JP5907057B2 - ELECTROLYTE MEMBRANE FOR FUEL CELL AND MEMBRANE ELECTRODE ASSEMBLY AND METHOD FOR PRODUCING ELECTROLYTE MEMBRANE FOR FUEL CELL - Google Patents

ELECTROLYTE MEMBRANE FOR FUEL CELL AND MEMBRANE ELECTRODE ASSEMBLY AND METHOD FOR PRODUCING ELECTROLYTE MEMBRANE FOR FUEL CELL Download PDF

Info

Publication number
JP5907057B2
JP5907057B2 JP2012274389A JP2012274389A JP5907057B2 JP 5907057 B2 JP5907057 B2 JP 5907057B2 JP 2012274389 A JP2012274389 A JP 2012274389A JP 2012274389 A JP2012274389 A JP 2012274389A JP 5907057 B2 JP5907057 B2 JP 5907057B2
Authority
JP
Japan
Prior art keywords
porous
electrolyte membrane
sheet
electrolyte
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012274389A
Other languages
Japanese (ja)
Other versions
JP2014120317A (en
Inventor
鈴木 弘
弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012274389A priority Critical patent/JP5907057B2/en
Publication of JP2014120317A publication Critical patent/JP2014120317A/en
Application granted granted Critical
Publication of JP5907057B2 publication Critical patent/JP5907057B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、燃料電池用の電解質膜と膜電極接合体、および燃料電池用電解質膜の製造方法に関する。   The present invention relates to an electrolyte membrane for a fuel cell, a membrane electrode assembly, and a method for producing an electrolyte membrane for a fuel cell.

燃料電池は、一律な発電運転を継続することはまれであり、発電電力は頻繁に上下動し、オン・オフも繰り返される。このため、電解質膜は、燃料電池の発電電力の上下動および発電のオン・オフにより、膨張/伸縮を繰り返し、この膨張/伸縮の繰り返しは、電解質膜の歪みをもたらし得る。こうした歪みは、電解質膜の損傷を招くので、電解質膜内に2層以上の多孔質補強層を備えて電解質膜を補強する手法が提案されている(例えば、特許文献1)。   The fuel cell rarely continues a uniform power generation operation, and the generated power frequently moves up and down and is repeatedly turned on and off. For this reason, the electrolyte membrane repeatedly expands / contracts due to the vertical movement of the power generated by the fuel cell and the on / off of power generation, and this repeated expansion / contraction can cause distortion of the electrolyte membrane. Since such distortion causes damage to the electrolyte membrane, a technique for reinforcing the electrolyte membrane by providing two or more porous reinforcing layers in the electrolyte membrane has been proposed (for example, Patent Document 1).

特開2005−276747号公報JP 2005-276747 A

ところで、電解質膜の歪みに伴う応力は、その発生状況や残留の程度が電解質膜の膜面において一律ではなく、膜中央の発電領域とこれを取り囲む周縁領域とでは相違し、周縁領域の側で顕著となる。これは、発電領域では、当該領域に存在するガス拡散層やセパレーターといった部材の剛性が電解質膜より高いので、応力の分散が進むからである。また、周縁領域では、発電領域へのガス供給を図る都合上、電解質膜だけがいわゆる単身で存在するので、膨張/伸縮の繰り返しに伴って周縁領域での膜損傷が危惧される。上記の手法は、発電領域と周縁領域とについての配慮に欠けるため、電解質膜の損傷の回避もしくは抑制の実効性を高めることが要請されるに到った。このほか、燃料電池用電解質膜においては、低コスト化、省資源化、製造の容易化、使い勝手の向上等が望まれていた。   By the way, the stress associated with the distortion of the electrolyte membrane is not uniform in the state of occurrence and the degree of residual on the membrane surface of the electrolyte membrane, and is different between the power generation region at the center of the membrane and the peripheral region surrounding it. Become prominent. This is because in the power generation region, since the rigidity of the members such as the gas diffusion layer and the separator existing in the region is higher than that of the electrolyte membrane, the stress is distributed. Further, in the peripheral region, for the purpose of supplying gas to the power generation region, only the electrolyte membrane exists so-called alone, so that there is a risk of film damage in the peripheral region with repeated expansion / contraction. Since the above method lacks consideration for the power generation region and the peripheral region, it has been requested to increase the effectiveness of avoiding or suppressing damage to the electrolyte membrane. In addition, in the electrolyte membrane for fuel cells, cost reduction, resource saving, ease of production, improvement in usability, etc. have been desired.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms.

(1)本発明の一形態によれば、燃料電池用の電解質膜が提供される。この燃料電池用の電解質膜は、少なくとも1層の多孔質補強層を、細孔内に電解質を含有した状態で備え、前記多孔質補強層は、電解質膜の発電領域と該発電領域を取り囲む周縁領域とで異なる密度を備え、前記周縁領域が前記発電領域より高密度である。この形態の燃料電池用の電解質膜は、多孔質補強層にて補強するに当たり、周縁領域においては多孔質補強層を高密度とすることで、発電領域に比して高い強度で周縁領域を補強する。しかも、上記の形態の燃料電池用の電解質膜は、周縁領域を高密度とすることで、当該領域における多孔質補強層の細孔への含水を抑制する。よって、電解質膜の膜中水分が少なくなるので、膜中水分による膨潤を低減できる。この結果、上記の形態の燃料電池用の電解質膜によれば、電解質膜の周縁領域にあっても、高い実効性で膜損傷を回避もしくは抑制できる。そして、膜損傷の回避もしくは抑制により、耐久性も高まる。   (1) According to one aspect of the present invention, an electrolyte membrane for a fuel cell is provided. The electrolyte membrane for a fuel cell includes at least one porous reinforcing layer in a state in which an electrolyte is contained in pores, and the porous reinforcing layer includes a power generation region of the electrolyte membrane and a peripheral edge surrounding the power generation region. The region has a different density, and the peripheral region is denser than the power generation region. The electrolyte membrane for a fuel cell of this form is reinforced with a porous reinforcing layer in the peripheral region, so that the peripheral region is reinforced with higher strength than the power generation region by increasing the density of the porous reinforcing layer in the peripheral region. To do. And the electrolyte membrane for fuel cells of the said form suppresses the water | moisture content to the pore of the porous reinforcement layer in the said area | region by making a peripheral area | region high density. Therefore, since the moisture in the membrane of the electrolyte membrane is reduced, swelling due to moisture in the membrane can be reduced. As a result, according to the electrolyte membrane for a fuel cell of the above aspect, membrane damage can be avoided or suppressed with high effectiveness even in the peripheral region of the electrolyte membrane. And durability is also increased by avoiding or suppressing film damage.

(2)上記形態の燃料電池用の電解質膜において、前記多孔質補強層を、前記電解質膜の内部または両膜面の側に備えるようにできる。こうすれば、電解質膜の膜損傷の回避もしくは抑制の実効性は、より高まる。   (2) In the electrolyte membrane for a fuel cell according to the above aspect, the porous reinforcing layer may be provided inside the electrolyte membrane or on both membrane surfaces. By doing so, the effectiveness of avoiding or suppressing membrane damage of the electrolyte membrane is further enhanced.

(3)本発明の他の形態によれば、燃料電池用の膜電極接合体が提供される。この燃料電池用の膜電極接合体は、上記のいずれかの形態の電解質膜の両膜面に電極触媒層を接合して備える。この形態の燃料電池用の膜電極接合体によれば、その有する電解質膜の膜損傷を、周縁領域にあっても高い実効性で回避もしくは抑制できるので、膜電極接合体自体の耐久性を高めることができる。   (3) According to another aspect of the present invention, a membrane electrode assembly for a fuel cell is provided. This fuel cell membrane electrode assembly comprises electrode catalyst layers joined to both membrane surfaces of the electrolyte membrane of any one of the above forms. According to this form of membrane electrode assembly for fuel cells, membrane damage of the electrolyte membrane can be avoided or suppressed with high effectiveness even in the peripheral region, so that the durability of the membrane electrode assembly itself is enhanced. be able to.

(4)本発明の他の形態によれば、燃料電池用電解質膜の製造方法が提供される。この燃料電池用電解質膜の製造方法は、電解質膜の発電領域に対応する第1部位と前記発電領域を取り囲む電解質膜の周縁領域に対応する第2部位とを有する多孔質の補強体を準備する工程(1)と、電解質膜の一方の膜面と他方の膜面とに前記多孔質の補強体を重ねて積層体を形成する工程(2)と、前記積層体を加熱しながら加圧することによって、前記多孔質の補強体における前記第2部位の細孔を潰して前記第2部位の高密度化を図った上で、前記多孔質の補強体の細孔内に前記電解質膜の電解質を溶融含浸させる工程(3)とを備える。上記の形態の燃料電池用電解質膜の製造方法では、多孔質補強層にて補強した電解質膜を得るに当たり、発電領域を取り囲む電解質膜の周縁領域に対応する多孔質の補強体の第2部位の補強体の厚みを発電領域に対応する第1部位より大きくして、その後の積層体形成、積層体の加熱しながらの加圧によって、電解質膜の周縁領域において多孔質補強層が高密度で高強度および低含水とされた燃料電池用の電解質膜を容易に提供できる。このため、上記の形態の燃料電池用電解質膜の製造方法によれば、電解質膜の周縁領域にあっても膜損傷の回避や抑制が可能で、耐久性の高い電解質膜を容易に提供できる。   (4) According to another aspect of the present invention, a method for producing an electrolyte membrane for a fuel cell is provided. In this method of manufacturing an electrolyte membrane for a fuel cell, a porous reinforcing body having a first portion corresponding to a power generation region of the electrolyte membrane and a second portion corresponding to a peripheral region of the electrolyte membrane surrounding the power generation region is prepared. A step (1), a step (2) of forming a laminate by superimposing the porous reinforcing body on one membrane surface and the other membrane surface of the electrolyte membrane, and pressurizing the laminate while heating. By crushing the pores of the second part in the porous reinforcing body to increase the density of the second part, the electrolyte of the electrolyte membrane is placed in the pores of the porous reinforcing body. And melt impregnation step (3). In the method for manufacturing an electrolyte membrane for a fuel cell of the above form, in obtaining the electrolyte membrane reinforced by the porous reinforcing layer, the second portion of the porous reinforcing body corresponding to the peripheral region of the electrolyte membrane surrounding the power generation region is provided. The thickness of the reinforcing body is made larger than that of the first portion corresponding to the power generation region, and the porous reinforcing layer is formed at a high density in the peripheral region of the electrolyte membrane by subsequent formation of the laminated body and pressurization while heating the laminated body. An electrolyte membrane for a fuel cell having high strength and low water content can be easily provided. For this reason, according to the manufacturing method of the electrolyte membrane for fuel cells of the said form, even if it exists in the peripheral area | region of an electrolyte membrane, a membrane damage can be avoided or suppressed and a highly durable electrolyte membrane can be provided easily.

(5)上記形態の燃料電池用電解質膜の製造方法において、前記工程(1)では、前記第1部位と該第1部位の周縁から外側に延出した延出部位とを有する多孔質の補強体用部材を用意し、該補強体用部材の前記延出部位を折り曲げて前記第2部位を形成した前記多孔質の補強体を準備するようにできる。こうすれば、延出部位を折り曲げという簡便な手法で、第2部位の補強体厚みが第1部位より大きい多孔質の補強体を得ることができる。このため、この形態の燃料電池用電解質膜の製造方法によっても、電解質膜の周縁領域において既述したように高密度な多孔質補強層を備えた燃料電池用の電解質膜を容易に提供できる。また、第2部位は、延出部位の折り曲げにより形成されることから、第1部位と第2部位との位置ズレが起き難い。よって、この形態の燃料電池用電解質膜の製造方法によれば、発電領域の形状が整った燃料電池用の電解質膜を容易に提供できる。   (5) In the method for manufacturing an electrolyte membrane for a fuel cell according to the above aspect, in the step (1), porous reinforcement having the first portion and an extending portion extending outward from a peripheral edge of the first portion. A body member is prepared, and the porous reinforcement body in which the extension portion of the reinforcement member is bent to form the second portion can be prepared. In this way, a porous reinforcing body in which the thickness of the reinforcing member at the second part is larger than that of the first part can be obtained by a simple method of bending the extended part. For this reason, also by the manufacturing method of the electrolyte membrane for fuel cells of this form, the electrolyte membrane for fuel cells provided with the high-density porous reinforcement layer as mentioned above in the peripheral region of an electrolyte membrane can be provided easily. In addition, since the second part is formed by bending the extension part, the positional deviation between the first part and the second part hardly occurs. Therefore, according to the manufacturing method of the electrolyte membrane for fuel cells of this form, the electrolyte membrane for fuel cells in which the shape of the power generation region is arranged can be easily provided.

(6)上記形態の燃料電池用電解質膜の製造方法において、前記工程(1)では、前記第1部位と前記第2部位とに対応した平面形状の多孔質の第1補強用部材と、前記第2部位に対応した枠状の多孔質の第2補強用部材とを用意し、該第2補強体用部材を前記第1補強用部材に重ねて、前記第1部位と前記第2部位とを有する前記多孔質の補強体を準備するようにできる。こうすれば、平面形状の第1補強用部材と枠状の第2補強用部材とを重ねるという簡便な手法で、第2部位の補強体の厚みが第1部位より大きい多孔質の補強体を得ることができる。このため、この形態の燃料電池用電解質膜の製造方法によっても、電解質膜の周縁領域において既述したように高密度な多孔質補強層を備えた燃料電池用の電解質膜を容易に提供できる。また、第2部位は、枠状であることから、その枠形状で発電領域が定まる。よって、この形態の燃料電池用電解質膜の製造方法によっても、発電領域の形状が整った燃料電池用の電解質膜を容易に提供できる。加えて、平面形状の第1補強用部材と枠状の第2補強用部材とは、長尺のフィルム形態で準備できることから、フィルム形態で電解質膜へのフィルム形態の第1、第2補強用部材の積層により、連続的に燃料電池用電解質膜を製造でき、生産性を高めることができる。   (6) In the method for manufacturing an electrolyte membrane for a fuel cell according to the above aspect, in the step (1), a planar porous first reinforcing member corresponding to the first part and the second part, Preparing a frame-like porous second reinforcing member corresponding to the second part, and stacking the second reinforcing member on the first reinforcing member, the first part and the second part; The porous reinforcing body having the above can be prepared. In this way, a porous reinforcing body in which the thickness of the reinforcing member at the second part is larger than that of the first part can be obtained by a simple method of stacking the first reinforcing member having a planar shape and the second reinforcing member having a frame shape. Can be obtained. For this reason, also by the manufacturing method of the electrolyte membrane for fuel cells of this form, the electrolyte membrane for fuel cells provided with the high-density porous reinforcement layer as mentioned above in the peripheral region of an electrolyte membrane can be provided easily. In addition, since the second part has a frame shape, the power generation region is determined by the frame shape. Therefore, also by the manufacturing method of the electrolyte membrane for fuel cells of this form, the electrolyte membrane for fuel cells with which the shape of the electric power generation area was prepared can be provided easily. In addition, since the planar first reinforcing member and the frame-like second reinforcing member can be prepared in the form of a long film, the first and second reinforcing members in the form of a film to the electrolyte membrane in the form of a film. By laminating the members, an electrolyte membrane for a fuel cell can be continuously produced, and productivity can be improved.

本発明は、上記の形態で得られた燃料電池用の電解質膜を有する膜電極接合体を、その両側でガス拡散層で挟持し、その上でセパレーターにて挟持してもよい。こうすれば、ガス拡散層を有する形態の膜電極接合体とその製造方法、或いは燃料電池の製造方法としても適用できる。   In the present invention, the membrane / electrode assembly having the fuel cell electrolyte membrane obtained in the above-described form may be sandwiched between the gas diffusion layers on both sides thereof and then sandwiched between the separators. By so doing, the present invention can also be applied as a membrane electrode assembly having a gas diffusion layer and a manufacturing method thereof, or a manufacturing method of a fuel cell.

本発明の一実施形態としての燃料電池10の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the fuel cell 10 as one Embodiment of this invention. 単セル40の概略構成を平面視して示す説明図である。2 is an explanatory diagram showing a schematic configuration of a single cell 40 in plan view. FIG. 図2における3−3線断面図である。FIG. 3 is a sectional view taken along line 3-3 in FIG. 2. 図2における4−4線断面図である。FIG. 4 is a sectional view taken along line 4-4 in FIG. MEAおよびMEGAの製造を経て燃料電池10を製造する際の製造手順を示す工程図である。It is process drawing which shows the manufacture procedure at the time of manufacturing the fuel cell 10 through manufacture of MEA and MEGA. 工程S100におけるMEAの製造手順の詳細を示す工程図である。It is process drawing which shows the detail of the manufacturing procedure of MEA in process S100. 準備する電解質前駆体樹脂シート41zsと二対の多孔質補強体シート41pの概略と配置の様子を示す説明図である。It is explanatory drawing which shows the outline and the mode of arrangement | positioning of the electrolyte precursor resin sheet 41zs and two pairs of porous reinforcement sheet | seats 41p to prepare. 工程S120からの各工程における処理の様子を模式的に示す説明図である。It is explanatory drawing which shows typically the mode of the process in each process from process S120. 本実施形態の電解質膜41の周縁領域部位141fと中央領域部位141cとにおける含水の様子を示すグラフである。It is a graph which shows the mode of the moisture content in the peripheral area | region site | part 141f and the center area | region site | part 141c of the electrolyte membrane 41 of this embodiment. 本実施形態の電解質膜41についての乾湿サイクル数とガス透過量(Pa/s)との関係を示すグラフである。It is a graph which shows the relationship between the number of wet and dry cycles and gas permeation amount (Pa / s) about the electrolyte membrane 41 of this embodiment. 他の実施形態における多孔質補強体シート41pの準備の様子と積層体41Sの形成の様子を説明する説明図である。It is explanatory drawing explaining the mode of preparation of the porous reinforcement body sheet | seat 41p in other embodiment, and the mode of formation of the laminated body 41S. また別の実施形態における多孔質補強体シートの準備の様子と積層体41Sの形成の様子を説明する説明図である。It is explanatory drawing explaining the mode of preparation of the porous reinforcement body sheet | seat in another embodiment, and the mode of formation of the laminated body 41S. 多孔質第2シートフィルム41p2fの形成の様子を示す説明図である。It is explanatory drawing which shows the mode of formation of the porous 2nd sheet | seat film 41p2f. フィルム形態での他の実施形態における電解質膜41の製造の様子を概略的に示す説明図である。It is explanatory drawing which shows roughly the mode of manufacture of the electrolyte membrane 41 in other embodiment by a film form. 多孔質第1シート41p1と多孔質第2シート41p2の積層の様子を変更した実施形態における工程S120からの各工程における処理の様子を模式的に示す説明図である。It is explanatory drawing which shows typically the mode of the process in each process from process S120 in embodiment which changed the mode of lamination | stacking of the porous 1st sheet | seat 41p1 and the porous 2nd sheet | seat 41p2. 多孔質補強体シート41pの他の実施形態を示す説明図である。It is explanatory drawing which shows other embodiment of the porous reinforcement body sheet | seat 41p.

以下、本発明の実施の形態について、図面に基づき説明する。図1は本発明の一実施形態としての燃料電池10の概略構成を示す説明図、図2は単セル40の概略構成を平面視して示す説明図、図3は図2における3−3線断面図、図4は図2における4−4線断面図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 is an explanatory diagram showing a schematic configuration of a fuel cell 10 as an embodiment of the present invention, FIG. 2 is an explanatory diagram showing a schematic configuration of a single cell 40 in plan view, and FIG. 3 is a line 3-3 in FIG. 4 is a sectional view taken along line 4-4 in FIG.

燃料電池10は、水素と酸素との電気化学反応によって発電する単セル40を、図1に示すように、複数積層させて一対のエンドプレート10aで挟持したスタック構造とされている。この単セル40のスタック構造を燃料電池スタック40Sと称する。燃料電池10は、燃料電池スタック40Sを対向する一対のエンドプレート10aで挟持するに当たり、エンドプレート10aの側にそれぞれ絶縁板20aと前端側ターミナルプレート31と後端側ターミナルプレート32とを介在させる。燃料電池10は、前端側のエンドプレート10aと絶縁板20aおよび前端側ターミナルプレート31に、空気供給口12IN、空気排気口12OUT、水素供給口14IN、水素排気口14OUT、冷却水供給口16INおよび冷却水排出口16OUTを有する。   The fuel cell 10 has a stack structure in which a plurality of single cells 40 that generate power by an electrochemical reaction between hydrogen and oxygen are stacked and sandwiched between a pair of end plates 10a as shown in FIG. The stack structure of the single cells 40 is referred to as a fuel cell stack 40S. When the fuel cell stack 40S is sandwiched between a pair of opposed end plates 10a, an insulating plate 20a, a front end side terminal plate 31, and a rear end side terminal plate 32 are interposed on the end plate 10a side, respectively. The fuel cell 10 includes an air supply port 12IN, an air exhaust port 12OUT, a hydrogen supply port 14IN, a hydrogen exhaust port 14OUT, a cooling water supply port 16IN, and a cooling air in the front end side end plate 10a, the insulating plate 20a, and the front end side terminal plate 31. It has a water outlet 16OUT.

エンドプレート10aは、剛性を確保するため、鋼等の金属によって形成されている。絶縁板20aは、ゴムや、樹脂等の絶縁性部材によって形成されている。前端側ターミナルプレート31と後端側ターミナルプレート32は、緻密質カーボンや、銅板などのガス不透過な導電性部材によって形成されている。   The end plate 10a is formed of a metal such as steel in order to ensure rigidity. The insulating plate 20a is formed of an insulating member such as rubber or resin. The front end side terminal plate 31 and the rear end side terminal plate 32 are formed of a gas impermeable conductive member such as dense carbon or a copper plate.

燃料電池10は、対向する一対のエンドプレート10aの間における燃料電池スタック40Sの側方に締結シャフト100を配置して備える。締結シャフト100は、ボルト102によりエンドプレート10aに当接して固定されることで、上記した燃料電池スタック40Sを対向する一対のエンドプレート10aの間において締結する。   The fuel cell 10 includes a fastening shaft 100 disposed on the side of the fuel cell stack 40S between a pair of opposed end plates 10a. The fastening shaft 100 is fixed in contact with the end plate 10a by a bolt 102, thereby fastening the fuel cell stack 40S described above between a pair of opposed end plates 10a.

燃料電池スタック40Sを構成するそれぞれの単セル40は、図3〜図4に示すように、電解質膜41とアノード42とカソード43とを備える。電解質膜41は、固体高分子電解質樹脂、例えばフッ素系樹脂を用いて後述のように形成されてプロトン伝導性を備え、湿潤状態で良好な電気伝導性を示す。アノード42およびカソード43は、例えば白金、あるいは白金合金等の触媒を担持した導電性粒子、例えばカーボン粒子を、プロトン伝導性を有するアイオノマーで被覆して形成された電極触媒層である。通常、アイオノマーは、電解質膜41と同質の固体高分子材料である高分子電解質樹脂(例えばフッ素系樹脂)であり、その有するイオン交換基によりプロトン伝導性を有する。電解質膜41は、その両膜面に接合されたアノード42とカソード43と共に膜電極接合体(Membrane Electrode Assembly/MEA)を構成する。MEAは、ガスの拡散透過性を有するアノード側ガス拡散層44とカソード側ガス拡散層45とで挟持され、MEGA(Membrane-Electrode&Gas. Diffusion Layer Assembly)を形成する。単セル40は、このMEGAを枠状のフレーム50で保持した上で、当該フレームと共にMEGAをセパレーター46とセパレーター47で挟持する。単セル40は、図2に示すように、フレーム50の枠内領域に該当するMEA中央領域を発電領域41gpとし、当該領域を周縁領域41spで取り囲む。セパレーター46は、アノード42に供給すべき燃料ガスとしての水素の流路46aと図示しない冷却水流とを備え、セパレーター47は、カソード43に供給すべき酸化剤ガスとしての空気の流路47aと図示しない冷却水流路とを備える。なお、燃料電池スタック40Sにおける単セル40の積層数は、燃料電池10に要求される出力に応じて任意に設定可能である。   As shown in FIGS. 3 to 4, each single cell 40 constituting the fuel cell stack 40 </ b> S includes an electrolyte membrane 41, an anode 42, and a cathode 43. The electrolyte membrane 41 is formed as described later using a solid polymer electrolyte resin, for example, a fluorine resin, has proton conductivity, and exhibits good electrical conductivity in a wet state. The anode 42 and the cathode 43 are electrode catalyst layers formed by coating conductive particles carrying a catalyst such as platinum or platinum alloy, for example, carbon particles with an ionomer having proton conductivity. Usually, the ionomer is a polymer electrolyte resin (for example, a fluororesin) that is a solid polymer material of the same quality as the electrolyte membrane 41, and has proton conductivity due to its ion exchange group. The electrolyte membrane 41 constitutes a membrane electrode assembly (MEA) together with the anode 42 and the cathode 43 joined to both membrane surfaces. The MEA is sandwiched between an anode-side gas diffusion layer 44 and a cathode-side gas diffusion layer 45 having gas diffusion permeability to form a MEGA (Membrane-Electrode & Gas. Diffusion Layer Assembly). The single cell 40 holds the MEGA with a frame-like frame 50 and sandwiches the MEGA with the separator 46 and the separator 47 together with the frame. As shown in FIG. 2, the single cell 40 has a MEA central region corresponding to an in-frame region of the frame 50 as a power generation region 41 gp and surrounds the region with a peripheral region 41 sp. The separator 46 includes a hydrogen flow path 46 a as a fuel gas to be supplied to the anode 42 and a cooling water flow (not shown), and the separator 47 is illustrated with an air flow path 47 a as an oxidant gas to be supplied to the cathode 43. A cooling water flow path that does not. The number of single cells 40 in the fuel cell stack 40S can be arbitrarily set according to the output required for the fuel cell 10.

単セル40は、図2に示すように、セパレーター46とセパレーター47およびフレーム50に、イン側空気マニホールド401とアウト側空気マニホールド402とイン側水素マニホールド403とアウト側水素マニホールド404とイン側冷却水マニホールド405およびアウト側冷却水マニホールド406を備える。イン側の上記各マニホールドは、それぞれエンドプレート10aの空気供給口12IN等のイン側供給口に繋がり、アウト側の各マニホールドは、それぞれエンドプレート10aの空気排気口12OUT等のアウト側排気口に繋がる。そして、単セル40は、エンドプレート10aの空気供給口12INを経てイン側空気マニホールド401から流れ込んだ空気を、周縁流路401rからセパレーター47の流路47aに導き、発電領域41gpに亘って、MEGAのカソード43に供給する。また、単セル40は、エンドプレート10aのイン側水素マニホールド403から流れ込んだ水素ガスを、周縁流路403rを経てセパレーター46の流路46aに導き、発電領域41gpに亘って、MEGAのアノード42に供給する。こうしたガス供給により、単セル40は発電する。   As shown in FIG. 2, the unit cell 40 includes a separator 46, a separator 47, and a frame 50, an in-side air manifold 401, an out-side air manifold 402, an in-side hydrogen manifold 403, an out-side hydrogen manifold 404, and an in-side cooling water. A manifold 405 and an out side cooling water manifold 406 are provided. Each manifold on the in side is connected to an in side supply port such as an air supply port 12IN of the end plate 10a, and each manifold on the out side is connected to an out side exhaust port such as an air exhaust port 12OUT of the end plate 10a. . The single cell 40 guides the air flowing from the in-side air manifold 401 through the air supply port 12IN of the end plate 10a to the flow path 47a of the separator 47 from the peripheral flow path 401r, and over the power generation region 41gp, the MEGA To the cathode 43. The single cell 40 also guides the hydrogen gas flowing from the in-side hydrogen manifold 403 of the end plate 10a to the flow path 46a of the separator 46 via the peripheral flow path 403r, and to the anode 42 of the MEGA over the power generation region 41gp. Supply. The single cell 40 generates electricity by such gas supply.

また、単セル40は、余剰の空気を、発電領域41gpから周縁流路402rを経てアウト側空気マニホールド402に導き、エンドプレート10aの空気排気口12OUTからセル外に排出する。単セル40は、余剰の水素ガスを、発電領域41gpから周縁流路404rを経てアウト側水素マニホールド404に導き、エンドプレート10aの水素排気口14OUTからセル外に排出する。冷却水については、単セル40は、エンドプレート10aの冷却水供給口16INから流れ込んだ冷却水を、セパレーター46およびセパレーター47の図示しない冷却水流路に導き、その冷却水をアウト側冷却水マニホールド406とエンドプレート10aの冷却水排出口16OUTを経てセル外に導く。セル外に導かれた冷却水は、循環して、再度、単セル40に導かれる。   Further, the single cell 40 guides excess air from the power generation region 41gp to the out-side air manifold 402 via the peripheral flow path 402r, and discharges the excess air out of the cell from the air exhaust port 12OUT of the end plate 10a. The single cell 40 guides surplus hydrogen gas from the power generation region 41gp to the out-side hydrogen manifold 404 through the peripheral flow path 404r, and discharges the hydrogen gas out of the cell from the hydrogen exhaust port 14OUT of the end plate 10a. As for the cooling water, the single cell 40 guides the cooling water flowing from the cooling water supply port 16IN of the end plate 10a to a cooling water passage (not shown) of the separator 46 and the separator 47, and the cooling water is supplied to the out side cooling water manifold 406. And it guide | induces out of a cell through the cooling water discharge port 16OUT of the end plate 10a. The cooling water guided outside the cell circulates and is guided to the single cell 40 again.

次に、電解質膜41について詳述する。図3〜図4に示すように、MEAを構成する電解質膜41は、補強層付きの電解質膜であり、プロトン伝導性を備える電解質樹脂(フッ素系樹脂)からなる電解質膜部位41cの両側にアノード側補強層41anとカソード側補強層41caとを有する。そして、アノード42はアノード側補強層41anに接合して形成され、カソード43はカソード側補強層41caに接合して形成されることで、MEAが形成される。更に、このMEAのアノード42にアノード側ガス拡散層44が形成され、カソード43にカソード側ガス拡散層45が形成されて、MEGAが形成される。   Next, the electrolyte membrane 41 will be described in detail. As shown in FIGS. 3 to 4, the electrolyte membrane 41 constituting the MEA is an electrolyte membrane with a reinforcing layer, and anodes are provided on both sides of an electrolyte membrane portion 41 c made of an electrolyte resin (fluorine resin) having proton conductivity. A side reinforcing layer 41an and a cathode side reinforcing layer 41ca are provided. The anode 42 is formed to be joined to the anode side reinforcing layer 41an, and the cathode 43 is formed to be joined to the cathode side reinforcing layer 41ca, thereby forming an MEA. Further, an anode-side gas diffusion layer 44 is formed on the anode 42 of the MEA, and a cathode-side gas diffusion layer 45 is formed on the cathode 43 to form a MEGA.

アノード側補強層41anとカソード側補強層41caの両補強層は、ポリテトラフルオロエチレン(PTFE)を延伸して孔質化して形成された多孔質体であり、細孔内には電解質樹脂をその溶融含浸を経て含有する。そして、上記の両補強層は、図2に示す平面視において発電領域41gpに対応する中央領域部位141cと、この中央領域部位141cを取り囲む周縁領域部位141fとで、気孔率を変えることで密度に差を持たせ、周縁領域部位141fを中央領域部位141cより高密度としている。このように密度差を持たせる手法については後述する。なお、中央領域部位141cは、図3〜図4に示すアノード42とカソード43の周縁の内縁側領域141ffに相当する分だけ、図2の発電領域41gpより狭小となる。ところが、内縁側領域141ffは、0.1〜10mm程度であって、発電領域41gpの各辺の長さに比べて僅かなため、上記の両補強層の中央領域部位141cは、ほぼ発電領域41gpとほぼ同じである。また、上記の両補強層の周縁領域部位141fにあっても、図2の周縁領域41spとほぼ同じとなる。   Both the anode side reinforcing layer 41an and the cathode side reinforcing layer 41ca are porous bodies formed by stretching polytetrafluoroethylene (PTFE) to make it porous, and an electrolyte resin is contained in the pores. Contains via melt impregnation. Then, both the reinforcing layers described above have a density by changing the porosity between the central region portion 141c corresponding to the power generation region 41gp and the peripheral region portion 141f surrounding the central region portion 141c in the plan view shown in FIG. A difference is provided so that the peripheral region portion 141f has a higher density than the central region portion 141c. A method for providing such a density difference will be described later. The central region 141c is narrower than the power generation region 41gp of FIG. 2 by an amount corresponding to the inner edge region 141ff on the periphery of the anode 42 and the cathode 43 shown in FIGS. However, since the inner edge side region 141ff is about 0.1 to 10 mm and is slightly shorter than the length of each side of the power generation region 41gp, the central region portion 141c of both the reinforcing layers is substantially the power generation region 41gp. Is almost the same. Further, even in the peripheral region portion 141f of both the reinforcing layers, it is almost the same as the peripheral region 41sp of FIG.

単セル40は、上記のMEGAをフレーム50にて保持するに当たり、内縁側領域141ffより外側の外周縁側領域141fCにおいて、電解質膜41の周縁領域部位141fをフレーム50と接合させる。そして、この接合領域に塗布した接着剤の接着力にて、単セル40は、上記の電解質膜41を有するMEA、延いてはMEGAを気密に接着・保持する。   When the single cell 40 holds the above MEGA in the frame 50, the peripheral region 141 f of the electrolyte membrane 41 is joined to the frame 50 in the outer peripheral side region 141 fC outside the inner peripheral side region 141 ff. The unit cell 40 hermetically adheres and holds the MEA having the electrolyte membrane 41, and thus the MEGA, with the adhesive force of the adhesive applied to the joining region.

次に、燃料電池10の製造手順について説明する。図5はMEAおよびMEGAの製造を経て燃料電池10を製造する際の製造手順を示す工程図である。図示するように、燃料電池10の製造に当たっては、MEAの製造(工程S100)、MEGAの構成部材の準備(工程S200)、MEGAの製造(工程S300)、単セル40の作製(工程S400)、およびその積層・組み立て(工程S500)を経て、燃料電池スタック40Sを備えた燃料電池10を製造する。以下、各工程について順次詳述する。   Next, the manufacturing procedure of the fuel cell 10 will be described. FIG. 5 is a process diagram showing a manufacturing procedure when the fuel cell 10 is manufactured through the manufacture of MEA and MEGA. As shown in the figure, in the manufacture of the fuel cell 10, the MEA is manufactured (step S100), the MEGA components are prepared (step S200), the MEGA is manufactured (step S300), and the unit cell 40 is manufactured (step S400). Through the stacking and assembling (step S500), the fuel cell 10 including the fuel cell stack 40S is manufactured. Hereinafter, each step will be described in detail.

図6は工程S100におけるMEAの製造手順の詳細を示す工程図である。図示するように、MEAの製造に当たっては、まず、後に電解質膜41となる電解質前駆体樹脂シート41zsと二対の多孔質補強体シート41pとを準備する(工程S110)。図7は準備する電解質前駆体樹脂シート41zsと二対の多孔質補強体シート41pの概略と配置の様子を示す説明図である。電解質前駆体樹脂シート41zsは、側鎖末端基がスルホン酸基の前駆体(−SO2F)である電解質前駆体樹脂(以下、「F型電解質樹脂」と称する)を用いて矩形形状のシートをなすよう成型された型成型品である。このF型電解質樹脂は、例えばデュポン社製ナフィオン(ナフィオンは登録商標、以下同じ)とでき、従来知られた加水分解処理などによるイオン伝導化処理を後述する工程によって行うことで、湿潤状態において良好なプロトン伝導性を発揮する。 FIG. 6 is a process diagram showing details of the MEA manufacturing procedure in step S100. As shown in the drawing, in manufacturing the MEA, first, an electrolyte precursor resin sheet 41zs and two pairs of porous reinforcing sheet 41p, which will later become the electrolyte membrane 41, are prepared (step S110). FIG. 7 is an explanatory view showing an outline and a state of arrangement of the prepared electrolyte precursor resin sheet 41zs and two pairs of porous reinforcing sheet 41p. The electrolyte precursor resin sheet 41zs is a rectangular sheet using an electrolyte precursor resin (hereinafter referred to as “F-type electrolyte resin”) whose side chain terminal group is a sulfonic acid group precursor (—SO 2 F). It is a molded product molded to make This F-type electrolyte resin can be made of, for example, Nafion manufactured by DuPont (Nafion is a registered trademark, the same applies hereinafter), and is performed in a wet state by performing ion conduction treatment by a conventionally known hydrolysis treatment or the like by a process described later. Proton proton conductivity.

多孔質補強体シート41pは、多孔質第1シート41p1と多孔質第2シート41p2とを備える。そして、この多孔質第1シート41p1と多孔質第2シート41p2は、共にPTFEを延伸したスライバーを用いて孔質化した多孔質体シートであって、図7に示す準備工程の段階では、50%以上の気孔率を有する。多孔質第1シート41p1は、電解質前駆体樹脂シート41zsと平面視形状が同じとされている。多孔質第2シート41p2は、平面視の外郭形状が電解質前駆体樹脂シート41zsと同じとされた枠状をなす。多孔質第2シート41p2の枠幅は、図3〜図4に示す周縁領域部位141fの幅、即ち内縁側領域141ffと外周縁側領域141fCとを合わせた幅となる。そして、多孔質第1シート41p1に多孔質第2シート41p2を重ねて構成された多孔質補強体シート41pは、多孔質第2シート41p2の枠内を占める部位を多孔質第1シート41p1だけの厚みとし、多孔質第2シート41p2の枠部位については、多孔質第1シート41p1と多孔質第2シート41p2とが重なった厚みとし、補強体厚みに差を持たせている。   The porous reinforcing sheet 41p includes a porous first sheet 41p1 and a porous second sheet 41p2. The porous first sheet 41p1 and the porous second sheet 41p2 are both porous sheets made by using a sliver obtained by stretching PTFE. In the stage of the preparation step shown in FIG. % Porosity. The porous first sheet 41p1 has the same planar view shape as the electrolyte precursor resin sheet 41zs. The porous second sheet 41p2 has a frame shape whose outer shape in plan view is the same as that of the electrolyte precursor resin sheet 41zs. The frame width of the porous second sheet 41p2 is the width of the peripheral region portion 141f shown in FIGS. 3 to 4, that is, the combined width of the inner peripheral region 141ff and the outer peripheral region 141fC. And the porous reinforcement body sheet | seat 41p comprised by overlapping the porous 2nd sheet | seat 41p2 on the porous 1st sheet | seat 41p1 is the area | region which occupies the frame of the porous 2nd sheet | seat 41p2 only for the porous 1st sheet | seat 41p1. The thickness of the frame portion of the porous second sheet 41p2 is set such that the porous first sheet 41p1 and the porous second sheet 41p2 overlap each other, and the thickness of the reinforcing body is made different.

こうして準備した多孔質補強体シート41pを電解質前駆体樹脂シート41zsの両面に配置し、積層体41Sを形成する(工程S120)。多孔質補強体シート41pの配置に際しては、図7に矢印で示すように、電解質前駆体樹脂シート41zsに多孔質第1シート41p1が重なるようにされる。図8は工程S120からの各工程における処理の様子を模式的に示す説明図である。工程S120に続いては、積層体41Sを加熱しながら加圧する(工程S130)。この工程S130では、図8に示すように、まず、積層体41Sを図示しないホットプレス装置の上型Puと下型Pdの間にセットする(工程S130a)。次いで、積層体41Sを所定の温度(例えば170℃〜280℃)で加熱しながら、所定の圧力(例えば4N/cm2〜30N/cm2)で加圧する(工程S130b〜S130c)。なお、こうしたホットプレスの方法により加熱・加圧に替えて、ホットロールプレス等の他の方法により加熱・加圧を行う構成としてもよい。 The porous reinforcing sheet 41p thus prepared is arranged on both surfaces of the electrolyte precursor resin sheet 41zs to form a laminate 41S (step S120). When the porous reinforcing sheet 41p is arranged, the porous first sheet 41p1 is overlapped with the electrolyte precursor resin sheet 41zs as indicated by an arrow in FIG. FIG. 8 is an explanatory view schematically showing the state of processing in each step from step S120. Subsequent to step S120, the stacked body 41S is pressurized while being heated (step S130). In this step S130, as shown in FIG. 8, first, the laminate 41S is set between an upper mold Pu and a lower mold Pd (not shown) of a hot press apparatus (step S130a). Then, while heating the laminate 41S at a predetermined temperature (e.g. 170 ° C. to 280 ° C.), pressurized with a predetermined pressure (e.g., 4N / cm 2 ~30N / cm 2 ) ( step S130b~S130c). In addition, it is good also as a structure which replaces with heating and pressurization with such a hot press method, and heats and pressurizes with other methods, such as a hot roll press.

工程S130において加熱・加圧を受ける積層体41Sは、F型電解質樹脂の型成型品であって気泡を有しない固形の電解質前駆体樹脂シート41zsの両側に、多孔質の多孔質補強体シート41p、詳しくは多孔質第1シート41p1と多孔質第2シート41p2とを備える。そして、枠状の多孔質第2シート41p2は、多孔質第1シート41p1に重なって型表面に接する。こうしたシート体としての性状とシート配置の関係から、加熱・加圧の工程において、多孔質第2シート41p2は、先に圧縮され、圧縮されながら、多孔質第1シート41p1の周縁領域についてもこれを圧縮する。こうして先に圧縮される部位は、既述した周縁領域部位141fとなり、この周縁領域部位141fは、加圧が進むにつれて、多孔質第2シート41p2の型表面側のシート面が多孔質第1シート41p1と面一となるまで圧縮される。これにより、周縁領域部位141fは、多孔質第1シート41p1の周縁領域と多孔質第2シート41p2との重なりの厚みが中央領域部位141cにおける多孔質第1シート41p1の厚みまで圧縮される(工程S130b)。上記の第1、第2の両シートは、多孔質である故に、圧縮により細孔が潰れるので、周縁領域部位141fは、多孔質第1シート41p1だけの中央領域部位141cに比して高密度となる。このように細孔が潰れても、周縁領域部位141fでの多孔質第1シート41p1と多孔質第2シート41p2とは、多孔質のままである。   The layered body 41S that is heated and pressurized in step S130 is a molded product of F-type electrolyte resin and is porous on both sides of a solid electrolyte precursor resin sheet 41zs that does not have bubbles. Specifically, it includes a porous first sheet 41p1 and a porous second sheet 41p2. The frame-like porous second sheet 41p2 is in contact with the mold surface so as to overlap the porous first sheet 41p1. Due to the relationship between the properties of the sheet body and the sheet arrangement, the porous second sheet 41p2 is compressed in the heating / pressurizing step, and the peripheral area of the porous first sheet 41p1 is also compressed while being compressed. Compress. Thus, the previously compressed portion is the peripheral region portion 141f described above, and the peripheral surface portion 141f is such that the sheet surface on the mold surface side of the porous second sheet 41p2 becomes the porous first sheet as pressurization proceeds. It is compressed until it becomes flush with 41p1. Thereby, the peripheral region part 141f is compressed to the thickness of the porous first sheet 41p1 in the central region part 141c so that the overlapping thickness of the peripheral region of the porous first sheet 41p1 and the porous second sheet 41p2 is increased (step). S130b). Since both of the first and second sheets are porous, the pores are crushed by compression, so that the peripheral region portion 141f has a higher density than the central region portion 141c of the porous first sheet 41p1 alone. It becomes. Even if the pores are crushed in this way, the porous first sheet 41p1 and the porous second sheet 41p2 in the peripheral region portion 141f remain porous.

工程S130bにおける加圧の開始と同時に、或いは加圧開始後に、積層体41Sは、上型Puと下型Pdにセットされたまま既述した温度で加熱されつつ加圧される。これにより、積層体41Sを構成する電解質前駆体樹脂シート41zsのF型電解質樹脂は溶融する。溶融したF型電解質樹脂は、毛細管圧と加圧を受けることによって、周縁領域部位141fおよび中央領域部位141cにおける多孔質第1シート41p1と多孔質第2シート41p2の細孔内に含浸する。そして、積層体41Sは、向かい合う中央領域部位141cと周縁領域部位141fが近づくよう、F型電解質樹脂の細孔内への含浸に伴い、積層体高さを減じて更に圧縮される(工程S130c)。この工程S130cにおける積層体高さは、最終的な電解質膜41の厚みとされる。この状態においても、多孔質第1シート41p1と多孔質第2シート41p2とは、多孔質のままである。   Simultaneously with the start of pressurization in step S130b or after the start of pressurization, the stacked body 41S is pressed while being heated at the above-described temperature while being set on the upper mold Pu and the lower mold Pd. Thereby, F type electrolyte resin of the electrolyte precursor resin sheet 41zs which comprises the laminated body 41S fuse | melts. The molten F-type electrolyte resin is impregnated in the pores of the porous first sheet 41p1 and the porous second sheet 41p2 in the peripheral region portion 141f and the central region portion 141c by receiving capillary pressure and pressurization. The laminated body 41S is further compressed by reducing the height of the laminated body as the F-type electrolyte resin is impregnated into the pores so that the central region portion 141c and the peripheral region portion 141f that face each other approach each other (step S130c). The stack height in this step S130c is the final thickness of the electrolyte membrane 41. Even in this state, the porous first sheet 41p1 and the porous second sheet 41p2 remain porous.

溶融したF型電解質樹脂は、その有する高分子構造と、加圧剪断を受けながらの溶融混練により分子間の結合性を高めるという性状とから、最終的に、電解質前駆体樹脂シート41zsと多孔質第1シート41p1との界面、および周縁領域部位141fにおける多孔質第1シート41p1と多孔質第2シート41p2との界面において、界面を挟んだ上記の両部材同士をF型電解質樹脂を介して界面結合させる。こうした界面結合は、以下のような結合をもたらす。   The molten F-type electrolyte resin finally has an electrolyte precursor resin sheet 41zs and a porous structure because of its polymer structure and the property of enhancing intermolecular bonding by melt kneading while being subjected to pressure shear. In the interface with the first sheet 41p1 and the interface between the porous first sheet 41p1 and the porous second sheet 41p2 in the peripheral region portion 141f, the above two members sandwiching the interface are interfaced with each other via the F-type electrolyte resin. Combine. Such interfacial bonding results in the following bonding.

気泡を有しないF型電解質樹脂からなる電解質前駆体樹脂シート41zsをその両側の多孔質補強体シート41pで挟みながら加圧、加熱、溶融、含浸させることで、多孔質補強体シート41pは、その界面の細孔に含浸したF型電解質樹脂を介して電解質前駆体樹脂シート41zsのF型電解質樹脂と一体化し、熱可塑であるF型電解質樹脂の冷却を経て電解質前駆体樹脂シート41zsに結合する。この結合は、界面での応力を残さない安定した状態となり、十分な界面結合安定性を確保することができる。また、F型電解質樹脂は耐熱性が高いことから、この加熱・加圧する工程において熱劣化を引き起こすことがない。   By pressing, heating, melting, and impregnating the electrolyte precursor resin sheet 41zs made of F-type electrolyte resin having no air bubbles between the porous reinforcement sheet 41p on both sides thereof, the porous reinforcement sheet 41p The F-type electrolyte resin of the electrolyte precursor resin sheet 41zs is integrated with the F-type electrolyte resin impregnated in the pores of the interface, and is bonded to the electrolyte precursor resin sheet 41zs through cooling of the thermoplastic F-type electrolyte resin. . This bond is in a stable state without leaving stress at the interface, and sufficient interface bond stability can be ensured. In addition, since the F-type electrolyte resin has high heat resistance, thermal degradation does not occur in the heating and pressurizing step.

工程S130cにおいて溶融したF型電解質樹脂は、上型Puと下型Pdの型面の側の多孔質第1シート41p1および多孔質第2シート41p2のシート表面141sの細孔の内部にまで含浸する。樹脂含浸前のシート表面141sは、多孔質の上記両シートを形成する際のスライバーがむき出しでケバ状である。ところが、シート表面141sの細孔内に含浸したF型電解質樹脂は、むき出しのスライバーを包むように覆うので、シート表面141sは、ほぼケバのない状態となる。   The F-type electrolyte resin melted in step S130c is impregnated into the pores of the sheet surface 141s of the porous first sheet 41p1 and the porous second sheet 41p2 on the mold surface side of the upper mold Pu and the lower mold Pd. . The sheet surface 141s before the resin impregnation has a striped sliver when the porous both sheets are formed. However, since the F-type electrolyte resin impregnated in the pores of the sheet surface 141 s covers the exposed sliver, the sheet surface 141 s is almost free from fluff.

ところで、図8に示す工程S130cにおける上型Puと下型Pdによる積層体41Sの加圧に伴う積層体41Sの圧縮は、電解質前駆体樹脂シート41zsのF型電解質樹脂の溶融が起きる過程でなされる。つまり、電解質前駆体樹脂シート41zsが固形のシート状の状態で積層体41Sの圧縮が起こるので、中央領域部位141cにおける多孔質第1シート41p1についても細孔がある程度潰れるよう圧縮される。そして、この際の周縁領域部位141fでの細孔の潰れの程度は、当該部位が既に圧縮済み(工程S130b)であることから、中央領域部位141cより小さい。このため、図示するように、周縁領域部位141fは、中央領域部位141cより電解質前駆体樹脂シート41zsの側に入り込むことになる。なお、積層体41Sの加圧・圧縮を電解質前駆体樹脂シート41zsのF型電解質樹脂の溶融に合わせるようにすることで、周縁領域部位141fを、中央領域部位141cと同程度に電解質前駆体樹脂シート41zsの側に入り込むようにしてもよい。   By the way, the compression of the laminated body 41S accompanying the pressurization of the laminated body 41S by the upper mold Pu and the lower mold Pd in step S130c shown in FIG. 8 is performed in the process of melting the F-type electrolyte resin of the electrolyte precursor resin sheet 41zs. The That is, since the laminate 41S is compressed while the electrolyte precursor resin sheet 41zs is in the form of a solid sheet, the porous first sheet 41p1 in the central region portion 141c is also compressed so that the pores are crushed to some extent. In this case, the degree of collapse of the pores in the peripheral region portion 141f is smaller than that in the central region portion 141c because the portion has already been compressed (step S130b). For this reason, as shown in the drawing, the peripheral region portion 141f enters the electrolyte precursor resin sheet 41zs side from the central region portion 141c. The pressure and compression of the laminated body 41S are matched with the melting of the F-type electrolyte resin of the electrolyte precursor resin sheet 41zs, so that the peripheral region portion 141f is made the electrolyte precursor resin to the same extent as the central region portion 141c. You may make it enter into the sheet | seat 41zs side.

図6に示す工程S130に続いては、詳しくは図8の工程S130cに続いては、積層体41Sを型から外して、その積層体41Sに従来知られた加水分解処理を施した後に養生に処す(工程S140)。この加水分解処理により、積層体41Sに含まれるF型電解質樹脂はプロトン伝導性を備えたものとなる。以上の工程S100〜工程S140までの工程を経て、図3〜図4に示す電解質膜41が燃料電池用電解質膜の完成品として得られる。そして、工程S100〜工程S140までの工程により、準備した多孔質補強体シート41pは、周縁領域部位141fを高密度化した上でF型電解質樹脂を細孔に含浸させた状態となって電解質膜41を補強するアノード側補強層41anとカソード側補強層41caに遷移し、準備した電解質前駆体樹脂シート41zsは、これを形成するF型電解質樹脂と、アノード側補強層41anおよびカソード側補強層41caの細孔に含浸したF型電解質樹脂との加水分解処理を経て、プロトン伝導性を有する電解質膜部位41cおよび電解質膜41に遷移することになる。この工程S100〜工程S140までの工程により電解質膜41を製造する上記の実施形態は、次の製造手順の一形態をなすことになる。つまり、多孔質の補強体である多孔質補強体シート41pを重ねて積層体41Sを形成するに当たり、準備する多孔質の補強体を、電解質に変遷する電解質前駆体から形成された電解質前駆体膜である電解質前駆体樹脂シート41zsの一方の膜面と他方の膜面とに重ねて積層体41Sを形成する。次いで、積層体41Sの加熱・加圧の工程の際に、或いは積層体の加熱・加圧の工程後に、電解質前駆体を電解質に変遷させる。   Following the step S130 shown in FIG. 6, specifically, following the step S130c of FIG. 8, the laminated body 41S is removed from the mold, and the laminated body 41S is subjected to a conventionally known hydrolysis treatment and then cured. (Step S140) By this hydrolysis treatment, the F-type electrolyte resin contained in the laminate 41S has proton conductivity. Through the steps from S100 to S140, the electrolyte membrane 41 shown in FIGS. 3 to 4 is obtained as a finished product of the electrolyte membrane for a fuel cell. Then, through the steps S100 to S140, the prepared porous reinforcing sheet 41p is in a state in which the pores are impregnated with the F-type electrolyte resin after the peripheral region portion 141f is densified. The electrolyte precursor resin sheet 41zs prepared by transitioning to the anode-side reinforcing layer 41an and the cathode-side reinforcing layer 41ca that reinforces the 41 is prepared by the F-type electrolyte resin forming the same, the anode-side reinforcing layer 41an and the cathode-side reinforcing layer 41ca. Through the hydrolysis treatment with the F-type electrolyte resin impregnated in the pores, transition is made to the electrolyte membrane portion 41c and the electrolyte membrane 41 having proton conductivity. Said embodiment which manufactures the electrolyte membrane 41 by the process from this process S100 to process S140 will comprise one form of the following manufacturing procedure. That is, when forming the laminated body 41S by stacking the porous reinforcing body sheet 41p, which is a porous reinforcing body, the prepared porous reinforcing body is an electrolyte precursor film formed from an electrolyte precursor that changes to an electrolyte. The laminated body 41S is formed so as to overlap the one film surface and the other film surface of the electrolyte precursor resin sheet 41zs. Next, the electrolyte precursor is changed to an electrolyte during the heating / pressurizing process of the stacked body 41S or after the heating / pressurizing process of the stacked body.

工程S140で得られた電解質膜41を、他のMEA製造ラインやMEA製造工場、他のMEGA製造ラインやMEGA製造工場、或いは他の燃料電池製造ラインや製造工場に出荷することもできる(工程S145)。本実施形態では、MEAを製造すべく、工程S140で得られた電解質膜41の両膜面に、アノード42とカソード43の電極触媒層を形成してMEAを作製し(工程S150)、図5の次の工程S200に移行する。工程S150で得られたMEAを、他のMEGA製造ラインやMEGA製造工場、或いは他の燃料電池製造ラインや製造工場に出荷することもできる(工程S145)。   The electrolyte membrane 41 obtained in step S140 can be shipped to another MEA production line or MEA production plant, another MEGA production line or MEGA production plant, or another fuel cell production line or production plant (step S145). ). In this embodiment, in order to manufacture the MEA, the MEA is manufactured by forming the electrode catalyst layers of the anode 42 and the cathode 43 on both membrane surfaces of the electrolyte membrane 41 obtained in step S140 (step S150), and FIG. The process proceeds to the next step S200. The MEA obtained in step S150 can be shipped to another MEGA production line or MEGA production factory, or another fuel cell production line or production factory (step S145).

図5の工程S200では、MEAを除くMEGAの構成部材、具体的にはアノード側ガス拡散層44、カソード側ガス拡散層45およびフレーム50を準備する。次いで、工程S100で得られたMEAを、アノード側ガス拡散層44とカソード側ガス拡散層45とで挟持すると共に、MEAをフレーム50に保持してMEGAを製造する(工程S300)。上記の両ガス拡散層によるMEAの挟持の際には、ホットプレス等の手法にてMEAとガス拡散層を接合する。また、フレーム50によるMEAの保持の際には、MEAとフレーム50との接合面に、接着剤が塗布されて、MEAはフレーム50に接着・保持される。こうして得たMEGAについては、これを、他の燃料電池製造ラインや製造工場に出荷することもできる(工程310)。   In step S200 of FIG. 5, constituent members of MEGA except MEA, specifically, anode-side gas diffusion layer 44, cathode-side gas diffusion layer 45, and frame 50 are prepared. Next, the MEA obtained in step S100 is sandwiched between the anode side gas diffusion layer 44 and the cathode side gas diffusion layer 45, and the MEA is held on the frame 50 to manufacture MEGA (step S300). When the MEA is sandwiched between the two gas diffusion layers, the MEA and the gas diffusion layer are joined by a technique such as hot pressing. Further, when the MEA is held by the frame 50, an adhesive is applied to the joint surface between the MEA and the frame 50, and the MEA is bonded and held to the frame 50. The MEGA obtained in this manner can be shipped to other fuel cell production lines or production plants (step 310).

次いで、工程S300で得られたMEGAをセパレーター46とセパレーター47とで挟持して単セル40を作製し(工程S400)、所定数の単セル40を、前端側ターミナルプレート31と後端側ターミナルプレート32および絶縁板20aと共に、図1に示すエンドプレート10aの間に積層してスタック状に組み立て、これを積層方向に所定の締結力で締結する(工程S500)。これにより、図1に示した燃料電池10が得られる。   Next, the single cells 40 are produced by sandwiching the MEGA obtained in step S300 between the separator 46 and the separator 47 (step S400), and the predetermined number of single cells 40 are combined with the front end side terminal plate 31 and the rear end side terminal plate. 32 and the insulating plate 20a are stacked between the end plates 10a shown in FIG. 1 and assembled into a stack, and are fastened in the stacking direction with a predetermined fastening force (step S500). Thereby, the fuel cell 10 shown in FIG. 1 is obtained.

次に、以上のように構成された本実施形態の電解質膜41の性状および性能について説明する。図9は本実施形態の電解質膜41の周縁領域部位141fと中央領域部位141cとにおける含水の様子を示すグラフである。図9は、縦軸を、含水時の重量を乾燥時の重量で除算した含水量(%)とし、この含水量を周縁領域部位141fと中央領域部位141cとについてプロットした。含水量測定に際しては、電解質膜41を、周縁領域部位141fの部位と中央領域部位141cの部位とに切断し、各部位を、100℃の熱水に1時間浸漬させ、表面の水分を拭き取って常温(25℃)にて重量を測定し、これを含水時の重量とした。次いで、上記の両部位を、80℃の温度環境下に置いて2時間乾燥させ、常温(25℃)にて重量を測定し、これを乾燥時の重量とした。その上で、上記の両部位についての含水量を求め、図9を得た。図示するように、本実施形態の電解質膜41では、電解質膜の両膜面において多孔質補強体シート41pにて補強することで、中央領域部位141cにおける含水量を、アノード側補強層41anやカソード側補強層41caを備えない電解質膜より小さくできる。その上で、本実施形態の電解質膜41では、電解質膜の両膜面において多孔質補強体シート41pにて補強するに当たり、周縁領域部位141fを中央領域部位141cより高密度とすることで、周縁領域部位141fの含水量を中央領域部位141cの30%程度まで小さくする。このことから、本実施形態の電解質膜41によれば、周縁領域部位141fと中央領域部位141cとにおいて、燃料電池10の発電運転過程において電解質膜41の膜中水分を少なくして膜中水分による膨潤を低減できるので、中央領域部位141cはもとより周縁領域部位141fにおいても、高い実効性で膜損傷を回避もしくは抑制できる。この場合、アノード側補強層41anとカソード側補強層41caを撥水性を有するPTFE性の多孔質体としたことから、電解質膜41の膜中水分の低減はより進むことになるので、この点も膜損傷の回避や抑制の上から有益である。   Next, the property and performance of the electrolyte membrane 41 of the present embodiment configured as described above will be described. FIG. 9 is a graph showing the water content in the peripheral region 141f and the central region 141c of the electrolyte membrane 41 of the present embodiment. In FIG. 9, the vertical axis is the water content (%) obtained by dividing the weight at the time of water content by the weight at the time of drying, and this water content is plotted for the peripheral region region 141 f and the central region region 141 c. In measuring the water content, the electrolyte membrane 41 is cut into a peripheral region portion 141f and a central region portion 141c, and each portion is immersed in hot water at 100 ° C. for 1 hour to wipe off surface moisture. The weight was measured at room temperature (25 ° C.), and this was regarded as the weight when containing water. Next, both the above parts were placed in a temperature environment of 80 ° C. and dried for 2 hours, and the weight was measured at room temperature (25 ° C.). Then, the water content of both the above parts was determined, and FIG. 9 was obtained. As shown in the figure, in the electrolyte membrane 41 of the present embodiment, the moisture content in the central region portion 141c is increased by reinforcing the porous membrane sheets 41p on both membrane surfaces of the electrolyte membrane so that the anode-side reinforcing layer 41an and the cathode It can be made smaller than the electrolyte membrane not provided with the side reinforcing layer 41ca. In addition, in the electrolyte membrane 41 of the present embodiment, the peripheral region portion 141f has a higher density than the central region portion 141c when reinforcing the porous membrane sheets 41p on both membrane surfaces of the electrolyte membrane. The water content of the region part 141f is reduced to about 30% of the central region part 141c. Therefore, according to the electrolyte membrane 41 of the present embodiment, in the peripheral region portion 141f and the central region portion 141c, the moisture in the membrane of the electrolyte membrane 41 is reduced by the moisture in the membrane during the power generation operation process of the fuel cell 10. Since swelling can be reduced, film damage can be avoided or suppressed with high effectiveness not only in the central region portion 141c but also in the peripheral region portion 141f. In this case, since the anode-side reinforcing layer 41an and the cathode-side reinforcing layer 41ca are made of PTFE porous bodies having water repellency, the water content in the electrolyte membrane 41 is further reduced. This is beneficial for avoiding and suppressing membrane damage.

図10は本実施形態の電解質膜41についての乾湿サイクル数とガス透過量(Pa/s)との関係を示すグラフである。グラフの横軸は乾湿サイクル数を示し、縦軸はガス透過量を示す。この図10から、補強層を備えない既存の電解質膜では、乾湿サイクル数が少ないうちは、ガス透過を抑制できるものの、乾湿サイクル数が増すと、ガス透過量が急増するので、クロスリークが発生する。これに対し、本実施形態の電解質膜41では、既存電解質でガス透過量の急増が起きた乾湿サイクル数よりもサイクル数が増えても、ガス透過量の急増を起こさない。このことから、本実施形態の電解質膜41によれば、図10の結果からも、膜損傷を起こさないようにして、耐久性を高めることができる。こうした膜損傷の回避と耐久性の向上は、電解質膜41をその両膜面において多孔質補強体シート41pにて補強したことに加え、周縁領域部位141fにおいては高密度とすることで、中央領域部位141cに比して高い強度で周縁領域部位141fを補強したことによって、達成できる。つまり、図3に示すように、周縁流路401rを経てカソード43にガス供給を図る都合から、電解質膜41だけが単身で存在するので、膨張/伸縮の繰り返しに伴って周縁領域部位141fでの膜損傷が危惧されるが、周縁領域部位141fの膜損傷は、周縁領域部位141fの高密度化および高強度化により、高い実効性で回避できることになる。そして、電解質膜41の高い耐久性を備えることから、電解質膜41を用いたMEAやMEGA、単セル40および燃料電池10についても、耐久性を高めることができる。   FIG. 10 is a graph showing the relationship between the number of dry and wet cycles and the gas permeation amount (Pa / s) for the electrolyte membrane 41 of the present embodiment. The horizontal axis of the graph indicates the number of wet and dry cycles, and the vertical axis indicates the gas permeation amount. From FIG. 10, the existing electrolyte membrane without a reinforcing layer can suppress gas permeation while the number of wet and dry cycles is small. However, as the number of dry and wet cycles increases, the amount of gas permeation rapidly increases, so that cross leak occurs. To do. On the other hand, in the electrolyte membrane 41 of the present embodiment, even if the number of cycles increases more than the number of dry and wet cycles in which the gas permeation amount suddenly increased in the existing electrolyte, the gas permeation amount does not rapidly increase. From this, according to the electrolyte membrane 41 of this embodiment, durability can be improved without causing membrane damage also from the result of FIG. In order to avoid such membrane damage and improve the durability, in addition to reinforcing the electrolyte membrane 41 with the porous reinforcing sheet 41p on both membrane surfaces, the peripheral region 141f has a high density, so that the central region This can be achieved by reinforcing the peripheral region portion 141f with higher strength than the portion 141c. That is, as shown in FIG. 3, for the convenience of supplying gas to the cathode 43 through the peripheral flow path 401r, only the electrolyte membrane 41 is present alone, so that the expansion / extension / expansion is repeated in the peripheral region portion 141f. Although film damage is feared, film damage of the peripheral region part 141f can be avoided with high effectiveness by increasing the density and strength of the peripheral region part 141f. Since the electrolyte membrane 41 has high durability, the durability of the MEA, MEGA, single cell 40 and fuel cell 10 using the electrolyte membrane 41 can also be enhanced.

また、本実施形態の電解質膜41では、多孔質補強体シート41pと電解質前駆体樹脂シート41zsの界面において、多孔質補強体シート41pの細孔に含浸したF型電解質樹脂を介して電解質前駆体樹脂シート41zsのF型電解質樹脂と一体化して結合する。この結合は、界面での応力を残さない安定した状態となり、十分な界面結合安定性を確保することができる。このため、電解質前駆体樹脂シート41zsが遷移した電解質膜部位41cと多孔質補強体シート41pによるアノード側補強層41anとの間、および電解質膜部位41cとカソード側補強層41caとの間において、燃料電池10の発電運転に伴う膨張/伸縮の差が発生し難くなる。この結果、電解質膜41における面方向に発生する歪みを抑制することができるという効果を奏する。また、面方向の歪み抑制により、電解質膜部位41cとアノード側補強層41anとの間、および電解質膜部位41cとカソード側補強層41caとの間における剥離や破断も防止できる。   Further, in the electrolyte membrane 41 of the present embodiment, the electrolyte precursor via the F-type electrolyte resin impregnated in the pores of the porous reinforcing sheet 41p at the interface between the porous reinforcing sheet 41p and the electrolyte precursor resin sheet 41zs. The resin sheet 41zs is integrally bonded with the F-type electrolyte resin. This bond is in a stable state without leaving stress at the interface, and sufficient interface bond stability can be ensured. Therefore, between the electrolyte membrane portion 41c where the electrolyte precursor resin sheet 41zs has transitioned and the anode side reinforcing layer 41an by the porous reinforcing sheet 41p, and between the electrolyte membrane portion 41c and the cathode side reinforcing layer 41ca, the fuel Differences in expansion / contraction due to the power generation operation of the battery 10 are less likely to occur. As a result, there is an effect that distortion generated in the surface direction in the electrolyte membrane 41 can be suppressed. Further, by suppressing the distortion in the surface direction, peeling and breakage between the electrolyte membrane portion 41c and the anode side reinforcing layer 41an and between the electrolyte membrane portion 41c and the cathode side reinforcing layer 41ca can be prevented.

さらに、周縁領域部位141fと中央領域部位141cとの界面においても、中央領域部位141cにおける多孔質補強体シート41pの細孔に含浸したF型電解質樹脂と、周縁領域部位141fにおける多孔質補強体シート41pおよび多孔質第2シート41p2の細孔に含浸したF型電解質樹脂とを介した既述した界面結合を図る。このため、周縁領域部位141fと中央領域部位141cとの間における膜損傷も高い実効性で回避できるので、この点からも、周縁領域部位141fの膜損傷の回避の実効性は高まる。   Further, also at the interface between the peripheral region portion 141f and the central region portion 141c, the F-type electrolyte resin impregnated in the pores of the porous reinforcing member sheet 41p in the central region portion 141c and the porous reinforcing member sheet in the peripheral region portion 141f. 41p and the interface bonding described above through the F-type electrolyte resin impregnated in the pores of the porous second sheet 41p2. For this reason, since the film damage between the peripheral region part 141f and the central region part 141c can be avoided with high effectiveness, the effectiveness of avoiding the film damage of the peripheral region part 141f also increases from this point.

本実施形態では、平面形状の多孔質第1シート41p1と枠状の多孔質第2シート41p2とを重ねるという簡便な手法で、中央領域部位141cとこれより厚い周縁領域部位141fとを備えた多孔質補強体シート41pを容易に得ることができる。しかも、多孔質第2シート41p2の枠形状で中央領域部位141c、延いては発電領域41gpを規定できるので、発電領域41gpの形状が整った電解質膜41を容易に提供できる。   In the present embodiment, a porous method including a central region portion 141c and a thicker peripheral region portion 141f is obtained by a simple method of stacking a planar porous first sheet 41p1 and a frame-shaped porous second sheet 41p2. The quality reinforcement sheet | seat 41p can be obtained easily. In addition, since the central region portion 141c and thus the power generation region 41gp can be defined by the frame shape of the porous second sheet 41p2, the electrolyte membrane 41 having the shape of the power generation region 41gp can be easily provided.

本実施形態の電解質膜41では、その構造的な特徴から、次の利点がある。図3〜図4に示すように、電解質膜41において、高密度・高強度の周縁領域部位141fは、中央領域部位141cの側の内縁側領域141ffとその外側の外周縁側領域141fCとを含む。このため、フレーム50による保持される外周縁側領域141fCについても、当該領域を高密度・高強度とできるので、フレーム50への電解質膜41の保持強度を高めることができる。また、電解質膜41をフレーム50に接着・保持する外周縁側領域141fCから中央領域部位141cに延びた内縁側領域141ffについても、当該領域を高密度・高強度とできるので、フレーム50に保持された電解質膜41の保持姿勢を維持できる。これらの結果、フレーム50への電解質膜41の保持の信頼性を高めることができる。この場合、内縁側領域141ffについては、これを0.1〜10mm程度とするので、中央領域部位141cを図2の発電領域41gpとほぼ同じにできる。なお、内縁側領域141ffにおいても、その細孔には電解質を含浸させているので、図3〜図4に示すように、内縁側領域141ffにアノード42とカソード43、およびアノード側ガス拡散層44とカソード側ガス拡散層45を重ねて形成すれば、内縁側領域141ffを発電領域41gpに含ませることができる。   The electrolyte membrane 41 of the present embodiment has the following advantages due to its structural features. As shown in FIGS. 3 to 4, in the electrolyte membrane 41, the high-density / high-strength peripheral region portion 141 f includes an inner edge side region 141 ff on the central region portion 141 c side and an outer peripheral edge side region 141 fC on the outer side. For this reason, the outer peripheral side region 141fC held by the frame 50 can also have a high density and high strength, so that the strength of holding the electrolyte membrane 41 to the frame 50 can be increased. Further, the inner edge side region 141ff that extends from the outer peripheral side region 141fC that adheres and holds the electrolyte membrane 41 to the frame 50 to the central region portion 141c can be made to have a high density and high strength. The holding posture of the electrolyte membrane 41 can be maintained. As a result, the reliability of holding the electrolyte membrane 41 to the frame 50 can be enhanced. In this case, since the inner edge side area 141ff is about 0.1 to 10 mm, the central area portion 141c can be made substantially the same as the power generation area 41gp of FIG. In addition, since the pores are impregnated with the electrolyte also in the inner edge side region 141ff, the anode 42, the cathode 43, and the anode side gas diffusion layer 44 are formed in the inner edge side region 141ff as shown in FIGS. And the cathode side gas diffusion layer 45 are formed to overlap each other, the inner edge side region 141ff can be included in the power generation region 41gp.

また、本実施形態の電解質膜41は、その周縁領域部位141fとこれに取り囲まれる中央領域部位141cとを、密度に差を持たせた上で、同じ厚さとする(図8参照)。このため、本実施形態の電解質膜41を既存の電解質膜と外形形状において同じにできるので、既存の電解質膜との置換代用が簡便となる。しかも、本実施例の電解質膜41では、シート表面141sの細孔の内部にまで電解質を含浸させて、シート表面141sをほぼケバのないシート表面とするので、電解質膜41の搬送等の取扱において、支障を来さない。   In addition, the electrolyte membrane 41 of the present embodiment has the peripheral region 141f and the central region 141c surrounded by the same having the same thickness (see FIG. 8). For this reason, since the electrolyte membrane 41 of this embodiment can be made the same as the existing electrolyte membrane in the outer shape, the substitution substitution with the existing electrolyte membrane becomes simple. Moreover, in the electrolyte membrane 41 of the present embodiment, the electrolyte is impregnated into the pores of the sheet surface 141 s so that the sheet surface 141 s is a sheet surface that is substantially free of blemishes. , Will not hinder.

次に、他の実施形態について説明する。図11は他の実施形態における多孔質補強体シート41pの準備の様子と積層体41Sの形成の様子を説明する説明図である。この実施形態では、1枚の大サイズ多孔質補強体シート41psから、周縁領域部位141fと中央領域部位141cとで補強体厚みに差を持たせた多孔質補強体シート41pを準備する点に特徴がある。図示するように、この実施形態では、大サイズ多孔質補強体シート41psを準備する(工程S110a)。この大サイズ多孔質補強体シート41psは、既述した多孔質第1シート41p1の各辺から、つまり、中央領域部位141cに周縁領域部位141fを加えた矩形形状の各辺から、さらに周縁領域部位141fの分だけ延出した延出部位141fyを備える。次いで、この大サイズ多孔質補強体シート41psのコーナー部位14ccをカッティングする(工程S110b)。このカッティングは、中央領域部位141cの外郭を規定する中央外郭ライン141ckと周縁領域部位141fの外郭を規定する周縁外郭ライン141Lとに沿ってなされる。   Next, another embodiment will be described. FIG. 11 is an explanatory diagram for explaining the preparation of the porous reinforcing sheet 41p and the formation of the laminated body 41S in another embodiment. This embodiment is characterized in that a porous reinforcing sheet 41p having a difference in reinforcing body thickness between the peripheral region portion 141f and the central region portion 141c is prepared from one large-sized porous reinforcing sheet 41ps. There is. As shown in the drawing, in this embodiment, a large-sized porous reinforcing sheet 41ps is prepared (step S110a). The large-sized porous reinforcing sheet 41ps is further extended from each side of the porous first sheet 41p1 described above, that is, from each side of the rectangular shape obtained by adding the peripheral region part 141f to the central region part 141c. An extended portion 141fy is provided that extends by 141f. Next, the corner portion 14cc of this large size porous reinforcing sheet 41ps is cut (step S110b). This cutting is performed along a central outline line 141ck that defines the outline of the central area portion 141c and a peripheral outline line 141L that defines the outline of the peripheral area portion 141f.

こうしたカッティングに続き、それぞれの延出部位141fyの端部が中央外郭ライン141ckに重なるように、周縁外郭ライン141Lを折り目として延出部位141fyを中央領域部位141cの側に折り曲げる(工程S110c)。この折り曲げにより、多孔質第1シート41p1に枠形状の多孔質第2シート41p2を重ねた物と等価の多孔質補強体シート41pが形成されるので、この多孔質補強体シート41pを電解質前駆体樹脂シート41zsの両面に重ねて(工程S110d)、図8で説明したように積層体41Sを形成する(工程S120)。その後は、図8で説明した工程S130a〜S130cに移行し、既述した実施形態と同様に、電解質膜41、MEA、MEGAおよび燃料電池10を製造する。   Following such cutting, the extension part 141fy is folded toward the central region part 141c with the peripheral outline line 141L as a fold so that the end of each extension part 141fy overlaps the central outline line 141ck (step S110c). By this bending, a porous reinforcing body sheet 41p equivalent to the porous first sheet 41p1 and a frame-shaped porous second sheet 41p2 is formed. Therefore, the porous reinforcing body sheet 41p is used as an electrolyte precursor. Overlaying on both surfaces of the resin sheet 41zs (step S110d), the laminated body 41S is formed as described in FIG. 8 (step S120). Thereafter, the process proceeds to steps S130a to S130c described in FIG. 8, and the electrolyte membrane 41, MEA, MEGA, and fuel cell 10 are manufactured in the same manner as in the above-described embodiment.

この実施形態によっても、電解質膜41の損傷回避等の効果を奏することができる。そして、この実施形態では、大サイズ多孔質補強体シート41psの延出部位141fyの折り曲げという簡便な手法で、中央領域部位141cとこれより厚い周縁領域部位141fとを備えた多孔質補強体シート41pを容易に得ることができる。このため、この実施形態によっても、周縁領域部位141fを高密度・高強度とした電解質膜41を容易に提供できる。しかも、中央領域部位141cとこれより厚い周縁領域部位141fとは、延出部位141fyの折り曲げにより、その位置関係が規定され、中央領域部位141cと周縁領域部位141fとの位置ズレは起き難い。よって、本実施形態によれば、中央領域部位141cが対応する発電領域41gpの形状が整った電解質膜41を容易に提供できる。   Also according to this embodiment, effects such as avoidance of damage to the electrolyte membrane 41 can be achieved. And in this embodiment, the porous reinforcement sheet 41p provided with the center area | region site | part 141c and the peripheral area | region area | region 141f thicker than this by the simple method of bending the extension part 141fy of the large size porous reinforcement sheet | seat 41ps. Can be easily obtained. For this reason, according to this embodiment, the electrolyte membrane 41 having a high density and high strength in the peripheral region portion 141f can be easily provided. In addition, the positional relationship between the central region portion 141c and the thicker peripheral region portion 141f is defined by the bending of the extended portion 141fy, and the positional displacement between the central region portion 141c and the peripheral region portion 141f hardly occurs. Therefore, according to the present embodiment, it is possible to easily provide the electrolyte membrane 41 in which the shape of the power generation region 41gp corresponding to the central region portion 141c is arranged.

図12はまた別の実施形態における多孔質補強体シートの準備の様子と積層体41Sの形成の様子を説明する説明図である。この実施形態では、電解質膜および多孔質補強体シートを長尺のフィルム形態で準備する点に特徴がある。この実施形態では、図12に示すように、既述した電解質前駆体樹脂シート41zsが連続した電解質前駆体樹脂フィルム41zfと、多孔質第1シート41p1が連続した多孔質第1シートフィルム41p1fと、多孔質第2シート41p2が連続した多孔質第2シートフィルム41p2fとを準備する。電解質前駆体樹脂フィルム41zfは、F型電解質樹脂を用いてフィルム状に形成され、多孔質第1シートフィルム41p1fは、PTFEを延伸して孔質化してフィルム状に形成される。図13は多孔質第2シートフィルム41p2fの形成の様子を示す説明図である。図示するように、多孔質第2シートフィルム41p2fについては、まず、PTFEを延伸して孔質化させたフィルムを形成し、この状態で、貫通孔形成ゾーンHzに送り込む。次いで、貫通孔形成上型HPuと貫通孔形成下型HPdとにより、中央領域部位141cに相当する貫通孔141chを多孔質第2シートフィルム41p2fに連続して形成する。この際の貫通孔141chの形成ピッチdhは、周縁領域部位141fの2倍とされる。   FIG. 12 is an explanatory diagram for explaining a state of preparing a porous reinforcing body sheet and a state of forming a laminated body 41S in another embodiment. This embodiment is characterized in that the electrolyte membrane and the porous reinforcing sheet are prepared in the form of a long film. In this embodiment, as shown in FIG. 12, the electrolyte precursor resin film 41zf in which the electrolyte precursor resin sheet 41zs described above is continuous, the porous first sheet film 41p1f in which the porous first sheet 41p1 is continuous, A porous second sheet film 41p2f having a continuous porous second sheet 41p2 is prepared. The electrolyte precursor resin film 41zf is formed into a film using an F-type electrolyte resin, and the porous first sheet film 41p1f is formed into a film by stretching PTFE to make it porous. FIG. 13 is an explanatory view showing a state of formation of the porous second sheet film 41p2f. As shown in the drawing, for the porous second sheet film 41p2f, first, a film made by stretching PTFE to be made porous is formed, and in this state, it is fed into the through-hole forming zone Hz. Next, the through-hole 141ch corresponding to the central region portion 141c is continuously formed in the porous second sheet film 41p2f by the through-hole forming upper mold HPu and the through-hole forming lower mold HPd. The formation pitch dh of the through holes 141ch at this time is set twice as large as the peripheral region portion 141f.

次いで、貫通孔141chを有する多孔質第2シートフィルム41p2fと多孔質第1シートフィルム41p1fとを、図12に示すように、電解質前駆体樹脂フィルム41zfの両側に重ねる。これにより、多孔質第2シートフィルム41p2fと多孔質第1シートフィルム41p1fとからなる多孔質補強体シートフィルム41pfが電解質前駆体樹脂フィルム41zfに重なり、積層体フィルム41Sfが形成される。そして、この積層体フィルム41Sfを、ホットプレス装置の上型Puと下型Pdの間にセットし(工程S130a)、その後は、図8で説明した工程S130b〜S130cに移行し、既述した実施形態と同様に、電解質膜41、MEA、MEGAおよび燃料電池10を製造する。この場合、この実施形態における上型Puと下型Pdは、同時に多数箇所にて積層体フィルム41Sfを加圧できるよう、長尺状とされている。また、加水分解後にフィルム形態で得られた積層体フィルム41Sfは、図13に示す形成ピッチdhの中央箇所において、カッティングされ、電解質膜41が作製される。   Next, the porous second sheet film 41p2f having the through-hole 141ch and the porous first sheet film 41p1f are stacked on both sides of the electrolyte precursor resin film 41zf as shown in FIG. Thereby, the porous reinforcement sheet film 41pf composed of the porous second sheet film 41p2f and the porous first sheet film 41p1f is overlapped with the electrolyte precursor resin film 41zf to form a laminate film 41Sf. And this laminated body film 41Sf is set between the upper mold | type Pu and lower mold | type Pd of a hot press apparatus (process S130a), after that, it transfers to process S130b-S130c demonstrated in FIG. The electrolyte membrane 41, MEA, MEGA, and fuel cell 10 are manufactured in the same manner as the embodiment. In this case, the upper mold Pu and the lower mold Pd in this embodiment have a long shape so that the laminate film 41Sf can be pressed simultaneously at a number of locations. In addition, the laminate film 41Sf obtained in the form of a film after hydrolysis is cut at the central portion of the formation pitch dh shown in FIG. 13 to produce the electrolyte membrane 41.

この実施形態によっても、電解質膜41の損傷回避等の効果を奏することができる。そして、この実施形態では、電解質前駆体樹脂フィルム41zfへの多孔質第1シートフィルム41p1fと多孔質第2シートフィルム41p2fの積層により、連続的に電解質膜41を製造でき、生産性を高めることができる。   Also according to this embodiment, effects such as avoidance of damage to the electrolyte membrane 41 can be achieved. In this embodiment, the electrolyte membrane 41 can be continuously manufactured by stacking the porous first sheet film 41p1f and the porous second sheet film 41p2f on the electrolyte precursor resin film 41zf, thereby increasing productivity. it can.

図14はフィルム形態での他の実施形態における電解質膜41の製造の様子を概略的に示す説明図である。図示するように、この実施形態では、図12で示した電解質前駆体樹脂フィルム41zfと多孔質第1シートフィルム41p1f、および貫通孔141chの形成済みの多孔質第2シートフィルム41p2fを、それぞれ巻取ローラーに巻き取って準備する。そして、第1押圧ローラー対110に、電解質前駆体樹脂フィルムローラー41zrから電解質前駆体樹脂フィルム41zfを、多孔質第1シートフィルムローラー41p1rから多孔質第1シートフィルム41p1fを、多孔質第2シートフィルムローラー41p2rから多孔質第2シートフィルム41p2fを、それぞれ送り出す。第1押圧ローラー対110は、図8で説明した工程S130aにおける上型Puと下型Pdとの隔たりに相当するローラー間隔とされているので、押圧箇所P1において、図12で説明した積層体フィルム41Sfを形成する(工程S130a)。   FIG. 14 is an explanatory view schematically showing a state of manufacturing the electrolyte membrane 41 in another embodiment in the form of a film. As shown in the figure, in this embodiment, the electrolyte precursor resin film 41zf, the porous first sheet film 41p1f, and the porous second sheet film 41p2f in which the through holes 141ch are formed are wound up, respectively. Prepare by winding on a roller. Then, the electrolyte precursor resin film roller 41zr to the electrolyte precursor resin film 41zf, the porous first sheet film roller 41p1r to the porous first sheet film 41p1f, and the porous second sheet film to the first pressing roller pair 110. The porous second sheet film 41p2f is sent out from the roller 41p2r, respectively. Since the first pressing roller pair 110 has a roller distance corresponding to the distance between the upper mold Pu and the lower mold Pd in step S130a described in FIG. 8, the laminated film described in FIG. 41Sf is formed (step S130a).

こうして形成された積層体フィルム41Sfは、加熱プレス装置120に搬送される。加熱プレス装置120は、第2押圧ローラー対121と第3押圧ローラー対122と加熱機器123とを備える。第2押圧ローラー対121は、図8で説明した工程S130bにおける上型Puと下型Pdとの隔たりに相当するローラー間隔とされて、積層体フィルム41Sfを加圧・押圧する。第3押圧ローラー対122は、図8で説明した工程S130aにおける上型Puと下型Pdとの隔たりに相当するローラー間隔とされて、積層体フィルム41Sfを加圧・押圧する。加熱機器123は、搬送されつつある積層体フィルム41Sfを、F型電解質樹脂の溶融と細孔への含浸が起きるよう、加熱する。このため、積層体フィルム41Sfは、加熱プレス装置120を搬送される間において、押圧箇所P2での第2押圧ローラー対121による既述した周縁領域部位141fに相当する箇所の多孔質第2シートフィルム41p2fの圧縮(工程S130b)を受けた後、加熱機器123の加熱によるF型電解質樹脂の溶融と細孔内への含浸、および押圧箇所P3での3押圧ローラー対122による既述した更なる圧縮(工程S130c)を受ける。次いで、積層体フィルム41Sfは、加水分解装置130に搬送され、当該装置において、加水分解処理を受ける。これにより、積層体フィルム41Sfに含まれるF型電解質樹脂はプロトン伝導性を備えたものとなる。その後、積層体フィルム41Sfは、切断ゾーンCzに搬送されて切断刃140にて矩形形状に切断され、電解質膜41が作製される。   The laminated film 41Sf formed in this way is conveyed to the hot press device 120. The heating press device 120 includes a second pressing roller pair 121, a third pressing roller pair 122, and a heating device 123. The second pressing roller pair 121 has a roller distance corresponding to the distance between the upper mold Pu and the lower mold Pd in step S130b described with reference to FIG. 8, and presses and presses the laminate film 41Sf. The third pressing roller pair 122 has a roller distance corresponding to the distance between the upper mold Pu and the lower mold Pd in step S130a described with reference to FIG. 8, and presses and presses the laminate film 41Sf. The heating device 123 heats the laminated film 41Sf being conveyed so that the F-type electrolyte resin is melted and the pores are impregnated. For this reason, the laminated body film 41Sf is a porous second sheet film at a location corresponding to the peripheral region portion 141f described above by the second pressing roller pair 121 at the press location P2 while being conveyed through the heating press device 120. After receiving 41p2f compression (step S130b), the F-type electrolyte resin is melted and impregnated into the pores by heating with the heating device 123, and the further compression described above by the three-pressing roller pair 122 at the pressing point P3. (Step S130c) is received. Next, the laminate film 41Sf is transported to the hydrolysis device 130 and undergoes hydrolysis treatment in the device. Thereby, the F-type electrolyte resin contained in the laminate film 41Sf has proton conductivity. Thereafter, the laminate film 41Sf is conveyed to the cutting zone Cz and cut into a rectangular shape by the cutting blade 140, whereby the electrolyte membrane 41 is produced.

この実施形態によっても、電解質膜41の損傷回避等の効果を奏することができる。そして、この実施形態では、電解質前駆体樹脂フィルム41zfへの多孔質第1シートフィルム41p1fと多孔質第2シートフィルム41p2fの積層と、上記の各押圧ローラー対による圧縮および加水分解処理により、連続的に電解質膜41を製造でき、生産性をより高めることができる。   Also according to this embodiment, effects such as avoidance of damage to the electrolyte membrane 41 can be achieved. And in this embodiment, by lamination | stacking of the porous 1st sheet film 41p1f and the porous 2nd sheet film 41p2f to the electrolyte precursor resin film 41zf, and compression and a hydrolysis process by said each press roller pair, it is continuous. In addition, the electrolyte membrane 41 can be manufactured, and the productivity can be further increased.

図15は多孔質第1シート41p1と多孔質第2シート41p2の積層の様子を変更した実施形態における工程S120からの各工程における処理の様子を模式的に示す説明図である。図示するように、この実施形態では、枠形状の多孔質第2シート41p2が電解質前駆体樹脂シート41zsの側となるように多孔質第1シート41p1にして多孔質補強体シート41pを形成する。そして、この多孔質補強体シート41pを電解質前駆体樹脂シート41zsの両側に積層して積層体41Sを形成する(工程S120)。その上で、積層体41Sを上型Puと下型Pdの間にセットし(工程S130a)、その後は、図8で説明したように、積層体41Sを既述した所定の温度で加熱しながら、既述した所定の圧力で加圧し(工程S130b〜S130c)、加水分解処理を経て(工程S140)、電解質膜41を作製する。   FIG. 15 is an explanatory view schematically showing a state of processing in each step from step S120 in the embodiment in which the state of lamination of the porous first sheet 41p1 and the porous second sheet 41p2 is changed. As illustrated, in this embodiment, the porous reinforcing sheet 41p is formed as the porous first sheet 41p1 so that the frame-shaped porous second sheet 41p2 is on the side of the electrolyte precursor resin sheet 41zs. And this porous reinforcement body sheet | seat 41p is laminated | stacked on both sides of the electrolyte precursor resin sheet 41zs, and the laminated body 41S is formed (process S120). Then, the laminated body 41S is set between the upper mold Pu and the lower mold Pd (step S130a), and thereafter, while heating the laminated body 41S at the predetermined temperature as described with reference to FIG. Then, pressurization is performed at the predetermined pressure described above (Steps S130b to S130c), and a hydrolysis process is performed (Step S140), and the electrolyte membrane 41 is produced.

この実施形態によっても、電解質膜41の損傷回避等の効果を奏することができる。そして、この実施形態では、工程S130b〜S130cにおけるF型電解質樹脂の細孔への含浸は、電解質前駆体樹脂シート41zsに重なった多孔質第2シート41p2から先に起こり、多孔質第1シート41p1へは、当該第1シートが電解質前駆体樹脂シート41zsに重なってから起きる。多孔質第2シート41p2は、既述したように重なった多孔質第1シート41p1の部位と共に細孔が潰れて高密度となる。この場合、多孔質第2シート41p2は当初から電解質前駆体樹脂シート41zsに重なって上記のように樹脂含浸が可能であることから、多孔質第2シート41p2の細孔へのF型電解質樹脂の含浸は、多孔質第2シート41p2の細孔が潰れる前、或いは潰れ始める過程において,確実に起きることになる。よって、本実施形態によれば、細孔が潰れて高密度となる周縁領域部位141fにおいても、確実にF型電解質樹脂を含浸させて電解質を含有させるので、この周縁領域部位141fのうちでアノード42やカソード43が形成される図3〜図4の内縁側領域141ffについても、当該領域を発電領域に含ませることができる。   Also according to this embodiment, effects such as avoidance of damage to the electrolyte membrane 41 can be achieved. In this embodiment, the impregnation into the pores of the F-type electrolyte resin in steps S130b to S130c occurs first from the porous second sheet 41p2 that overlaps the electrolyte precursor resin sheet 41zs, and the porous first sheet 41p1. This occurs after the first sheet overlaps the electrolyte precursor resin sheet 41zs. As described above, the porous second sheet 41p2 has a high density due to the collapse of the pores together with the overlapping portions of the porous first sheet 41p1. In this case, since the porous second sheet 41p2 overlaps the electrolyte precursor resin sheet 41zs from the beginning and can be impregnated as described above, the F-type electrolyte resin into the pores of the porous second sheet 41p2 The impregnation surely occurs before the pores of the porous second sheet 41p2 are crushed or in the process of starting to be crushed. Therefore, according to the present embodiment, even in the peripheral region portion 141f where the pores are crushed and dense, the electrolyte is surely impregnated with the F-type electrolyte resin, so that the anode is included in the peripheral region portion 141f. 3 and FIG. 4 where the cathode 42 and the cathode 43 are formed can also be included in the power generation region.

図16は多孔質補強体シート41pの他の実施形態を示す説明図である。この実施形態は、1枚の大サイズ多孔質補強体シート41psから、周縁領域部位141fと中央領域部位141cとで補強体厚みに差を持たせた上で、長辺の周縁領域部位141fと短片の周縁領域部位141fとについても補強体厚みに差を持たせ多孔質補強体シート41pを準備する点に特徴がある。図示するように、この実施形態では、大サイズ多孔質補強体シート41psを準備する(工程S110a)。この大サイズ多孔質補強体シート41psは、既述した多孔質第1シート41p1の各辺から、つまり、中央領域部位141cに周縁領域部位141fを加えた矩形形状の各辺から、短片の側では、周縁領域部位141fの一つ分の延出部位141fyを備え、長辺の側では、周縁領域部位141fの二つ分の延出部位141fyを備える。次いで、この大サイズ多孔質補強体シート41psのコーナー部位14ccをカッティングする(工程S110b)。このカッティングは、中央領域部位141cの外郭を規定する中央外郭ライン141ckと周縁領域部位141fの外郭を規定する周縁外郭ライン141Lとに沿ってなされ、長辺側では延出部位141fyが2度折り曲げされ、短辺側では延出部位141fyが1度折り曲げられル用になされる。   FIG. 16 is an explanatory view showing another embodiment of the porous reinforcing sheet 41p. In this embodiment, from one large-sized porous reinforcing body sheet 41ps, the peripheral area portion 141f and the central area portion 141c have different reinforcing body thicknesses, and then the long side peripheral area portion 141f and the short piece The peripheral region portion 141f is characterized in that the porous reinforcing member sheet 41p is prepared with a difference in the reinforcing member thickness. As shown in the drawing, in this embodiment, a large-sized porous reinforcing sheet 41ps is prepared (step S110a). The large-sized porous reinforcing body sheet 41ps is formed on the short piece side from each side of the porous first sheet 41p1 described above, that is, from each side of the rectangular shape obtained by adding the peripheral region portion 141f to the central region portion 141c. In addition, an extended portion 141fy for one of the peripheral region portions 141f is provided, and an extended portion 141fy for two of the peripheral region portions 141f is provided on the long side. Next, the corner portion 14cc of this large size porous reinforcing sheet 41ps is cut (step S110b). This cutting is performed along the central outline line 141ck that defines the outline of the central area portion 141c and the peripheral outline line 141L that defines the outline of the peripheral area portion 141f, and the extended portion 141fy is bent twice on the long side. On the short side, the extended portion 141fy is bent once and used for the lure.

こうしたカッティングに続き、短辺側では、延出部位141fyの端部が中央外郭ライン141ckに重なるように、長辺側では、二つの延出部位141fyが折り返されて重なるように、周縁外郭ライン141Lを折り目として延出部位141fyを中央領域部位141cの側に折り曲げる(工程S110c1)。次いで、長辺側において、重なった延出部位141fyを改めて中央領域部位141cの側に折り曲げる(工程S110c2)。この折り曲げにより得られた多孔質補強体シート41pは、短片側の周縁領域部位141fを2枚のシートが重なった厚みで備え、長辺側の周縁領域部位141fを3枚のシートが重なった厚みで備える。この多孔質補強体シート41pを、図11で説明したように電解質前駆体樹脂シート41zsの両面に重ねて、図8で説明したように積層体41Sを形成する(工程S120)。その後は、図8で説明した工程S130a〜S130cに移行し、既述した実施形態と同様に、電解質膜41、MEA、MEGAおよび燃料電池10を製造する。   Following such cutting, the outer peripheral line 141L is folded so that the end of the extended part 141fy overlaps the central outline line 141ck on the short side and the two extended parts 141fy are folded and overlapped on the long side. As a crease, the extended portion 141fy is bent toward the central region portion 141c (step S110c1). Next, on the long side, the overlapping extended portion 141fy is bent again toward the central region portion 141c (step S110c2). The porous reinforcing body sheet 41p obtained by this bending has a peripheral edge region portion 141f on the short piece side with a thickness of two overlapping sheets, and a peripheral edge region portion 141f on the long side side has a thickness of three overlapping sheets. Prepare with. The porous reinforcing sheet 41p is overlapped on both surfaces of the electrolyte precursor resin sheet 41zs as described with reference to FIG. 11 to form a stacked body 41S as described with reference to FIG. 8 (step S120). Thereafter, the process proceeds to steps S130a to S130c described in FIG. 8, and the electrolyte membrane 41, MEA, MEGA, and fuel cell 10 are manufactured in the same manner as in the above-described embodiment.

この実施形態によっても、周縁領域部位141fと中央領域部位141cとで補強体厚みに差を持たせたことから、既述したように電解質膜41の損傷回避等の効果を奏することができる。そして、この実施形態では、長辺の周縁領域部位141fを短片の周縁領域部位141fより厚くしたので、電解質膜41の長辺の周縁領域部位141fを短片の周縁領域部位141fよりも高密度・高強度とする。電解質膜41の長辺の周縁領域部位141fは、電解質膜の歪みに伴う応力が及ぶ範囲が広くなり、その分だけ応力の影響を受けやすくなる。しかしながら、この実施形態によれば、電解質膜41の長辺の周縁領域部位141fをより高密度・高強度とするので、長辺の周縁領域部位141fでの膜損傷の回避或いは抑制の実効性を高めることができる。   Also according to this embodiment, since the thickness of the reinforcing body is different between the peripheral region portion 141f and the central region portion 141c, effects such as avoiding damage to the electrolyte membrane 41 can be obtained as described above. In this embodiment, since the long-side peripheral region portion 141f is thicker than the short-side peripheral region portion 141f, the long-side peripheral region portion 141f of the electrolyte membrane 41 is higher in density and height than the short-piece peripheral region portion 141f. Strength. The long peripheral region 141f of the electrolyte membrane 41 has a wide range of stress due to the distortion of the electrolyte membrane, and is easily affected by the stress. However, according to this embodiment, the peripheral region portion 141f on the long side of the electrolyte membrane 41 is made to have higher density and high strength, so the effectiveness of avoiding or suppressing membrane damage at the peripheral region portion 141f on the long side is improved. Can be increased.

本発明は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態の技術的特徴は、上述の課題の一部又は全部を解決するために、或いは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。   The present invention is not limited to the above-described embodiment, and can be realized with various configurations without departing from the spirit of the present invention. For example, the technical features of the embodiments corresponding to the technical features in each embodiment described in the summary section of the invention are intended to solve part or all of the above-described problems, or part of the above-described effects. Or, in order to achieve the whole, it is possible to replace or combine as appropriate. Further, if the technical feature is not described as essential in the present specification, it can be deleted as appropriate.

上記の各実施形態では、アノード側補強層41anとカソード側補強層41caとで補強した電解質膜41を製造するに当たり、F型電解質樹脂による電解質前駆体樹脂シート41zsの形成、溶融したF型電解質樹脂の細孔への含浸、F型電解質樹脂の電解質への変遷を行ったが、電解質前駆体樹脂シート41zsのシート形状に電解質樹脂から形成した電解質樹脂シートを用いてもよい。この場合には、電解質樹脂シートの両側に多孔質補強体シート41pを配置し、図8で説明した積層体41Sの形成(工程S120)、積層体41Sの加熱・加圧(工程S130a〜S130c)を実行すればよく、加水分解処理についてはこれを省略する。   In each of the above embodiments, in manufacturing the electrolyte membrane 41 reinforced with the anode-side reinforcing layer 41an and the cathode-side reinforcing layer 41ca, the electrolyte precursor resin sheet 41zs is formed from the F-type electrolyte resin, and the molten F-type electrolyte resin is used. However, an electrolyte resin sheet formed from the electrolyte resin in the sheet shape of the electrolyte precursor resin sheet 41zs may be used. In this case, the porous reinforcing body sheet 41p is arranged on both sides of the electrolyte resin sheet, the formation of the laminated body 41S described in FIG. 8 (step S120), and heating / pressurization of the laminated body 41S (steps S130a to S130c). And this is omitted for the hydrolysis treatment.

また、各実施形態では、多孔質補強体シート41pや多孔質補強体シートフィルム41pfを、PTFEを用いた多孔質体としたが、高分子PE(ポリエチレン)、PP(ポリプロピレン)、ポリイミド等の他の多孔質の高分子樹脂の多孔質体としてもよい。また、多孔質第1シート41p1等の気孔率は50%以上に限る必要はなく、これより少ない気孔率とすることもできる。   Moreover, in each embodiment, although the porous reinforcement body sheet | seat 41p and the porous reinforcement body sheet | seat film 41pf were made into the porous body using PTFE, other than polymer PE (polyethylene), PP (polypropylene), a polyimide, etc. It is good also as a porous body of the porous high molecular resin. Further, the porosity of the porous first sheet 41p1 or the like does not have to be limited to 50% or more, and the porosity can be made smaller than this.

この他、各実施形態では、アノード側補強層41anとカソード側補強層41caの二層の多孔質補強層を備えるが、アノード側或いはカソード側の一方に多孔質補強層を備えるようにしてもよい。この場合には、多孔質補強層の周縁領域部位141fの厚みが電解質膜41の厚みに近づくようにした上で、中央領域部位141cについても図3に示すものより厚くすることが、膜補強の上で有益となる。   In addition, in each embodiment, two porous reinforcing layers of the anode side reinforcing layer 41an and the cathode side reinforcing layer 41ca are provided, but a porous reinforcing layer may be provided on one of the anode side and the cathode side. . In this case, the thickness of the peripheral region portion 141f of the porous reinforcing layer is made to approach the thickness of the electrolyte membrane 41, and the central region portion 141c is also made thicker than that shown in FIG. It will be useful above.

10…燃料電池
10a…エンドプレート
12OUT…空気排気口
12IN…空気供給口
14OUT…水素排気口
14IN…水素供給口
14cc…コーナー部位
16OUT…冷却水排出口
16IN…冷却水供給口
20a…絶縁板
31…前端側ターミナルプレート
32…後端側ターミナルプレート
40…単セル
40S…燃料電池スタック
41…電解質膜
41c…電解質膜部位
41ca…カソード側補強層
41an…アノード側補強層
41p…多孔質補強体シート
41p1…多孔質第1シート
41p2…多孔質第2シート
41p1f…多孔質第1シートフィルム
41p2f…多孔質第2シートフィルム
41p1r…多孔質第1シートフィルムローラー
41p2r…多孔質第2シートフィルムローラー
41S…積層体
41Sf…積層体フィルム
41pf…多孔質補強体シートフィルム
41gp…発電領域
41zf…電解質前駆体樹脂フィルム
41ps…大サイズ多孔質補強体シート
41sp…周縁領域
41zr…電解質前駆体樹脂フィルムローラー
41zs…電解質前駆体樹脂シート
42…アノード
43…カソード
44…アノード側ガス拡散層
45…カソード側ガス拡散層
46…セパレーター
46a…流路
47…セパレーター
47a…流路
50…フレーム
100…締結シャフト
102…ボルト
110…第1押圧ローラー対
120…加熱プレス装置
121…第2押圧ローラー対
122…第3押圧ローラー対
123…加熱機器
130…加水分解装置
140…切断刃
141L…周縁外郭ライン
141c…中央領域部位
141f…周縁領域部位
141s…シート表面
141fC…外周縁側領域
141ch…貫通孔
141ff…内縁側領域
141ck…中央外郭ライン
141fy…延出部位
401…イン側空気マニホールド
401r…周縁流路
402…アウト側空気マニホールド
402r…周縁流路
403…イン側水素マニホールド
403r…周縁流路
404…アウト側水素マニホールド
404r…周縁流路
405…イン側冷却水マニホールド
406…アウト側冷却水マニホールド
P1…押圧箇所
P2…押圧箇所
P3…押圧箇所
Pu…上型
Pd…下型
dh…形成ピッチ
Hz…貫通孔形成ゾーン
Cz…切断ゾーン
HPd…貫通孔形成下型
HPu…貫通孔形成上型
DESCRIPTION OF SYMBOLS 10 ... Fuel cell 10a ... End plate 12OUT ... Air exhaust port 12IN ... Air supply port 14OUT ... Hydrogen exhaust port 14IN ... Hydrogen supply port 14cc ... Corner part 16OUT ... Cooling water discharge port 16IN ... Cooling water supply port 20a ... Insulating plate 31 ... Front end side terminal plate 32 ... Rear end side terminal plate 40 ... Single cell 40S ... Fuel cell stack 41 ... Electrolyte membrane 41c ... Electrolyte membrane part 41ca ... Cathode side reinforcing layer 41an ... Anode side reinforcing layer 41p ... Porous reinforcing body sheet 41p1 ... Porous 1st sheet 41p2 ... Porous 2nd sheet 41p1f ... Porous 1st sheet film 41p2f ... Porous 2nd sheet film 41p1r ... Porous 1st sheet film roller 41p2r ... Porous 2nd sheet film roller 41S ... Laminate 41Sf ... product Body film 41 pf ... Porous reinforcing body sheet film 41 gp ... Power generation area 41 zf ... Electrolyte precursor resin film 41 ps ... Large size porous reinforcing body sheet 41 sp ... Peripheral area 41 zr ... Electrolyte precursor resin film roller 41 zs ... Electrolyte precursor resin sheet 42 ... Anode 43 ... Cathode 44 ... Anode-side gas diffusion layer 45 ... Cathode-side gas diffusion layer 46 ... Separator 46a ... Channel 47 ... Separator 47a ... Channel 50 ... Frame 100 ... Fastening shaft 102 ... Bolt 110 ... First pressure roller pair DESCRIPTION OF SYMBOLS 120 ... Heat press apparatus 121 ... 2nd press roller pair 122 ... 3rd press roller pair 123 ... Heating device 130 ... Hydrolysis apparatus 140 ... Cutting blade 141L ... Periphery outline 141c ... Central area | region part 141f ... Peripheral area | region part 141s ... Sea Surface 141fC ... Outer peripheral edge side area 141ch ... Through hole 141ff ... Inner edge side area 141ck ... Center outer line 141fy ... Extension part 401 ... In side air manifold 401r ... Rim edge channel 402 ... Out side air manifold 402r ... Rim edge channel 403 ... In Side hydrogen manifold 403r ... Peripheral channel 404 ... Out side hydrogen manifold 404r ... Peripheral channel 405 ... In side cooling water manifold 406 ... Out side cooling water manifold P1 ... Pressing point P2 ... Pressing point P3 ... Pressing point Pu ... Upper mold Pd ... Lower mold dh ... Formation pitch Hz ... Through hole formation zone Cz ... Cutting zone HPd ... Through hole formation lower mold HPu ... Through hole formation upper mold

Claims (6)

燃料電池用の電解質膜であって、
延伸細孔を有するシートからなる少なくとも1層の多孔質補強層を、細孔内に電解質を含有した状態で備え、
前記多孔質補強層は、電解質膜の発電領域と該発電領域を取り囲む周縁領域とで異なる密度を備え、前記周縁領域が前記発電領域より高密度である、燃料電池用の電解質膜。
An electrolyte membrane for a fuel cell,
The porous reinforcement layer of one layer even without least consist of a sheet having a stretching pore, with while containing an electrolyte in the pores,
The electrolyte layer for a fuel cell, wherein the porous reinforcing layer has different densities in a power generation region of the electrolyte membrane and a peripheral region surrounding the power generation region, and the peripheral region is denser than the power generation region.
前記多孔質補強層を、前記電解質膜の内部または両膜面の側に備える請求項1に記載の燃料電池用の電解質膜。   The electrolyte membrane for a fuel cell according to claim 1, wherein the porous reinforcing layer is provided inside the electrolyte membrane or on both membrane surfaces. 燃料電池用の膜電極接合体であって、
請求項1または請求項2に記載の電解質膜の両膜面に電極触媒層を接合して備える、燃料電池用の膜電極接合体。
A membrane electrode assembly for a fuel cell,
A membrane electrode assembly for a fuel cell, comprising an electrode catalyst layer bonded to both membrane surfaces of the electrolyte membrane according to claim 1.
燃料電池用電解質膜の製造方法であって、
電解質膜の発電領域に対応する第1部位と前記発電領域を取り囲む電解質膜の周縁領域に対応する第2部位とを有する多孔質の補強体を準備する工程(1)と、
電解質膜の一方の膜面と他方の膜面とに前記多孔質の補強体を重ねて積層体を形成する工程(2)と、
前記積層体を加熱しながら加圧することによって、前記多孔質の補強体における前記第2部位の細孔を潰して前記第2部位の高密度化を図った上で、前記多孔質の補強体の細孔内に前記電解質膜の電解質を溶融含浸させる工程(3)と、
を備える燃料電池用電解質膜の製造方法。
A method for producing an electrolyte membrane for a fuel cell, comprising:
Preparing a porous reinforcing body having a first portion corresponding to the power generation region of the electrolyte membrane and a second portion corresponding to the peripheral region of the electrolyte membrane surrounding the power generation region;
A step (2) of forming a laminate by superimposing the porous reinforcing body on one membrane surface and the other membrane surface of the electrolyte membrane;
By pressing the laminated body while heating, the pores of the second part in the porous reinforcing body are crushed to increase the density of the second part, and then the porous reinforcing body A step (3) of melting and impregnating the electrolyte of the electrolyte membrane in the pores;
A method for producing an electrolyte membrane for a fuel cell comprising:
請求項4に記載の燃料電池用電解質膜の製造方法であって、
前記工程(1)では、
前記第1部位と該第1部位の周縁から外側に延出した延出部位とを有する多孔質の補強体用部材を用意し、該補強体用部材の前記延出部位を折り曲げて前記第2部位を形成した前記多孔質の補強体を準備する、燃料電池用電解質膜の製造方法。
A method for producing an electrolyte membrane for a fuel cell according to claim 4,
In the step (1),
A porous reinforcing member having a first portion and an extending portion extending outward from a peripheral edge of the first portion is prepared, the extending portion of the reinforcing member is bent, and the second portion is bent. A method for producing an electrolyte membrane for a fuel cell, comprising preparing the porous reinforcing body having a portion formed thereon.
請求項4に記載の燃料電池用電解質膜の製造方法であって、
前記工程(1)では、
前記第1部位と前記第2部位とに対応した平面形状の多孔質の第1補強用部材と、前記第2部位に対応した枠状の多孔質の第2補強用部材とを用意し、該第2補強用部材を前記第1補強用部材に重ねて、前記第1部位と前記第2部位とを有する前記多孔質の補強体を準備する、燃料電池用電解質膜の製造方法。
A method for producing an electrolyte membrane for a fuel cell according to claim 4,
In the step (1),
Preparing a planar porous first reinforcing member corresponding to the first part and the second part, and a frame-shaped porous second reinforcing member corresponding to the second part; overlapping the second reinforcement member to said first reinforcement member, said preparing a porous reinforcing member, the manufacturing method of the electrolyte membrane for a fuel cell having said second portion and the first portion.
JP2012274389A 2012-12-17 2012-12-17 ELECTROLYTE MEMBRANE FOR FUEL CELL AND MEMBRANE ELECTRODE ASSEMBLY AND METHOD FOR PRODUCING ELECTROLYTE MEMBRANE FOR FUEL CELL Expired - Fee Related JP5907057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012274389A JP5907057B2 (en) 2012-12-17 2012-12-17 ELECTROLYTE MEMBRANE FOR FUEL CELL AND MEMBRANE ELECTRODE ASSEMBLY AND METHOD FOR PRODUCING ELECTROLYTE MEMBRANE FOR FUEL CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012274389A JP5907057B2 (en) 2012-12-17 2012-12-17 ELECTROLYTE MEMBRANE FOR FUEL CELL AND MEMBRANE ELECTRODE ASSEMBLY AND METHOD FOR PRODUCING ELECTROLYTE MEMBRANE FOR FUEL CELL

Publications (2)

Publication Number Publication Date
JP2014120317A JP2014120317A (en) 2014-06-30
JP5907057B2 true JP5907057B2 (en) 2016-04-20

Family

ID=51174998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012274389A Expired - Fee Related JP5907057B2 (en) 2012-12-17 2012-12-17 ELECTROLYTE MEMBRANE FOR FUEL CELL AND MEMBRANE ELECTRODE ASSEMBLY AND METHOD FOR PRODUCING ELECTROLYTE MEMBRANE FOR FUEL CELL

Country Status (1)

Country Link
JP (1) JP5907057B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201420934D0 (en) * 2014-11-25 2015-01-07 Johnson Matthey Fuel Cells Ltd Membrane-seal assembly
CN106611864B (en) * 2015-10-21 2019-08-13 本田技研工业株式会社 The electrolyte membrane-electrode tectosome of fuel cell resin frame
JP6520672B2 (en) * 2015-12-07 2019-05-29 トヨタ自動車株式会社 Fuel cell
JP6519490B2 (en) * 2016-01-20 2019-05-29 トヨタ自動車株式会社 Fuel cell
JP6551261B2 (en) * 2016-03-01 2019-07-31 トヨタ自動車株式会社 Method of manufacturing fuel cell
JP7136580B2 (en) * 2018-04-17 2022-09-13 旭化成株式会社 Diaphragm, method for manufacturing diaphragm, electrolytic cell, and method for producing hydrogen
JP6651669B2 (en) * 2018-06-15 2020-02-19 日本碍子株式会社 Electrolyte for electrochemical cell and electrochemical cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215903A (en) * 1999-01-25 2000-08-04 Toshiba Corp Solid high-molecular electrolyte type fuel cell
JP2005302526A (en) * 2004-04-12 2005-10-27 Asahi Glass Co Ltd Solid polymer electrolyte membrane and membrane electrode assembly having solid polymer electrolyte membrane
JP2007179850A (en) * 2005-12-27 2007-07-12 Nissan Motor Co Ltd Membrane electrode assembly for fuel cell and solid polymer fuel cell using same
EP2642569B1 (en) * 2011-01-07 2015-03-25 Panasonic Corporation Electrolyte membrane for solid polymer fuel cells, membrane electrode assembly having said electrolyte membrane, and solid polymer fuel cell

Also Published As

Publication number Publication date
JP2014120317A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
JP5907057B2 (en) ELECTROLYTE MEMBRANE FOR FUEL CELL AND MEMBRANE ELECTRODE ASSEMBLY AND METHOD FOR PRODUCING ELECTROLYTE MEMBRANE FOR FUEL CELL
JP5564623B1 (en) Solid polymer electrolyte fuel cell and electrolyte membrane-electrode-frame assembly
JP2007504614A (en) Integrated membrane electrode assembly and manufacturing method thereof
WO2008001701A1 (en) Method for producing electrolyte membrane for fuel cell and method for producing membrane-electrode assembly
JPWO2012137609A1 (en) ELECTROLYTE MEMBRANE / ELECTRODE STRUCTURE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP2009199877A (en) Fuel cell, and method of manufacturing the same
JP5286887B2 (en) Membrane / electrode assembly with reinforcing sheet for polymer electrolyte fuel cell and method for producing the same
JP5165947B2 (en) Membrane / electrode assembly and manufacturing method thereof
JP5211418B2 (en) Manufacturing method of electrolyte membrane
JP5900311B2 (en) Fuel cell and manufacturing method thereof
JP5233286B2 (en) Manufacturing method of membrane electrode assembly
JP5245440B2 (en) Manufacturing method of membrane-electrode assembly for fuel cell
JP2010225484A (en) Fuel cell and method for manufacturing the same
JP5273207B2 (en) ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY WITH MASK FILM FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP2009032438A (en) Manufacturing method for membrane-electrode assembly of fuel battery and membrane-electrode assembly
JP2006066161A (en) Manufacturing method of fuel cell film/electrode junction
JP6255720B2 (en) Membrane electrode structure and manufacturing method thereof
JP6709054B2 (en) Method for manufacturing electrolyte membrane/electrode structure with resin frame
JP6551261B2 (en) Method of manufacturing fuel cell
JP2007328935A (en) Fuel cell, membrane-electrode assembly used therefor, and membrane-electrode assembly manufacturing method
JP2019139993A (en) Fuel cell module and manufacturing method thereof
JP2004214001A (en) Jointing method and jointing device for electrode and solid polyelectrolyte membrane
JP5804449B2 (en) Manufacturing method of membrane electrode assembly
JP2006092891A (en) Manufacturing method of fuel cell and fuel cell
JP2010161039A (en) Manufacturing method of membrane-electrode assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R151 Written notification of patent or utility model registration

Ref document number: 5907057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees