JP5910437B2 - Cu-containing rare earth-iron-boron alloy powder and method for producing the same - Google Patents

Cu-containing rare earth-iron-boron alloy powder and method for producing the same Download PDF

Info

Publication number
JP5910437B2
JP5910437B2 JP2012215687A JP2012215687A JP5910437B2 JP 5910437 B2 JP5910437 B2 JP 5910437B2 JP 2012215687 A JP2012215687 A JP 2012215687A JP 2012215687 A JP2012215687 A JP 2012215687A JP 5910437 B2 JP5910437 B2 JP 5910437B2
Authority
JP
Japan
Prior art keywords
powder
rare earth
iron
alloy powder
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012215687A
Other languages
Japanese (ja)
Other versions
JP2013083001A (en
Inventor
長南 武
武 長南
一雄 河西
一雄 河西
川本 淳
淳 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2012215687A priority Critical patent/JP5910437B2/en
Publication of JP2013083001A publication Critical patent/JP2013083001A/en
Application granted granted Critical
Publication of JP5910437B2 publication Critical patent/JP5910437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、Cu含有希土類−鉄−硼素系合金粉末とその製造方法に関し、より詳しくは、永久磁石用として使用されるCu含有希土類−鉄−硼素系合金粉末とそれを還元拡散法により低コストで効率的に製造する方法に関するものである。   The present invention relates to a Cu-containing rare earth-iron-boron-based alloy powder and a method for producing the same, and more specifically, Cu-containing rare-earth-iron-boron-based alloy powder used for permanent magnets and its cost by reduction diffusion. It is related with the method of manufacturing efficiently.

希土類元素の少なくとも一種を構成成分とする永久磁石に、希土類元素−鉄−硼素(「R−Fe−B」)系永久磁石がある。このR−Fe−B系永久磁石の組織は、RFe14B相、Rリッチ相、Bリッチ相から構成され、各相の構成比率により磁石特性が異なる。このため、種々の特性の永久磁石に対応した組成のR−Fe−B系永久磁石が提案されている。 A permanent magnet having at least one rare earth element as a constituent component is a rare earth element-iron-boron ("R-Fe-B") permanent magnet. The structure of this R—Fe—B permanent magnet is composed of an R 2 Fe 14 B phase, an R rich phase, and a B rich phase, and the magnet characteristics differ depending on the composition ratio of each phase. For this reason, R-Fe-B permanent magnets having compositions corresponding to permanent magnets having various characteristics have been proposed.

R−Fe−B系永久磁石の原料にはR−Fe−B系合金粉末が使用されるが、この合金粉末の製造法には溶解法と還元拡散法とがある。
溶解法は、構成成分となる金属や母合金を目的組成に調合し、溶解し、これにより得た合金塊を粉砕するものである。例えば、特許文献1には、R(Rは、Yを含む希土類元素の少なくとも1種である)、T(Tは、Fe、またはFeおよびCoである)およびBを主成分とする合金溶湯を、単ロ−ル法、双ロ−ル法または回転ディスク法により一方向または対向する二方向から冷却して製造する方法が記載されている。
An R—Fe—B alloy powder is used as a raw material for the R—Fe—B permanent magnet, and a method for producing the alloy powder includes a melting method and a reduction diffusion method.
In the melting method, a component metal or mother alloy is prepared in a target composition, dissolved, and the resulting alloy lump is pulverized. For example, Patent Document 1 discloses a molten alloy containing R (R is at least one rare earth element including Y), T (T is Fe, or Fe and Co), and B as main components. , A method of manufacturing by cooling from one direction or two opposite directions by a single roll method, a twin roll method or a rotating disk method is described.

また、特許文献2には、希土類金属−鉄2元系合金溶融物を、タンディッシュを介した単ロ−ルによるストリップキャスティング法により冷却速度100〜1000℃/秒、過冷度200〜500℃の冷却条件下で均一に凝固させることを特徴とする永久磁石用希土類金属−鉄2元系合金鋳塊の製造法が記載されている。
さらに、特許文献3の実施例には、Ndと電解鉄とフェロボロンとBiとフェロタングステンとを出発原料とし、所望の組成となるように配合してア−ク溶解法によって合金化し、次に均質化熱処理、粗粉砕、微粉砕する永久磁石の製造例が記載されている。
しかし、これらの方法では粉砕工程が必要であり、しかも希土類金属は酸化に対して高活性であるため粉砕過程で酸化が進行し、合金品質が低下するという欠点がある。
Patent Document 2 discloses that a rare earth metal-iron binary alloy melt is cooled at a rate of 100 to 1000 ° C./second and a supercooling degree of 200 to 500 ° C. by a strip casting method using a single roll through a tundish. Describes a method for producing a rare earth metal-iron binary alloy ingot for permanent magnets, which is uniformly solidified under the cooling conditions described above.
Furthermore, in the examples of Patent Document 3, Nd, electrolytic iron, ferroboron, Bi, and ferrotungsten are used as starting materials, blended so as to have a desired composition, alloyed by an arc melting method, and then homogenized. Examples of producing permanent magnets for heat treatment, coarse pulverization and fine pulverization are described.
However, these methods require a pulverization step, and the rare earth metal is highly active against oxidation, so that oxidation proceeds in the pulverization process and the alloy quality is lowered.

一方、還元拡散法は、希土類酸化物粉末、鉄、ニッケル、コバルトなどの金属粉末、鉄−ホウ素合金粉末あるいは酸化ホウ素粉末と、還元剤としてのアルカリ土類金属とを混合し、加熱して原料酸化物を還元し、拡散反応で希土類金属と遷移金属などを合金化し、次いで湿式処理して合金粉末を得るものであり、溶解法と比較して低コストで均一な組成の合金粉末を得ることができる。
還元拡散法は、溶解法に比べて原料が安価であり、熱処理温度が低く、得られた合金の組織が緻密で、かつ組成の調整がしやすく、その上合金塊の表面処理、粉砕工程などが不要であるなど、多くの利点を有する。この還元拡散法による合金の製造方法には、例えば、特許文献4があり、希土類の酸化物またはハロゲン化物をFe及びBの存在下でCa還元して、3wt%〜20wt%Fe、0.5wt%〜10wt%B、残部実質的に希土類金属よりなるFe−B−R中間原料合金を得ることが記載されている。
そして、本出願人も、28〜35重量%の希土類元素と、1.0〜1.5重量%のホウ素と、残部の鉄または鉄合金からなり、該鉄合金がニッケルとコバルトの少なくとも一種を含有する磁石用合金粉末を還元拡散法で製造するに際し、前記合金粉末を混合した後、100〜1000kg/cmの圧力で成型し、次いで1000〜1200℃で還元拡散反応を起こさせてから粉末にすることを提案している(例えば、特許文献5)。
On the other hand, the reduction diffusion method mixes rare earth oxide powder, metal powder such as iron, nickel, cobalt, iron-boron alloy powder or boron oxide powder, and an alkaline earth metal as a reducing agent, and heats the raw material. The oxide is reduced, the rare earth metal and the transition metal are alloyed by a diffusion reaction, and then wet-processed to obtain an alloy powder. The alloy powder having a uniform composition is obtained at a lower cost than the melting method. Can do.
The reduction diffusion method is less expensive than the melting method, the heat treatment temperature is low, the structure of the obtained alloy is dense, the composition can be easily adjusted, and the alloy lump surface treatment, pulverization process, etc. Has many advantages such as no need. For example, Patent Document 4 discloses a method for producing an alloy by this reduction diffusion method. A rare earth oxide or halide is reduced by Ca in the presence of Fe and B to obtain 3 wt% to 20 wt% Fe, 0.5 wt%. It is described that an Fe—B—R intermediate raw material alloy consisting of 10% by weight to 10% by weight B and the balance being substantially a rare earth metal is obtained.
The present applicant also comprises 28 to 35% by weight of a rare earth element, 1.0 to 1.5% by weight of boron, and the balance iron or iron alloy, and the iron alloy contains at least one of nickel and cobalt. When the alloy powder for magnets to be produced is produced by the reduction diffusion method, the alloy powder is mixed, then molded at a pressure of 100 to 1000 kg / cm 2 , and then subjected to a reduction diffusion reaction at 1000 to 1200 ° C. (For example, patent document 5).

また、特許文献6には、R(RはNd、Pr、Dy、Ho、Tbのうち少なくとも1種あるいはさらに、La、Ce、Sm、Gd、Er、Eu、Tm、Yb、Lu、Yのうち少なくとも1種からなる)12原子%〜20原子%、B4原子%〜20原子%、Fe65原子%〜81原子%を主成分とし、主相が正方晶からなる希土類磁石用合金粉末の製造において、該希土類酸化物のうち少なくとも1種と、鉄粉と純ボロン粉、フェロボロン粉および硼素酸化物のうち少なくとも1種、あるいは上記構成元素の合金粉または混合酸化物を上記組成に配合した混合粉に、上記希土類酸化物などの原料粉末に含まれる酸素量に対して、化学量論的必要量の1.5〜3.5倍の金属Caと希土類酸化物の1wt%〜15wt%のCaClを混合し、不活性ガス雰囲気中で900℃〜1200℃に加熱して還元拡散を行い、得られた反応生成物を、15℃以下に冷却したイオン交換水中に投入してスラリ−化し、さらに該スラリ−を15℃以下に冷却したイオン交換水により処理することを特徴とする希土類磁石用合金粉末の製造方法が記載されている。 In Patent Document 6, R (R is at least one of Nd, Pr, Dy, Ho, and Tb, or La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu, and Y. In the production of a rare earth magnet alloy powder consisting mainly of tetragonal crystals of 12 atomic% to 20 atomic%, B4 atomic% to 20 atomic%, Fe 65 atomic% to 81 atomic% (mainly consisting of at least one kind) A mixed powder in which at least one of the rare earth oxides and at least one of iron powder and pure boron powder, ferroboron powder, and boron oxide, or an alloy powder or mixed oxide of the above constituent elements are mixed in the above composition. And 1.5 to 3.5 times the stoichiometric amount of metal Ca and 1 wt% to 15 wt% of CaCl 2 of the rare earth oxide with respect to the amount of oxygen contained in the raw material powder such as the rare earth oxide. Mixed and not Reductive diffusion is performed by heating to 900 ° C. to 1200 ° C. in an active gas atmosphere, and the resulting reaction product is put into ion-exchanged water cooled to 15 ° C. or less to form a slurry. A method for producing an alloy powder for rare earth magnets characterized by treatment with ion-exchanged water cooled to ℃ or lower is described.

R−Fe−B系永久磁石は、希土類磁石の中でも飽和磁化が高いことから民生用小型電子機器やコンピュータ周辺機、MRI、さらには産業用モータや自動車へと用途を広げている。近年、ハイブリッド車や電気自動車が普及し始めたが、これらの用途では耐熱性を高め、磁気特性を向上させるためにR−Fe−B系合金にDyの添加が必須である(特許文献4、6)。しかし、当該元素は、地球上の存在比がNdの10%程度であり、価格もNdの約3倍と高く、かつ供給不安を伴うといった問題がある。
この問題を解決する方法として、Nd−Fe−B系合金粉末の粒度をより微細にするために、水素化−不均化−脱水素−再結合処理(HDDR)法による合金粉末の製造が開発され、0.3〜0.5μmの結晶粒径を有するHDDR磁粉を短時間ホットプレスすることで、Dyを含まない組成においても高い保磁力を発揮する可能性があると報告されている(非特許文献1参照)。しかし、このHDDR処理用の合金は、原料を溶解、鋳造した後、均熱化処理を行い、水素吸蔵崩壊の処理工程を必要とし、生産性が悪い。
R-Fe-B permanent magnets have a high saturation magnetization among rare earth magnets, and thus have expanded their use to consumer small electronic devices, computer peripherals, MRI, industrial motors and automobiles. In recent years, hybrid vehicles and electric vehicles have begun to spread. However, in these applications, it is essential to add Dy to the R—Fe—B alloy in order to improve heat resistance and improve magnetic properties (Patent Document 4, 6). However, this element has a problem that the abundance ratio on the earth is about 10% of Nd, the price is about three times as high as Nd, and the supply is uneasy.
As a method to solve this problem, in order to make the Nd-Fe-B alloy powder finer, the production of alloy powder by the hydrogenation-disproportionation-dehydrogenation-recombination (HDDR) method has been developed. In addition, it has been reported that HDDR magnetic powder having a crystal grain size of 0.3 to 0.5 μm may exhibit a high coercive force even in a composition not containing Dy by hot pressing for a short time (non-Dy). Patent Document 1). However, this HDDR processing alloy is so poor in productivity that it requires a soaking process after melting and casting the raw material, and requires a hydrogen storage / disintegration processing step.

一方、特許文献7には、希土類元素を含む磁性合金の表面に該磁性合金の共晶点よりも低温で液相を生じ得る浸透材(CuNd合金)をスパッタリングで付着させる付着工程と、該付着工程後に350〜625℃で加熱して該磁性合金の結晶粒の粒界へ該浸透材を浸透拡散させる浸透工程とを備え、該結晶粒が少なくとも該浸透材の構成元素で被包された希土類磁石が得られることを特徴とする希土類磁石の製造方法が記載されている。この方法によれば、高保磁力発現の理想的な組織構造を有する磁石が得られる。しかしながら、それを製造する工程は、希土類元素を含む磁性合金の製造工程、浸透材の付着工程および浸透工程から構成され、工程数が多く生産性に問題がある。   On the other hand, Patent Document 7 discloses an adhesion step in which a permeation material (CuNd alloy) capable of generating a liquid phase at a temperature lower than the eutectic point of the magnetic alloy is adhered to the surface of the magnetic alloy containing the rare earth element by sputtering, and the adhesion A rare earth in which the crystal grains are encapsulated with at least constituent elements of the permeation material, comprising a permeation step of permeating and diffusing the permeation material into the grain boundaries of the crystal grains of the magnetic alloy by heating at 350 to 625 ° C. A method for producing a rare earth magnet is described, characterized in that a magnet is obtained. According to this method, a magnet having an ideal tissue structure with high coercive force can be obtained. However, the process for producing it is composed of a production process of a magnetic alloy containing rare earth elements, an adhesion material adhesion process and an infiltration process, and there are many problems in productivity.

特許第3932143号公報Japanese Patent No. 3932143 特許第3455552号公報Japanese Patent No. 3455552 特開2004−6767号公報JP 2004-6767 A 特公平4−35548号公報Japanese Patent Publication No. 4-35548 特開平10−280002号公報JP 10-280002 A 特公平6−922号公報Japanese Patent Publication No. 6-922 特開2011−61038号公報JP 2011-61038 A

日立金属技報、Vol.27、(2011)、34−41Hitachi Metals Technical Report, Vol. 27, (2011), 34-41

本発明は、上記従来のDyフリ−の希土類磁石の製造における問題点、すなわち、生産性が低いことに着目してなされたもので、その課題とするところは、永久磁石用として使用されるCu含有希土類−鉄−硼素系合金粉末とそれを還元拡散法により低コストで効率的に製造する方法を提供することにある。   The present invention has been made by paying attention to the above-mentioned problems in the production of the conventional Dy-free rare earth magnet, that is, low productivity, and the problem is that Cu used for permanent magnets is used. It is an object of the present invention to provide a rare earth-iron-boron based alloy powder and a method for efficiently producing the same by a reduction diffusion method.

本発明者らは、上記課題を解決すべくDyを含まないNd−Fe−B系磁石について鋭意研究を重ねた結果、希土類酸化物粉末もしくは希土類酸化物粉末および希土類金属粉末、含鉄粉末、含硼素粉末からなる原料粉末に少なくとも特定量の含銅粉末を加え、アルカリ金属またはアルカリ土類金属から選ばれる還元剤と混合し、特定の条件で還元拡散反応させることにより、CuをNdと共に主相のNdFe14B粒子間の粒界に存在させることができることを見出し、本発明を完成させるに至った。 As a result of intensive studies on Nd—Fe—B magnets not containing Dy in order to solve the above-mentioned problems, the present inventors have found that rare earth oxide powder or rare earth oxide powder and rare earth metal powder, iron-containing powder, boron-containing powder At least a specific amount of copper-containing powder is added to the raw material powder consisting of powder, mixed with a reducing agent selected from alkali metals or alkaline earth metals, and subjected to a reduction diffusion reaction under specific conditions, whereby Cu is mixed with Nd in the main phase. The present inventors have found that it can be present at the grain boundary between Nd 2 Fe 14 B grains, and have completed the present invention.

すなわち、本発明の第1の発明によれば、希土類酸化物粉末もしくは希土類酸化物粉末および希土類金属粉末と、含鉄粉末、含硼素粉末からなる原料粉末に前記酸化物粉末を還元するのに十分な量の還元剤を混合し、還元拡散法によりCu含有希土類−鉄−硼素系合金粉末を製造する方法であって、前記希土類酸化物粉末及び前記希土類金属粉末は、希土類元素として、少なくともNdを含み、Dyを含まない、1種又は2種以上の元素を含み、原料粉末として、さらに含銅粉末を混合し、前記含銅粉末は、組成範囲がCu換算で0.003〜1.5重量%となるように混合され、該混合物を不活性ガス雰囲気下で900℃〜1200℃の温度で0.5時間以上保持して熱処理し、得られた反応生成混合物を湿式処理した後、乾燥することを含み、前記希土類−鉄−硼素系合金粉末は、前記銅粉末に由来するCuが、Ndの少なくとも一部を含む主相粒子内に存在せず、Ndの残りと共に前記主相間の粒界に存在すること、を特徴とするCu含有希土類−鉄−硼素系合金粉末の製造方法により提供される。
That is, according to the first invention of the present invention, it is sufficient to reduce the oxide powder to a raw material powder composed of rare earth oxide powder or rare earth oxide powder and rare earth metal powder, and iron-containing powder and boron-containing powder. A method for producing a Cu-containing rare earth-iron-boron alloy powder by a reduction diffusion method by mixing an amount of a reducing agent, wherein the rare earth oxide powder and the rare earth metal powder contain at least Nd as a rare earth element. In addition, one or two or more elements not containing Dy are contained, and a copper-containing powder is further mixed as a raw material powder, and the composition range of the copper-containing powder is 0.003 to 1.5% by weight in terms of Cu The mixture is heated to a temperature of 900 ° C. to 1200 ° C. for 0.5 hours or more in an inert gas atmosphere, and the resulting reaction product mixture is wet-treated and then dried. The Seen, the rare earth - iron - boron alloy powder, Cu derived from the containing copper powder is not present in the main phase particles containing at least a portion of Nd, the grain boundary between the main phase with the rest of Nd It is provided by a method for producing a Cu-containing rare earth-iron-boron alloy powder characterized by being present.

また、本発明の第の発明によれば、第1の発明において、さらに含アルミニウム粉末を添加することを特徴とするCu含有希土類−鉄−硼素系合金粉末の製造方法により提供される。
According to a second aspect of the present invention, there is provided a method for producing a Cu-containing rare earth-iron-boron alloy powder characterized in that in the first aspect, an aluminum-containing powder is further added.

また、本発明の第3の発明によれば、第2の発明において、前記含アルミニウム粉末の組成範囲がAl換算で0.003〜1.5重量%であることを特徴とするCu含有希土類−鉄−硼素系合金粉末の製造方法により提供される。
According to a third aspect of the present invention, in the second aspect, the composition range of the aluminum-containing powder is 0.003 to 1.5% by weight in terms of Al. Provided by a method for producing an iron-boron alloy powder.

また、本発明の第の発明によれば、第1〜のいずれかの発明において、前記熱処理の保持時間が1〜5時間であることを特徴とするCu含有希土類−鉄−硼素系合金粉末の製造方法により提供される。
According to a fourth aspect of the present invention, there is provided a Cu-containing rare earth-iron-boron based alloy according to any one of the first to third aspects, wherein the heat treatment is held for 1 to 5 hours. Provided by a method for producing a powder.

また、本発明の第の発明によれば、第1〜のいずれかの発明において、前記還元剤と共に、アルカリ金属塩化物およびアルカリ土類金属塩化物から選ばれる少なくとも1種のフラックスを使用することを特徴とするCu含有希土類−鉄−硼素系合金粉末の製造方法により提供される。
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, at least one flux selected from alkali metal chlorides and alkaline earth metal chlorides is used together with the reducing agent. It is provided by a method for producing a Cu-containing rare earth-iron-boron alloy powder.

本発明の第6の発明によれば、NdFe14B粒子を主相とし、Dyを含まないCu含有希土類−鉄−硼素系合金粉末であって、前記Cuが、主相NdFe14B粒子内に存在せず、Ndと共に主相間の粒界に存在することを特徴とするCu含有希土類−鉄−硼素系合金粉末が提供される。
また、本発明の第7の発明によれば、第6の発明において、平均粒径が1〜150μmであることを特徴とするCu含有希土類−鉄−硼素系合金粉末が提供される。
また、本発明の第8の発明によれば、第6又は7の発明において、さらにAlが、主相NdFe14B粒子内に散在していることを特徴とするCu含有希土類−鉄−硼素系合金粉末により提供される。
According to the sixth aspect of the present invention, a Cu-containing rare earth-iron-boron alloy powder containing Nd 2 Fe 14 B particles as a main phase and not containing Dy, wherein the Cu is a main phase Nd 2 Fe 14. There is provided a Cu-containing rare earth-iron-boron alloy powder characterized in that it is not present in B particles but is present together with Nd at grain boundaries between main phases.
According to a seventh aspect of the present invention, there is provided a Cu-containing rare earth-iron-boron based alloy powder characterized in that, in the sixth aspect, the average particle size is 1-150 μm.
According to the eighth invention of the present invention, in the sixth or seventh invention, Cu is further dispersed in the main phase Nd 2 Fe 14 B particles. Cu-containing rare earth-iron- Provided by boron based alloy powder.

本発明によれば、Cu含有希土類−鉄−硼素系合金粉末が、特定の還元拡散法で製造されるため生産性が極めて高い。また、原料にDyを用いないために、低コストである。しかも、Cu含有希土類−鉄−硼素系合金粉末は、CuがNdと共に主相のNdFe14B粒子間の粒界に存在するため、高い磁気特性が期待できる。 According to the present invention, the Cu-containing rare earth-iron-boron alloy powder is produced by a specific reduction diffusion method, so that productivity is extremely high. Further, since Dy is not used as a raw material, the cost is low. Moreover, the Cu-containing rare earth-iron-boron alloy powder can be expected to have high magnetic properties because Cu exists together with Nd at the grain boundaries between the main phase Nd 2 Fe 14 B particles.

本発明により得られたCu含有希土類−鉄−硼素系合金粉末(合金粉末a)の断面SEMの反射電子像を示す写真である。It is a photograph which shows the reflected electron image of the cross section SEM of Cu containing rare earth-iron- boron system alloy powder (alloy powder a) obtained by the present invention. 本発明により得られたCu含有希土類−鉄−硼素系合金粉末(合金粉末a)の断面SEMのNd分布を示す写真である。It is a photograph which shows Nd distribution of the cross-sectional SEM of Cu containing rare earth-iron- boron type alloy powder (alloy powder a) obtained by this invention. 本発明により得られたCu含有希土類−鉄−硼素系合金粉末(合金粉末a)の断面SEMのFe分布を示す写真である。It is a photograph which shows Fe distribution of the cross-sectional SEM of Cu containing rare earth-iron- boron type alloy powder (alloy powder a) obtained by this invention. 本発明により得られたCu含有希土類−鉄−硼素系合金粉末(合金粉末a)の断面SEMのCu分布を示す写真である。It is a photograph which shows Cu distribution of the cross-sectional SEM of Cu containing rare earth-iron- boron type alloy powder (alloy powder a) obtained by this invention. 本発明により得られたCu含有希土類−鉄−硼素系合金粉末(合金粉末l)の断面SEMの反射電子像を示す写真である。It is a photograph which shows the reflected electron image of the cross section SEM of Cu containing rare earth-iron- boron system alloy powder (alloy powder 1) obtained by the present invention. 本発明により得られたCu含有希土類−鉄−硼素系合金粉末(合金粉末l)の断面SEMのNd分布を示す写真である。It is a photograph which shows Nd distribution of the cross-sectional SEM of Cu containing rare earth-iron- boron type alloy powder (alloy powder l) obtained by this invention. 本発明により得られたCu含有希土類−鉄−硼素系合金粉末(合金粉末l)の断面SEMのFe分布を示す写真である。It is a photograph which shows Fe distribution of the cross-sectional SEM of Cu containing rare earth-iron- boron type alloy powder (alloy powder l) obtained by this invention. 本発明により得られたCu含有希土類−鉄−硼素系合金粉末(合金粉末l)の断面SEMのCu分布を示す写真である。It is a photograph which shows Cu distribution of the cross-sectional SEM of Cu containing rare earth-iron- boron type alloy powder (alloy powder l) obtained by this invention. 本発明により得られたCu含有希土類−鉄−硼素系合金粉末(合金粉末l)の断面SEMのAl分布を示す写真である。It is a photograph which shows Al distribution of the cross-sectional SEM of Cu containing rare earth-iron- boron system alloy powder (alloy powder l) obtained by the present invention.

以下、本発明の実施の形態について、図面を用いて具体的に説明する。
本発明は、希土類酸化物粉末もしくは希土類酸化物粉末および希土類金属粉末と、含鉄粉末、含硼素粉末からなる原料粉末に前記酸化物粉末を還元するのに十分な量の還元剤を混合し、還元拡散法によりCu含有希土類−鉄−硼素系合金粉末を製造する方法であって、原料粉末として、さらに含銅粉末もしくは含銅粉末および含アルミニウム粉末を特定量混合し、該混合物を不活性ガス雰囲気下で900℃〜1200℃の温度で熱処理し、得られた反応生成混合物を湿式処理した後、乾燥することを特徴とする。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
In the present invention, a rare earth oxide powder or rare earth oxide powder and rare earth metal powder, and a raw material powder comprising iron-containing powder and boron-containing powder are mixed with a reducing agent in an amount sufficient to reduce the oxide powder. A method for producing a Cu-containing rare earth-iron-boron alloy powder by a diffusion method, wherein a specific amount of a copper-containing powder or a copper-containing powder and an aluminum-containing powder is further mixed as a raw material powder, and the mixture is inert gas atmosphere It heat-processes at the temperature of 900 to 1200 degreeC below, and after drying the obtained reaction product mixture, it is characterized by the above-mentioned.

1.原料粉末
本発明において用いられる希土類元素としては、例えばGd、Tb、Ho、Er、Tm、Yb、La、Ce、Pr、Nd、Sm、Eu、Lu、Pm、Y、Scなどの希土類金属酸化物粉末や希土類金属粉末が、1種もしくは2種以上を組み合わせて使用される。なかでもNdを必須とする。純度は、99.9%以上のものが好ましい。使用量は、希土類元素の組成範囲が20〜30重量%となるようにする。
1. Raw material powder Examples of rare earth elements used in the present invention include rare earth metal oxides such as Gd, Tb, Ho, Er, Tm, Yb, La, Ce, Pr, Nd, Sm, Eu, Lu, Pm, Y, and Sc. Powder or rare earth metal powder is used alone or in combination of two or more. Of these, Nd is essential. The purity is preferably 99.9% or more. The amount used is such that the composition range of the rare earth element is 20 to 30% by weight.

含鉄原料は酸化鉄粉末や鉄粉が好ましく、含硼素原料は酸化硼素粉末やフェロボロン粉末などの合金粉末が好ましい。純度は、99%以上のものが好ましい。使用量は、組成範囲がFe65〜77重量%、B0.5〜2重量%となるようにする。   The iron-containing raw material is preferably iron oxide powder or iron powder, and the boron-containing raw material is preferably alloy powder such as boron oxide powder or ferroboron powder. The purity is preferably 99% or more. The amount used is such that the composition range is Fe 65-77 wt% and B 0.5-2 wt%.

また、含銅原料は酸化銅粉末や銅粉が好ましい。純度は、99%以上のものが好ましい。銅は、Ndと合金化し、Nd−Fe−Bの主相同士で形成される粒子の粒界に存在するに十分な使用量とする。Cuの使用量は、組成範囲が0.003〜1.5重量%となるようにする。0.003重量%未満では主相NdFe14B粒子の磁気的孤立化が不十分であり、1.5重量%を超えると過剰の銅はCuとして存在し、いずれにおいても磁気特性が低下する。Cuの使用量は、組成範囲が0.005〜1.0重量%となることが好ましく、0.007〜1.0重量%となることがより好ましい。
また、本発明において原料粉末には、さらに含アルミニウム原料は酸化アルミニウム粉末やアルミニウム粉を含むことができる。純度は、99%以上のものが好ましい。Alの使用量は、組成範囲が0.003〜1.5重量%となるようにする。0.003重量%以上使用すると主相NdFe14B粒子の磁気的孤立化をより高めることができる。ただ、1.5重量%を超えると過剰のアルミニウムが阻害元素となって、磁気特性が低下することがある。
The copper-containing raw material is preferably copper oxide powder or copper powder. The purity is preferably 99% or more. Copper is alloyed with Nd and is used in an amount sufficient to exist at the grain boundaries of the particles formed by the main phases of Nd—Fe—B. The amount of Cu used is such that the composition range is 0.003 to 1.5% by weight. If it is less than 0.003% by weight, the magnetic isolation of the main phase Nd 2 Fe 14 B particles is insufficient, and if it exceeds 1.5% by weight, excess copper exists as Cu, and in any case, the magnetic properties are deteriorated. To do. The amount of Cu used is preferably in the composition range of 0.005 to 1.0% by weight, and more preferably 0.007 to 1.0% by weight.
In the present invention, the raw material powder can further contain an aluminum-containing raw material such as an aluminum oxide powder or an aluminum powder. The purity is preferably 99% or more. The amount of Al used is such that the composition range is 0.003 to 1.5% by weight. When 0.003% by weight or more is used, the magnetic isolation of the main phase Nd 2 Fe 14 B particles can be further increased. However, if it exceeds 1.5% by weight, excess aluminum may become an inhibitory element, and the magnetic properties may deteriorate.

また、原料粉末の粒度は特に限定されないが、50μm以下とすることが望ましい。50μmを越えると混合性が悪化し、均一な組成の合金粉末を得ることが困難となる可能性がある。好ましいのは、10〜30μmである。なお、各原料粉末の粉砕、混合手段は特に限定されない。混合には、例えば、Vブレンダ−、Sブレンダ−など、公知の混合機を用いることができる。   The particle size of the raw material powder is not particularly limited, but is desirably 50 μm or less. If it exceeds 50 μm, the mixing property is deteriorated, and it may be difficult to obtain an alloy powder having a uniform composition. The preferred range is 10 to 30 μm. The means for pulverizing and mixing each raw material powder is not particularly limited. For mixing, for example, a known mixer such as a V blender or an S blender can be used.

2.還元剤、フラックス
本発明において、還元剤としては、アルカリ金属、アルカリ土類金属およびこれらの水素化物から選ばれる少なくとも1種、例えば、Li、Na、K、Ca、Mg等、およびこれらの水素化物を、それぞれ単独または2種以上の組み合わせで使用する。これら還元剤の形状は、例えば粒状または粉末状で使用する。また、これらの還元剤は、反応等量(Ndを還元するのに必要な化学量論量)の1.1〜2.0倍量となる割合で使用する。多すぎると、湿式処理後に残留量が増えるので1.1〜1.5倍量が好ましい。
2. Reducing agent, flux In the present invention, the reducing agent is at least one selected from alkali metals, alkaline earth metals, and hydrides thereof, such as Li, Na, K, Ca, Mg, and the hydrides thereof. Are used alone or in combination of two or more. These reducing agents are used in the form of granules or powders, for example. Moreover, these reducing agents are used in a ratio that is 1.1 to 2.0 times the reaction equivalent amount (the stoichiometric amount necessary for reducing Nd 2 O 3 ). If the amount is too large, the residual amount increases after wet processing, so 1.1 to 1.5 times the amount is preferable.

本発明の方法においては、上述した還元剤と共に、フラックスとして例えばアルカリ金属塩化物、アルカリ土類金属塩化物を必要に応じて使用することができる。これらは、還元拡散反応によって得られる反応生成物中の合金粉末の融着・粗粒化を抑制し、湿式工程における崩壊性を向上させることができる。具体的には、Li、Na、K、Mgなどの塩化物が好適であり、特に水和物を含んでいない無水のものが好ましい。最も好適なのは、加熱した際に揮発性を殆んど示さず、かつコストの面でも有利な無水塩化カルシウムである。これらアルカリ金属塩化物あるいはアルカリ土類金属塩化物の使用量は、Nd源が酸化物である場合、Ndに対して1重量%以上とすることが好ましく、特に微細な合金粉末を製造する場合には、3〜20重量%の範囲とすることが望ましい。 In the method of the present invention, together with the reducing agent described above, for example, alkali metal chloride or alkaline earth metal chloride can be used as a flux as required. These can suppress the fusion and coarsening of the alloy powder in the reaction product obtained by the reduction diffusion reaction, and can improve the disintegration property in the wet process. Specifically, chlorides such as Li, Na, K, and Mg are preferable, and anhydrous ones that do not contain hydrates are particularly preferable. Most preferred is anhydrous calcium chloride which exhibits little volatility when heated and is advantageous in terms of cost. When the Nd source is an oxide, the use amount of these alkali metal chlorides or alkaline earth metal chlorides is preferably 1% by weight or more with respect to Nd 2 O 3 , and particularly a fine alloy powder is produced. In that case, it is desirable that the content be in the range of 3 to 20% by weight.

3.還元拡散反応
以下、本発明における還元拡散反応を、Nd粉末、Fe粉、FeB合金粉末、CuO粉末および金属カルシウムを使用して合金粉末を製造する場合を例にとって具体的に説明する。
本発明の方法によれば、上記原料成分の混合物を、Arガスなどの不活性ガス雰囲気中において、還元剤が溶融する温度以上、かつ合金が溶融しない温度まで昇温、保持して加熱処理する。
3. Reduction Diffusion Reaction Hereinafter, the reduction diffusion reaction in the present invention will be specifically described by taking as an example the case of producing an alloy powder using Nd 2 O 3 powder, Fe powder, FeB alloy powder, CuO powder and metallic calcium.
According to the method of the present invention, the mixture of the raw material components is heated and maintained in an inert gas atmosphere such as Ar gas at a temperature equal to or higher than a temperature at which the reducing agent melts and a temperature at which the alloy does not melt. .

上記加熱処理は、公知の加熱炉を用いて行うことができる。不活性ガス雰囲気としては、特に限定されないが、例えば、Arガス雰囲気が好適である。また、加熱処理温度は、還元剤、例えば、金属カルシウムの場合には完全に溶解する900℃以上、かつNdFeB合金が溶解しない1200℃以下とする。900℃未満では還元剤が完全に溶解しない場合があり、1200℃を超えるとNdFeB合金が溶解するので好ましくない。好ましいのは、1000〜1200℃である。加熱処理時間は、混合物組成や処理量などで変化するため一概には規定できないが、0.5時間以上保持する必要がある。1〜12時間程度保持することが好ましく、1〜8時間がより好ましく、1〜5時間が特に好ましい。   The heat treatment can be performed using a known heating furnace. Although it does not specifically limit as inert gas atmosphere, For example, Ar gas atmosphere is suitable. The heat treatment temperature is set to 900 ° C. or higher at which the reducing agent, for example, metallic calcium is completely dissolved and 1200 ° C. or lower at which the NdFeB alloy is not dissolved. If it is less than 900 degreeC, a reducing agent may not melt | dissolve completely, and if it exceeds 1200 degreeC, since a NdFeB alloy will melt | dissolve, it is not preferable. Preferred is 1000 to 1200 ° C. The heat treatment time varies depending on the composition of the mixture, the amount of treatment, etc., and thus cannot be defined unconditionally, but it must be maintained for 0.5 hour or longer. It is preferable to hold for about 1 to 12 hours, more preferably 1 to 8 hours, and particularly preferably 1 to 5 hours.

この加熱処理で、NdはNdに還元されるとともに、このNdがFeおよびFeB中に拡散してNdFeB系合金となる。また、含銅粉として酸化銅粉末を用いたときは、Cuに還元され、含アルミニウム粉として酸化アルミニウム粉末を用いたときは、Alに還元される。
前記特許文献6には、工業的生産上不可避的不純物としてCuの存在が許容できると記載されている。ここには、Cuの具体的存在位置については記載がないが、CuがNdFeB系合金の主相に取り込まれたのでは磁気特性が低下する。本発明では、CuはNdFeB系合金の主相に取り込まれず、粒界に存在することを確認している。
With this heat treatment, Nd 2 O 3 is reduced to Nd, and this Nd diffuses into Fe and FeB to form an NdFeB-based alloy. Further, when copper oxide powder is used as the copper-containing powder, it is reduced to Cu, and when aluminum oxide powder is used as the aluminum-containing powder, it is reduced to Al.
Patent Document 6 describes that the presence of Cu is acceptable as an inevitable impurity in industrial production. Although there is no description about the specific location of Cu here, if Cu is taken into the main phase of the NdFeB-based alloy, the magnetic properties will deteriorate. In the present invention, it is confirmed that Cu is not taken into the main phase of the NdFeB alloy and exists at the grain boundary.

4.湿式処理
還元拡散反応終了後、得られた反応生成物は湿式処理を行う。この湿式処理は、反応生成物を水中に投入することによって反応生成物を崩壊させる。
4). Wet treatment After the reduction diffusion reaction is completed, the obtained reaction product is subjected to a wet treatment. In this wet treatment, the reaction product is collapsed by introducing the reaction product into water.

還元剤として金属カルシウムを、フラックスとして無水塩化カルシウムを使用した場合を例にとって説明する。反応生成物中には生成した合金粒子と、未反応の金属カルシウム、塩化カルシウムおよび副生した酸化カルシウムとが含まれている。従って、反応生成物を水中に投入することにより、カルシウムと水との反応による水素の発生、および易溶性の塩化カルシウムの作用により、反応生成物は一挙に崩壊してスラリ−となる。このスラリ−上部は、水酸化カルシウムを主体とした懸濁液であるので、デカンテ−ションを繰り返すことにより、その大部分を除去することができる。   A case where metallic calcium is used as the reducing agent and anhydrous calcium chloride is used as the flux will be described as an example. The reaction product contains generated alloy particles and unreacted metallic calcium, calcium chloride, and by-produced calcium oxide. Therefore, when the reaction product is put into water, the reaction product collapses into a slurry by the generation of hydrogen due to the reaction between calcium and water and the action of readily soluble calcium chloride. Since the upper part of the slurry is a suspension mainly composed of calcium hydroxide, most of the slurry can be removed by repeating the decantation.

この湿式処理の後は、必要に応じて希酸による洗浄(酸洗浄)を行い、微量に残存した水酸化物の除去および合金粉末の表面に形成された酸化物を除去し、次いで必要に応じてアルコ−ルなどの有機溶媒で置換した後、真空乾燥して合金粉末を得る。希酸としては、酢酸などが挙げられるが、濃度が高かったり使用時間が長いと酸化カルシウムだけでなくNdも溶解するので注意が必要である。最終的な洗浄は、純水で上澄み液の伝導度が0.1mS/cmを下回るまでデカンテ−ションを繰り返し行うことが望ましい。
最後に、乾燥させ合金粉末から水を除去する。乾燥手段は自然乾燥でも真空乾燥でもよい。室温でもよいが、必要により30〜100℃に加熱することができる。また、必要により媒体攪拌ミルなどの粉砕装置で処理することができる。
After this wet treatment, cleaning with dilute acid (acid cleaning) is performed as necessary to remove trace amounts of remaining hydroxide and oxide formed on the surface of the alloy powder, and then if necessary After substituting with an organic solvent such as alcohol, vacuum drying is performed to obtain an alloy powder. Examples of the dilute acid include acetic acid and the like. However, if the concentration is high or the usage time is long, not only calcium oxide but also Nd is dissolved. In the final cleaning, it is desirable to repeat decantation until the conductivity of the supernatant liquid is less than 0.1 mS / cm with pure water.
Finally, it is dried to remove water from the alloy powder. The drying means may be natural drying or vacuum drying. Although it may be room temperature, it can be heated to 30 to 100 ° C. if necessary. Moreover, it can process with grinding | pulverization apparatuses, such as a medium stirring mill, as needed.

5.Cu含有NdFe14B合金粉末
本発明の製造方法によって得られたCu含有NdFe14B合金粉末は、Cuが主相NdFe14B粒子内に存在せず、Ndと共に主相間の粒界に存在し、高保磁力発現の組織となっている。
5. Cu containing Nd 2 Fe 14 B alloy powder obtained by the method for producing a Cu-containing Nd 2 Fe 14 B alloy powder present invention, Cu is not present in the main phase Nd 2 Fe 14 in B particles, between the main phase with Nd It exists at the grain boundary and has a structure with high coercive force.

ここで、図1〜4を参照すると、図2、図4の写真から、CuがNdとともに主相NdFe14B粒子の粒界に入り込んでいることが分かる。このようにCuが粒界に存在し、主相NdFe14B粒子には固溶しないことは、還元拡散法によるCu含有NdFe14B合金粉末では、これまで確認されていなかった。粒界の厚さ(幅)は、Ndの量により決まるが、Ndリッチ相の割合が多すぎると磁気特性が低下するため好ましくない。
また、Cu含有NdFe14B合金粉末はさらにAlを含むことが好ましく、図5〜9を参照すると、図9の写真から、Alが主相NdFe14B粒子の全体に散在していることが分かる。
このCu含有NdFe14B合金粉末は、平均粒径が1〜150μmであり、HDDR法による合金粉末の原料として使用することができる。
1 to 4, it can be seen from the photographs of FIGS. 2 and 4 that Cu has entered the grain boundary of the main phase Nd 2 Fe 14 B particles together with Nd. Thus, it has not been confirmed so far in Cu-containing Nd 2 Fe 14 B alloy powders by the reduction diffusion method that Cu exists at the grain boundaries and does not dissolve in the main phase Nd 2 Fe 14 B particles. The thickness (width) of the grain boundary is determined by the amount of Nd. However, if the proportion of the Nd-rich phase is too large, the magnetic properties are deteriorated, which is not preferable.
Further, preferably includes Cu-containing Nd 2 Fe 14 B alloy powder further Al, referring to FIGS. 5-9, the photograph of FIG. 9, Al is scattered throughout the main phase Nd 2 Fe 14 B particles I understand that.
This Cu-containing Nd 2 Fe 14 B alloy powder has an average particle diameter of 1 to 150 μm and can be used as a raw material for alloy powders by the HDDR method.

以下に、本発明の実施例を比較例とともに具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。   Examples of the present invention will be specifically described below together with comparative examples. However, the present invention is not limited to the following examples.

(実施例1)
平均粒径5.1μmの純度99.9重量%の酸化ネオジム粉末4.34g、酸化銅粉末0.068g、粒径が10〜70μmの粉末が全体の94%を占める純度99重量%の鉄粉7.07g、および−330メッシュが全体の99.8%を占めるB含有量19.1重量%のフェロボロン粉末0.78gを自動擂潰機で10分混合し、この混合物にさらに粒度4メッシュ(タイラ−メッシュ)以下の純度99重量%の粒状金属カルシウム1.81gを添加して混合した。酸化銅粉末の量は、目的とする合金粉末に対してCu換算で0.5重量%となるようにした。
得られた混合物を鉄坩堝に入れ、ロータリ−ポンプで5分間減圧した後、Arガスを供給して大気圧まで復圧し、Arガス気流中で約3時間かけて1050℃まで昇温し、その温度で5時間保持し、その後室温まで冷却した。
反応生成物を反応容器から取り出し、純水中に投入して30分間攪拌して水中崩壊した。反応生成物中に含まれる残留金属カルシウム、CaOおよびCa(OH)を除去するため、pH7〜8になるまでデカンテ−ションによる洗浄を繰り返し行った。次に、2Nの酢酸を用いて15分間洗浄した後、再度純水で上澄み液の伝導度が0.1mS/cmになるまでデカンテ−ションによる洗浄を繰り返し行った。その後、上澄み液を除去し、AP−2(変性アルコール)で置換してから真空乾燥を行い、合金粉末aを得た。
得られた合金粉末aは、平均粒径が11.7μmであり、粉末X線解析の結果、主相がNdFe14Bであった。また、その断面組織を反射電子像による解析を行った結果、図1〜図4に示すようにCuはNdと共に主相NdFe14B粒子間の粒界に存在し、NdFe14Bの粒子内には固溶していないことが確認された。
(Example 1)
Iron powder with a purity of 99% by weight, in which 4.34 g of neodymium oxide powder having an average particle size of 5.1 μm and purity of 99.9% by weight, 0.068 g of copper oxide powder and 94% of the powder having a particle size of 10 to 70 μm account for 94% of the total. 7.07 g and 0.78 g of ferroboron powder having a B content of 19.1% by weight, which is 99.8% of the total of −330 mesh, were mixed in an automatic crusher for 10 minutes. Tyler mesh) 1.81 g of the following metallic metal calcium having a purity of 99% by weight was added and mixed. The amount of the copper oxide powder was 0.5% by weight in terms of Cu with respect to the target alloy powder.
The obtained mixture was put in an iron crucible and reduced in pressure with a rotary pump for 5 minutes. Then, Ar gas was supplied to restore the pressure to atmospheric pressure, and the temperature was raised to 1050 ° C. in an Ar gas stream over about 3 hours. The temperature was maintained for 5 hours and then cooled to room temperature.
The reaction product was taken out from the reaction vessel, poured into pure water, stirred for 30 minutes and disintegrated in water. In order to remove residual metallic calcium, CaO and Ca (OH) 2 contained in the reaction product, washing by decantation was repeated until the pH reached 7-8. Next, after washing with 2N acetic acid for 15 minutes, washing with decantation was repeated with pure water until the conductivity of the supernatant reached 0.1 mS / cm. Thereafter, the supernatant was removed and replaced with AP-2 (modified alcohol), followed by vacuum drying to obtain alloy powder a.
The obtained alloy powder a had an average particle size of 11.7 μm, and as a result of powder X-ray analysis, the main phase was Nd 2 Fe 14 B. Further, as a result of analyzing the cross-sectional structure by a reflected electron image, as shown in FIGS. 1 to 4, Cu is present at the grain boundary between the main phase Nd 2 Fe 14 B particles together with Nd, and Nd 2 Fe 14 B It was confirmed that no solid solution was found in the particles.

(実施例2)
実施例1において、還元拡散時の反応温度を1025℃、保持時間を4時間とした以外は、実施例1と同様にして実施例2に係る合金粉末bを得た。
得られた合金粉末bは、粉末X線解析の結果、主相がNdFe14Bであった。また、その断面組織を反射電子像による解析を行った結果、CuはNdと共に主相NdFe14B粒子間の粒界に存在し、NdFe14Bの粒子内には固溶していないことが確認された。
(Example 2)
In Example 1, an alloy powder b according to Example 2 was obtained in the same manner as in Example 1 except that the reaction temperature during reduction diffusion was 1025 ° C. and the holding time was 4 hours.
As a result of powder X-ray analysis, the main phase of the obtained alloy powder b was Nd 2 Fe 14 B. Moreover, as a result of analyzing the cross-sectional structure by the reflected electron image, Cu exists in the grain boundary between the main phase Nd 2 Fe 14 B particles together with Nd, and is dissolved in the Nd 2 Fe 14 B particles. Not confirmed.

(実施例3)
実施例1において、還元拡散時の保持時間を3時間とした以外は、実施例1と同様にして実施例3に係る合金粉末cを得た。
得られた合金粉末cは、粉末X線解析の結果、主相がNdFe14Bであった。また、その断面組織を反射電子像による解析を行った結果、CuはNdと共に主相NdFe14B粒子間の粒界に存在し、NdFe14Bの粒子内には固溶していないことが確認された。
(Example 3)
In Example 1, an alloy powder c according to Example 3 was obtained in the same manner as in Example 1 except that the holding time during reduction diffusion was 3 hours.
As a result of the powder X-ray analysis, the main phase of the obtained alloy powder c was Nd 2 Fe 14 B. Moreover, as a result of analyzing the cross-sectional structure by the reflected electron image, Cu exists in the grain boundary between the main phase Nd 2 Fe 14 B particles together with Nd, and is dissolved in the Nd 2 Fe 14 B particles. Not confirmed.

(実施例4)
実施例1において、酸化銅の替わりに銅0.054g用い、粒状金属カルシウム1.78gとした以外は、実施例1と同様にして実施例4に係る合金粉末dを得た。この銅粉末の量は、目的とする合金粉末に対してCu換算で0.5重量%となる。
得られた合金粉末dは、粉末X線解析の結果、主相がNdFe14Bであった。また、その断面組織を反射電子像による解析を行った結果、CuはNdと共に主相NdFe14B粒子間の粒界に存在し、NdFe14Bの粒子内には固溶していないことが確認された。
Example 4
In Example 1, an alloy powder d according to Example 4 was obtained in the same manner as in Example 1 except that 0.054 g of copper was used instead of copper oxide and 1.78 g of granular metal calcium was used. The amount of the copper powder is 0.5% by weight in terms of Cu with respect to the target alloy powder.
As a result of the powder X-ray analysis, the main phase of the obtained alloy powder d was Nd 2 Fe 14 B. Moreover, as a result of analyzing the cross-sectional structure by the reflected electron image, Cu exists in the grain boundary between the main phase Nd 2 Fe 14 B particles together with Nd, and is dissolved in the Nd 2 Fe 14 B particles. Not confirmed.

(実施例5)
実施例1において、酸化銅粉末0.077gとした以外は、実施例1と同様にして実施例5に係る合金粉末eを得た。この酸化銅粉末の量は、目的とする合金粉末に対してCu換算で0.6重量%となる。
得られた合金粉末eは、粉末X線解析の結果、主相がNdFe14Bであった。また、その断面組織を反射電子像による解析を行った結果、CuはNdと共に主相NdFe14B粒子間の粒界に存在し、NdFe14Bの粒子内には固溶していないことが確認された。
(Example 5)
In Example 1, an alloy powder e according to Example 5 was obtained in the same manner as in Example 1, except that 0.077 g of copper oxide powder was used. The amount of the copper oxide powder is 0.6% by weight in terms of Cu with respect to the target alloy powder.
As a result of powder X-ray analysis, the obtained alloy powder e was Nd 2 Fe 14 B as a main phase. Moreover, as a result of analyzing the cross-sectional structure by the reflected electron image, Cu exists in the grain boundary between the main phase Nd 2 Fe 14 B particles together with Nd, and is dissolved in the Nd 2 Fe 14 B particles. Not confirmed.

(実施例6)
実施例1において、酸化ネオジウム粉末4.21g、粒状金属カルシウム1.76gとした以外は、実施例1と同様にして実施例6に係る合金粉末fを得た。
得られた合金粉末fは、粉末X線解析の結果、主相がNdFe14Bであった。また、その断面組織を反射電子像による解析を行った結果、CuはNdと共に主相NdFe14B粒子間の粒界に存在し、NdFe14Bの粒子内には固溶していないことが確認された。
(Example 6)
In Example 1, an alloy powder f according to Example 6 was obtained in the same manner as in Example 1 except that 4.21 g of neodymium oxide powder and 1.76 g of granular metal calcium were used.
As a result of powder X-ray analysis, the obtained alloy powder f had a main phase of Nd 2 Fe 14 B. Moreover, as a result of analyzing the cross-sectional structure by the reflected electron image, Cu exists in the grain boundary between the main phase Nd 2 Fe 14 B particles together with Nd, and is dissolved in the Nd 2 Fe 14 B particles. Not confirmed.

(実施例7)
実施例1において、さらに塩化カルシウム0.13gを添加した以外は、実施例1と同様にして実施例7に係る合金粉末gを得た。
得られた合金粉末gは、粉末X線解析の結果、主相がNdFe14Bであった。また、その断面組織を反射電子像による解析を行った結果、CuはNdと共に主相NdFe14B粒子間の粒界に存在し、NdFe14Bの粒子内には固溶していないことが確認された。
(Example 7)
In Example 1, an alloy powder g according to Example 7 was obtained in the same manner as in Example 1 except that 0.13 g of calcium chloride was further added.
As a result of powder X-ray analysis, the main phase of the obtained alloy powder g was Nd 2 Fe 14 B. Moreover, as a result of analyzing the cross-sectional structure by the reflected electron image, Cu exists in the grain boundary between the main phase Nd 2 Fe 14 B particles together with Nd, and is dissolved in the Nd 2 Fe 14 B particles. Not confirmed.

(実施例8)
実施例1において、さらに塩化カルシウム0.20gを添加した以外は、実施例1と同様にして実施例8に係る合金粉末hを得た。
得られた合金粉末hは、粉末X線解析の結果、主相がNdFe14Bであった。また、その断面組織を反射電子像による解析を行った結果、CuはNdと共に主相NdFe14B粒子間の粒界に存在し、NdFe14Bの粒子内には固溶していないことが確認された。
(Example 8)
In Example 1, an alloy powder h according to Example 8 was obtained in the same manner as in Example 1 except that 0.20 g of calcium chloride was further added.
As a result of powder X-ray analysis, the main phase of the obtained alloy powder h was Nd 2 Fe 14 B. Moreover, as a result of analyzing the cross-sectional structure by the reflected electron image, Cu exists in the grain boundary between the main phase Nd 2 Fe 14 B particles together with Nd, and is dissolved in the Nd 2 Fe 14 B particles. Not confirmed.

(実施例9)
実施例1において、酸化銅粉末の量をCu換算で0.007重量%となるように添加した以外は、実施例1と同様にして実施例9に係る合金粉末iを得た。
得られた合金粉末iは、粉末X線解析の結果、主相がNdFe14Bであった。また、その断面組織を反射電子像による解析を行った結果、CuはNdと共に主相NdFe14B粒子間の粒界に存在し、NdFe14Bの粒子内には固溶していないことが確認された。
Example 9
In Example 1, an alloy powder i according to Example 9 was obtained in the same manner as in Example 1 except that the amount of the copper oxide powder was added so as to be 0.007% by weight in terms of Cu.
As a result of powder X-ray analysis, the obtained alloy powder i had a main phase of Nd 2 Fe 14 B. Moreover, as a result of analyzing the cross-sectional structure by the reflected electron image, Cu exists in the grain boundary between the main phase Nd 2 Fe 14 B particles together with Nd, and is dissolved in the Nd 2 Fe 14 B particles. Not confirmed.

(実施例10)
実施例1において、酸化銅粉末の量をCu換算で0.05重量%となるように添加した以外は、実施例1と同様にして実施例10に係る合金粉末jを得た。
得られた合金粉末jは、粉末X線解析の結果、主相がNdFe14Bであった。また、その断面組織を反射電子像による解析を行った結果、CuはNdと共に主相NdFe14B粒子間の粒界に存在し、NdFe14Bの粒子内には固溶していないことが確認された。
(Example 10)
In Example 1, an alloy powder j according to Example 10 was obtained in the same manner as in Example 1 except that the amount of the copper oxide powder was added so as to be 0.05% by weight in terms of Cu.
As a result of powder X-ray analysis, the obtained alloy powder j had a main phase of Nd 2 Fe 14 B. Moreover, as a result of analyzing the cross-sectional structure by the reflected electron image, Cu exists in the grain boundary between the main phase Nd 2 Fe 14 B particles together with Nd, and is dissolved in the Nd 2 Fe 14 B particles. Not confirmed.

(実施例11)
実施例1において、酸化銅粉末の量をCu換算で1.0重量%となるように添加した以外は、実施例1と同様にして実施例11に係る合金粉末kを得た。
得られた合金粉末kは、粉末X線解析の結果、主相がNdFe14Bであった。また、その断面組織を反射電子像による解析を行った結果、CuはNdと共に主相NdFe14B粒子間の粒界に存在し、NdFe14Bの粒子内には固溶していないことが確認された。
(Example 11)
In Example 1, an alloy powder k according to Example 11 was obtained in the same manner as in Example 1 except that the amount of the copper oxide powder was added so as to be 1.0% by weight in terms of Cu.
As a result of the powder X-ray analysis, the main phase of the obtained alloy powder k was Nd 2 Fe 14 B. Moreover, as a result of analyzing the cross-sectional structure by the reflected electron image, Cu exists in the grain boundary between the main phase Nd 2 Fe 14 B particles together with Nd, and is dissolved in the Nd 2 Fe 14 B particles. Not confirmed.

(実施例12)
実施例1において、さらに酸化アルミニウム粉末0.103g(目的とする合金粉末に対してAl換算で0.6重量%)添加した以外は、実施例1と同様にして実施例12に係る合金粉末lを得た。
得られた合金粉末lは、粉末X線解析の結果、主相がNdFe14Bであった。また、その断面組織を反射電子像による解析を行った結果、図8に示すようにCuはNdと共に主相NdFe14B粒子間の粒界に存在し、NdFe14Bの粒子内には固溶していないことが確認された。一方、図9に示すようにAlは粒子全体に散在していることが確認された。
Example 12
In Example 1, except that 0.103 g of aluminum oxide powder (0.6% by weight in terms of Al with respect to the target alloy powder) was added, the alloy powder l according to Example 12 was the same as Example 1. Got.
As a result of powder X-ray analysis, the obtained alloy powder l was Nd 2 Fe 14 B as a main phase. Further, as a result of analyzing the cross-sectional structure by a reflected electron image, as shown in FIG. 8, Cu is present at the grain boundary between the main phase Nd 2 Fe 14 B particles together with Nd, and the inside of the Nd 2 Fe 14 B particles It was confirmed that it was not dissolved. On the other hand, as shown in FIG. 9, it was confirmed that Al was scattered throughout the particles.

(実施例13)
実施例12において、さらに無水塩化カルシウム0.22g添加した以外は、実施例1と同様にして実施例13に係る合金粉末mを得た。
得られた合金粉末mは、粉末X線解析の結果、主相がNdFe14Bであった。また、その断面組織を反射電子像による解析を行った結果、CuはNdと共に主相NdFe14B粒子間の粒界に存在し、NdFe14Bの粒子内には固溶していないことが確認された。
(Example 13)
In Example 12, an alloy powder m according to Example 13 was obtained in the same manner as in Example 1 except that 0.22 g of anhydrous calcium chloride was further added.
As a result of powder X-ray analysis, the main phase of the obtained alloy powder m was Nd 2 Fe 14 B. Moreover, as a result of analyzing the cross-sectional structure by the reflected electron image, Cu exists in the grain boundary between the main phase Nd 2 Fe 14 B particles together with Nd, and is dissolved in the Nd 2 Fe 14 B particles. Not confirmed.

(比較例1)
実施例1において、還元拡散時の反応温度を850℃とした以外は、実施例1と同様にして比較例1に係る合金粉末nを得た。
得られた合金粉末nは、粉末X線解析の結果、NdFe14Bの他に、Fe、Ndに由来するピ−クが認められたことから、断面SEM像による組織観察を行わなかった。
(Comparative Example 1)
In Example 1, an alloy powder n according to Comparative Example 1 was obtained in the same manner as in Example 1 except that the reaction temperature during reduction diffusion was 850 ° C.
As a result of powder X-ray analysis, the obtained alloy powder n was found to have peaks derived from Fe and Nd 2 O 3 in addition to Nd 2 Fe 14 B. Did not do.

(比較例2)
実施例1において、還元拡散時の保持時間を10分とした以外は、実施例1と同様にして比較例2に係る合金粉末oを得た。
得られた合金粉末oは、粉末X線解析の結果、NdFe14Bの他に、Fe、Ndに由来するピ−クが認められたことから、断面SEM像による組織観察を行わなかった。
(Comparative Example 2)
In Example 1, an alloy powder o according to Comparative Example 2 was obtained in the same manner as in Example 1 except that the holding time during reduction diffusion was 10 minutes.
As a result of the powder X-ray analysis, the obtained alloy powder o showed peaks derived from Fe and Nd 2 O 3 in addition to Nd 2 Fe 14 B. Did not do.

以上、実施例1〜実施例13および比較例1、2の結果をまとめて表1に示す。
表1から明らかなように、本発明によるCu含有希土類−鉄−硼素系合金粉末の製造方法で製造されたCu含有希土類−鉄−硼素系合金粉末(実施例1〜実施例13)では、CuがNdと共に主相NdFe14B粒子間の粒界に存在し、Alは粒子全体に散在していることが確認された。
一方、製造条件が本発明から外れた比較例1、2は、粉末X線解析の結果、原料のFe、Ndに由来するピ−クが認められ、還元拡散不足が明らかである。
The results of Examples 1 to 13 and Comparative Examples 1 and 2 are collectively shown in Table 1.
As is apparent from Table 1, in the Cu-containing rare earth-iron-boron alloy powders (Examples 1 to 13) produced by the method for producing a Cu-containing rare earth-iron-boron alloy powder according to the present invention, Cu And Nd were present at the grain boundaries between the main phase Nd 2 Fe 14 B particles, and Al was confirmed to be scattered throughout the particles.
On the other hand, in Comparative Examples 1 and 2 in which the production conditions deviate from the present invention, as a result of powder X-ray analysis, peaks derived from raw material Fe and Nd 2 O 3 are recognized and it is clear that the reduction diffusion is insufficient.

本発明により得られるCu含有R−Fe−B系永久磁石は、希土類磁石の中でも飽和磁化が高いことから民生用小型電子機器やコンピュータ周辺機、MRI、さらには産業用モータや自動車モータなどに使用できる。特に、合金粒子の粒界にCuを含有するために磁気特性を向上しうるので、近年、普及し始めたハイブリッド車や電気自動車の用途で有望である。   The Cu-containing R—Fe—B permanent magnet obtained by the present invention has high saturation magnetization among rare earth magnets, so it is used for consumer electronic devices, computer peripherals, MRI, and industrial motors and automobile motors. it can. In particular, since Cu is contained in the grain boundaries of the alloy particles, the magnetic properties can be improved.

Claims (8)

希土類酸化物粉末もしくは希土類酸化物粉末および希土類金属粉末と、含鉄粉末、含硼素粉末からなる原料粉末に前記酸化物粉末を還元するのに十分な量の還元剤を混合し、還元拡散法によりCu含有希土類−鉄−硼素系合金粉末を製造する方法であって、
前記希土類酸化物粉末及び前記希土類金属粉末は、希土類元素として、少なくともNdを含み、Dyを含まない、1種又は2種以上の元素を含み、
原料粉末として、さらに含銅粉末を混合し、前記含銅粉末は、組成範囲がCu換算で0.003〜1.5重量%となるように混合され、
該混合物を不活性ガス雰囲気下で900℃〜1200℃の温度で0.5時間以上保持して熱処理し、得られた反応生成混合物を湿式処理した後、乾燥することを含み、
前記希土類−鉄−硼素系合金粉末は、前記含銅粉末に由来するCuが、Ndの少なくとも一部を含む主相粒子内に存在せず、Ndの残りと共に前記主相間の粒界に存在すること、
を特徴とするCu含有希土類−鉄−硼素系合金粉末の製造方法。
A rare earth oxide powder or rare earth oxide powder and rare earth metal powder, and a raw material powder comprising iron-containing powder and boron-containing powder are mixed with a reducing agent in an amount sufficient to reduce the oxide powder, and Cu is reduced by a reduction diffusion method. A method for producing a rare earth-iron-boron alloy powder containing:
The rare earth oxide powder and the rare earth metal powder contain at least Nd as a rare earth element, do not contain Dy, and contain one or more elements.
As a raw material powder, copper-containing powder is further mixed, and the copper-containing powder is mixed so that the composition range is 0.003 to 1.5% by weight in terms of Cu,
Heat-treating the mixture under an inert gas atmosphere at a temperature of 900 ° C. to 1200 ° C. for 0.5 hours or more, and wet-treating the resulting reaction product mixture, followed by drying,
In the rare earth-iron-boron alloy powder, Cu derived from the copper-containing powder does not exist in the main phase particles containing at least a part of Nd, and exists in the grain boundary between the main phases together with the rest of Nd. about,
A process for producing a Cu-containing rare earth-iron-boron alloy powder characterized by
前記原料粉末として、さらに含アルミニウム粉末が添加されることを特徴とする請求項1に記載のCu含有希土類−鉄−硼素系合金粉末の製造方法。   The method for producing a Cu-containing rare earth-iron-boron alloy powder according to claim 1, wherein an aluminum-containing powder is further added as the raw material powder. 前記含アルミニウム粉末は、組成範囲がAl換算で0.003〜1.5重量%となるように混合されることを特徴とする請求項2に記載のCu含有希土類−鉄−硼素系合金粉末の製造方法。   The Cu-containing rare earth-iron-boron alloy powder according to claim 2, wherein the aluminum-containing powder is mixed so that the composition range is 0.003 to 1.5 wt% in terms of Al. Production method. 前記熱処理の保持時間が、1〜5時間であることを特徴とする請求項1〜3のいずれかに記載のCu含有希土類−鉄−硼素系合金粉末の製造方法。   The method for producing a Cu-containing rare earth-iron-boron alloy powder according to any one of claims 1 to 3, wherein the heat treatment is held for 1 to 5 hours. 前記還元剤と共に、アルカリ金属塩化物およびアルカリ土類金属塩化物から選ばれる少なくとも1種のフラックスを使用することを特徴とする請求項1〜4のいずれかに記載のCu含有希土類−鉄−硼素系合金粉末の製造方法。   The Cu-containing rare earth-iron-boron according to any one of claims 1 to 4, wherein at least one flux selected from alkali metal chlorides and alkaline earth metal chlorides is used together with the reducing agent. Method for producing an alloy powder. NdFe14B粒子を主相とし、Dyを含まないCu含有希土類−鉄−硼素系合金粉末であって、
前記Cuが、主相NdFe14B粒子内に存在せず、Ndと共に主相間の粒界に存在することを特徴とするCu含有希土類−鉄−硼素系合金粉末。
A Cu-containing rare earth-iron-boron alloy powder containing Nd 2 Fe 14 B particles as a main phase and not containing Dy,
Cu-containing rare earth-iron-boron based alloy powder characterized in that Cu is not present in the main phase Nd 2 Fe 14 B particles but is present at the grain boundary between the main phases together with Nd.
平均粒径が1〜150μmである請求項6に記載のCu含有希土類−鉄−硼素系合金粉末。   The Cu-containing rare earth-iron-boron alloy powder according to claim 6, having an average particle size of 1 to 150 µm. さらにAlが、主相NdFe14B粒子全体に散在することを特徴とする請求項6又は7に記載のCu含有希土類−鉄−硼素系合金粉末。
The Cu-containing rare earth-iron-boron alloy powder according to claim 6 or 7, further comprising Al dispersed throughout the main phase Nd 2 Fe 14 B particles.
JP2012215687A 2011-09-28 2012-09-28 Cu-containing rare earth-iron-boron alloy powder and method for producing the same Active JP5910437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012215687A JP5910437B2 (en) 2011-09-28 2012-09-28 Cu-containing rare earth-iron-boron alloy powder and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011212071 2011-09-28
JP2011212071 2011-09-28
JP2012215687A JP5910437B2 (en) 2011-09-28 2012-09-28 Cu-containing rare earth-iron-boron alloy powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013083001A JP2013083001A (en) 2013-05-09
JP5910437B2 true JP5910437B2 (en) 2016-04-27

Family

ID=48528456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012215687A Active JP5910437B2 (en) 2011-09-28 2012-09-28 Cu-containing rare earth-iron-boron alloy powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP5910437B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107256748A (en) * 2017-06-20 2017-10-17 乳源瑶族自治县力强磁铁制品有限公司 A kind of preparation method of high performance sintered neodymium-iron-boron rare earth permanent-magnetic material
KR102092327B1 (en) 2017-11-28 2020-03-23 주식회사 엘지화학 Manufacturing method of magnetic powder and magnetic powder
CN108620578B (en) * 2018-05-11 2019-06-11 西安交通大学 A method of improving RE oxide powder and CuW Alloy Wetting
CN108754240B (en) * 2018-05-31 2020-06-09 江苏大学 Magnetic aluminum-based composite material and preparation method thereof
JP7137830B2 (en) * 2018-07-18 2022-09-15 国立研究開発法人産業技術総合研究所 Method for producing alloy particles and alloy particles
KR102395227B1 (en) * 2018-08-24 2022-05-04 주식회사 엘지화학 Method for preparing magnetic material and magnetic material
KR102389322B1 (en) * 2018-08-24 2022-04-20 주식회사 엘지화학 Method for preparing magnetic material and magnetic material
KR102634865B1 (en) * 2019-08-02 2024-02-06 주식회사 엘지화학 Method for preparation magnet powder and sintered magnet produced by the same
CN115418704B (en) * 2022-08-30 2023-10-03 广东省科学院资源利用与稀土开发研究所 Flux growth method of rare earth iron boron permanent magnet monocrystal

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06922B2 (en) * 1985-06-28 1994-01-05 住友特殊金属株式会社 Method for producing alloy powder for rare earth magnet
JPH06248307A (en) * 1993-02-26 1994-09-06 Sumitomo Metal Mining Co Ltd Production of alloy powder containing rare-earth metal
JPH10233306A (en) * 1996-12-20 1998-09-02 Hitachi Metals Ltd Rare-earth permanent magnet and preparation thereof
JP2000223306A (en) * 1998-11-25 2000-08-11 Hitachi Metals Ltd R-t-b rare-earth sintered magnet having improved squarene shape ratio and its manufacturing method
JP2004091811A (en) * 2002-08-29 2004-03-25 Sumitomo Metal Ind Ltd Method for manufacturing raw powder of rare-earth magnet
CN101981634B (en) * 2008-03-31 2013-06-12 日立金属株式会社 R-T-B-type sintered magnet and method for production thereof

Also Published As

Publication number Publication date
JP2013083001A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
JP5910437B2 (en) Cu-containing rare earth-iron-boron alloy powder and method for producing the same
JP5767788B2 (en) R-T-B rare earth permanent magnet, motor, automobile, generator, wind power generator
WO2012002059A1 (en) R-t-b type rare earth permanent magnet, motor, automobile, power generator, and wind power generation system
JP6968202B2 (en) Manufacturing method of sintered magnet and sintered magnet
JP2006303433A (en) Rare earth permanent magnet
WO2010113371A1 (en) Alloy material for r-t-b-type rare-earth permanent magnet, process for production of r-t-b-type rare-earth permanent magnet, and motor
JP5609783B2 (en) Method for producing rare earth-transition metal alloy powder
JP2017011276A (en) Rare earth-transition metal-nitrogen based magnet fine powder and bond magnet
JP4951703B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
JPH11329811A (en) Raw material powder for r-fe-b magnet and manufacture of r-fe-b based magnet
JP2006291257A (en) Rare earth-transition metal-nitrogen based magnetic powder, and method for producing the same
JP2011014631A (en) R-t-b-based rare-earth permanent magnet, and motor, automobile, generator and wind turbine generator
CN111902898B (en) Method for producing sintered magnet and sintered magnet
WO2012029527A1 (en) Alloy material for r-t-b-based rare earth permanent magnet, production method for r-t-b-based rare earth permanent magnet, and motor
JP2006310660A (en) High electric resistance r-t-b based sintered magnet and its production process
JP7044304B2 (en) Rare earth transition metal alloy powder manufacturing method
JP2006269637A (en) Rare earth-transition metal-nitrogen system magnet powder, its manufacturing method and composite for bond magnet using same and bond magnet
JP4687493B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP2006144048A (en) Method for producing rare earth-transition metal-nitrogen based magnet powder, composition for bond magnet using the same, and bond magnet
JPH0526858B2 (en)
JPH0521219A (en) Production of rare-earth permanent magnet
JP3020717B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPH0586441B2 (en)
JP2022511484A (en) Manufacturing method of sintered magnet
JP4802927B2 (en) Rare earth sintered magnet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141201

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150508

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R150 Certificate of patent or registration of utility model

Ref document number: 5910437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150