JP5900281B2 - All-solid battery and method for manufacturing the same - Google Patents

All-solid battery and method for manufacturing the same Download PDF

Info

Publication number
JP5900281B2
JP5900281B2 JP2012232136A JP2012232136A JP5900281B2 JP 5900281 B2 JP5900281 B2 JP 5900281B2 JP 2012232136 A JP2012232136 A JP 2012232136A JP 2012232136 A JP2012232136 A JP 2012232136A JP 5900281 B2 JP5900281 B2 JP 5900281B2
Authority
JP
Japan
Prior art keywords
active material
solid
solid electrolyte
electrode active
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012232136A
Other languages
Japanese (ja)
Other versions
JP2014086174A (en
Inventor
坂口 琢哉
琢哉 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012232136A priority Critical patent/JP5900281B2/en
Publication of JP2014086174A publication Critical patent/JP2014086174A/en
Application granted granted Critical
Publication of JP5900281B2 publication Critical patent/JP5900281B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、全固体電池およびその製造方法に関し、さらに詳しくは電池の容量低下および活物質と固体電解質との間で剥離が起きた際の伝播のいずれをも抑制し得る全固体電池およびその製造方法に関する。   The present invention relates to an all-solid-state battery and a method for manufacturing the same, and more particularly, to an all-solid-state battery that can suppress both a decrease in capacity of the battery and propagation when separation occurs between an active material and a solid electrolyte. Regarding the method.

近年、高電圧および高エネルギー密度を有する電池としてリチウム電池が実用化されている。リチウム電池の用途が広い分野に拡大していることおよび高性能の要求から、リチウム電池の更なる性能向上のために様々な研究が行われている。
その中で、従来用いられてきた非水電解液系のリチウム電池に比べて電解液を用いないため、非水電解液を用いる場合の安全性向上のために必要なシステムを簡略化し得て構造の自由度が増し補器の数を減らすことができる等の多くの利点を有し得ることから、全固体電池の実用化が期待されている。
In recent years, lithium batteries have been put into practical use as batteries having high voltage and high energy density. Due to the expansion of the use of lithium batteries in a wide range of fields and the demand for high performance, various studies have been conducted to further improve the performance of lithium batteries.
Among them, since the electrolyte is not used compared to the conventional non-aqueous electrolyte lithium battery, the system required for improving the safety when using the non-aqueous electrolyte can be simplified. Therefore, it is expected that the all-solid-state battery will be put to practical use because it can have many advantages such as an increased degree of freedom and a reduced number of auxiliary devices.

しかし、全固体電池の実用化が実現するためには、高容量・高出力を与え得る固体電解質の創出および/又は高電極利用効率を実現し得る電極を創出することなどの様々な改良が必要である。
特に、全固体電池は、活物質の充放電に伴う膨張収縮によって固体電解質と活物質とが剥離する恐れがあり、充放電サイクルにより特性(容量)が低下し得る。例えば、活物質と固体電解質が全面的に接触している場合、一旦どこかで剥離やひび割れが起こるかあるいはねじれが加えられると剥離が伝播するあるいは破損する恐れがあるため、急激に容量が低下し得る。このため、活物質層と固体電解質層との剥離やひび割れの伝播の防止あるいは電池にねじれが加えられたときの破損を防止する試みがなされている。
However, in order to realize the practical application of all-solid-state batteries, various improvements such as the creation of a solid electrolyte capable of providing high capacity and high output and / or the creation of electrodes capable of realizing high electrode utilization efficiency are required. It is.
In particular, the all-solid-state battery may be separated from the solid electrolyte and the active material due to expansion and contraction associated with charging / discharging of the active material, and the characteristics (capacity) may be reduced by the charge / discharge cycle. For example, when the active material and the solid electrolyte are in full contact, the capacity drops rapidly because peeling or cracking occurs somewhere or if twisting is applied, the peeling may propagate or break. Can do. For this reason, attempts have been made to prevent peeling between the active material layer and the solid electrolyte layer, propagation of cracks, or damage when the battery is twisted.

例えば、特許文献1には、曲折性を有するシート上に正極活物質、固体電解質、負極活物質を層状に重ねた発電要素からなる固体発電セルを碁盤目様に複数個配置したシート状電池が記載されている。   For example, Patent Document 1 discloses a sheet battery in which a plurality of solid power generation cells each including a power generation element in which a positive electrode active material, a solid electrolyte, and a negative electrode active material are layered on a sheet having bending properties are arranged in a grid pattern. Have been described.

また、特許文献2には、無機化合物から成る正極、固体電解質および負極を順次積層して設けた電池要素を集電体上に、複数の電池要素を0.1〜5000μmの間隔をもって配設した全固体二次電池、および前記電池要素を化学エッチング、ダイシング等で複数に切断する全固体二次電池の製造方法が記載されており、具体例として集電体上に複数の電池要素を集積配置後にホットプレスするかあるいは大型の電池要素をレーザーで集電体を残して加工して全固体二次電池を得た例が示されている。   Further, in Patent Document 2, a battery element in which a positive electrode made of an inorganic compound, a solid electrolyte, and a negative electrode are sequentially stacked is provided on a current collector, and a plurality of battery elements are arranged at intervals of 0.1 to 5000 μm. An all-solid-state secondary battery and a method for manufacturing the all-solid-state secondary battery in which the battery element is cut into a plurality of parts by chemical etching, dicing, or the like are described. As a specific example, a plurality of battery elements are integrated and arranged on a current collector An example is shown in which an all-solid secondary battery is obtained by hot pressing later or processing a large battery element with a laser leaving a current collector.

また、特許文献3には、可撓性基板、および該基板上に配置された正極と固体電解質と負極とからなる単電池からなる複数の集合体を備えた集合電池であって、集合体の外周が矩形で、矩形の集合体が矩形の2つの対角線上に設けられた帯状の無地部によって4つの単電池に分割されている集合電池が記載されている。   Patent Document 3 discloses a battery assembly including a flexible substrate and a plurality of assemblies each including a single cell including a positive electrode, a solid electrolyte, and a negative electrode arranged on the substrate. There is described an assembled battery in which the outer periphery is rectangular and the rectangular aggregate is divided into four single cells by strip-shaped plain portions provided on two diagonal lines of the rectangle.

特開2000−195482号公報JP 2000-195482 A 特開2001−015153号公報JP 2001-015153 A 特開2004−303715号公報JP 2004-303715 A

しかし、これらの公知技術を適用すると、活物質層が分割されているため却って全固体電池の活物質の量が低下するか、各電池が遮断されているため一部の活物質が劣化しても周囲の活物質からLiイオンの供給を受けられず、電池の容量低下の抑制が困難であり全固体電池のサイクル特性が悪い。
従って、本発明の目的は、電池の容量低下および活物質と固体電解質との間で剥離が起きた際の伝播のいずれをも抑制し得る全固体電池を提供することである。
また、本発明の他の目的は、電池の容量低下および活物質と固体電解質との間で剥離が起きた際の伝播のいずれをも抑制し得る全固体電池の製造方法を提供することである。
However, when these known techniques are applied, the active material layer is divided, so that the amount of the active material of the all-solid battery is reduced, or some active materials are deteriorated because each battery is shut off. However, Li ions cannot be supplied from the surrounding active material, and it is difficult to suppress the capacity reduction of the battery, and the cycle characteristics of the all-solid battery are poor.
Accordingly, an object of the present invention is to provide an all solid state battery that can suppress both a decrease in capacity of the battery and propagation when separation occurs between an active material and a solid electrolyte.
Another object of the present invention is to provide a method for producing an all-solid-state battery that can suppress both a decrease in capacity of the battery and propagation when separation occurs between the active material and the solid electrolyte. .

本発明は、正極活物質層と負極活物質層とで挟持された固体電解質層を有する全固体電池であって、前記両活物質層は連続していて、前記固体電解質層が前記正極活物質層および前記負極活物質層間で貫通孔によって数に分断されている、前記電池に関する。 The present invention is an all-solid battery having a solid electrolyte layer sandwiched between a positive electrode active material layer and a negative electrode active material layer, wherein both the active material layers are continuous, and the solid electrolyte layer is the positive electrode active material It is divided in the multiple by layers and the negative electrode active material layers in the through-hole, to the battery.

また、本発明は、全固体電池の製造方法であって、
正極活物質層および負極活物質層のいずれか一方の連続した活物質層上にメッシュ状のマスキングを設ける工程、
前記マスキングを設けたいずれか一方の活物質層上に固体電解質をスパッタリングして固体電解質層を形成する工程、
マスキングを除去して複数個に分断された固体電解質層を形成する工程、および
前記固体電解質層上に連続した他の活物質層を貼り付ける工程
を含む、前記方法に関する。
The present invention also provides a method for producing an all-solid battery,
A step of providing a mesh-like masking on one continuous active material layer of either the positive electrode active material layer or the negative electrode active material layer;
A step of forming a solid electrolyte layer by sputtering a solid electrolyte on one of the active material layers provided with the masking;
It is related with the said method including the process of removing the masking and forming the solid electrolyte layer divided | segmented into plurality, and the process of affixing the other active material layer continuous on the said solid electrolyte layer.

本発明によれば、電池の容量低下および活物質と固体電解質との間で剥離が起きた際の伝播のいずれをも抑制し得る全固体電池を得ることができる。
また、本発明によれば、電池の容量低下および活物質と固体電解質との間で剥離が起きた際の伝播のいずれをも抑制し得る全固体電池を容易に得ることができる。
ADVANTAGE OF THE INVENTION According to this invention, the all-solid-state battery which can suppress both the capacity | capacitance fall of a battery and the propagation | transmission at the time of peeling between an active material and a solid electrolyte can be obtained.
In addition, according to the present invention, it is possible to easily obtain an all-solid-state battery that can suppress both the battery capacity reduction and the propagation when peeling occurs between the active material and the solid electrolyte.

図1は、本発明の実施態様の全固体電池を模式的に示す部分的な側面図である。FIG. 1 is a partial side view schematically showing an all solid state battery according to an embodiment of the present invention. 図2は、本発明の範囲外の全固体電池を模式的に示す部分的な側面図である。FIG. 2 is a partial side view schematically showing an all-solid battery outside the scope of the present invention. 図3は、本発明の範囲外の全固体電池を模式的に示す部分的な側面図である。FIG. 3 is a partial side view schematically showing an all solid state battery outside the scope of the present invention. 図4は、本発明の全固体電池の製造方法の実施態様の工程を示す模式図である。FIG. 4 is a schematic diagram showing the steps of an embodiment of the method for producing an all solid state battery of the present invention. 図5は、本発明の範囲外の全固体電池の製造方法の工程を示す模式図である。FIG. 5 is a schematic diagram showing the steps of a method for producing an all-solid battery outside the scope of the present invention.

特に、本発明において、以下の実施態様を挙げることができる。
1)前記固体電解質が、酸化物固体電解質である前記全固体電池。
2)前記固体電解質が、リン酸リチウム(LiPO)又はリン酸リチウムの酸素の一部を窒素で置換したリン酸リチウムオキシナイトライド(LiPON)である前記全固体電池。
3)前記正極活物質層が、マンガン、コバルト、ニッケルおよびチタンから選ばれる少なくとも1種の遷移金属およびリチウムを含む金属酸化物からなる前記全固体電池。
4)前記負極活物質層が、リチウム金属(Li)、又はリチウムとチタン、マグネシウムあるいはアルミニウムとの合金からなる前記全固体電池。
In particular, in the present invention, the following embodiments can be mentioned.
1) The all solid state battery, wherein the solid electrolyte is an oxide solid electrolyte.
2) The all-solid battery, wherein the solid electrolyte is lithium phosphate (Li 3 PO 4 ) or lithium phosphate oxynitride (LiPON) in which a part of oxygen of the lithium phosphate is replaced with nitrogen.
3) The all solid state battery, wherein the positive electrode active material layer is made of a metal oxide containing at least one transition metal selected from manganese, cobalt, nickel and titanium and lithium.
4) The all solid state battery in which the negative electrode active material layer is made of lithium metal (Li) or an alloy of lithium and titanium, magnesium, or aluminum.

以下、図面を参照して本発明の実施の形態を詳説する。
本発明の実施態様の全固体電池1は、図1に示すように、正極活物質層2と負極活物質層3とで挟持された固体電解質層4を集電箔5上に有する全固体電池であって、前記両活物質層2、3は各々連続していて、前記固体電解質層4が前記正極活物質層2および前記負極活物質層間3に複数個の貫通孔6を有している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, an all solid state battery 1 according to an embodiment of the present invention has an all solid state battery having a solid electrolyte layer 4 sandwiched between a positive electrode active material layer 2 and a negative electrode active material layer 3 on a current collector foil 5. The both active material layers 2 and 3 are continuous, and the solid electrolyte layer 4 has a plurality of through holes 6 in the positive electrode active material layer 2 and the negative electrode active material layer 3. .

本発明の実施態様の全固体電池によれば、前記固体電解質層が前記正極活物質層および前記負極活物質層間で複数個に分断されていることにより、図2に示すような、分断されていない本発明の範囲外の全固体電池10に比べて、サイクル特性の悪化が抑制される。
前記のサイクル特性の悪化抑制効果は、特に固体電解質として酸化物固体電解質を用いた全固体電池において顕著である。
According to the all solid state battery of the embodiment of the present invention, the solid electrolyte layer is divided into a plurality of parts between the positive electrode active material layer and the negative electrode active material layer, so that the solid electrolyte layer is divided as shown in FIG. As compared with the all solid state battery 10 outside the scope of the present invention, deterioration of cycle characteristics is suppressed.
The effect of suppressing the deterioration of the cycle characteristics is particularly remarkable in an all-solid battery using an oxide solid electrolyte as a solid electrolyte.

これは、前記の貫通孔を有しない従来公知の全固体電池10では、正極活物質層2および/又は負極活物質層3と固体電解質層4との活物質層の膨張収縮に起因する剥離が伝播するが、本発明の実施態様の全固体電池では、固体電解質が分断されていることによって活物質と固体電解質との間の剥離が伝播せず内部抵抗の増加が抑制されることによると考えられる。   This is because, in the conventionally known all solid state battery 10 that does not have the above-described through-holes, peeling due to expansion and contraction of the active material layer between the positive electrode active material layer 2 and / or the negative electrode active material layer 3 and the solid electrolyte layer 4 occurs. Although it propagates, in the all solid state battery of the embodiment of the present invention, it is considered that separation between the active material and the solid electrolyte does not propagate due to the separation of the solid electrolyte, thereby suppressing an increase in internal resistance. It is done.

さらに、本発明の範囲外の全固体電池11は、図3に示すように、正極活物質層2、固体電解質層4および負極活物質層3を順次積層して設けた電池を集電体5上に複数の電池ユニット12、13が一定の間隔7をもって配設されている。このため、前記全固体電池11によれば、活物質量の減少による容量低下、活物質劣化に伴う容量低下率の増加が生じ得る。   Furthermore, as shown in FIG. 3, the all-solid battery 11 outside the scope of the present invention includes a battery in which a positive electrode active material layer 2, a solid electrolyte layer 4, and a negative electrode active material layer 3 are sequentially stacked. A plurality of battery units 12 and 13 are arranged on the top with a constant interval 7. For this reason, according to the said all-solid-state battery 11, the capacity | capacitance fall by the reduction | decrease in the amount of active materials and the increase in the capacity | capacitance reduction rate accompanying active material degradation may arise.

これは、前記のように複数の電池ユニットを一定の間隔をもって配設した全固体電池11では、活物質も一緒に切断するため活物質量が減少し、また活物質が分割されているため一部の活物質が劣化した場合に周囲の他の電池ユニットの活物質からLiイオンの供給が受けられず、その結果、劣化した活物質を含むユニットでは対極の活物質が健全であっても容量が低下する。
これに対して、本発明の実施態様の全固体電池によれば、これらの活物質量の減少および容量低下が抑制される。
This is because in the all solid state battery 11 in which a plurality of battery units are arranged at a constant interval as described above, the amount of active material is reduced because the active material is cut together, and the active material is divided. When the active material of the part deteriorates, the lithium ion cannot be supplied from the active material of other battery units in the surroundings. As a result, the unit containing the deteriorated active material has a capacity even if the active material of the counter electrode is healthy. Decreases.
On the other hand, according to the all solid state battery of the embodiment of the present invention, the reduction in the amount of these active materials and the reduction in capacity are suppressed.

本発明の実施態様の全固体電池の製造方法においては、図4に示すように、
1)集電体箔上に正極活物質をスパッタリングする工程、
2)正極活物質上にメッシュ状のマスキングを施す工程、
3)正極活物質上に固体電解質をスパッタリングする工程、
4)マスキングを除去する工程、および
5)固体電解質上に負極活物質を貼り付ける工程
を含むことによって、本発明の実施態様の全固体電池を得ることができる。
In the manufacturing method of the all-solid-state battery of the embodiment of the present invention, as shown in FIG.
1) a step of sputtering a positive electrode active material on a current collector foil;
2) A step of applying mesh-like masking on the positive electrode active material,
3) a step of sputtering a solid electrolyte on the positive electrode active material;
By including the step of 4) removing the masking, and 5) the step of attaching the negative electrode active material on the solid electrolyte, the all solid state battery of the embodiment of the present invention can be obtained.

これに対して、本発明の範囲外の製造方法においては、図5に示すように、
1)集電箔、正極活物質、固体電解質、負極活物質を積層する工程、
2)得られた積層体をホットプレスにて各層を接合する工程、および
3)エッチングなどで集電箔を除く積層体を切断する工程
を含む。
従って、本発明の範囲外の製造方法によれば、前記の工程3)において活物質層が固体電解質層と一緒に切断された全固体電池が得られるため、得られた全固体電池は前述の活物質量の減少および容量の低下を生じ得る。
On the other hand, in the manufacturing method outside the scope of the present invention, as shown in FIG.
1) Laminating current collector foil, positive electrode active material, solid electrolyte, negative electrode active material,
2) A step of bonding the obtained laminate to each other by hot pressing, and 3) a step of cutting the laminate excluding the current collector foil by etching or the like.
Therefore, according to the production method outside the scope of the present invention, an all-solid battery in which the active material layer is cut together with the solid electrolyte layer in step 3) is obtained. A decrease in the amount of active material and a decrease in capacity can occur.

前記の正極活物質としては、Liイオン電池に使用できる活物質であれば特に制限はなく、層状、オリビン系、スピネル型であり得る。
前記の正極活物質として、マンガン、コバルト、ニッケルおよびチタンから選ばれる少なくとも1種の遷移金属およびリチウムを含む金属酸化物、例えばコバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、ニッケルマンガンコバルト酸リチウム(Li1+xNi1/3Mn1/3Co1/3)、リチウムコバルト酸ニッケル(LiCo0.3Ni0.7)、マンガン酸リチウム(LiMn)、チタン酸リチウム(Li4/3Ti5/3)、リチウムマンガン酸化合物(Li1+xMn2−x−y;M=Al、Mg、Fe、Cr、Co、Ni、Zn)、チタン酸リチウム(LiTiO)、リン酸金属リチウム(LiMPO、M=Fe、Mn、Co、Ni)、酸化バナジウム(V)、酸化モリブデン(MoO)、硫化チタン(TiS)、リチウムコバルト窒化物(LiCoN)、リチウムシリコン窒化物(LiCoN)、リチウム金属、リチウム合金(LiM、M=Sn、Si、Al、Ge、Sb、P)、リチウム貯蔵性金属間化合物(MgxM、M=Sn、Ge、Sb、あるいはXySb、X=In、Cu、Mn)やそれらの誘導体が挙げられる。
The positive electrode active material is not particularly limited as long as it is an active material that can be used for a Li-ion battery, and may be layered, olivine-based, or spinel-type.
As the positive electrode active material, at least one transition metal selected from manganese, cobalt, nickel and titanium and a metal oxide containing lithium, such as lithium cobaltate (Li x CoO 2 ), lithium nickelate (Li x NiO 2). ), Lithium nickel manganese cobaltate (Li 1 + x Ni 1/3 Mn 1/3 Co 1/3 O 2 ), lithium nickel cobaltate (LiCo 0.3 Ni 0.7 O 2 ), lithium manganate (Li x Mn 2 O 4), lithium titanate (Li 4/3 Ti 5/3 O 4) , lithium manganese oxide compound (Li 1 + x M y Mn 2-x-y O 4; M = Al, Mg, Fe, Cr, Co , Ni, Zn), lithium titanate (Li x TiO y), phosphate metal lithium (LiMPO 4, M = Fe, n, Co, Ni), vanadium oxide (V 2 O 5), molybdenum oxide (MoO 3), titanium sulfide (TiS 2), lithium cobalt nitride (LiCoN), lithium silicon nitride (LiCoN), lithium metal, lithium Alloys (LiM, M = Sn, Si, Al, Ge, Sb, P), lithium-storable intermetallic compounds (MgxM, M = Sn, Ge, Sb, or XySb, X = In, Cu, Mn) and their Derivatives.

前記負極活物質としては、Liイオン電池に用い得る活物質であれば特に制限はなく、例えば金属、合金又は金属化合物、例えば金属としては、Li、Sn、Si、Inなど、リチウムとチタン、マグネシウムあるいはアルミニウムとの合金、金属化合物、例えば前記金属の酸化物、硫化物又はりん化合物あるいは他の金属との合金や合金の酸化物、硫化物又はりん化合物など、例えばSiO、SnO、SnS、SnP、TiSnOなど、好適にはリチウム金属(Li)、リチウムとチタン、マグネシウムあるいはアルミニウムとの合金が挙げられる。 The negative electrode active material is not particularly limited as long as it is an active material that can be used in a Li ion battery. For example, a metal, an alloy, or a metal compound, for example, a metal such as Li, Sn, Si, or In, lithium, titanium, and magnesium. Alternatively, alloys with aluminum, metal compounds such as oxides, sulfides or phosphorus compounds of the above metals or oxides, sulfides or phosphorus compounds of alloys or alloys with other metals such as SiO, SnO, SnS, SnP, Ti 2 SnO 6 and the like, preferably lithium metal (Li), an alloy of lithium and titanium, magnesium or aluminum.

前記固体電解質としては、特に制限はなく、硫化物、酸化物、窒化物、ハロゲン化物が挙げられ、特に酸化物固体電解質が好適に挙げられる。また、前記の固体電解質は結晶、非結晶あるいはガラスセラミックのいずれでであってよい。
前記の固体電解質として、例えばリン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素で置換したリン酸リチウムオキシナイトライド(LiPON)が挙げられる。
There is no restriction | limiting in particular as said solid electrolyte, A sulfide, an oxide, nitride, and a halide are mentioned, Especially an oxide solid electrolyte is mentioned suitably. The solid electrolyte may be crystalline, amorphous, or glass ceramic.
Examples of the solid electrolyte include lithium phosphate (Li 3 PO 4 ) and lithium phosphate oxynitride (LiPON) in which part of oxygen in the lithium phosphate is replaced with nitrogen.

前記の正極用の集電体として金属箔、例えばSUS箔、Al箔を、前記の負極用の集電体として金属箔、例えばSUS箔、Cu箔を用い得る。   A metal foil such as SUS foil or Al foil can be used as the current collector for the positive electrode, and a metal foil such as SUS foil or Cu foil can be used as the current collector for the negative electrode.

前記のマスキングとして、任意の材料からなる、後工程で充填する固体電解質のための空隙部を有するネット状膜を用い得る。前記の材料としてセラミック、金属あるいは高分子を挙げることができる。
また、前記のマスキング除去は、溶媒による溶解除去あるいはネット状膜を引き剥がすことによって実施し得る。
As said masking, the net-like film | membrane which has the space | gap part for the solid electrolyte which consists of arbitrary materials and is filled with a post process can be used. Examples of the material include ceramic, metal, and polymer.
The masking removal can be performed by dissolving with a solvent or peeling off the net-like film.

前記の固体電解質上への負極活物質の貼り付けは、例えば予め作製した負極活物質膜を固体電解質層上に配置し、次いで通常は集電箔(図示せず)を配置した後、プレスすることによって実施し得る。
本発明の全固体電池は、正極活物質層と負極活物質層とが従来技術における全固体電池のように一定の間隔で切断されてなく連続しているため、従来技術の全固体電池に比べて電池の容量を高くし得る。
Affixing the negative electrode active material onto the solid electrolyte is performed by, for example, placing a previously prepared negative electrode active material film on the solid electrolyte layer, and then usually placing a current collector foil (not shown) and then pressing. Can be implemented.
In the all solid state battery of the present invention, the positive electrode active material layer and the negative electrode active material layer are continuous without being cut at regular intervals like the all solid state battery in the prior art. Battery capacity can be increased.

以下、本発明の実施例を示す。
以下の実施例は単に説明するためのものであり、本発明を限定するものではない。
Examples of the present invention will be described below.
The following examples are for illustrative purposes only and are not intended to limit the invention.

実施例1
正極集電金箔としてAl箔、正極活物質としてLiCoO、固体電解質としてLiPONを、負極活物質としてLi金属を用い、マスキング膜としてSUS膜を用い、図4に示す工程により全固体電池を作製した。
上記工程によれば、製法が容易であり、既存技術と比べてコストメリットが大きく、電池の容量低下および活物質と固体電解質との間で剥離が起きた際の伝播のいずれをも抑制し得る全固体電池を得ることが可能である。
Example 1
An all-solid-state battery was fabricated by the steps shown in FIG. 4 using Al foil as the positive electrode current collector gold foil, LiCoO 2 as the positive electrode active material, LiPON as the solid electrolyte, Li metal as the negative electrode active material, and a SUS film as the masking film. .
According to the above process, the production method is easy, the cost merit is large compared to the existing technology, and it is possible to suppress both the battery capacity reduction and the propagation when separation occurs between the active material and the solid electrolyte. It is possible to obtain an all-solid battery.

本発明によって、電池の容量低下および活物質と固体電解質との間で剥離が起きた際の伝播のいずれをも抑制し得る全固体電池を得ることができる。
また、本発明によって、電池の容量低下および活物質と固体電解質との間で剥離が起きた際の伝播のいずれをも抑制し得る全固体電池を容易に得ることができる。
According to the present invention, it is possible to obtain an all-solid-state battery that can suppress both the battery capacity reduction and the propagation when peeling occurs between the active material and the solid electrolyte.
In addition, according to the present invention, it is possible to easily obtain an all-solid-state battery that can suppress both the battery capacity reduction and the propagation when peeling occurs between the active material and the solid electrolyte.

1 本発明の実施態様の全固体電池
2 正極活物質層
3 負極活物質層
4 固体電解質層
5 集電箔
6 貫通孔
7 一定の間隔
10 貫通孔を有しない従来公知の全固体電池
11 本発明の範囲外の全固体電池
12 電池ユニット
13 他の電池ユニット
DESCRIPTION OF SYMBOLS 1 All-solid-state battery of embodiment of this invention 2 Positive electrode active material layer 3 Negative electrode active material layer 4 Solid electrolyte layer 5 Current collecting foil 6 Through-hole 7 Fixed space | interval 10 The conventionally well-known all-solid-state battery which does not have a through-hole 11 All-solid-state battery outside the range of 12 Battery unit 13 Other battery unit

Claims (6)

正極活物質層と負極活物質層とで挟持された固体電解質層を有する全固体電池であって、前記両活物質層は各々連続していて、前記固体電解質層が前記正極活物質層および前記負極活物質層間で貫通孔によって数に分断されている、前記電池。 An all-solid battery having a solid electrolyte layer sandwiched between a positive electrode active material layer and a negative electrode active material layer, wherein the two active material layers are each continuous, and the solid electrolyte layer comprises the positive electrode active material layer and the positive electrode active material layer. It is divided in the multiple negative electrode active material layers by through-holes, the battery. 前記固体電解質が、酸化物固体電解質である請求項1に記載の全固体電池。   The all-solid-state battery according to claim 1, wherein the solid electrolyte is an oxide solid electrolyte. 前記固体電解質が、リン酸リチウム(LiPO)又はリン酸リチウムの酸素の一部を窒素で置換したリン酸リチウムオキシナイトライド(LiPON)である請求項1又は2に記載の全固体電池。 3. The all-solid-state battery according to claim 1, wherein the solid electrolyte is lithium phosphate (Li 3 PO 4 ) or lithium phosphate oxynitride (LiPON) in which part of oxygen of the lithium phosphate is replaced with nitrogen. 4. . 前記正極活物質層が、マンガン、コバルト、ニッケルおよびチタンから選ばれる少なくとも1種の遷移金属およびリチウムを含む金属酸化物からなる請求項1に記載の全固体電池。   The all-solid-state battery according to claim 1, wherein the positive electrode active material layer is made of a metal oxide containing lithium and at least one transition metal selected from manganese, cobalt, nickel, and titanium. 前記負極活物質層が、リチウム金属(Li)、又はリチウムとチタン、マグネシウムあるいはアルミニウムとの合金からなる請求項1に記載の全固体電池。   The all-solid-state battery according to claim 1, wherein the negative electrode active material layer is made of lithium metal (Li) or an alloy of lithium and titanium, magnesium, or aluminum. 全固体電池の製造方法であって、
正極活物質層および負極活物質層のいずれか一方の連続した活物質層上にメッシュ状のマスキングを設ける工程、
前記マスキングを設けたいずれか一方の活物質層上に固体電解質をスパッタリングして固体電解質層を形成する工程、
マスキングを除去して複数個に分断された固体電解質層を形成する工程、および
前記固体電解質層上に連続した他の活物質層を貼り付ける工程
を含む、前記方法。
A method of manufacturing an all-solid battery,
A step of providing a mesh-like masking on one continuous active material layer of either the positive electrode active material layer or the negative electrode active material layer;
A step of forming a solid electrolyte layer by sputtering a solid electrolyte on one of the active material layers provided with the masking;
The method comprising: removing a masking to form a solid electrolyte layer divided into a plurality of parts; and pasting another continuous active material layer on the solid electrolyte layer.
JP2012232136A 2012-10-19 2012-10-19 All-solid battery and method for manufacturing the same Active JP5900281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012232136A JP5900281B2 (en) 2012-10-19 2012-10-19 All-solid battery and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012232136A JP5900281B2 (en) 2012-10-19 2012-10-19 All-solid battery and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2014086174A JP2014086174A (en) 2014-05-12
JP5900281B2 true JP5900281B2 (en) 2016-04-06

Family

ID=50789069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012232136A Active JP5900281B2 (en) 2012-10-19 2012-10-19 All-solid battery and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP5900281B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015003123A1 (en) 2013-07-03 2015-01-08 Sion Power Corporation Ceramic/polymer matrix for electrode protection in electrochemical cells, including rechargeable lithium batteries
US10490796B2 (en) 2014-02-19 2019-11-26 Sion Power Corporation Electrode protection using electrolyte-inhibiting ion conductor
WO2015126885A1 (en) 2014-02-19 2015-08-27 Basf Se Electrode protection using a composite comprising an electrolyte-inhibiting ion conductor
JP6622802B2 (en) 2014-07-22 2019-12-18 リクリッス カンパニー リミテッド Silicon secondary battery
JP2016035913A (en) * 2014-07-31 2016-03-17 富士フイルム株式会社 All-solid type secondary battery, inorganic solid electrolyte particle, solid electrolyte composition, battery electrode sheet and all-solid type secondary battery manufacturing method
CN107068964A (en) * 2016-12-29 2017-08-18 中国电子科技集团公司第十八研究所 Lithium aluminum alloy surface modified lithium cathode and solid-state battery thereof
JP7116890B2 (en) 2018-10-29 2022-08-12 トヨタ自動車株式会社 secondary battery
JPWO2020230366A1 (en) * 2019-05-13 2020-11-19

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103258A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd Solid electrolyte sheet, electrode sheet, and all-solid secondary battery using it
JP2008103259A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd Solid electrolyte sheet, electrode sheet, and all-solid secondary battery using it
JP5296323B2 (en) * 2007-03-13 2013-09-25 日本碍子株式会社 All solid battery

Also Published As

Publication number Publication date
JP2014086174A (en) 2014-05-12

Similar Documents

Publication Publication Date Title
JP5900281B2 (en) All-solid battery and method for manufacturing the same
JP6319335B2 (en) Manufacturing method of all solid state battery
JP5697276B2 (en) Electrode assembly having novel structure and method of manufacturing the same
JP6149657B2 (en) All solid battery
JP4970875B2 (en) All-solid-state energy storage device
JP6856042B2 (en) All solid state battery
KR101664244B1 (en) Method forming electrode surface pattern and the electrode manufactured by the method and secondary battery including the same
JP2008078119A (en) Totally solid storage element
KR102303678B1 (en) All-solid-state battery stack
JP7375810B2 (en) solid state secondary battery
JP7188562B2 (en) solid state battery
JP2012212506A (en) Laminate type battery
JP2020136261A (en) All solid-state battery laminate
JP2016207614A (en) Solid-state battery
JP2012089421A (en) Method for manufacturing nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP6992665B2 (en) All solid state battery
JP5190746B2 (en) Positive electrode of thin film lithium battery and thin film lithium battery
US20210226258A1 (en) Solid-state battery
JP6074989B2 (en) Solid battery manufacturing method
US9356294B2 (en) Secondary battery including collectors with pores and manufacturing method thereof
JPWO2013051138A1 (en) Assembled battery and method of manufacturing the assembled battery
JP2019145285A (en) All-solid battery
JP5429304B2 (en) Solid battery module
JP2013097907A (en) Solid state battery and manufacturing method thereof
JP7238757B2 (en) All-solid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160222

R151 Written notification of patent or utility model registration

Ref document number: 5900281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151