そして、ここでは、空調能力が過剰な状態での空調運転を抑えつつ、サーモ発停の頻度を十分に低減することができる。
<B>
また、ここでは、上記のように、発停頻度低減回転数制御を行うにあたり、空調能力の減少を要求している室内ユニットの要求値のうち空調能力の減少の程度が最も小さい要求値に基づいて、圧縮機21の回転数を制御するようにしている。このため、圧縮機21の回転数を低めに抑えるとともに、空調能力の増加を要求している室内ユニットにおいて空調能力が不足しがちになる傾向をできるだけ抑えることができる。
尚、空調能力の減少を要求している室内ユニットの要求値をどのように使用するかについては、空調能力の減少を要求している室内ユニットの要求値の中で空調能力の減少の程度が最も大きい要求値を使用することも考えられるが、この場合には、圧縮機21の回転数を非常に低く抑えることができるが、空調能力の増加を要求している室内ユニットにおいて空調能力が不足しがちになる傾向を抑えにくくなる。また、空調能力の減少を要求している室内ユニットの要求値の平均値を使用することも考えられるが、この場合には、圧縮機21の回転数を低めに抑える程度や空調能力の増加を要求している室内ユニットにおいて空調能力が不足しがちになる傾向を抑える程度が、空調能力の減少の程度が最も小さい要求値を使用する場合と減少の程度が最も大きい要求値を使用する場合との中間程度になる。このように、発停頻度低減回転数制御を行うにあたり、空調能力の減少を要求している室内ユニットの要求値をどのように使用するかによって、サーモ発停の頻度を低減する程度等が変わってくる。そして、ここでは、空調能力の増加を要求している室内ユニットにおいて空調能力が不足しがちになる傾向を抑える程度を重視して、空調能力の減少を要求している室内ユニットの要求値の中で空調能力の減少の程度が最も小さい要求値を使用するようにしている。
<C>
また、ここでは、上記のように、閾温度幅をサーモ温度幅に一致させるようにしている。これにより、すべての室内ユニットが室内サーモオフになるまで、圧縮機21の回転数を低めに抑えて、空調能力を小さくしつつ、圧縮機21の停止、すなわち、室外サーモオフの発生を抑えることができる。
尚、閾温度幅は、サーモ温度幅に一致していなくてもよく、例えば、閾温度幅をサーモ温度幅よりも広くすることで、上記のステップST1、ST2の発停頻度低減回転数制御を行うための条件を満たしやすくすることもできる。
<D>
また、ここでは、上記のように、空調運転中の室内ユニットのうち、室内温度が閾温度幅の範囲外で、かつ、空調能力の増加を要求している室内ユニットが存在する場合(図3及び図4参照)には、空調能力の増加を要求している室内ユニットの要求値のうち空調能力の増加の程度が最も大きい要求値に基づいて、圧縮機21の回転数を制御する通常回転数制御を行うようにしている。
このため、ここでは、通常回転数制御及び発停頻度低減回転数制御を空調運転中の室内ユニットにおける室内温度に応じて切り換えることになる。すなわち、室内温度が閾温度幅の範囲外にあって空調能力が要求される室内ユニットが存在する場合には、空調能力の増加の程度が最も大きい要求値に基づいて圧縮機21の回転数を制御して、室内温度を目標室内温度に速やかに近づけるようにする。そして、空調運転中のすべての室内ユニットにおける室内温度が閾温度幅の範囲内にあって各室内ユニットが要求する空調能力が小さくなっている場合には、空調能力の減少を要求している室内ユニットの要求値に基づいて圧縮機21の回転数を制御して、空調能力を小さくしつつ、圧縮機21の運転をできるだけ継続させるようにするのである。これにより、ここでは、空調運転において、室内温度を目標室内温度に速やかに近づけ、その後は、空調能力が過剰な状態での空調運転を抑えるとともにサーモ発停の頻度を低減することができる。
尚、ここでは、上記のように、空調運転中の室内ユニットのうち、室内温度が閾温度幅の範囲内にある場合であっても、空調能力の減少を要求している室内ユニットが存在しない場合には、発停頻度低減回転数制御ではなく、通常回転数制御を行うようにしている。これにより、発停頻度低減回転数制御を行う条件をできるだけ絞り込んで、室内温度を目標室内温度に速やかに近づけることを優先することができる。
(5)変形例
<A>
上記実施形態では、閾温度幅としてのサーモ温度幅がいずれの室内ユニット4a、4b、4cについても同じ温度幅に設定しているような説明となっているが(図3〜図7及び図8参照)、いずれの室内ユニットについても同じ温度幅に設定するものに限定されるものではなく、室内ユニットごとに異なる温度幅であってもよい。
<B>
上記実施形態では、冷房運転と暖房運転とが切り換え可能な空気調和装置に対して、発停頻度低減回転数制御を適用しているが、これに限定されるものではなく、例えば、冷房運転専用の空気調和装置や暖房運転専用の空気調和装置に対して、発停頻度低減回転数制御を適用してもよい。
本発明は、圧縮機を有する室外ユニットと複数の室内ユニットとが接続されることによって構成されており、各室内ユニットにおける室内温度が各室内ユニットにおける目標室内温度になるように空調運転を行う空気調和装置に対して、広く適用可能である。
1 空気調和装置
2 室外ユニット
4a、4b、4c 室内ユニット
8 制御部
21 圧縮機
特開平4−93558号公報

Claims (4)

  1. 圧縮機(21)を有する室外ユニット(2)と複数の室内ユニット(4a、4b、4c)とが接続されることによって構成されており、前記各室内ユニットにおける室内温度が前記各室内ユニットにおける目標室内温度になるように空調運転を行う空気調和装置において、
    前記空調運転時に前記各室内ユニットにおける空調能力に関する要求値に基づいて前記圧縮機の回転数を制御する制御部(8)を備えており、
    前記制御部は、前記空調運転中のすべての前記室内ユニットにおける前記各室内温度が、前記空調運転中の前記各室内ユニットにおける前記目標室内温度を挟む所定の閾温度幅の範囲内にある場合に、前記空調能力の増加を要求している前記室内ユニットの前記要求値を除外して、前記空調能力の減少を要求している前記室内ユニットの前記要求値に基づいて、前記圧縮機の回転数を制御する発停頻度低減回転数制御を行う、
    空気調和装置(1)。
  2. 前記発停頻度低減回転数制御は、前記空調能力の減少を要求している前記室内ユニットの前記要求値のうち前記空調能力の減少の程度が最も小さい前記要求値に基づいて、前記圧縮機(21)の回転数を制御するものである、
    請求項1に記載の空気調和装置(1)。
  3. 前記閾温度幅は、前記空調運転を行っている前記室内ユニット(4a、4b、4c)の前記空調運転を休止する室内サーモオフ、及び、前記室内サーモオフの状態の前記室内ユニットの前記空調運転を再開する室内サーモオンのタイミングを規定するサーモ温度幅である、
    請求項1又は2に記載の空気調和装置(1)。
  4. 前記制御部(8)は、前記空調運転中の前記室内ユニット(4a、4b、4c)のうち、前記室内温度が前記閾温度幅の範囲外で、かつ、前記空調能力の増加を要求している前記室内ユニットが存在する場合に、前記空調能力の増加を要求している前記室内ユニットの前記要求値のうち前記空調能力の増加の程度が最も大きい前記要求値に基づいて、前記圧縮機(21)の回転数を制御する通常回転数制御を行う、
    請求項1〜3のいずれか1項に記載の空気調和装置(1)。
JP2014253256A 2014-12-15 2014-12-15 空気調和装置 Active JP5910719B1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2014253256A JP5910719B1 (ja) 2014-12-15 2014-12-15 空気調和装置
TR2018/18984T TR201818984T4 (tr) 2014-12-15 2015-12-07 İklimlendirme Cihazı
PCT/JP2015/084264 WO2016098626A1 (ja) 2014-12-15 2015-12-07 空気調和装置
CN201580068416.XA CN107003029B (zh) 2014-12-15 2015-12-07 空调装置
ES15869831T ES2704101T3 (es) 2014-12-15 2015-12-07 Dispositivo de aire acondicionado
AU2015364970A AU2015364970B2 (en) 2014-12-15 2015-12-07 Air conditioning apparatus
EP15869831.6A EP3236169B1 (en) 2014-12-15 2015-12-07 Air-conditioning device
US15/535,689 US10139144B2 (en) 2014-12-15 2015-12-07 Air conditioning apparatus
SG11201704850YA SG11201704850YA (en) 2014-12-15 2015-12-07 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014253256A JP5910719B1 (ja) 2014-12-15 2014-12-15 空気調和装置

Publications (2)

Publication Number Publication Date
JP5910719B1 true JP5910719B1 (ja) 2016-04-27
JP2016114297A JP2016114297A (ja) 2016-06-23

Family

ID=55808223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014253256A Active JP5910719B1 (ja) 2014-12-15 2014-12-15 空気調和装置

Country Status (9)

Country Link
US (1) US10139144B2 (ja)
EP (1) EP3236169B1 (ja)
JP (1) JP5910719B1 (ja)
CN (1) CN107003029B (ja)
AU (1) AU2015364970B2 (ja)
ES (1) ES2704101T3 (ja)
SG (1) SG11201704850YA (ja)
TR (1) TR201818984T4 (ja)
WO (1) WO2016098626A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7193775B2 (ja) * 2018-09-20 2022-12-21 株式会社富士通ゼネラル 空気調和装置
CN109751739B (zh) * 2018-12-12 2021-04-20 广东美的暖通设备有限公司 用于多联机空调的控制方法、装置、室外机及多联机空调
CN112797578B (zh) * 2020-12-28 2022-02-25 珠海格力电器股份有限公司 一种空调控制方法、装置、存储介质及空调
CN114646139B (zh) * 2022-03-28 2023-04-14 珠海格力电器股份有限公司 空调器的自动风控制方法、空调器及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169949A (ja) * 1988-12-21 1990-06-29 Daikin Ind Ltd 空気調和装置の運転制御装置
JPH06123477A (ja) * 1992-10-12 1994-05-06 Matsushita Electric Ind Co Ltd 空気調和機の運転制御方法
JP2001116330A (ja) * 1999-10-19 2001-04-27 Matsushita Electric Ind Co Ltd 多室形空気調和システム
WO2010035424A2 (ja) * 2008-09-24 2010-04-01 東芝キヤリア株式会社 空気調和機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133252A (ja) 1983-12-21 1985-07-16 Matsushita Electric Ind Co Ltd 空気調和機の圧縮機運転制御方法
JPH0359350A (ja) * 1989-07-28 1991-03-14 Toshiba Corp 空気調和機
JPH0833246B2 (ja) 1990-08-06 1996-03-29 ダイキン工業株式会社 冷凍装置の運転制御装置
US5507154A (en) * 1994-07-01 1996-04-16 Ranco Incorporated Of Delaware Self-calibrating defrost controller
CN101832618B (zh) * 2010-04-29 2012-07-11 海信(山东)空调有限公司 空调器压缩机频率控制方法及控制装置
JP5131359B2 (ja) * 2011-01-19 2013-01-30 ダイキン工業株式会社 空気調和機
US10024591B2 (en) * 2014-05-15 2018-07-17 Lennox Industries Inc. Sensor failure error handling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169949A (ja) * 1988-12-21 1990-06-29 Daikin Ind Ltd 空気調和装置の運転制御装置
JPH06123477A (ja) * 1992-10-12 1994-05-06 Matsushita Electric Ind Co Ltd 空気調和機の運転制御方法
JP2001116330A (ja) * 1999-10-19 2001-04-27 Matsushita Electric Ind Co Ltd 多室形空気調和システム
WO2010035424A2 (ja) * 2008-09-24 2010-04-01 東芝キヤリア株式会社 空気調和機

Also Published As

Publication number Publication date
SG11201704850YA (en) 2017-07-28
CN107003029A (zh) 2017-08-01
WO2016098626A1 (ja) 2016-06-23
JP2016114297A (ja) 2016-06-23
EP3236169A1 (en) 2017-10-25
US20180274836A1 (en) 2018-09-27
ES2704101T3 (es) 2019-03-14
EP3236169A4 (en) 2018-01-17
AU2015364970A1 (en) 2017-08-03
US10139144B2 (en) 2018-11-27
TR201818984T4 (tr) 2019-01-21
EP3236169B1 (en) 2018-10-03
AU2015364970B2 (en) 2018-07-05
CN107003029B (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
JP5598353B2 (ja) 空気調和装置
JP5802339B2 (ja) 空気調和装置
JP5802340B2 (ja) 空気調和装置
WO2015115404A1 (ja) 空気調和システム
JP4840522B2 (ja) 冷凍装置
JP5846226B2 (ja) 空気調和装置
JP5910719B1 (ja) 空気調和装置
JP6007965B2 (ja) 空気調和装置
WO2018164253A1 (ja) 空気調和装置
JP2008241065A (ja) 冷凍装置及び冷凍装置の油戻し方法
JP6353355B2 (ja) 空気調和装置
WO2013172196A1 (ja) 空気調和装置
WO2019087400A1 (ja) 空気調和装置
JP6245207B2 (ja) 空気調和装置
JP2013181730A (ja) ヒートポンプ式給湯装置
JP2017155983A (ja) 冷凍装置
JP2016200360A (ja) 冷凍装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R151 Written notification of patent or utility model registration

Ref document number: 5910719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151