JP6709054B2 - Method for manufacturing electrolyte membrane/electrode structure with resin frame - Google Patents

Method for manufacturing electrolyte membrane/electrode structure with resin frame Download PDF

Info

Publication number
JP6709054B2
JP6709054B2 JP2016005890A JP2016005890A JP6709054B2 JP 6709054 B2 JP6709054 B2 JP 6709054B2 JP 2016005890 A JP2016005890 A JP 2016005890A JP 2016005890 A JP2016005890 A JP 2016005890A JP 6709054 B2 JP6709054 B2 JP 6709054B2
Authority
JP
Japan
Prior art keywords
electrolyte membrane
electrode
solid polymer
exposed surface
resin frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016005890A
Other languages
Japanese (ja)
Other versions
JP2017126511A (en
Inventor
満田 直樹
直樹 満田
信義 室本
信義 室本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2016005890A priority Critical patent/JP6709054B2/en
Publication of JP2017126511A publication Critical patent/JP2017126511A/en
Application granted granted Critical
Publication of JP6709054B2 publication Critical patent/JP6709054B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、固体高分子電解質膜を第1電極及び第2電極で挟んだ段差電解質膜・電極構造体と、前記段差電解質膜・電極構造体の外周を周回する樹脂枠部材とを備える燃料電池用の樹脂枠付き電解質膜・電極構造体の製造方法に関する。 The present invention relates to a fuel cell including a stepped electrolyte membrane/electrode structure in which a solid polymer electrolyte membrane is sandwiched between a first electrode and a second electrode, and a resin frame member that surrounds the outer periphery of the stepped electrolyte membrane/electrode structure. TECHNICAL FIELD The present invention relates to a method for manufacturing an electrolyte membrane/electrode structure with a resin frame for use.

一般的に、固体高分子型燃料電池は、高分子イオン交換膜からなる固体高分子電解質膜を採用している。燃料電池は、固体高分子電解質膜の一方の面にアノード電極が、前記固体高分子電解質膜の他方の面にカソード電極が、それぞれ配設された電解質膜・電極構造体(MEA)を備えている。アノード電極及びカソード電極は、それぞれ触媒層(電極触媒層)とガス拡散層(多孔質カーボン)とを有している。 Generally, a polymer electrolyte fuel cell employs a solid polymer electrolyte membrane composed of a polymer ion exchange membrane. The fuel cell includes an electrolyte membrane/electrode structure (MEA) in which an anode electrode is arranged on one surface of a solid polymer electrolyte membrane and a cathode electrode is arranged on the other surface of the solid polymer electrolyte membrane. There is. The anode electrode and the cathode electrode each have a catalyst layer (electrode catalyst layer) and a gas diffusion layer (porous carbon).

電解質膜・電極構造体は、セパレータ(バイポーラ板)によって挟持されることにより、発電セル(単位燃料電池)が構成されている。この発電セルは、所定の数だけ積層することにより、例えば、車載用燃料電池スタックとして使用されている。 The electrolyte membrane/electrode structure is sandwiched between separators (bipolar plates) to form a power generation cell (unit fuel cell). This power generation cell is used as, for example, a vehicle fuel cell stack by stacking a predetermined number of layers.

電解質膜・電極構造体では、一方のガス拡散層が固体高分子電解質膜よりも小さな平面寸法に設定されるとともに、他方のガス拡散層が前記固体高分子電解質膜と略同一の平面寸法に設定される、所謂、段差電解質膜・電極構造体(段差MEA)を構成する場合がある。その際、比較的高価な固体高分子電解質膜の使用量を削減させるとともに、薄膜状で強度が低い前記固体高分子電解質膜を保護するために、樹脂枠部材を組み込んだ樹脂枠付きMEAが採用されている。 In the electrolyte membrane/electrode structure, one gas diffusion layer is set to have a plane dimension smaller than that of the solid polymer electrolyte membrane, and the other gas diffusion layer is set to have substantially the same plane dimension as the solid polymer electrolyte membrane. In some cases, a so-called stepped electrolyte membrane/electrode structure (stepped MEA) is configured. At that time, in order to reduce the amount of the relatively expensive solid polymer electrolyte membrane used and to protect the thin solid polymer electrolyte membrane having low strength, the MEA with a resin frame incorporating a resin frame member is adopted. Has been done.

樹脂枠付きMEAとして、例えば、特許文献1に開示されている燃料電池用樹脂枠付き電解質膜・電極構造体の製造方法が知られている。この燃料電池用樹脂枠付き電解質膜・電極構造体の製造方法では、固体高分子電解質膜の外周を周回するように樹脂枠部材が設けられる。具体的には、一方のガス拡散層側に突出して、該一方のガス拡散層の外周を周回する薄肉状の内周突部が樹脂枠部材に設けられ、該内周突部と固体高分子電解質膜の外縁部とが接着剤により接合されている。 As the MEA with a resin frame, for example, a method of manufacturing an electrolyte membrane/electrode structure with a resin frame for a fuel cell disclosed in Patent Document 1 is known. In this method for manufacturing an electrolyte membrane/electrode structure with a resin frame for a fuel cell, a resin frame member is provided so as to surround the solid polymer electrolyte membrane. Specifically, the resin frame member is provided with a thin-walled inner peripheral projection projecting to one gas diffusion layer side and encircling the outer periphery of the one gas diffusion layer. The outer edge portion of the electrolyte membrane is joined with an adhesive.

このような樹脂枠部材と固体高分子電解質膜との接合を一層強固にするための手段として、例えば、樹脂枠部材の表面のうち、接着剤と接触する部分にプラズマ処理を施すことが知られている。この樹脂枠部材は、一般的に疎水性素材からなり、固体高分子電解質膜よりも表面自由エネルギが低い傾向にある。そこで、樹脂枠部材にプラズマ処理を施して、その表面自由エネルギを上昇させることで、接着剤に対する樹脂枠部材の濡れ性を高める。これによって、樹脂枠部材と接着剤とを有効に接触させることができるため、樹脂枠部材と固体高分子電解質膜とを強固に接合することが可能になる。 As a means for further strengthening the bonding between the resin frame member and the solid polymer electrolyte membrane, for example, it is known to perform plasma treatment on a portion of the surface of the resin frame member that comes into contact with the adhesive. ing. This resin frame member is generally made of a hydrophobic material and tends to have a lower surface free energy than that of the solid polymer electrolyte membrane. Therefore, the wettability of the resin frame member with respect to the adhesive is enhanced by subjecting the resin frame member to plasma treatment to increase the surface free energy thereof. As a result, the resin frame member and the adhesive can be effectively brought into contact with each other, so that the resin frame member and the solid polymer electrolyte membrane can be firmly bonded.

特開2013−98155号公報JP, 2013-98155, A

ところで、固体高分子電解質膜については、上記の通り、未処理の樹脂枠部材よりも高い表面自由エネルギを有することが多いため、その表面自由エネルギを高める処理は何ら施されていない。しかしながら、固体高分子電解質膜の表面自由エネルギを十分に大きくすることにより、樹脂枠部材と固体高分子電解質膜とが一層強固に接合されることが期待される。そこで、固体高分子電解質膜にも樹脂枠部材と同様の表面処理を施すことが考えられるが、このような表面処理によっては、固体高分子電解質膜の表面自由エネルギを高めることが困難である。 By the way, since the solid polymer electrolyte membrane often has a higher surface free energy than the untreated resin frame member as described above, no treatment for increasing the surface free energy is performed. However, by sufficiently increasing the surface free energy of the solid polymer electrolyte membrane, it is expected that the resin frame member and the solid polymer electrolyte membrane will be bonded more firmly. Therefore, it is considered that the solid polymer electrolyte membrane is subjected to the same surface treatment as that of the resin frame member, but it is difficult to increase the surface free energy of the solid polymer electrolyte membrane by such surface treatment.

なお、単純に固体高分子電解質膜の表面自由エネルギを高めるだけであれば、スチーム加湿等によって固体高分子電解質膜を湿潤状態とすることも考えられるが、以下に示す理由からこの手段を採用することは困難である。すなわち、固体高分子電解質膜の表面自由エネルギを十分に高められるまで高温のスチーム等によって加湿を行うと、固体高分子電解質膜の全体が過度に膨潤してしまう。このため、固体高分子電解質膜にシワが生じたり、カソード電極又はアノード電極と固体高分子電解質膜との間に剥離が生じたりする懸念がある。その結果、固体高分子電解質膜と接着剤とを良好に接触させることができず、結局、樹脂枠部材と固体高分子電解質膜とを強固に接合することができない。 If the surface free energy of the solid polymer electrolyte membrane is simply increased, it is conceivable to put the solid polymer electrolyte membrane in a wet state by steam humidification or the like, but this means is adopted for the following reason. Is difficult. That is, if humidification is performed with high-temperature steam or the like until the surface free energy of the solid polymer electrolyte membrane is sufficiently increased, the entire solid polymer electrolyte membrane will swell excessively. Therefore, there is a concern that wrinkles may occur in the solid polymer electrolyte membrane or peeling may occur between the cathode electrode or the anode electrode and the solid polymer electrolyte membrane. As a result, the solid polymer electrolyte membrane and the adhesive cannot be brought into good contact with each other, and eventually the resin frame member and the solid polymer electrolyte membrane cannot be firmly joined.

また、固体高分子電解質膜の表面上に存在する液体の水が、固体高分子電解質膜と接着剤との接触を阻害することも、樹脂枠部材と固体高分子電解質膜との接合を困難にする。 Further, the liquid water present on the surface of the solid polymer electrolyte membrane also hinders the contact between the solid polymer electrolyte membrane and the adhesive, making it difficult to bond the resin frame member and the solid polymer electrolyte membrane. To do.

以上から、固体高分子電解質膜の表面自由エネルギを高め、且つこれによって、樹脂枠部材と固体高分子電解質膜とを一層強固且つ安定に接合することができる有効な手段は未だ見出されていない。 From the above, no effective means has yet been found for increasing the surface free energy of the solid polymer electrolyte membrane, and thereby more firmly and stably joining the resin frame member and the solid polymer electrolyte membrane. ..

本発明は、この種の問題を解決するものであり、固体高分子電解質膜の表面自由エネルギを高めて、該固体高分子電解質膜と樹脂枠部材とを強固且つ安定に接合可能とする樹脂枠付き電解質膜・電極構造体の製造方法を提供することを目的とする。 The present invention solves this kind of problem, and increases the surface free energy of the solid polymer electrolyte membrane to enable a solid and stable bonding of the solid polymer electrolyte membrane and the resin frame member. It is an object of the present invention to provide a method for producing an attached electrolyte membrane/electrode structure.

前記の目的を達成するために、本発明は、固体高分子電解質膜の一方の面に、第1電極が設けられ、前記固体高分子電解質膜の他方の面に、第2電極が設けられるとともに、前記第1電極の平面寸法は、前記第2電極の平面寸法よりも大きな寸法に設定される段差電解質膜・電極構造体と、前記固体高分子電解質膜の、前記第2電極の外方に露呈する露呈面に接着剤を介して接合される樹脂枠部材と、を有する燃料電池用の樹脂枠付き電解質膜・電極構造体の製造方法であって、前記露呈面に40℃以下の液体の水を接触させる工程と、前記固体高分子電解質膜の前記露呈面よりも内部に前記水を含有させた後、前記固体高分子電解質膜の全体が膨潤する前に前記露呈面上に存在する前記水を除去する工程と、前記露呈面に接着剤を塗工する工程と、前記接着剤を介して前記露呈面と前記樹脂枠部材とを接合する工程と、を有することを特徴とする。
In order to achieve the above-mentioned object, the present invention provides a first electrode on one surface of a solid polymer electrolyte membrane and a second electrode on the other surface of the solid polymer electrolyte membrane. The planar dimension of the first electrode is set to a dimension larger than the planar dimension of the second electrode, and the stepped electrolyte membrane/electrode structure and the solid polymer electrolyte membrane are disposed outside the second electrode. A method for producing an electrolyte membrane/electrode structure with a resin frame for a fuel cell, comprising: a resin frame member that is bonded to an exposed surface via an adhesive; The step of contacting with water, and after containing the water inside the exposed surface of the solid polymer electrolyte membrane, the solid polymer electrolyte membrane is present on the exposed surface before the whole swells It is characterized by including a step of removing water, a step of applying an adhesive to the exposed surface, and a step of joining the exposed surface and the resin frame member via the adhesive.

以下では、特に説明する場合を除き「水」は液体の水を示すものとする。本発明では、露呈面に40℃以下の水を直接接触させることで、固体高分子電解質膜の露呈面の近傍を集中的に湿潤状態とすることができる。すなわち、固体高分子電解質膜の全体が過度に膨潤した状態となることを回避できる。このため、露呈面の表面自由エネルギを高めても、固体高分子電解質膜にシワが生じたり、固体高分子電解質膜と第1電極等との間に剥離が生じたりすることを回避できる。その結果、接着剤に対する露呈面の濡れ性を高めて、接着剤と露呈面とを良好に接触させることができる。 Hereinafter, “water” refers to liquid water unless otherwise specified. In the present invention, by directly contacting the exposed surface with water at 40° C. or lower, the vicinity of the exposed surface of the solid polymer electrolyte membrane can be brought into a concentrated wet state. That is, it is possible to prevent the entire solid polymer electrolyte membrane from becoming excessively swollen. Therefore, even if the surface free energy of the exposed surface is increased, it is possible to avoid wrinkles in the solid polymer electrolyte membrane and peeling between the solid polymer electrolyte membrane and the first electrode or the like. As a result, the wettability of the exposed surface with respect to the adhesive can be improved, and the adhesive and the exposed surface can be brought into good contact with each other.

また、固体高分子電解質膜の露呈面よりも内部に水が含有され、且つ露呈面上には水が存在しない状態となるように、該露呈面上の水を除去してから、接着剤の塗工を行う。これによって、露呈面上で接着剤と水とが直接接触して、固体高分子電解質膜と樹脂枠部材との接着が阻害されることを回避できる。なお、水を除去するとは、例えば、露呈面上の水を吸水性のシート等で拭き取ること、エアを吹き付けること、自然乾燥させること等が挙げられる。つまり、人為的であるか否かを問わず、露呈面上に水が存在しない状態とし得ればよい。 Further, water is contained inside the exposed surface of the solid polymer electrolyte membrane, and the water on the exposed surface is removed so that water does not exist on the exposed surface. Apply the coating. This makes it possible to prevent the adhesive and water from directly contacting each other on the exposed surface and obstructing the adhesion between the solid polymer electrolyte membrane and the resin frame member. The removal of water includes, for example, wiping off the water on the exposed surface with a water-absorbent sheet, blowing air, or naturally drying. That is, it suffices that water is not present on the exposed surface regardless of whether it is artificial or not.

さらに、段差電解質膜・電極構造体(段差MEA)の製造後に、固体高分子電解質膜の露呈面よりも内部に水を含有させる工程を行うため、該工程を段差MEAの製造前に行う場合よりも効果的に固体高分子電解質膜と樹脂枠部材との接合を強固にすることができる。すなわち、段差MEAの製造工程では、例えば、ホットプレスによって、固体高分子電解質膜に第1電極及び第2電極を接合するため、該ホットプレス時の加熱等により、固体高分子電解質膜が乾燥する懸念がある。 Further, since the step of containing water inside the exposed surface of the solid polymer electrolyte membrane is performed after the step electrolyte membrane/electrode structure (step MEA) is manufactured, the step may be performed before the step MEA is manufactured. It is also possible to effectively strengthen the bond between the solid polymer electrolyte membrane and the resin frame member. That is, in the manufacturing process of the step MEA, for example, the first electrode and the second electrode are joined to the solid polymer electrolyte membrane by hot pressing, so that the solid polymer electrolyte membrane is dried by heating during the hot pressing. I have a concern.

このため、段差MEAの製造工程前に、固体高分子電解質膜の露呈面よりも内部に水を含有させても、段差MEAの製造工程を経ることによって、露呈面が乾燥して表面自由エネルギが低下してしまう懸念がある。しかしながら、上記の通り、段差MEAの製造後に固体高分子電解質膜に水を含有させる本発明では、該段差MEAの製造において低下した分の表面自由エネルギを補った状態で、露呈面に接着剤を塗工することができる。 Therefore, even if water is contained inside the exposed surface of the solid polymer electrolyte membrane before the manufacturing process of the step MEA, the exposed surface is dried and the surface free energy is reduced by the manufacturing process of the step MEA. There is a concern that it will fall. However, as described above, in the present invention in which the solid polymer electrolyte membrane contains water after the step MEA is manufactured, an adhesive is applied to the exposed surface in a state of compensating for the surface free energy decreased in the step MEA manufacturing. Can be coated.

以上から、本発明によれば、固体高分子電解質膜の露呈面の表面自由エネルギを効果的に高めることができ、且つこれによって、樹脂枠部材と固体高分子電解質膜とを一層強固且つ安定に接合することが可能になる。 From the above, according to the present invention, the surface free energy of the exposed surface of the solid polymer electrolyte membrane can be effectively increased, and thereby, the resin frame member and the solid polymer electrolyte membrane can be made more solid and stable. It becomes possible to join.

上記の樹脂枠付き電解質膜・電極構造体の製造方法において、前記水を除去する工程では、前記水を前記露呈面の面方向に押し広げながら拭き取ることが好ましい。この場合、固体高分子電解質膜の露呈面よりも内部に水を効果的に含有させつつ、露呈面上の余分な水を速やかに除去することができるため、一層容易且つ効率的に樹脂枠付き電解質膜・電極構造体を製造することが可能になる。 In the method of manufacturing an electrolyte membrane/electrode structure with a resin frame described above, it is preferable that in the step of removing the water, the water is wiped while being spread in the surface direction of the exposed surface. In this case, since the excess water on the exposed surface can be quickly removed while effectively containing water inside the exposed surface of the solid polymer electrolyte membrane, the resin frame can be attached more easily and efficiently. It becomes possible to manufacture an electrolyte membrane/electrode structure.

本発明によれば、露呈面に40℃以下の水を直接接触させることにより、固体高分子電解質膜全体が過度に膨潤した状態となることを回避できる。また、露呈面よりも内部に水を含有し、且つ露呈面上には水が存在しない状態とすることにより、接着剤と水とが直接接触することを回避できる。さらに、段差MEAの製造後に固体高分子電解質膜の露呈面よりも内部に水を含有させることにより、段差MEAの製造において低下した分の表面自由エネルギを補うことができる。その結果、露呈面の表面自由エネルギを高めて、接着剤に対する濡れ性を効果的に高めることができ、且つこれによって、樹脂枠部材と固体高分子電解質膜とを一層強固且つ安定に接合することが可能になる。 According to the present invention, by directly contacting the exposed surface with water at 40° C. or lower, it is possible to prevent the entire solid polymer electrolyte membrane from becoming excessively swollen. Further, by containing water in the inside of the exposed surface and leaving no water on the exposed surface, direct contact between the adhesive and water can be avoided. Furthermore, by including water inside the exposed surface of the solid polymer electrolyte membrane after manufacturing the step MEA, it is possible to supplement the surface free energy that has been reduced in the manufacturing of the step MEA. As a result, the surface free energy of the exposed surface can be increased and the wettability with respect to the adhesive can be effectively increased, and by this, the resin frame member and the solid polymer electrolyte membrane can be more firmly and stably bonded. Will be possible.

本発明の実施形態に係る製造方法が適用される樹脂枠付き電解質膜・電極構造体が組み込まれる固体高分子型発電セルの要部分解斜視説明図である。It is a principal part disassembled perspective explanatory view of the solid polymer type power generation cell in which the electrolyte membrane with resin frame and electrode structure to which the manufacturing method which concerns on embodiment of this invention is applied is incorporated. 前記発電セルの、図1中、II−II線断面説明図である。It is the II-II sectional view taken on the line in FIG. 1 of the said power generation cell. 前記製造方法において、段差MEAの固体高分子電解質膜の露呈面に40℃以下の水を接触させた状態を示す説明図である。It is explanatory drawing which shows the state which made 40 degreeC or less water contact the exposed surface of the solid polymer electrolyte membrane of step MEA in the said manufacturing method. 前記製造方法において、図3の固体高分子電解質膜の露呈面よりも内部に水を含有させた後、露呈面上に存在する水を除去した状態を示す説明図である。FIG. 4 is an explanatory view showing a state in which water existing on the exposed surface of the solid polymer electrolyte membrane of FIG. 3 is contained after the water is contained inside the exposed surface in the manufacturing method. 前記製造方法において、図4の露呈面に接着剤を塗工した状態を示す説明図である。It is explanatory drawing which shows the state which applied the adhesive agent to the exposed surface of FIG. 4 in the said manufacturing method. 前記製造方法において、図5の接着剤を介して露呈面と樹脂枠部材とを接合する工程の説明図である。It is explanatory drawing of the process of joining an exposed surface and a resin frame member via the adhesive agent of FIG. 5 in the said manufacturing method.

図1及び図2に示すように、本発明の実施形態に係る製造方法が適用される樹脂枠付き電解質膜・電極構造体10は、横長(又は縦長)の長方形状の固体高分子型発電セル12に組み込まれる。複数の発電セル12が、例えば、矢印A方向(水平方向)又は矢印C方向(重力方向)に積層されることで、燃料電池スタックが構成される。燃料電池スタックは、例えば、車載用燃料電池スタックとして燃料電池電気自動車(図示せず)に搭載される。 As shown in FIGS. 1 and 2, a resin frame-attached electrolyte membrane/electrode structure 10 to which a manufacturing method according to an embodiment of the present invention is applied is a horizontally long (or vertically long) rectangular solid polymer power generation cell. 12 is incorporated. A fuel cell stack is configured by stacking the plurality of power generation cells 12 in, for example, the arrow A direction (horizontal direction) or the arrow C direction (gravitational direction). The fuel cell stack is mounted on a fuel cell electric vehicle (not shown) as a vehicle-mounted fuel cell stack, for example.

発電セル12は、樹脂枠付き電解質膜・電極構造体10を第1セパレータ14及び第2セパレータ16で挟持する。第1セパレータ14及び第2セパレータ16は、横長(又は縦長)の長方形状を有する。第1セパレータ14及び第2セパレータ16は、例えば、鋼板、ステンレス鋼板、アルミニウム板、めっき処理鋼板、あるいはその金属表面に防食用の表面処理を施した金属板や、カーボン部材等で構成される。 The power generation cell 12 sandwiches the resin frame-attached electrolyte membrane/electrode structure 10 between the first separator 14 and the second separator 16. The first separator 14 and the second separator 16 have a horizontally long (or vertically long) rectangular shape. The first separator 14 and the second separator 16 are composed of, for example, a steel plate, a stainless steel plate, an aluminum plate, a plated steel plate, or a metal plate whose surface is subjected to surface treatment for corrosion prevention, a carbon member, or the like.

長方形状の樹脂枠付き電解質膜・電極構造体10は、段差電解質膜・電極構造体(段差MEA)10aを備える。段差MEA10aは、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜(陽イオン交換膜)18と、前記固体高分子電解質膜18を挟持するアノード電極(第1電極)20及びカソード電極(第2電極)22とを有する。固体高分子電解質膜18は、フッ素系電解質の他、HC(炭化水素)系電解質を使用してもよい。 The rectangular resin frame-attached electrolyte membrane/electrode structure 10 includes a stepped electrolyte membrane/electrode structure (stepped MEA) 10a. The step MEA 10a includes, for example, a solid polymer electrolyte membrane (cation exchange membrane) 18 in which a thin film of perfluorosulfonic acid is impregnated with water, and an anode electrode (first electrode) 20 sandwiching the solid polymer electrolyte membrane 18 therebetween. And a cathode electrode (second electrode) 22. For the solid polymer electrolyte membrane 18, an HC (hydrocarbon)-based electrolyte may be used in addition to the fluorine-based electrolyte.

カソード電極22は、固体高分子電解質膜18及びアノード電極20よりも小さな平面寸法(外形寸法)を有する。なお、上記の構成に代えて、アノード電極20は、固体高分子電解質膜18及びカソード電極22よりも小さな平面寸法を有するように構成してもよい。その際、アノード電極20は第2電極となり、カソード電極22は第1電極となる。 The cathode electrode 22 has a smaller plane dimension (outer dimension) than the solid polymer electrolyte membrane 18 and the anode electrode 20. Instead of the above configuration, the anode electrode 20 may be configured to have a smaller plane size than the solid polymer electrolyte membrane 18 and the cathode electrode 22. At that time, the anode electrode 20 becomes the second electrode and the cathode electrode 22 becomes the first electrode.

図2に示すように、アノード電極20は、固体高分子電解質膜18の一方の面18aに接合される第1電極触媒層20aと、前記第1電極触媒層20aに積層される第1ガス拡散層20bとを設ける。第1電極触媒層20a及び第1ガス拡散層20bは、同一の外形寸法を有するとともに、固体高分子電解質膜18と同一(又は同一未満)の外形寸法に設定される。 As shown in FIG. 2, the anode electrode 20 includes a first electrode catalyst layer 20a bonded to one surface 18a of the solid polymer electrolyte membrane 18 and a first gas diffusion layer stacked on the first electrode catalyst layer 20a. And layer 20b. The first electrode catalyst layer 20a and the first gas diffusion layer 20b have the same outer dimensions and are set to the same outer dimensions (or less than the same) as the solid polymer electrolyte membrane 18.

カソード電極22は、固体高分子電解質膜18の面18bに接合される第2電極触媒層22aと、前記第2電極触媒層22aに積層される第2ガス拡散層22bとを設ける。第2電極触媒層22a及び第2ガス拡散層22bは、同一の平面寸法を有するとともに、固体高分子電解質膜18の平面寸法よりも小さな平面寸法に設定される。固体高分子電解質膜18の面18b側の外周縁部には、カソード電極22の外方に露呈する露呈面18beが設けられる。後述するように、露呈面18beは、40°以下の水との接触角が87°〜104°であることが好ましい。 The cathode electrode 22 is provided with a second electrode catalyst layer 22a joined to the surface 18b of the solid polymer electrolyte membrane 18 and a second gas diffusion layer 22b laminated on the second electrode catalyst layer 22a. The second electrode catalyst layer 22a and the second gas diffusion layer 22b have the same plane size and are set to have a plane size smaller than that of the solid polymer electrolyte membrane 18. An exposed surface 18be exposed to the outside of the cathode electrode 22 is provided at the outer peripheral edge portion of the solid polymer electrolyte membrane 18 on the surface 18b side. As described below, the exposed surface 18be preferably has a contact angle with water of 40° or less of 87° to 104°.

なお、第2電極触媒層22aと第2ガス拡散層22bとは、同一の平面寸法に設定されているが、前記第2電極触媒層22aの平面寸法は、前記第2ガス拡散層22bの平面寸法よりも大きな寸法(又は小さな寸法)を有してもよい。 The second electrode catalyst layer 22a and the second gas diffusion layer 22b are set to have the same plane dimension, but the plane dimension of the second electrode catalyst layer 22a is the plane dimension of the second gas diffusion layer 22b. It may have a larger dimension (or a smaller dimension) than the dimension.

第1電極触媒層20aは、例えば、白金合金が表面に担持された多孔質カーボン粒子が、第1ガス拡散層20bの表面に一様に塗布されて形成される。第2電極触媒層22aは、例えば、白金合金が表面に担持された多孔質カーボン粒子が、第2ガス拡散層22bの表面に一様に塗布されて形成される。 The first electrode catalyst layer 20a is formed, for example, by uniformly coating the surface of the first gas diffusion layer 20b with porous carbon particles having a platinum alloy supported on the surface thereof. The second electrode catalyst layer 22a is formed, for example, by uniformly coating the surface of the second gas diffusion layer 22b with porous carbon particles having a platinum alloy supported on the surface.

第1ガス拡散層20bは、多孔性と導電性を有するマイクロポーラス層20b(m)と、カーボンペーパ又はカーボンクロス等のカーボン層20b(c)とから形成される。第2ガス拡散層22bは、多孔性と導電性を有するマイクロポーラス層22b(m)と、カーボンペーパ又はカーボンクロス等のカーボン層22b(c)とから形成される。第2ガス拡散層22bの平面寸法は、第1ガス拡散層20bの平面寸法よりも小さく設定される。第1電極触媒層20a及び第2電極触媒層22aは、それぞれ、固体高分子電解質膜18の面18a、18bに形成される。 The first gas diffusion layer 20b is formed of a microporous layer 20b(m) having porosity and conductivity, and a carbon layer 20b(c) such as carbon paper or carbon cloth. The second gas diffusion layer 22b is formed of a microporous layer 22b(m) having porosity and conductivity, and a carbon layer 22b(c) such as carbon paper or carbon cloth. The plane dimension of the second gas diffusion layer 22b is set smaller than the plane dimension of the first gas diffusion layer 20b. The first electrode catalyst layer 20a and the second electrode catalyst layer 22a are formed on the surfaces 18a and 18b of the solid polymer electrolyte membrane 18, respectively.

樹脂枠付き電解質膜・電極構造体10は、固体高分子電解質膜18の外周を周回するとともに、前記固体高分子電解質膜18の外周面に接合されるフィルム状の樹脂枠部材(樹脂成形体又は樹脂フィルム)24を備える。 The resin frame-attached electrolyte membrane/electrode structure 10 goes around the outer periphery of the solid polymer electrolyte membrane 18 and is bonded to the outer peripheral surface of the solid polymer electrolyte membrane 18 in the form of a film-shaped resin frame member (resin molded body or resin molded body or resin molded body). Resin film) 24.

樹脂枠部材24は、例えば、PPS(ポリフェニレンサルファイド)、PPA(ポリフタルアミド)、PEN(ポリエチレンナフタレート)、PES(ポリエーテルサルフォン)、LCP(リキッドクリスタルポリマー)、PVDF(ポリフッ化ビニリデン)、シリコーン樹脂、フッ素樹脂、又はm−PPE(変性ポリフェニレンエーテル樹脂)等で構成される。樹脂枠部材24は、さらにPET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)又は変性ポリオレフィン等で構成される。 The resin frame member 24 is, for example, PPS (polyphenylene sulfide), PPA (polyphthalamide), PEN (polyethylene naphthalate), PES (polyether sulfone), LCP (liquid crystal polymer), PVDF (polyvinylidene fluoride), It is made of silicone resin, fluororesin, m-PPE (modified polyphenylene ether resin), or the like. The resin frame member 24 is further composed of PET (polyethylene terephthalate), PBT (polybutylene terephthalate), modified polyolefin, or the like.

樹脂枠部材24は、平板状を有し、固体高分子電解質膜18の露呈面18beに接合される接着面24aを設ける。固体高分子電解質膜18の露呈面18beと樹脂枠部材24の接着面24aとの間には、接着剤層26が設けられる。接着剤層26を構成する接着剤26aは、特に限定されないが、固体高分子電解質膜18と同系統の成分を有することが好ましい。すなわち、例えば、固体高分子電解質膜18がフッ素系電解質である場合、接着剤26aはフッ素系の成分を有することが好ましい。この場合、接着剤層26を介して、固体高分子電解質膜18と樹脂枠部材24とを一層良好に接着することが可能になる。 The resin frame member 24 has a flat plate shape and is provided with an adhesive surface 24a that is joined to the exposed surface 18be of the solid polymer electrolyte membrane 18. An adhesive layer 26 is provided between the exposed surface 18be of the solid polymer electrolyte membrane 18 and the adhesive surface 24a of the resin frame member 24. The adhesive 26a that constitutes the adhesive layer 26 is not particularly limited, but it is preferable that the adhesive 26a have components similar to those of the solid polymer electrolyte membrane 18. That is, for example, when the solid polymer electrolyte membrane 18 is a fluorine-based electrolyte, the adhesive 26a preferably has a fluorine-based component. In this case, the solid polymer electrolyte membrane 18 and the resin frame member 24 can be bonded more favorably via the adhesive layer 26.

図1に示すように、発電セル12の矢印B方向(図1中、水平方向)の一端縁部には、積層方向である矢印A方向に互いに連通して、酸化剤ガス入口連通孔30a、冷却媒体入口連通孔32a及び燃料ガス出口連通孔34bが設けられる。酸化剤ガス入口連通孔30aは、酸化剤ガス、例えば、酸素含有ガスを供給する一方、冷却媒体入口連通孔32aは、冷却媒体を供給する。燃料ガス出口連通孔34bは、燃料ガス、例えば、水素含有ガスを排出する。酸化剤ガス入口連通孔30a、冷却媒体入口連通孔32a及び燃料ガス出口連通孔34bは、矢印C方向(鉛直方向)に配列して設けられる。 As shown in FIG. 1, one end edge portion of the power generation cell 12 in the arrow B direction (horizontal direction in FIG. 1) communicates with each other in the arrow A direction which is the stacking direction, and the oxidant gas inlet communication hole 30a, A cooling medium inlet communication hole 32a and a fuel gas outlet communication hole 34b are provided. The oxidant gas inlet communication hole 30a supplies an oxidant gas, for example, an oxygen-containing gas, while the cooling medium inlet communication hole 32a supplies a cooling medium. The fuel gas outlet communication hole 34b discharges a fuel gas, for example, a hydrogen-containing gas. The oxidant gas inlet communication hole 30a, the cooling medium inlet communication hole 32a, and the fuel gas outlet communication hole 34b are arranged in the direction of arrow C (vertical direction).

発電セル12の矢印B方向の他端縁部には、矢印A方向に互いに連通して、燃料ガスを供給する燃料ガス入口連通孔34a、冷却媒体を排出する冷却媒体出口連通孔32b、及び酸化剤ガスを排出する酸化剤ガス出口連通孔30bが設けられる。燃料ガス入口連通孔34a、冷却媒体出口連通孔32b及び酸化剤ガス出口連通孔30bは、矢印C方向に配列して設けられる。 At the other end edge portion of the power generation cell 12 in the direction of arrow B, a fuel gas inlet communication hole 34a that communicates with each other in the direction of arrow A to supply a fuel gas, a cooling medium outlet communication hole 32b that discharges a cooling medium, and an oxidation An oxidant gas outlet communication hole 30b for discharging the agent gas is provided. The fuel gas inlet communication hole 34a, the cooling medium outlet communication hole 32b, and the oxidant gas outlet communication hole 30b are arranged in the arrow C direction.

第2セパレータ16の樹脂枠付き電解質膜・電極構造体10に向かう面16aには、酸化剤ガス入口連通孔30aと酸化剤ガス出口連通孔30bとに連通して矢印B方向に延在する複数本の酸化剤ガス流路36が設けられる。 On the surface 16a of the second separator 16 that faces the electrolyte membrane/electrode structure 10 with a resin frame, a plurality of members that communicate with the oxidant gas inlet communication hole 30a and the oxidant gas outlet communication hole 30b and extend in the direction of arrow B are provided. A book oxidant gas flow path 36 is provided.

第1セパレータ14の樹脂枠付き電解質膜・電極構造体10に向かう面14aには、燃料ガス入口連通孔34aと燃料ガス出口連通孔34bとに連通して矢印B方向に延在する複数本の燃料ガス流路38が形成される。互いに隣接する第1セパレータ14の面14bと第2セパレータ16の面16bとの間には、冷却媒体入口連通孔32aと冷却媒体出口連通孔32bとに連通して矢印B方向に延在する複数本の冷却媒体流路40が形成される。 On the surface 14a of the first separator 14 facing the electrolyte membrane/electrode structure 10 with a resin frame, there are provided a plurality of the plurality of members which communicate with the fuel gas inlet communication hole 34a and the fuel gas outlet communication hole 34b and extend in the arrow B direction. A fuel gas channel 38 is formed. Between the surface 14b of the first separator 14 and the surface 16b of the second separator 16, which are adjacent to each other, a plurality of communicating with the cooling medium inlet communication hole 32a and the cooling medium outlet communication hole 32b and extending in the arrow B direction. A book cooling medium channel 40 is formed.

図1及び図2に示すように、第1セパレータ14の面14a、14bには、この第1セパレータ14の外周端部を周回して、第1シール部材42が一体化される。第2セパレータ16の面16a、16bには、この第2セパレータ16の外周端部を周回して、第2シール部材44が一体化される。 As shown in FIGS. 1 and 2, the first seal member 42 is integrated with the surfaces 14 a and 14 b of the first separator 14 around the outer peripheral end of the first separator 14. The second seal member 44 is integrated with the surfaces 16a and 16b of the second separator 16 by encircling the outer peripheral end of the second separator 16.

図2に示すように、第1シール部材42は、樹脂枠付き電解質膜・電極構造体10を構成する樹脂枠部材24に当接する第1凸状シール42aと、第2セパレータ16の第2シール部材44に当接する第2凸状シール42bとを有する。第2シール部材44は、第2凸状シール42bに当接する面がセパレータ面に沿って平面状に延在する平面シールを構成する。なお、第2凸状シール42bに代えて、第2シール部材44に凸状シール(図示せず)を設けてもよい。 As shown in FIG. 2, the first seal member 42 includes a first convex seal 42 a that abuts on the resin frame member 24 that constitutes the electrolyte frame-attached electrolyte membrane/electrode structure 10, and a second seal of the second separator 16. And a second convex seal 42b that abuts the member 44. The second seal member 44 constitutes a flat seal in which the surface in contact with the second convex seal 42b extends in a flat shape along the separator surface. A convex seal (not shown) may be provided on the second seal member 44 instead of the second convex seal 42b.

第1シール部材42及び第2シール部材44には、例えば、EPDM(エチレンプロピレンジエンゴム)、NBR(ニトリルゴム)、フッ素ゴム、シリコーンゴム、フロロシリコーンゴム、ブチルゴム、天然ゴム、スチレンゴム、クロロプレーン又はアクリルゴム等のシール材、クッション材、あるいはパッキン材等の弾性を有するシール部材が用いられる。 The first seal member 42 and the second seal member 44 are, for example, EPDM (ethylene propylene diene rubber), NBR (nitrile rubber), fluororubber, silicone rubber, fluorosilicone rubber, butyl rubber, natural rubber, styrene rubber, chloroprene. Alternatively, a seal member having elasticity such as a seal material such as acrylic rubber, a cushion material, or a packing material is used.

次いで、樹脂枠付き電解質膜・電極構造体10を製造するための本実施形態に係る製造方法について、以下に説明する。 Next, a manufacturing method according to the present embodiment for manufacturing the resin frame-attached electrolyte membrane/electrode structure 10 will be described below.

先ず、段差MEA10aが作製される一方、樹脂枠部材24は、金型(図示せず)を用いて射出成形され、又は、フィルムをトムソン刃で枠状に切断した部材が用意される。段差MEA10aを作製するには、先ず、カーボンペーパからなるカーボン層20b(c)の平坦面に、カーボンブラックとPTFE(ポリテトラフルオロエチレン)粒子との混合物からなるスラリーを塗布し、乾燥させて下地層であるマイクロポーラス層20b(m)が形成される。 First, while the step MEA 10a is produced, the resin frame member 24 is injection molded using a mold (not shown), or a member obtained by cutting a film into a frame shape with a Thomson blade is prepared. In order to manufacture the step MEA 10a, first, a slurry made of a mixture of carbon black and PTFE (polytetrafluoroethylene) particles is applied to the flat surface of the carbon layer 20b(c) made of carbon paper, and dried to be dried. The microporous layer 20b(m), which is the stratum, is formed.

マイクロポーラス層20b(m)にカーボン層20b(c)が接合されることにより、第1ガス拡散層20bが形成される。同様に、マイクロポーラス層22b(m)が形成され、前記マイクロポーラス層22b(m)にカーボン層22b(c)が接合されることにより、第2ガス拡散層22bが形成される。 The first gas diffusion layer 20b is formed by joining the carbon layer 20b(c) to the microporous layer 20b(m). Similarly, the microporous layer 22b(m) is formed, and the carbon layer 22b(c) is bonded to the microporous layer 22b(m) to form the second gas diffusion layer 22b.

一方、電極触媒に溶媒を加えた後、イオン導電性高分子バインダ溶液として、例えば、パーフルオロアルキルスルホン酸高分子化合物の溶液が投入される。そして、所定のインク粘度になるまで溶媒を添加することにより、アノード電極インク及びカソード電極インクが作成される。 On the other hand, after adding a solvent to the electrode catalyst, for example, a solution of a perfluoroalkylsulfonic acid polymer compound is added as an ion conductive polymer binder solution. Then, the anode electrode ink and the cathode electrode ink are prepared by adding a solvent until the ink has a predetermined viscosity.

アノード電極インクは、PETフィルム(図示せず)にスクリーン印刷により塗工され、加熱乾燥されることにより、第1電極触媒層20aを設けたアノード電極シート(図示せず)が形成される。第1電極触媒層20aは、固体高分子電解質膜18と同一の平面寸法に設定される。 The anode electrode ink is applied to a PET film (not shown) by screen printing and dried by heating to form an anode electrode sheet (not shown) provided with the first electrode catalyst layer 20a. The first electrode catalyst layer 20a is set to have the same plane size as the solid polymer electrolyte membrane 18.

同様に、カソード電極インクは、PETフィルム(図示せず)にスクリーン印刷により塗工され、加熱乾燥されることにより、第2電極触媒層22aを設けたカソード電極シート(図示せず)が形成される。第2電極触媒層22aは、固体高分子電解質膜18よりも小さな平面寸法に設定される。 Similarly, the cathode electrode ink is applied to a PET film (not shown) by screen printing and heated and dried to form a cathode electrode sheet (not shown) provided with the second electrode catalyst layer 22a. It The second electrode catalyst layer 22a is set to have a plane dimension smaller than that of the solid polymer electrolyte membrane 18.

次いで、固体高分子電解質膜18が、アノード電極シート及びカソード電極シートに挟持された状態で、ホットプレスが行われる。そして、PETフィルムが剥離されることにより、接合体(CCM)(catalyst coated membrane)が形成される。さらに、第1ガス拡散層20bと第2ガス拡散層22bとは、マイクロポーラス層20b(m)、22b(m)間にCCMを挟持し、ホットプレスにより一体化されて段差MEA10aが作製される(図3参照)。この段差MEA10aの製造工程におけるホットプレス等によって、固体高分子電解質膜18に含まれていた水が気化すると、固体高分子電解質膜18が乾燥するため、その表面自由エネルギが低下した状態になり易い。 Next, hot pressing is performed with the solid polymer electrolyte membrane 18 sandwiched between the anode electrode sheet and the cathode electrode sheet. Then, the PET film is peeled off to form a bonded body (CCM) (catalyst coated membrane). Furthermore, the first gas diffusion layer 20b and the second gas diffusion layer 22b sandwich the CCM between the microporous layers 20b(m) and 22b(m) and are integrated by hot pressing to form the step MEA 10a. (See Figure 3). When the water contained in the solid polymer electrolyte membrane 18 is vaporized by hot pressing or the like in the manufacturing process of the step MEA 10a, the solid polymer electrolyte membrane 18 is dried, so that the surface free energy thereof tends to be lowered. ..

次いで、段差MEA10aの露呈面18beに40℃以下の液体の水50を接触させる。例えば、図3に示すように、露呈面18be(特に、接着剤26aを塗工する領域)上に、40℃以下の水50を滴下した状態で維持する。これによって、固体高分子電解質膜18の露呈面18be近傍を集中的に湿潤状態とすることができ、上記の段差MEA10aの製造工程で該固体高分子電解質膜18から気化した水分を補うことができる。 Next, liquid water 50 at 40° C. or lower is brought into contact with the exposed surface 18be of the step MEA 10a. For example, as shown in FIG. 3, water 50 at 40° C. or lower is maintained in a state of being dripped on the exposed surface 18be (particularly, the area where the adhesive 26a is applied). As a result, the vicinity of the exposed surface 18be of the solid polymer electrolyte membrane 18 can be concentrated in a wet state, and the water vaporized from the solid polymer electrolyte membrane 18 in the manufacturing process of the step MEA 10a can be supplemented. ..

すなわち、固体高分子電解質膜18の全体が過度に膨潤した状態となることを回避しつつ、露呈面18beの表面自由エネルギを高めることができる。このため、固体高分子電解質膜18にシワが生じたり、固体高分子電解質膜18と、アノード電極20の第1電極触媒層20a等との間に剥離が生じたりすること、つまり、段差MEA10aの構造破壊が生じることを回避できる。この際、露呈面18beにおける水50との接触角を87°以上とすることで、上記の作用効果を一層良好に得ることが可能になる。また、前記接触角を104°以下とすることで、固体高分子電解質膜18と第1電極触媒層20a等との間に剥離が生じることをより効果的に抑制できる。 That is, it is possible to increase the surface free energy of the exposed surface 18be while avoiding the state where the entire solid polymer electrolyte membrane 18 is swollen excessively. For this reason, wrinkles may occur in the solid polymer electrolyte membrane 18, or peeling may occur between the solid polymer electrolyte membrane 18 and the first electrode catalyst layer 20a of the anode electrode 20, that is, in the step MEA 10a. It is possible to avoid structural destruction. At this time, by setting the contact angle of the exposed surface 18be with the water 50 to be 87° or more, it is possible to further obtain the above-described action and effect. Further, by setting the contact angle to 104° or less, it is possible to more effectively suppress the occurrence of peeling between the solid polymer electrolyte membrane 18 and the first electrode catalyst layer 20a and the like.

上記のようにして、固体高分子電解質膜18の露呈面18beよりも内部に前記水50を含有させた後、露呈面18be上に存在する水50を除去する。露呈面18be上の水50を除去する方法としては、吸水性のシート等で拭き取ること、自然乾燥させること、エアを吹き付けること等が挙げられるが、特にこれらに限定されるものではない。また、例えば、固体高分子電解質膜18に水50を効果的に含有させ、且つ露呈面18be上の余分な水50を速やかに除去する観点からは、水50を露呈面18beの面方向に押し広げながら拭き取ることが好ましい。 After the water 50 is contained inside the exposed surface 18be of the solid polymer electrolyte membrane 18 as described above, the water 50 present on the exposed surface 18be is removed. Examples of methods for removing the water 50 on the exposed surface 18be include wiping with a water-absorbent sheet or the like, natural drying, blowing air, etc., but are not particularly limited thereto. Further, for example, from the viewpoint of effectively containing the water 50 in the solid polymer electrolyte membrane 18 and quickly removing the excess water 50 on the exposed surface 18be, the water 50 is pushed in the surface direction of the exposed surface 18be. It is preferable to wipe while spreading.

露呈面18be上の水50が除去された固体高分子電解質膜18は、図4に示すように、露呈面18beよりも内部に水50を含有し、且つ露呈面18be上には水50が存在しない状態となる。これによって、露呈面18beの表面自由エネルギを高めて、接着剤26aに対する濡れ性を高めることができる。また、上記の通り、段差MEA10aの構造破壊が生じることが回避されているため、固体高分子電解質膜18のシワや剥離部が露呈面18beと接着剤26aとの接触を阻害することもない。 As shown in FIG. 4, the solid polymer electrolyte membrane 18 from which the water 50 on the exposed surface 18be is removed contains water 50 inside the exposed surface 18be, and the water 50 exists on the exposed surface 18be. It becomes a state not to do. Thereby, the surface free energy of the exposed surface 18be can be increased and the wettability with respect to the adhesive 26a can be improved. Further, as described above, since the structural breakage of the step MEA 10a is avoided, the wrinkles and the peeling portion of the solid polymer electrolyte membrane 18 do not hinder the contact between the exposed surface 18be and the adhesive 26a.

従って、図5に示すように、露呈面18be上に接着剤26aを塗工することで、露呈面18beと接着剤26aとを良好に接触させることができる。また、露呈面18be上で接着剤26aと水50とが直接接触することが回避されているため、接着剤26aの接着力を良好に発揮させることができる。 Therefore, as shown in FIG. 5, by coating the exposed surface 18be with the adhesive 26a, the exposed surface 18be and the adhesive 26a can be brought into good contact with each other. Further, the direct contact between the adhesive 26a and the water 50 on the exposed surface 18be is avoided, so that the adhesive force of the adhesive 26a can be satisfactorily exhibited.

次いで、接着剤26aを介して露呈面18beと樹脂枠部材24の接着面24aとを接合する。なお、接着面24aは、予め、プラズマ処理等の表面処理が施され、表面自由エネルギが高められていることが好ましい。 Next, the exposed surface 18be and the adhesive surface 24a of the resin frame member 24 are bonded via the adhesive 26a. The adhesive surface 24a is preferably subjected to a surface treatment such as a plasma treatment in advance to enhance the surface free energy.

露呈面18beと接着面24aの接合方法は、接着剤26aの種類に応じて適宜選択すればよい。例えば、接着剤26aを熱硬化性とした場合、図6に示すように、露呈面18beと接着面24aを、接着剤26aを介して対向させた状態で、サーボプレス機60により加熱及び加圧処理を行えばよい。なお、サーボプレス機60は、固定基台62と可動基台64とを備え、前記可動基台64は、ピストン66により前記固定基台62に対して進退可能となっている。 The method of joining the exposed surface 18be and the adhesive surface 24a may be appropriately selected according to the type of the adhesive 26a. For example, when the adhesive 26a is thermosetting, as shown in FIG. 6, the exposure surface 18be and the adhesive surface 24a are opposed to each other via the adhesive 26a and heated and pressed by the servo press machine 60. It suffices to perform processing. The servo press machine 60 includes a fixed base 62 and a movable base 64, and the movable base 64 can be moved back and forth with respect to the fixed base 62 by a piston 66.

以上から、本実施形態に係る製造方法によれば、露呈面18beの表面自由エネルギを効果的に高めることができ、且つこれによって、樹脂枠部材24と固体高分子電解質膜18とを強固に接合することが可能になる。 From the above, according to the manufacturing method of the present embodiment, the surface free energy of the exposed surface 18be can be effectively increased, and thereby the resin frame member 24 and the solid polymer electrolyte membrane 18 are strongly bonded. It becomes possible to do.

このように構成される発電セル12の動作について、以下に説明する。 The operation of the power generation cell 12 configured as above will be described below.

先ず、図1に示すように、酸化剤ガス入口連通孔30aには、酸素含有ガス等の酸化剤ガスが供給されるとともに、燃料ガス入口連通孔34aには、水素含有ガス等の燃料ガスが供給される。さらに、冷却媒体入口連通孔32aには、純水やエチレングリコール、オイル等の冷却媒体が供給される。 First, as shown in FIG. 1, an oxidant gas such as an oxygen-containing gas is supplied to the oxidant gas inlet communication hole 30a, and a fuel gas such as a hydrogen-containing gas is supplied to the fuel gas inlet communication hole 34a. Supplied. Furthermore, a cooling medium such as pure water, ethylene glycol, or oil is supplied to the cooling medium inlet communication hole 32a.

このため、酸化剤ガスは、酸化剤ガス入口連通孔30aから第2セパレータ16の酸化剤ガス流路36に導入され、矢印B方向に移動して段差MEA10aのカソード電極22に供給される。一方、燃料ガスは、燃料ガス入口連通孔34aから第1セパレータ14の燃料ガス流路38に導入される。燃料ガスは、燃料ガス流路38に沿って矢印B方向に移動し、段差MEA10aのアノード電極20に供給される。 Therefore, the oxidant gas is introduced into the oxidant gas flow path 36 of the second separator 16 through the oxidant gas inlet communication hole 30a, moves in the direction of arrow B, and is supplied to the cathode electrode 22 of the step MEA 10a. On the other hand, the fuel gas is introduced into the fuel gas passage 38 of the first separator 14 through the fuel gas inlet communication hole 34a. The fuel gas moves in the direction of arrow B along the fuel gas flow path 38 and is supplied to the anode electrode 20 of the step MEA 10a.

従って、各段差MEA10aでは、カソード電極22に供給される酸化剤ガスと、アノード電極20に供給される燃料ガスとが、第2電極触媒層22a及び第1電極触媒層20a内で電気化学反応により消費されて、発電が行われる。 Therefore, in each step MEA 10a, the oxidant gas supplied to the cathode electrode 22 and the fuel gas supplied to the anode electrode 20 are electrochemically reacted in the second electrode catalyst layer 22a and the first electrode catalyst layer 20a. It is consumed and electricity is generated.

次いで、カソード電極22に供給されて消費された酸化剤ガスは、酸化剤ガス出口連通孔30bに沿って矢印A方向に排出される。同様に、アノード電極20に供給されて消費された燃料ガスは、燃料ガス出口連通孔34bに沿って矢印A方向に排出される。 Next, the oxidant gas supplied to and consumed by the cathode electrode 22 is discharged in the direction of arrow A along the oxidant gas outlet communication hole 30b. Similarly, the fuel gas supplied to the anode electrode 20 and consumed is discharged in the direction of arrow A along the fuel gas outlet communication hole 34b.

また、冷却媒体入口連通孔32aに供給された冷却媒体は、第1セパレータ14と第2セパレータ16との間の冷却媒体流路40に導入された後、矢印B方向に流通する。この冷却媒体は、段差MEA10aを冷却した後、冷却媒体出口連通孔32bから排出される。 Further, the cooling medium supplied to the cooling medium inlet communication hole 32a is introduced into the cooling medium flow passage 40 between the first separator 14 and the second separator 16 and then flows in the direction of arrow B. This cooling medium is discharged from the cooling medium outlet communication hole 32b after cooling the step MEA 10a.

なお、本発明は、上記した実施形態に特に限定されるものではなく、その要旨を逸脱しない範囲で種々の変形が可能である。 The present invention is not particularly limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the invention.

[段差MEAの作製]
(1) 第1ガス拡散層及び第2ガス拡散層のカーボン層として、東レ社製のカーボンペーパ「TGP−H060」(商品名)をトムソン刃により切り出したものを用いた。具体的には、第1ガス拡散層のカーボン層の平面形状を230mm×130mmとし、第2ガス拡散層のカーボン層の平面形状を200mm×100mmとした。なお、第1ガス拡散層及び第2ガス拡散層の平面形状を除く構成については、互いに同一となるように、それぞれ同様に作製した
[Fabrication of step MEA]
(1) As the carbon layers of the first gas diffusion layer and the second gas diffusion layer, a carbon paper “TGP-H060” (trade name) manufactured by Toray Industries, Inc. was cut out with a Thomson blade and used. Specifically, the planar shape of the carbon layer of the first gas diffusion layer was 230 mm×130 mm, and the planar shape of the carbon layer of the second gas diffusion layer was 200 mm×100 mm. The configurations of the first gas diffusion layer and the second gas diffusion layer other than the planar shapes were made in the same manner so that they are the same.

(2) カーボンブラックとポリテトラフルオロエチレン(PTFE)粒子とを4:6の重量比で混合した混合物をエチレングリコールに均一となるように分散させたスラリーをマイクロポーラス層用ペーストとして作製した。 (2) A slurry in which carbon black and polytetrafluoroethylene (PTFE) particles were mixed at a weight ratio of 4:6 and uniformly dispersed in ethylene glycol was prepared as a paste for a microporous layer.

(3) 前記(1)で作製したカーボン層の各平坦面に、前記(2)で調製したマイクロポーラス層用ペーストを塗布して、100℃で10分間乾燥させた。これにより、カーボン層にマイクロポーラス層が接合された、第1ガス拡散層及び第2ガス拡散層を得た。 (3) The microporous layer paste prepared in (2) was applied to each flat surface of the carbon layer prepared in (1) and dried at 100° C. for 10 minutes. As a result, a first gas diffusion layer and a second gas diffusion layer in which the microporous layer was bonded to the carbon layer were obtained.

(4) アノード電極インクを得るべく、先ず、ノルマルプロピルアルコール(NPA)と水とを1:2の重量比で混合して溶媒を調整した。次に、この溶媒と、田中貴金属社製の白金触媒「TEC10EA50E」(商品名)とを10:1の重量比で混合した後、該白金触媒との重量比が1:1となるようにイオン導伝性高分子バインダ溶液を加えて、所定のインク粘度となるまで混合した。なお、イオン導伝性高分子バインダ溶液としては、パーフルオロアルキルスルホン酸高分子化合物(例えば、デュポン社製のイオン伝導性ポリマー溶液「DE2020」(商品名))溶液を用いた。次に、この混合溶液に対し、遊星ボールミルを用いて80rpm×120分攪拌して均一化し、アノード電極インクを作製した。 (4) In order to obtain the anode electrode ink, first, normal propyl alcohol (NPA) and water were mixed at a weight ratio of 1:2 to prepare a solvent. Next, this solvent was mixed with a platinum catalyst "TEC10EA50E" (trade name) manufactured by Tanaka Kikinzoku Co., Ltd. in a weight ratio of 10:1, and then the weight ratio of the platinum catalyst to the catalyst was 1:1. A conductive polymer binder solution was added and mixed until a predetermined ink viscosity was obtained. As the ion conductive polymer binder solution, a solution of a perfluoroalkylsulfonic acid polymer compound (for example, an ion conductive polymer solution “DE2020” (trade name) manufactured by DuPont) was used. Next, this mixed solution was stirred using a planetary ball mill at 80 rpm×120 minutes for homogenization to prepare an anode electrode ink.

(5) 前記(4)で調製したアノード電極インクを、白金の重量が0.2mg/cm2となるようにPETフィルム上にスクリーン印刷して塗工し、60℃で10分間加熱した後、減圧下、100℃で15分間加熱して、乾燥させることによりアノード電極シートを作製した。 (5) The anode electrode ink prepared in (4) above was screen-printed and applied on a PET film so that the weight of platinum was 0.2 mg/cm 2, and after heating at 60° C. for 10 minutes, An anode electrode sheet was produced by heating at 100° C. for 15 minutes under reduced pressure and drying.

(6) カソード電極インクを得るべく、先ず、NPAと水とを1:2の重量比で混合して溶媒を調整した。次に、この溶媒と、田中貴金属社製の白金触媒「TEC10EA50E」(商品名)とを10:1の重量比で混合した後、該白金触媒との重量比が1:1.5となるようにイオン導伝性高分子バインダ溶液を加えて、所定のインク粘度となるまで混合した。なお、イオン導伝性高分子バインダ溶液としては、前記(4)と同様の溶液を用いた。次に、この混合溶液に対し、遊星ボールミルを用いて80rpm×120分攪拌して均一化し、カソード電極インクを作製した。 (6) In order to obtain the cathode electrode ink, first, NPA and water were mixed at a weight ratio of 1:2 to prepare a solvent. Next, this solvent was mixed with a platinum catalyst "TEC10EA50E" (trade name) manufactured by Tanaka Kikinzoku Co., Ltd. at a weight ratio of 10:1, and the weight ratio with the platinum catalyst was set to 1:1.5. The ion conductive polymer binder solution was added to and mixed until the ink had a predetermined viscosity. The same solution as in (4) above was used as the ion conductive polymer binder solution. Next, this mixed solution was stirred using a planetary ball mill at 80 rpm×120 minutes for homogenization to prepare a cathode electrode ink.

(7) 前記(6)で調製したカソード電極インクを、白金の重量が0.5mg/cm2となるようにPETフィルム上にスクリーン印刷して塗工し、60℃で10分間加熱した後、減圧下、100℃で15分間加熱して、乾燥させることによりカソード電極シートを作製した。 (7) The cathode electrode ink prepared in (6) above was screen-printed and applied on a PET film so that the weight of platinum was 0.5 mg/cm 2, and after heating at 60° C. for 10 minutes, A cathode electrode sheet was produced by heating at 100° C. for 15 minutes under reduced pressure and drying.

(8) 前記(5)で作製したアノード電極シートのインク塗工面と、前記(7)で作製したカソード電極シートのインク塗工面とに接するように固体高分子電解質膜を挟持し、120℃、2.0MPaの条件下、8分間のホットプレスを行った。なお、固体高分子電解質膜としては、デュポン社製のナフィオン「NRE−211」(商品名)を用いた。その後、アノード電極シート及びカソード電極シートのPETフィルムを剥がすことでCCMを作製した。 (8) A solid polymer electrolyte membrane is sandwiched so as to be in contact with the ink coated surface of the anode electrode sheet prepared in (5) and the ink coated surface of the cathode electrode sheet prepared in (7), and 120° C. Hot pressing was performed for 8 minutes under the condition of 2.0 MPa. As the solid polymer electrolyte membrane, Nafion "NRE-211" (trade name) manufactured by DuPont was used. Then, the PET films of the anode electrode sheet and the cathode electrode sheet were peeled off to prepare a CCM.

(9) 前記(3)で作製した第1ガス拡散層及び第2ガス拡散層のマイクロポーラス層同士の間に前記(8)で作製したCCMを挟持して120℃、2.0MPaの条件下、12分間のホットプレスを行って一体化した。この際、第2ガス拡散層側に荷重吸収材を配置した。その後、第1ガス拡散層の外周部をトムソン刃で打ち抜いてトリミングを行うことで、最大平面形状が210mm×110mmとなる段差MEAを作製した。 (9) The CCM prepared in (8) is sandwiched between the microporous layers of the first gas diffusion layer and the second gas diffusion layer prepared in (3), and the conditions are 120° C. and 2.0 MPa. Then, hot pressing was performed for 12 minutes to integrate them. At this time, the load absorbing material was arranged on the second gas diffusion layer side. After that, the outer peripheral portion of the first gas diffusion layer was punched out with a Thomson blade to perform trimming, thereby producing a step MEA having a maximum planar shape of 210 mm×110 mm.

[樹脂枠部材の作製]
(10) 厚み250μmである東レ社製PPSシート「トレリナ5000」(商品名)をトムソン刃で枠状に切断して樹脂枠部材を作製した。
[Production of resin frame member]
(10) A resin frame member was produced by cutting a Toray PPS sheet “Torelina 5000” (trade name) having a thickness of 250 μm into a frame shape with a Thomson blade.

(11) 前記(10)で作製した樹脂枠部材の接着面に対して、ヤマト科学社製のプラズマ装置「YAP−510」(商品名)を用いて30秒間、プラズマ処理を施して、表面改質を行った。 (11) Plasma treatment is applied to the adhesive surface of the resin frame member prepared in (10) for 30 seconds using a plasma device “YAP-510” (trade name) manufactured by Yamato Scientific Co., Ltd. Went quality.

[樹脂枠付き電解質膜・電極構造体の作製]
[実施例1]
(12) 周辺温度;23℃、相対湿度(RH);50%の環境下において、前記(9)で作製した段差MEAの固体高分子電解質膜の露呈面に30℃の水を滴下して、2分間接触させた後、吸湿性のシートによって押し広げながら拭き取った。
[Preparation of electrolyte membrane/electrode structure with resin frame]
[Example 1]
(12) In an environment of ambient temperature; 23° C., relative humidity (RH); 50%, 30° C. water is dropped on the exposed surface of the solid polymer electrolyte membrane of the step MEA prepared in (9) above. After contacting for 2 minutes, it was wiped off while being spread by a hygroscopic sheet.

(13) 段差MEAにおける固体高分子電解質膜の露呈面に、信越化学工業社製のフッ素系接着剤「SIFEL2661」(商品名)をムサシエンジニアリング社製のディスペンサ「ML−606GX」(商品名)を用いて塗工した。この際、接着剤の幅が1mmとなるように設定し、且つ第2ガス拡散層の端面に接着剤を接触させながら、その外周を周回させた。 (13) On the exposed surface of the solid polymer electrolyte membrane in the step MEA, a fluorine-based adhesive "SIFEL2661" (trade name) manufactured by Shin-Etsu Chemical Co., Ltd., a dispenser "ML-606GX" (trade name) manufactured by Musashi Engineering Co., Ltd. Used for coating. At this time, the width of the adhesive was set to 1 mm, and while the adhesive was brought into contact with the end surface of the second gas diffusion layer, the outer periphery was circulated.

(14) 露呈面に塗工した接着剤に接着面を接触させるように段差MEAと樹脂枠部材とを重畳した重畳体を、PTFEシートを介して、新東工業社製のサーボプレス機の固定基台と可動基台との間に挟持させた。そして、140℃で加熱するとともに500Nの荷重を加える加熱・加圧処理を12分行った。これによって、接着剤を硬化させて接着剤層を形成し、該接着剤層を介して、段差MEAに樹脂枠部材が接合された樹脂枠付き電解質膜・電極構造体を得た。これを実施例1とする。 (14) Fix a servo press made by Shinto Kogyo Co., Ltd. via a PTFE sheet with a superposed body in which a step MEA and a resin frame member are superposed so that the adhesive surface is brought into contact with the adhesive agent applied to the exposed surface. It was held between the base and the movable base. Then, a heating/pressurizing process of heating at 140° C. and applying a load of 500 N was performed for 12 minutes. In this way, the adhesive was cured to form an adhesive layer, and a resin frame-attached electrolyte membrane/electrode structure in which a resin frame member was joined to the step MEA via the adhesive layer was obtained. This is Example 1.

[実施例2]
前記(12)の工程のうち、段差MEAの露呈面に滴下する水の温度を30℃に代えて40℃とし、それ以外は実施例1と同様にして、樹脂枠付き電解質膜・電極構造体を得た。これを実施例2とする。
[Example 2]
In the step (12), the temperature of water dropped on the exposed surface of the step MEA is 40° C. instead of 30° C., and otherwise the same as in Example 1 in the same manner as in Example 1 with a resin frame-attached electrolyte membrane/electrode structure. Got This is Example 2.

[実施例3]
前記(12)の工程のうち、段差MEAの露呈面に滴下した水を接触させる時間を2分間に代えて5分間とし、それ以外は実施例1と同様にして、樹脂枠付き電解質膜・電極構造体を得た。これを実施例3とする。
[Example 3]
In the step (12), the time for contacting the water dropped on the exposed surface of the step MEA is changed from 2 minutes to 5 minutes, and otherwise the same as in Example 1 in the same manner as in Example 1 with a resin frame-attached electrolyte membrane/electrode. The structure was obtained. This is Example 3.

[比較例1]
前記(12)の工程のうち、段差MEAの露呈面に滴下する水の温度を30℃に代えて50℃とした。それ以外は実施例1と同様にして、比較例1の樹脂枠付き電解質膜・電極構造体を得ようとしたが、この場合、固体高分子電解質膜にシワや、第1電極触媒層等との剥離が生じてしまい、段差MEAの構造破壊が生じた。すなわち、樹脂枠付き電解質膜・電極構造体を良好に得ることができなかった。
[Comparative Example 1]
In the step (12), the temperature of water dropped on the exposed surface of the step MEA was set to 50°C instead of 30°C. Other than that was carried out in the same manner as in Example 1 to obtain an electrolyte membrane/electrode structure with a resin frame of Comparative Example 1. In this case, wrinkles, a first electrode catalyst layer, etc. were formed on the solid polymer electrolyte membrane. Was peeled off, and the structure of the step MEA was destroyed. That is, it was not possible to satisfactorily obtain an electrolyte membrane/electrode structure with a resin frame.

[比較例2]
前記(12)の工程に代えて、前記(9)で作製した段差MEAに対して、恒温・恒湿槽内で2分間スチーム加湿した。この際、恒温・恒湿槽内の温度を30℃とし、相対湿度(RH)を90%とした。それ以外は実施例1と同様にして、樹脂枠付き電解質膜・電極構造体を得た。これを比較例2とする。
[Comparative example 2]
Instead of the step of (12), the step MEA produced in (9) was steam humidified for 2 minutes in a constant temperature/humidity bath. At this time, the temperature in the constant temperature/constant humidity tank was set to 30° C., and the relative humidity (RH) was set to 90%. Otherwise in the same manner as in Example 1, an electrolyte membrane-electrode structure with a resin frame was obtained. This is Comparative Example 2.

[比較例3]
前記(12)の工程に代えて、前記(9)で作製した段差MEAに対して、恒温・恒湿槽内で2分間スチーム加湿した。この際、恒温・恒湿槽内の温度を40℃とし、相対湿度(RH)を90%とした。それ以外は実施例1と同様にして、比較例3の樹脂枠付き電解質膜・電極構造体を得ようとしたが、この場合も、段差MEAの構造破壊が生じ、樹脂枠付き電解質膜・電極構造体を良好に得ることができなかった。
[Comparative Example 3]
Instead of the step of (12), the step MEA produced in (9) was steam humidified for 2 minutes in a constant temperature/humidity bath. At this time, the temperature in the constant temperature/humidity bath was set to 40° C., and the relative humidity (RH) was set to 90%. Other than that, in the same manner as in Example 1, an attempt was made to obtain a resin frame-equipped electrolyte membrane/electrode structure of Comparative Example 3, but in this case as well, structural breakdown of the step MEA occurred, resulting in resin frame-equipped electrolyte membrane/electrode. The structure could not be obtained well.

[比較例4]
前記(12)の工程に代えて、前記(9)で作製した段差MEAに対して、恒温・恒湿槽内で2分間スチーム加湿した。この際、恒温・恒湿槽内の温度を50℃とし、相対湿度(RH)を90%とした。それ以外は実施例1と同様にして、比較例4の樹脂枠付き電解質膜・電極構造体を得ようとしたが、この場合も、段差MEAの構造破壊が生じ、樹脂枠付き電解質膜・電極構造体を良好に得ることができなかった。
[Comparative Example 4]
Instead of the step of (12), the step MEA produced in (9) was steam humidified for 2 minutes in a constant temperature/humidity bath. At this time, the temperature inside the constant temperature and humidity chamber was set to 50° C., and the relative humidity (RH) was set to 90%. Other than that was carried out in the same manner as in Example 1 to obtain an electrolyte membrane/electrode structure with a resin frame of Comparative Example 4, but in this case as well, structural destruction of the step MEA occurred and an electrolyte membrane/electrode with a resin frame was formed. The structure could not be obtained well.

[比較例5]
前記(12)の工程に代えて、前記(9)で作製した段差MEAに対して、恒温・恒湿槽内で2分間スチーム加湿した。この際、恒温・恒湿槽内の温度を60℃とし、相対湿度(RH)を90%とした。それ以外は実施例1と同様にして、比較例5の樹脂枠付き電解質膜・電極構造体を得ようとしたが、この場合も、段差MEAの構造破壊が生じ、樹脂枠付き電解質膜・電極構造体を良好に得ることができなかった。
[Comparative Example 5]
Instead of the step of (12), the step MEA produced in (9) was steam humidified for 2 minutes in a constant temperature/humidity bath. At this time, the temperature inside the constant temperature and humidity chamber was set to 60° C., and the relative humidity (RH) was set to 90%. Other than that, in the same manner as in Example 1, an attempt was made to obtain an electrolyte membrane/electrode structure with a resin frame of Comparative Example 5, but in this case as well, structural breakdown of the step MEA occurred, resulting in an electrolyte membrane/electrode with a resin frame. The structure could not be obtained well.

[比較例6]
前記(12)の工程に代えて、前記(9)で作製した段差MEAに対して、恒温・恒湿槽内で2分間スチーム加湿した。この際、恒温・恒湿槽内の温度を40℃とし、相対湿度(RH)を80%とした。それ以外は実施例1と同様にして、比較例6の樹脂枠付き電解質膜・電極構造体を得ようとしたが、この場合も、段差MEAの構造破壊が生じ、樹脂枠付き電解質膜・電極構造体を良好に得ることができなかった。
[Comparative Example 6]
Instead of the step of (12), the step MEA produced in (9) was steam humidified for 2 minutes in a constant temperature/humidity bath. At this time, the temperature inside the constant temperature and humidity chamber was set to 40° C., and the relative humidity (RH) was set to 80%. Other than that, in the same manner as in Example 1, an attempt was made to obtain a resin frame-attached electrolyte membrane/electrode structure of Comparative Example 6, but in this case as well, structural breakdown of the step MEA occurred, and the resin frame-attached electrolyte membrane/electrode was formed. The structure could not be obtained well.

[比較例7]
前記(12)の工程に代えて、前記(9)で作製した段差MEAに対して、恒温・恒湿槽内で15秒間スチーム加湿した。この際、恒温・恒湿槽内の温度を40℃とし、相対湿度(RH)を90%とした。それ以外は実施例1と同様にして、樹脂枠付き電解質膜・電極構造体を得た。これを比較例7とする。
[Comparative Example 7]
Instead of the step (12), the step MEA produced in (9) was steam humidified for 15 seconds in a constant temperature/humidity bath. At this time, the temperature in the constant temperature/humidity bath was set to 40° C., and the relative humidity (RH) was set to 90%. Otherwise in the same manner as in Example 1, an electrolyte membrane-electrode structure with a resin frame was obtained. This is Comparative Example 7.

[比較例8]
前記(12)の工程に代えて、前記(9)で作製した段差MEAに対して、恒温・恒湿槽内で30秒間スチーム加湿した。この際、恒温・恒湿槽内の温度を40℃とし、相対湿度(RH)を90%とした。それ以外は実施例1と同様にして、比較例8の樹脂枠付き電解質膜・電極構造体を得ようとしたが、この場合も、段差MEAの構造破壊が生じ、樹脂枠付き電解質膜・電極構造体を良好に得ることができなかった。
[Comparative Example 8]
Instead of the step (12), the step MEA produced in (9) was steam humidified for 30 seconds in a constant temperature/humidity bath. At this time, the temperature in the constant temperature/humidity bath was set to 40° C., and the relative humidity (RH) was set to 90%. Other than that, in the same manner as in Example 1, an attempt was made to obtain a resin frame-attached electrolyte membrane/electrode structure of Comparative Example 8. In this case as well, structural breakdown of the step MEA occurred, and resin frame-attached electrolyte membrane/electrode structure was produced. The structure could not be obtained well.

[比較例9]
前記(12)の工程を省略した以外、実施例1と同様にして、樹脂枠付き電解質膜・電極構造体を得た。すなわち、段差MEAの露呈面を何ら加湿処理することなく作製した樹脂枠付き電解質膜・電極構造体を比較例9とする。
[Comparative Example 9]
An electrolyte membrane/electrode structure with a resin frame was obtained in the same manner as in Example 1 except that the step (12) was omitted. That is, Comparative Example 9 is an electrolyte membrane/electrode structure with a resin frame, which was produced without subjecting the exposed surface of the step MEA to any humidification treatment.

上記の実施例1〜3の樹脂枠付き電解質膜・電極構造体と、段差MEAの構造破壊が生じなかった比較例2、7、9の樹脂枠付き電解質膜・電極構造体とについて、それぞれ180度方向の剥離試験を行った。この剥離試験では、最初に、実施例1〜3及び比較例2、7、9の樹脂枠付き電解質膜・電極構造体のそれぞれから試験片を作製した。 The resin frame-attached electrolyte membrane/electrode structures of Examples 1 to 3 and the resin frame-attached electrolyte membrane/electrode structures of Comparative Examples 2, 7 and 9 in which the structural breakage of the step MEA did not occur were each 180 A peel test in the direction of degree was performed. In this peeling test, first, test pieces were prepared from each of the resin frame-attached electrolyte membrane/electrode structures of Examples 1 to 3 and Comparative Examples 2, 7, and 9.

具体的には、固体高分子電解質膜の露呈面と、樹脂枠部材の接着面とが接着剤層を介して接着された部分の幅が2cmであり、長さが5cmとなるように短冊状に切り出した。そして、固体高分子電解質膜から第1ガス拡散層を剥離させた後、さらに第2ガス拡散層を剥離させた。これによって、樹脂枠部材とCCMとの接合体からなる試験片を作製した。同様にして、実施例1〜3及び比較例2、7、9の樹脂枠付き電解質膜・電極構造体のそれぞれにつき、試験片を40個ずつ作製した。 Specifically, the exposed surface of the solid polymer electrolyte membrane and the adhesive surface of the resin frame member are bonded to each other via the adhesive layer to have a width of 2 cm and a length of 5 cm. I cut it out. Then, after the first gas diffusion layer was peeled off from the solid polymer electrolyte membrane, the second gas diffusion layer was further peeled off. As a result, a test piece composed of a joined body of the resin frame member and CCM was produced. In the same manner, 40 test pieces were produced for each of the resin frame-attached electrolyte membrane/electrode structures of Examples 1 to 3 and Comparative Examples 2, 7, and 9.

次に、島津製作所社製の応用試験装置「オートグラフAGS−J」(商品名)の一端に試験片の樹脂枠部材側を把持させ、且つ他端に試験片のCCM側を把持させて180度方向の剥離強度を測定した。 Next, the resin frame member side of the test piece is held at one end of the applied test apparatus “Autograph AGS-J” (trade name) manufactured by Shimadzu Corporation, and the CCM side of the test piece is held at the other end, and 180 The peel strength in the degree direction was measured.

実施例1〜3及び比較例2、7、9の樹脂枠付き電解質膜・電極構造体のそれぞれについて、40個の試験片の剥離強度の平均値と、最も小さい剥離強度との差を、前記平均値で除した値を変動割合(%)として求めた。すなわち、変動割合が小さいほど、露呈面と接着面とが強固且つ安定に接合されていることを意味する。実施例1〜3及び比較例2、7、9の樹脂枠付き電解質膜・電極構造体ごとに求めた変動割合を表1に示す。なお、表1には、実施例1〜3及び比較例1〜9の樹脂枠付き電解質膜・電極構造体のそれぞれの作製条件と、作製工程において段差MEAの構造破壊が生じたか否かについても併せて示す。 For each of the resin frame-attached electrolyte membrane/electrode structures of Examples 1 to 3 and Comparative Examples 2, 7, and 9, the difference between the average peel strength of 40 test pieces and the smallest peel strength was calculated as above. The value divided by the average value was obtained as the variation rate (%). That is, the smaller the variation rate, the stronger and stably the exposed surface and the adhesive surface are joined together. Table 1 shows the rate of change obtained for each of the resin frame-attached electrolyte membrane/electrode structures of Examples 1 to 3 and Comparative Examples 2, 7, and 9. In addition, Table 1 also shows the respective production conditions of the electrolyte membrane-attached electrolyte membrane/electrode structures of Examples 1 to 3 and Comparative Examples 1 to 9 and whether or not structural breakdown of the step MEA occurred in the production process. Shown together.

Figure 0006709054
Figure 0006709054

表1から、恒温・恒湿槽によるスチーム加湿では、槽内の温度が30℃を超え且つ加湿時間が15秒を超えた場合に、段差MEAに構造破壊が生じてしまうことが分かった。つまり、上記の条件でスチーム加湿を行うと、固体高分子電解質膜が全体的に加湿されて過度に膨潤した状態となってしまい、これによって、段差MEAが構造破壊するに至ると考えられる。 From Table 1, it was found that in steam humidification in a constant temperature/constant humidity tank, structural failure occurs in the step MEA when the temperature in the tank exceeds 30° C. and the humidification time exceeds 15 seconds. That is, when steam humidification is performed under the above conditions, the solid polymer electrolyte membrane is entirely humidified and becomes excessively swollen, which may lead to structural destruction of the step MEA.

また、露呈面に接触させる水が40℃を超えた場合も、段差MEAに構造破壊が生じることが分かった。従って、露呈面に40℃以下の水を接触させることで、固体高分子電解質膜の全体が過度に膨潤した状態となることを回避できることが分かった。 It was also found that structural damage occurs in the step MEA when the water contacting the exposed surface exceeds 40°C. Therefore, it was found that by contacting the exposed surface with water at 40° C. or lower, it is possible to prevent the entire solid polymer electrolyte membrane from becoming excessively swollen.

さらに、表1から、実施例1〜3の変動割合は、段差MEAに構造破壊が生じなかった比較例2、7や、露呈面に加湿処理を施さなかった比較例9の変動割合に比べて1/3未満となっていることが分かった。すなわち、比較例2、7の条件におけるスチーム加湿処理では、露呈面の表面自由エネルギを高めるために十分な加湿を行うことができなかったと考えられる。また、比較例9では、段差MEAを作製する際に行ったホットプレス等によって、固体高分子電解質膜が乾燥し、露呈面の表面自由エネルギが低下したと考えられる。 Further, from Table 1, the fluctuation ratios of Examples 1 to 3 are higher than the fluctuation ratios of Comparative Examples 2 and 7 in which no structural destruction occurs in the step MEA and Comparative Example 9 in which the exposed surface is not humidified. It was found to be less than 1/3. That is, it is considered that the steam humidification treatment under the conditions of Comparative Examples 2 and 7 could not perform sufficient humidification to increase the surface free energy of the exposed surface. Further, in Comparative Example 9, it is considered that the solid polymer electrolyte membrane was dried by the hot pressing or the like performed when the step MEA was manufactured, and the surface free energy of the exposed surface was lowered.

一方、実施例1〜3では、固体高分子電解質膜を過度に膨潤させることなく、露呈面の表面自由エネルギを十分に高めることができており、これによって、固体高分子電解質膜と樹脂枠部材との接合を強固且つ安定にすることができた。 On the other hand, in Examples 1 to 3, it is possible to sufficiently increase the surface free energy of the exposed surface without excessively swelling the solid polymer electrolyte membrane, and thereby the solid polymer electrolyte membrane and the resin frame member. It was possible to make the joint with and strong and stable.

10…樹脂枠付き電解質膜・電極構造体 10a…段差MEA
12…発電セル 14、16…セパレータ
18…固体高分子電解質膜 18be…露呈面
20…アノード電極 20a…第1電極触媒層
20b…第1ガス拡散層 22…カソード電極
22a…第2電極触媒層 22b…第2ガス拡散層
24…樹脂枠部材 24a…接着面
26…接着剤層 26a…接着剤
50…水
10... Electrolyte Membrane/Electrode Structure with Resin Frame 10a... Step MEA
12... Power generation cell 14, 16... Separator 18... Solid polymer electrolyte membrane 18be... Exposed surface 20... Anode electrode 20a... First electrode catalyst layer 20b... First gas diffusion layer 22... Cathode electrode 22a... Second electrode catalyst layer 22b ...Second gas diffusion layer 24...resin frame member 24a...adhesive surface 26...adhesive layer 26a...adhesive 50...water

Claims (4)

固体高分子電解質膜の一方の面に、第1電極が設けられ、前記固体高分子電解質膜の他方の面に、第2電極が設けられるとともに、前記第1電極の平面寸法は、前記第2電極の平面寸法よりも大きな寸法に設定される段差電解質膜・電極構造体と、
前記固体高分子電解質膜の、前記第2電極の外方に露呈する露呈面に接着剤を介して接合される樹脂枠部材と、
を有する燃料電池用の樹脂枠付き電解質膜・電極構造体の製造方法であって、
前記露呈面に40℃以下の液体の水を接触させる工程と、
前記固体高分子電解質膜の前記露呈面よりも内部に前記水を含有させた後、前記固体高分子電解質膜の全体が膨潤する前に前記露呈面上に存在する前記水を除去する工程と、
前記露呈面に接着剤を塗工する工程と、
前記接着剤を介して前記露呈面と前記樹脂枠部材とを接合する工程と、
を有することを特徴とする樹脂枠付き電解質膜・電極構造体の製造方法。
A first electrode is provided on one surface of the solid polymer electrolyte membrane, a second electrode is provided on the other surface of the solid polymer electrolyte membrane, and the planar dimension of the first electrode is the second dimension. A stepped electrolyte membrane/electrode structure set to a size larger than the planar size of the electrode,
A resin frame member joined to the exposed surface of the solid polymer electrolyte membrane exposed to the outside of the second electrode via an adhesive;
A method for manufacturing an electrolyte membrane/electrode structure with a resin frame for a fuel cell having:
Contacting the exposed surface with liquid water at 40° C. or lower,
After containing the water inside the exposed surface of the solid polymer electrolyte membrane , removing the water present on the exposed surface before the entire solid polymer electrolyte membrane swells ,
A step of applying an adhesive to the exposed surface,
Bonding the exposed surface and the resin frame member via the adhesive,
A method for producing an electrolyte membrane/electrode structure with a resin frame, comprising:
固体高分子電解質膜の一方の面に、第1電極が設けられ、前記固体高分子電解質膜の他方の面に、第2電極が設けられるとともに、前記第1電極の平面寸法は、前記第2電極の平面寸法よりも大きな寸法に設定される段差電解質膜・電極構造体と、
前記固体高分子電解質膜の、前記第2電極の外方に露呈する露呈面に接着剤を介して接合される樹脂枠部材と、
を有する燃料電池用の樹脂枠付き電解質膜・電極構造体の製造方法であって、
前記露呈面に40℃以下の液体の水を接触させる工程と、
前記固体高分子電解質膜の前記露呈面よりも内部に前記水を含有させた後、前記水が前記固体高分子電解質膜の前記露呈面の裏面に達する前に前記露呈面上に存在する前記水を除去する工程と、
前記露呈面に接着剤を塗工する工程と、
前記接着剤を介して前記露呈面と前記樹脂枠部材とを接合する工程と、
を有することを特徴とする樹脂枠付き電解質膜・電極構造体の製造方法。
The first electrode is provided on one surface of the solid polymer electrolyte membrane, the second electrode is provided on the other surface of the solid polymer electrolyte membrane, and the planar dimension of the first electrode is the second dimension. A stepped electrolyte membrane/electrode structure set to a size larger than the planar size of the electrode,
A resin frame member joined to the exposed surface of the solid polymer electrolyte membrane exposed to the outside of the second electrode via an adhesive;
A method for manufacturing an electrolyte membrane/electrode structure with a resin frame for a fuel cell having:
Contacting the exposed surface with liquid water at 40° C. or lower,
After containing the water inside the exposed surface of the solid polymer electrolyte membrane, the water present on the exposed surface before the water reaches the back surface of the exposed surface of the solid polymer electrolyte membrane The step of removing
A step of applying an adhesive to the exposed surface,
Bonding the exposed surface and the resin frame member via the adhesive,
A method for producing an electrolyte membrane/electrode structure with a resin frame, comprising:
固体高分子電解質膜の一方の面に、第1電極が設けられ、前記固体高分子電解質膜の他方の面に、第2電極が設けられるとともに、前記第1電極の平面寸法は、前記第2電極の平面寸法よりも大きな寸法に設定される段差電解質膜・電極構造体と、
前記固体高分子電解質膜の、前記第2電極の外方に露呈する露呈面に接着剤を介して接合される樹脂枠部材と、
を有する燃料電池用の樹脂枠付き電解質膜・電極構造体の製造方法であって、
前記露呈面に40℃以下の液体の水を接触させる工程と、
前記固体高分子電解質膜の前記露呈面よりも内部に前記水を含有させた後、前記露呈面の前記水との接触角が104°を超える前に前記露呈面上に存在する前記水を除去する工程と、
前記露呈面に接着剤を塗工する工程と、
前記接着剤を介して前記露呈面と前記樹脂枠部材とを接合する工程と、
を有することを特徴とする樹脂枠付き電解質膜・電極構造体の製造方法。
The first electrode is provided on one surface of the solid polymer electrolyte membrane, the second electrode is provided on the other surface of the solid polymer electrolyte membrane, and the planar dimension of the first electrode is the second dimension. A stepped electrolyte membrane/electrode structure set to a size larger than the planar size of the electrode,
A resin frame member joined to the exposed surface of the solid polymer electrolyte membrane exposed to the outside of the second electrode via an adhesive;
A method for manufacturing an electrolyte membrane/electrode structure with a resin frame for a fuel cell having:
Contacting the exposed surface with liquid water at 40° C. or lower,
After the water is contained inside the exposed surface of the solid polymer electrolyte membrane, the water existing on the exposed surface is removed before the contact angle of the exposed surface with water exceeds 104°. The process of
A step of applying an adhesive to the exposed surface,
Bonding the exposed surface and the resin frame member via the adhesive,
A method for producing an electrolyte membrane/electrode structure with a resin frame, comprising:
請求項1〜3の何れか1項に記載の樹脂枠付き電解質膜・電極構造体の製造方法において、
前記水を除去する工程では、前記水を前記露呈面の面方向に押し広げながら拭き取ることを特徴とする樹脂枠付き電解質膜・電極構造体の製造方法。
The method for producing an electrolyte membrane/electrode structure with a resin frame according to claim 1, wherein
In the step of removing the water, the water is wiped while being spread in the surface direction of the exposed surface, and the method for producing an electrolyte membrane/electrode structure with a resin frame.
JP2016005890A 2016-01-15 2016-01-15 Method for manufacturing electrolyte membrane/electrode structure with resin frame Expired - Fee Related JP6709054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016005890A JP6709054B2 (en) 2016-01-15 2016-01-15 Method for manufacturing electrolyte membrane/electrode structure with resin frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016005890A JP6709054B2 (en) 2016-01-15 2016-01-15 Method for manufacturing electrolyte membrane/electrode structure with resin frame

Publications (2)

Publication Number Publication Date
JP2017126511A JP2017126511A (en) 2017-07-20
JP6709054B2 true JP6709054B2 (en) 2020-06-10

Family

ID=59365081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016005890A Expired - Fee Related JP6709054B2 (en) 2016-01-15 2016-01-15 Method for manufacturing electrolyte membrane/electrode structure with resin frame

Country Status (1)

Country Link
JP (1) JP6709054B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6848830B2 (en) * 2017-11-27 2021-03-24 トヨタ自動車株式会社 Fuel cell manufacturing method

Also Published As

Publication number Publication date
JP2017126511A (en) 2017-07-20

Similar Documents

Publication Publication Date Title
JP4700612B2 (en) Integrated membrane electrode assembly and manufacturing method thereof
JP4882314B2 (en) Electrolyte membrane-electrode assembly and method for producing the same
JP5326189B2 (en) Electrolyte membrane-electrode assembly and method for producing the same
CN103119771A (en) Membrane structure
JP2007141674A (en) Manufacturing method of membrane-electrode assembly and method of assembling fuel cell
JP4506796B2 (en) Electrolyte membrane-electrode assembly and method for producing electrolyte membrane
CN1606814A (en) Electrolyte membrane-electrode assembly for fuel cell and manufacturing method thereof
JP6832849B2 (en) Membrane sealing assembly
JP6100230B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cell and production method thereof
JP6709054B2 (en) Method for manufacturing electrolyte membrane/electrode structure with resin frame
KR102110843B1 (en) Process
CN106463746B (en) Film seal assembly
JP6144650B2 (en) Manufacturing method of fuel cell
JP2013258096A (en) Production method of electrolyte membrane/electrode structure with resin frame for fuel cell
JP2017068908A (en) Manufacturing method for resin frame-attached electrolyte membrane-electrode structure
JP2014026799A (en) Membrane electrode assembly for fuel cell
JP5273207B2 (en) ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY WITH MASK FILM FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP5245440B2 (en) Manufacturing method of membrane-electrode assembly for fuel cell
JP2006066161A (en) Manufacturing method of fuel cell film/electrode junction
JP2017004607A (en) Manufacturing method of electrolyte membrane electrode structure with resin frame for fuel battery
JP2004214001A (en) Jointing method and jointing device for electrode and solid polyelectrolyte membrane
JP6356436B2 (en) Electrolyte membrane / electrode structure
JP5461370B2 (en) Manufacturing method of electrolyte membrane / electrode structure for fuel cell
JP2010062040A (en) Method of manufacturing fuel cell
JP2017010704A (en) Method for manufacturing electrolyte membrane/electrode structure with resin frame

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200522

R150 Certificate of patent or registration of utility model

Ref document number: 6709054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees