JP5190746B2 - Positive electrode of thin film lithium battery and thin film lithium battery - Google Patents

Positive electrode of thin film lithium battery and thin film lithium battery Download PDF

Info

Publication number
JP5190746B2
JP5190746B2 JP2005333212A JP2005333212A JP5190746B2 JP 5190746 B2 JP5190746 B2 JP 5190746B2 JP 2005333212 A JP2005333212 A JP 2005333212A JP 2005333212 A JP2005333212 A JP 2005333212A JP 5190746 B2 JP5190746 B2 JP 5190746B2
Authority
JP
Japan
Prior art keywords
thin film
active material
electrode active
material thin
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005333212A
Other languages
Japanese (ja)
Other versions
JP2007141622A (en
Inventor
勝治 江村
英章 粟田
健太郎 吉田
忠拓 貝吹
光靖 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005333212A priority Critical patent/JP5190746B2/en
Publication of JP2007141622A publication Critical patent/JP2007141622A/en
Application granted granted Critical
Publication of JP5190746B2 publication Critical patent/JP5190746B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、薄膜電池の正極電極と、その電極を用いた薄膜電池に関するものである。特に、正極電極に対向する負極電極の劣化を抑制することができる薄膜電池の正極電極に関するものである。   The present invention relates to a positive electrode of a thin film battery and a thin film battery using the electrode. In particular, the present invention relates to a positive electrode of a thin film battery that can suppress deterioration of a negative electrode facing the positive electrode.

リチウムイオン電池は、正負両極にリチウムイオンを吸蔵・放出する活物質薄膜を用いた電池である。通常、正負各電極は、集電体と、集電体上に形成した活物質薄膜とで構成されている。このリチウム電池に関しては、充放電を繰り返すことで、電極の膨脹・収縮が繰り返し生じ、これにより電極の構造破壊が起こり、可逆電極として機能しなくなる問題が指摘されている(例えば非特許文献1)。具体的には、活物質薄膜が微粉化したり、活物質薄膜が集電体から剥離する問題が生じる。   The lithium ion battery is a battery using an active material thin film that absorbs and releases lithium ions in both positive and negative electrodes. Usually, each positive and negative electrode is composed of a current collector and an active material thin film formed on the current collector. With respect to this lithium battery, it has been pointed out that repeated expansion and contraction of the electrode are caused by repeated charging and discharging, thereby causing structural destruction of the electrode and causing it not to function as a reversible electrode (for example, Non-Patent Document 1). . Specifically, the active material thin film is pulverized or the active material thin film is peeled off from the current collector.

このような剥離の問題に対し、特許文献1には、繰り返し充放電に伴い活物質薄膜内に生じる応力の緩和を目的として、活物質薄膜を厚み方向に柱状に分離する技術が開示されている。   With respect to such a peeling problem, Patent Document 1 discloses a technique for separating an active material thin film into a columnar shape in the thickness direction for the purpose of relaxing stress generated in the active material thin film due to repeated charge and discharge. .

一方、特許文献2に係る発明では、電極のフレキシブル特性を向上させるために、正極集電体層の一面に設けられた正極活物質層が、複数の凹部により一定間隔ごとに複数の活物質層単位に分割されるように、正極を構成している。   On the other hand, in the invention according to Patent Document 2, in order to improve the flexible characteristics of the electrode, the positive electrode active material layer provided on one surface of the positive electrode current collector layer includes a plurality of active material layers at regular intervals by a plurality of recesses. The positive electrode is configured to be divided into units.

また、特許文献3には、電極間での短絡時の短絡電流の局所集中を抑えることを目的として、電極に入れられた切り込みにより限界された電極の幅狭部を形成し、この幅狭部を短絡電流の電流経路を制限する抵抗部とする技術が開示されている。   Further, Patent Document 3 forms a narrow part of an electrode limited by a cut made in the electrode for the purpose of suppressing local concentration of a short-circuit current at the time of a short circuit between the electrodes. Has been disclosed as a resistance unit that limits the current path of the short-circuit current.

さらに、特許文献4には、電極をロールプレスする際に、電極活物質薄膜の未塗工領域と塗工領域との境界に歪みが集中して波打ちや皺が生ずることを防止するために、電極活物質未塗工領域における集電基板に、当該集電基板の幅方向に平行なスリットを形成する技術が開示されている。   Furthermore, in Patent Document 4, when the electrode is roll-pressed, in order to prevent waviness and wrinkles from occurring due to strain concentration at the boundary between the uncoated region and the coated region of the electrode active material thin film, A technique is disclosed in which a slit parallel to the width direction of the current collector substrate is formed in the current collector substrate in the electrode active material uncoated region.

その他、特許文献5には、電極面積の増大を目的として、活物質としてポリマーを含む電極合剤を集電体上に成膜して電極を形成し、この成膜された後の電極を所定の複数部分に分割して、当該複数部分に分割された電極を所定温度雰囲気内で乾燥させる技術が開示されている。   In addition, in Patent Document 5, for the purpose of increasing the electrode area, an electrode mixture containing a polymer as an active material is formed on a current collector to form an electrode, and the electrode after the film formation is predetermined. The technique which divides | segments into these several parts and dries the electrode divided | segmented into the said several part in predetermined temperature atmosphere is disclosed.

特開2002-83594号公報JP 2002-83594 A 特開2002-343340号公報JP 2002-343340 A 特開2005-149794号公報JP 2005-149794 JP 特開2000-208129号公報JP 2000-208129 A 特開2000-208136号公報JP 2000-208136 A 「リチウム二次電池用Cu-Sn合金薄膜負極の応力緩和構造の検討」 杉山拓等 2004年 第45回 電池討論会講演要旨集、p.300"Examination of stress relaxation structure of Cu-Sn alloy thin film negative electrode for lithium secondary battery" Taku Sugiyama et al. 2004 Proceedings of the 45th Battery Conference, p.300

一方、薄膜電池には、充放電に伴う負極活物質薄膜の劣化による電池容量の低下という問題がある。この負極活物質薄膜の劣化について、薄膜リチウム電池を例として図5および図6に基づいて説明する。この薄膜電池は、図5および図6(A)に示すように下から順に、負極集電体1、負極活物質薄膜2、セパレータ3、正極活物質薄膜4、正極集電体5が積層された構成を有する。これらの積層体は、電解液に含浸されて、両活物質薄膜2,4の間でリチウムイオンの吸蔵・放出により電池反応が行われる。   On the other hand, the thin film battery has a problem of a decrease in battery capacity due to deterioration of the negative electrode active material thin film accompanying charge and discharge. The deterioration of the negative electrode active material thin film will be described with reference to FIGS. 5 and 6 by taking a thin film lithium battery as an example. In this thin film battery, a negative electrode current collector 1, a negative electrode active material thin film 2, a separator 3, a positive electrode active material thin film 4, and a positive electrode current collector 5 are laminated in order from the bottom as shown in FIGS. Have a configuration. These laminates are impregnated with an electrolytic solution, and a battery reaction is performed between the active material thin films 2 and 4 by occlusion / release of lithium ions.

ここで、充放電サイクルが進むと、図6(B)に示すように負極活物質薄膜2に劣化領域2Aが形成される。この劣化領域2Aは、最初は負極活物質薄膜2のごく狭い領域に形成され、充放電サイクルの進行に伴って拡がっていく。これは、充放電サイクルの過程において何らかの原因で負極活物質薄膜2の一部が劣化した場合、その劣化領域2Aは他の正常領域に比べ電池反応に寄与する負極活物質の量が減少するために劣化領域2Aの周囲にある負極活物質が減少量を補償するよう機能し、負極活物質薄膜における単位量あたりの電池反応数が増えるからと考えられる。その結果、劣化領域2Aの周囲にある負極活物質薄膜2の劣化が促進され、劣化領域2Aが拡大して行くと考えられる。このように劣化領域2Aが拡大すると、電極機能が低下し、電池容量が低下してしまう。そして、負極活物質薄膜2の周縁近くまで劣化領域2Aが拡大すると、劣化領域2Aの周囲にある負極活物質が減少量を補償できなくなり、最終的には、対向する正極活物質薄膜4の面積よりも狭い領域で劣化領域の拡大が停止する。   Here, when the charge / discharge cycle proceeds, a deteriorated region 2A is formed in the negative electrode active material thin film 2 as shown in FIG. 6 (B). The deteriorated region 2A is initially formed in a very narrow region of the negative electrode active material thin film 2, and expands as the charge / discharge cycle progresses. This is because when a part of the negative electrode active material thin film 2 deteriorates for some reason during the charge / discharge cycle, the deterioration region 2A reduces the amount of the negative electrode active material that contributes to the battery reaction compared to other normal regions. This is because the negative electrode active material around the deteriorated region 2A functions to compensate for the decrease, and the number of battery reactions per unit amount in the negative electrode active material thin film increases. As a result, it is considered that the deterioration of the negative electrode active material thin film 2 around the deteriorated region 2A is promoted, and the deteriorated region 2A expands. When the degradation region 2A is enlarged in this way, the electrode function is lowered and the battery capacity is lowered. Then, when the deteriorated region 2A expands to the vicinity of the periphery of the negative electrode active material thin film 2, the negative electrode active material around the deteriorated region 2A cannot compensate for the decrease amount, and finally the area of the opposing positive electrode active material thin film 4 Expansion of the degraded area stops in a narrower area.

しかし、上記いずれの従来技術も、負極活物質薄膜の劣化を抑制するという課題や、その課題を解決するための具体的な手段を何ら開示していない。   However, none of the above-described conventional techniques disclose any problem of suppressing the deterioration of the negative electrode active material thin film and no specific means for solving the problem.

特許文献1に係る発明は、負極活物質薄膜を厚み方向に柱状に分離するが、この分離は、前記充放電時の活物質薄膜の膨張収縮に伴う応力が緩和できるように、分離された個々の柱状部間に切れ目が形成されることを要件としている。この切れ目の形成は、例えば次のように行われる。まず集電体表面に凹凸を形成して、その集電体上に形成される活物質薄膜の表面にも凹凸を形成する。そして、初回以降の充放電により活物質薄膜が膨張収縮して応力が作用し、活物質薄膜表面の凹凸の谷部を端部とする切れ目が形成される。このように、特許文献1に係る発明では、充放電時の活物質薄膜の膨張収縮に伴う応力を吸収することを目的としているため、柱状部間に切れ目が形成されればよく、この文献は負極活物質薄膜の劣化防止といった目的や、この劣化を防止するために、具体的にどのような切れ目が必要かについては、何ら示唆するところがない。   The invention according to Patent Document 1 separates the negative electrode active material thin film into a columnar shape in the thickness direction. This separation is performed so that the stress associated with expansion and contraction of the active material thin film during the charge / discharge can be relieved. It is a requirement that a cut is formed between the columnar portions. This cut is formed as follows, for example. First, irregularities are formed on the surface of the current collector, and irregularities are also formed on the surface of the active material thin film formed on the current collector. Then, the active material thin film expands and contracts due to charge and discharge after the first time, and stress acts, thereby forming a cut having the concave and convex valleys on the surface of the active material thin film as ends. Thus, in the invention according to Patent Document 1, the purpose is to absorb the stress accompanying the expansion and contraction of the active material thin film during charge and discharge, so it is sufficient that a break is formed between the columnar portions. There is no suggestion about the purpose of preventing deterioration of the negative electrode active material thin film or what kind of cut is necessary in order to prevent this deterioration.

特許文献2に係る発明では、電極のフレキシブル特性を向上させることを目的としており、負極活物質薄膜の劣化防止といった目的や、この劣化を防止するために、具体的にどのような凹部が必要かについては、何ら示唆するところがない。   In the invention according to Patent Document 2, the purpose is to improve the flexible characteristics of the electrode. For the purpose of preventing the deterioration of the negative electrode active material thin film, and what kind of recess is specifically required to prevent this deterioration. There is no suggestion about.

特許文献3に係る発明では、電流経路を制限する抵抗部として電極の幅狭部を形成する必要上、切込みにより限界された個々の電極は幅狭部でつながっており、複数の個別領域に分離されているわけではない。   In the invention according to Patent Document 3, it is necessary to form a narrow part of the electrode as a resistance part that restricts the current path, and the individual electrodes limited by the cut are connected by the narrow part and separated into a plurality of individual regions. It has not been done.

特許文献4に係る発明では、スリットを形成しているのは、集電基板における電極活物質未塗工領域であり、電極活物質薄膜自体は複数の領域に分割されていない。   In the invention according to Patent Document 4, the slit is formed in the electrode active material uncoated region in the current collecting substrate, and the electrode active material thin film itself is not divided into a plurality of regions.

特許文献5に係る発明では、特許文献1に係る発明と同様で、やはり複数部分に分割しており、電極の間に切れ目が形成されることしか開示されていない。そのため、この文献には負極活物質薄膜の劣化防止といった目的や、この劣化を防止するために、具体的にどのような切れ目が必要かについては、何ら示唆するところがない。   The invention according to Patent Document 5 is similar to the invention according to Patent Document 1, and is divided into a plurality of parts, and only discloses that a break is formed between the electrodes. For this reason, there is no suggestion in this document about the purpose of preventing the deterioration of the negative electrode active material thin film and what kind of cut is necessary in order to prevent this deterioration.

本発明は上記の事情に鑑みてなされたもので、その目的の一つは、負極活物質薄膜の劣化を抑制し、電池容量の低下を改善できる薄膜電池の正極電極を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a positive electrode of a thin film battery that can suppress the deterioration of the negative electrode active material thin film and improve the decrease in battery capacity.

また、本発明の他の目的は、負極活物質薄膜の劣化を抑制し、電池容量の低下を改善できる薄膜電池を提供することにある。   Another object of the present invention is to provide a thin film battery that can suppress deterioration of the negative electrode active material thin film and improve the decrease in battery capacity.

本発明薄膜電池の正極電極は、負極活物質薄膜に対向される正極活物質薄膜を有する薄膜電池の正極電極である。そして、この負極活物質薄膜の劣化を抑制するために、少なくとも正極活物質薄膜における負極活物質薄膜との対向面を複数の微小区域に分割したことを特徴とする。   The positive electrode of the thin film battery of the present invention is a positive electrode of a thin film battery having a positive electrode active material thin film opposed to the negative electrode active material thin film. In order to suppress the deterioration of the negative electrode active material thin film, at least the surface of the positive electrode active material thin film facing the negative electrode active material thin film is divided into a plurality of minute areas.

この構成により負極活物質薄膜の劣化が抑制できる理由を以下に説明する。正極活物質薄膜と負極活物質薄膜の面積が実質的に同一の薄膜電池の場合に、負極活物質薄膜に劣化が生じ、電池容量が低下することは既に述べたとおりである。ここで、正極のサイズを負極のサイズよりも小さくした薄膜リチウム電池を例として、充放電に伴う負極活物質薄膜の劣化状態を図1に基づいて説明する。この薄膜電池は、図1(A)に示すように下から順に、負極集電体1、負極活物質薄膜2、セパレータ3、正極活物質薄膜4、正極集電体5が積層された構成を有する。これらの積層体は、電解液に含浸されて、両活物質薄膜の間でリチウムイオンの吸蔵・放出により電池反応が行われる。但し、この電池は、正極集電体5と正極活物質薄膜4とで構成される正極のサイズ、つまり厚み方向から平面視した場合の正極の面積が、負極集電体1と負極活物質薄膜2とで構成される負極のサイズよりも小さい点で図5、図6の電池とは異なっている。   The reason why deterioration of the negative electrode active material thin film can be suppressed by this configuration will be described below. As described above, in the case of a thin film battery in which the areas of the positive electrode active material thin film and the negative electrode active material thin film are substantially the same, the negative electrode active material thin film deteriorates and the battery capacity decreases. Here, the deterioration state of the negative electrode active material thin film accompanying charging / discharging is demonstrated based on FIG. 1 for the example of the thin film lithium battery which made the positive electrode size smaller than the negative electrode size. This thin film battery has a configuration in which a negative electrode current collector 1, a negative electrode active material thin film 2, a separator 3, a positive electrode active material thin film 4, and a positive electrode current collector 5 are laminated in order from the bottom as shown in FIG. Have. These laminates are impregnated with an electrolytic solution, and a battery reaction is performed by occlusion / release of lithium ions between both active material thin films. However, in this battery, the size of the positive electrode composed of the positive electrode current collector 5 and the positive electrode active material thin film 4, that is, the area of the positive electrode when viewed in plan from the thickness direction, the negative electrode current collector 1 and the negative electrode active material thin film 5 and FIG. 6 is different from the battery of FIG.

ここで、充放電サイクルが進むと、図1(B)に示すように負極活物質薄膜2に劣化領域2Aが形成される。この劣化領域2Aは、図6で説明したように、負極活物質薄膜2の一部に何らかの劣化領域2Aが生じると、その劣化領域2Aが周囲へと拡大して劣化領域2Aが形成される。しかし、劣化領域2Aが正極活物質薄膜4の無い領域の近くまで拡大すると、負極活物質薄膜2における単位量あたりの電池反応が増えることはなくなり、劣化領域2Aの拡大が止まる。つまり、負極活物質薄膜全体としてみれば、劣化領域2Aの形成がごく狭い範囲に抑えられたことになり、電池全体としての容量の低下への影響を低減することができる。   Here, when the charge / discharge cycle proceeds, a deteriorated region 2A is formed in the negative electrode active material thin film 2 as shown in FIG. As described with reference to FIG. 6, in the deteriorated region 2A, when some deteriorated region 2A is generated in a part of the negative electrode active material thin film 2, the deteriorated region 2A expands to the surroundings to form the deteriorated region 2A. However, when the deteriorated region 2A expands to the vicinity of the region without the positive electrode active material thin film 4, the battery reaction per unit amount in the negative electrode active material thin film 2 does not increase, and the expansion of the deteriorated region 2A stops. That is, when viewed as the entire negative electrode active material thin film, the formation of the deteriorated region 2A is suppressed to a very narrow range, and the influence on the decrease in capacity of the entire battery can be reduced.

この説明から明らかなように、正極活物質薄膜における負極活物質薄膜との少なくとも対向面を微小区域に分割すれば、個々の微小区域単位で見ると、負極活物質薄膜よりも面積の小さな正極活物質薄膜が組み合わされていることになり、図1で説明した場合と同様に負極活物質薄膜の劣化を抑制することができる。   As is clear from this explanation, if at least the surface of the positive electrode active material thin film facing the negative electrode active material thin film is divided into minute areas, the positive electrode active material having a smaller area than the negative electrode active material thin film when viewed in units of individual small areas. Since the material thin films are combined, the deterioration of the negative electrode active material thin film can be suppressed as in the case described with reference to FIG.

この微小区域への分割は、正極活物質薄膜における負極活物質薄膜との対向面に、微小区域の分割パターンに応じたパターンを有する分割部材を配することで行なわれていることが好ましい。例えば、薄膜電池は、正極活物質薄膜と負極活物質薄膜との間にセパレータが介在された構成を有している。このとき、セパレータと正極活物質薄膜との間に分割部材を配することで、分割部材が当接した正極活物質薄膜の表面は負極活物質薄膜との間でイオンの移動が抑制され、分割部材が当接していない正極活物質薄膜の表面は負極活物質薄膜との間でイオンの移動が許容されるため、簡易な構成にて正極活物質薄膜における負極活物質薄膜との対向面を微小区域に分割することができる。   The division into the minute areas is preferably performed by arranging a dividing member having a pattern corresponding to the divided pattern of the minute areas on the surface of the positive electrode active material thin film facing the negative electrode active material thin film. For example, a thin film battery has a configuration in which a separator is interposed between a positive electrode active material thin film and a negative electrode active material thin film. At this time, by disposing a dividing member between the separator and the positive electrode active material thin film, the surface of the positive electrode active material thin film with which the dividing member is in contact is suppressed from moving ions between the negative electrode active material thin film and dividing. Since the surface of the positive electrode active material thin film with which the member is not in contact is allowed to move ions between the negative electrode active material thin film, the surface of the positive electrode active material thin film facing the negative electrode active material thin film is minute with a simple configuration. Can be divided into areas.

この分割部材は、微小区域の分割パターンに応じたパターンを有するものとする。例えば、格子状に形成された分割部材を用いることで、正極活物質における負極活物質との対向面をメッシュ状に分割することができる。   This division member shall have a pattern according to the division pattern of a micro area. For example, by using a dividing member formed in a lattice shape, the surface of the positive electrode active material facing the negative electrode active material can be divided into a mesh shape.

また、この分割部材の材質としては、正極活物質薄膜と負極活物質薄膜との間でイオンの移動を抑制できる材料が好適に利用できる。例えば、Liを吸蔵しにくい金属であるFe、Co、Ni、Cu、Zn、Mn、Ti、Zrなどが分割部材の材質として好ましい。   Moreover, as a material of this division member, the material which can suppress a movement of ion between a positive electrode active material thin film and a negative electrode active material thin film can be utilized suitably. For example, Fe, Co, Ni, Cu, Zn, Mn, Ti, Zr, etc., which are metals that do not easily store Li, are preferable as the material of the divided member.

上述したように、正極活物質薄膜は、少なくとも負極活物質薄膜との対向面が分割されていればよい。そのため、正極活物質薄膜は、正極活物質薄膜における負極活物質薄膜との対向面のみが分割され、その厚み方向には分割されていない場合でも良いし、その厚み方向にも分割されている場合のいずれであってもよい。   As described above, the positive electrode active material thin film only needs to be divided at least on the surface facing the negative electrode active material thin film. Therefore, the positive electrode active material thin film may be divided only in the surface facing the negative electrode active material thin film in the positive electrode active material thin film, and may not be divided in the thickness direction, or may be divided in the thickness direction. Any of these may be used.

正極活物質薄膜における負極活物質薄膜との対向面のみを分割するには、上記のように分割部材を用いることが簡易な構成にて実現できて好ましい。また、正極活物質薄膜における負極活物質薄膜との対向面のみならず厚み方向にも分割するには、微小区域の分割パターンを持つマスクを用いて正極活物質薄膜の成膜を行ったり、一般的な平面状の正極活物質薄膜を成膜した後、この薄膜の一部を適宜なジグなどで除去して隙間を形成してもよい。   In order to divide only the surface facing the negative electrode active material thin film in the positive electrode active material thin film, it is preferable to use the dividing member as described above because it can be realized with a simple configuration. In addition, in order to divide the positive electrode active material thin film not only in the surface facing the negative electrode active material thin film but also in the thickness direction, the positive electrode active material thin film can be formed by using a mask having a division pattern of a minute area. After forming a typical planar positive electrode active material thin film, a part of this thin film may be removed with an appropriate jig or the like to form a gap.

また、正極活物質薄膜を分割するパターンは、特に限定されない。代表的には、格子状の隙間が形成できる分割パターンが挙げられるが、正極活物質薄膜の縦辺や横辺に対して傾斜した隙間が形成できる分割パターンとしてもよい。   Moreover, the pattern which divides | segments a positive electrode active material thin film is not specifically limited. Typically, there is a division pattern in which a lattice-like gap can be formed, but a division pattern in which a gap inclined with respect to the vertical side and the horizontal side of the positive electrode active material thin film may be formed.

一方、本発明薄膜電池は、上述した正極電極を用いたことを特徴とする。この電池は、代表的には、負極集電体、負極活物質薄膜、セパレータ、正極活物質薄膜、正極集電体が順次積層された積層体を電解液に含浸した構成とされる。この薄膜電池によれば、負極活物質薄膜の劣化を抑制して、電池容量の低下を防止できる。   On the other hand, the thin film battery of the present invention is characterized by using the positive electrode described above. This battery typically has a configuration in which an electrolyte solution is impregnated with a laminate in which a negative electrode current collector, a negative electrode active material thin film, a separator, a positive electrode active material thin film, and a positive electrode current collector are sequentially laminated. According to this thin film battery, deterioration of the negative electrode active material thin film can be suppressed to prevent a decrease in battery capacity.

特に、正極活物質薄膜の微小区域の合計面積よりも負極活物質薄膜における正極活物質薄膜との対向面の面積の方が大きいことが好適である。特許文献1に係る発明では、充放電により活物質薄膜が膨張収縮して応力が作用し、活物質薄膜表面の凹凸の谷部を端部とする切れ目が形成されるため、分割された微小区域の合計面積は分割される前の活物質薄膜の面積とほぼ同等である。これに対し、正極活物質薄膜の微小区域の合計面積よりも負極活物質薄膜における正極活物質薄膜との対向面の面積を大きくすれば、より確実に負極活物質薄膜に劣化領域が広がることを抑制できる。   In particular, it is preferable that the area of the negative electrode active material thin film facing the positive electrode active material thin film is larger than the total area of the minute areas of the positive electrode active material thin film. In the invention according to Patent Document 1, the active material thin film expands and contracts due to charge and discharge, stress acts, and a cut is formed with the valleys of the irregularities on the surface of the active material thin film as the ends. Is approximately equal to the area of the active material thin film before being divided. On the other hand, if the area of the negative electrode active material thin film facing the positive electrode active material thin film is made larger than the total area of the fine areas of the positive electrode active material thin film, the deterioration region can be expanded more reliably in the negative electrode active material thin film. Can be suppressed.

本発明薄膜リチウム電池によれば、正極活物質薄膜の少なくとも負極側表面を微小区域に分割することで、負極活物質薄膜の劣化を抑制することができる。その結果、充放電サイクルに伴う電池容量の低下を改善することができる。   According to the thin film lithium battery of the present invention, it is possible to suppress the deterioration of the negative electrode active material thin film by dividing at least the negative electrode side surface of the positive electrode active material thin film into minute areas. As a result, it is possible to improve the decrease in battery capacity associated with the charge / discharge cycle.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

(実施例1)
まず、格子状に分割した正極活物質薄膜を持つリチウムイオン電池を例として、本発明実施例を図2に基づいて説明する。
Example 1
First, the embodiment of the present invention will be described with reference to FIG. 2 by taking a lithium ion battery having a positive electrode active material thin film divided in a lattice shape as an example.

この電池は、図2(A)に示すように、負極集電体1、負極活物質薄膜2、セパレータ3、正極活物質薄膜4、正極集電体5が積層された構成を有する。これらの積層体は、電解液に含浸されて、両活物質薄膜2,4の間でリチウムイオンの吸蔵・放出により電池反応が行われる。   As shown in FIG. 2A, this battery has a structure in which a negative electrode current collector 1, a negative electrode active material thin film 2, a separator 3, a positive electrode active material thin film 4, and a positive electrode current collector 5 are laminated. These laminates are impregnated with an electrolytic solution, and a battery reaction is performed between the active material thin films 2 and 4 by occlusion / release of lithium ions.

負極集電体1には、負極電気化学反応に対する耐食性の優れた金属箔が利用できる。具体例としては、銅(Cu)、ニッケル(Ni)、鉄(Fe)、クロム(Cr)、及びこれらの合金から選択される1種が挙げられる。これらの金属は、リチウム(Li)と金属間化合物を形成しないため、リチウムとの金属間化合物による不具合、具体的には、充放電による膨張・収縮によって、負極活物質薄膜2が構造破壊を起こし集電性が低下したり、負極活物質薄膜2の接合性が低下して負極活物質薄膜2が集電体1から脱落し易くなるといった不具合を防止できる。   For the negative electrode current collector 1, a metal foil having excellent corrosion resistance against the negative electrode electrochemical reaction can be used. Specific examples include one selected from copper (Cu), nickel (Ni), iron (Fe), chromium (Cr), and alloys thereof. Since these metals do not form an intermetallic compound with lithium (Li), the negative electrode active material thin film 2 causes structural breakdown due to problems due to the intermetallic compound with lithium, specifically, expansion / contraction due to charge / discharge. It is possible to prevent such problems that the current collecting property is lowered or the joining property of the negative electrode active material thin film 2 is lowered and the negative electrode active material thin film 2 is easily detached from the current collector 1.

負極活物質薄膜2は、リチウムを吸蔵可能な活物質を含む層で構成する。例えば、黒鉛、シリコンの他、Li金属及びLi金属と合金を形成することのできる金属よりなる群より選ばれる1つ、若しくはこれらの混合物又は合金が好適に使用できる。Liと合金を形成することのできる金属としては、アルミニウム(Al)、シリコン(Si)、錫(Sn)、ビスマス(Bi)、及びインジウム(In)よりなる群より選ばれる少なくとも一つが挙げられる。例えば、シリコンを溶媒に分散した後、負極集電体1に塗布し、乾燥させて負極活物質薄膜2とする。この溶媒には、PVDF(ポリフッ化ビニリデン)またはPTFE(ポリ4フッ化エチレン)をNMP(N-メチルピロリドン)に溶解したものが利用できる。   The negative electrode active material thin film 2 is composed of a layer containing an active material capable of occluding lithium. For example, in addition to graphite and silicon, one selected from the group consisting of Li metal and a metal capable of forming an alloy with Li metal, or a mixture or alloy thereof can be suitably used. Examples of the metal capable of forming an alloy with Li include at least one selected from the group consisting of aluminum (Al), silicon (Si), tin (Sn), bismuth (Bi), and indium (In). For example, after silicon is dispersed in a solvent, it is applied to the negative electrode current collector 1 and dried to form the negative electrode active material thin film 2. As this solvent, PVDF (polyvinylidene fluoride) or PTFE (polytetrafluoroethylene) dissolved in NMP (N-methylpyrrolidone) can be used.

この負極活物質薄膜2の形成方法は、気相堆積法が好ましい。気相堆積法としては、例えば、PVD(物理的気相合成)法、CVD(化学気相合成)法が挙げられる。具体的には、PVD法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、レーザアブレーション法が、CVD法としては、熱CVD法、プラズマCVD法などが挙げられる。その他、負極活物質薄膜2の形成方法としてめっき法も利用できる。   The formation method of the negative electrode active material thin film 2 is preferably a vapor deposition method. Examples of the vapor deposition method include a PVD (physical vapor phase synthesis) method and a CVD (chemical vapor phase synthesis) method. Specifically, examples of the PVD method include a vacuum deposition method, a sputtering method, an ion plating method, and a laser ablation method, and examples of the CVD method include a thermal CVD method and a plasma CVD method. In addition, a plating method can be used as a method for forming the negative electrode active material thin film 2.

セパレータ3は、通常、有機溶媒にリチウム塩を溶解した電解液を多孔質材料に含浸させたものが用いられる。具体的なリチウム塩としては、LiPF6、LiBF4、LiClO4、LiCF3SO3、LiCF3CO2などが使用されている。有機溶媒としては、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、1,2-ジメトキシエタン(DME)、テトラヒドロフラン(THF)、ジエチルエーテル(DEE)、アセトニトリル(AN)などの有機溶媒を単独、もしくは複数を混合して用いることができる。多孔質材料としては、ポリプロピレン、ポリ4フッ化エチレンなどの樹脂からなる多孔体を用いることができる。リチウム塩、有機溶媒として、上記以外の公知のものを使用できることは言うまでもない。 For the separator 3, a porous material impregnated with an electrolytic solution in which a lithium salt is dissolved in an organic solvent is usually used. As specific lithium salts, LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 , LiCF 3 CO 2 and the like are used. Organic solvents include ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), 1,2-dimethoxyethane (DME), tetrahydrofuran (THF) Organic solvents such as diethyl ether (DEE) and acetonitrile (AN) can be used singly or in combination. As the porous material, a porous body made of a resin such as polypropylene or polytetrafluoroethylene can be used. Needless to say, known lithium salts and organic solvents other than those described above can be used.

正極活物質薄膜4は、リチウムイオンの吸蔵及び放出を行う活物質を含む層で構成する。特に、酸化物、例えばコバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)及びオリビン型鉄リン酸リチウム(LiFePO4)よりなる群より選ばれる1つ、若しくはこれらの混合物を好適に使用することができる。より具体的には、LiCoO2を溶媒に分散した後、正極集電体5に塗布し、乾燥させることで正極活物質薄膜4を形成できる。この溶媒には、PVDFまたはPTFEをNMPに溶解したものが利用できる。 The positive electrode active material thin film 4 is composed of a layer containing an active material that occludes and releases lithium ions. In particular, one selected from the group consisting of oxides such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ) and olivine-type lithium iron phosphate (LiFePO 4 ). Or a mixture thereof can be preferably used. More specifically, after the LiCoO 2 is dispersed in a solvent, the positive electrode active material thin film 4 can be formed by applying it to the positive electrode current collector 5 and drying it. As this solvent, PVDF or PTFE dissolved in NMP can be used.

この正極活物質薄膜4は、少なくとも負極活物質薄膜2との対向面、つまり本例ではセパレータ3との接触面が複数の微小区域4Aに分割される。図2では、正極活物質薄膜4に格子状の隙間6を形成することで、複数の微小区域4Aを形成している。この活物質薄膜の斜視図を図3に示す。正極活物質薄膜4には格子状の隙間6が形成され、この隙間6は薄膜4の表裏に及ぶ深さを有している。その結果、多数のブロック状の微小区域4Aが正極集電体5上に形成されて正極活物質薄膜4を構成していることになる。そして、正極活物質薄膜4の輪郭面積は負極活物質薄膜2(図2)のそれと等しいため、ブロック状の各微小区域4Aにおけるセパレータ3との接触面の合計面積は、負極活物質薄膜2におけるセパレータ3との接触面の面積よりも小さいことになる。   In this positive electrode active material thin film 4, at least the surface facing the negative electrode active material thin film 2, that is, the contact surface with the separator 3 in this example, is divided into a plurality of minute areas 4A. In FIG. 2, a plurality of microscopic areas 4 </ b> A are formed by forming lattice-like gaps 6 in the positive electrode active material thin film 4. A perspective view of this active material thin film is shown in FIG. A grid-like gap 6 is formed in the positive electrode active material thin film 4, and the gap 6 has a depth extending to the front and back of the thin film 4. As a result, a large number of block-like minute areas 4A are formed on the positive electrode current collector 5 to constitute the positive electrode active material thin film 4. Further, since the contour area of the positive electrode active material thin film 4 is equal to that of the negative electrode active material thin film 2 (FIG. 2), the total area of the contact surface with the separator 3 in each block-like minute area 4A is This is smaller than the area of the contact surface with the separator 3.

このような正極活物質薄膜4の形成には、湿式法や乾式法を利用することができる。湿式法には、ゾルゲル法、コロイド法、キャスティング法等が挙げられる。乾式法には、気相堆積法である蒸着法、イオンプレーティング法、スパッタリング法、レーザアブレーション法等が挙げられる。その成膜の際、例えば格子状のパターンのマスクを用いて正極活物質薄膜4を成膜したり、平面状の正極活物質薄膜4を形成した後、その薄膜4に表裏に抜ける格子状の筋を適宜な器具で付けることで格子状に分割された正極活物質薄膜4を形成することができる。   The positive electrode active material thin film 4 can be formed using a wet method or a dry method. Examples of the wet method include a sol-gel method, a colloid method, and a casting method. Examples of the dry method include a vapor deposition method that is a vapor deposition method, an ion plating method, a sputtering method, a laser ablation method, and the like. At the time of the film formation, for example, the positive electrode active material thin film 4 is formed using a mask having a lattice pattern, or the flat positive electrode active material thin film 4 is formed, and then the lattice-like pattern that passes through the thin film 4 from the front and back is formed. The positive electrode active material thin film 4 divided into a lattice shape can be formed by attaching the streaks with an appropriate instrument.

正極集電体5には、正極電気化学反応に対する耐食性の優れた金属箔が利用できる。具体例としては、アルミニウム(Al)、ニッケル(Ni)、これらの合金,ステンレスから選択される1種が挙げられる。   For the positive electrode current collector 5, a metal foil having excellent corrosion resistance against the positive electrode electrochemical reaction can be used. Specific examples include one selected from aluminum (Al), nickel (Ni), alloys thereof, and stainless steel.

そして、このような積層体は、電解液に浸漬されることで電池として構成される。電解液には、「セパレータ」について上記の説明で述べたように、有機溶媒にリチウム塩を溶解した電解液が好適に利用できる。   And such a laminated body is comprised as a battery by being immersed in electrolyte solution. As described in the above description of the “separator”, an electrolytic solution in which a lithium salt is dissolved in an organic solvent can be suitably used as the electrolytic solution.

このような薄膜電池で充放電を行うと、図2(B)に示すように、何らかの理由で負極活物質薄膜2が部分的に劣化し、劣化領域2Aが形成されることがある。この劣化には、(1)負極集電体1からの負極活物質薄膜2の剥離、(2)負極活物質薄膜2の微粉化、(3)リチウムイオンの不動化などが含まれる。この劣化領域2Aが生じた際、負極活物質薄膜2では、他の正常領域に比べ電池反応に寄与する負極活物質の量が減少するために劣化領域2Aの周囲にある負極活物質が減少量を補償するよう機能して劣化領域2Aが周囲へと拡大していく。しかし、正極活物質薄膜4は、格子状の隙間6により複数の微小区域4Aに分割されているため、負極活物質薄膜2の対向位置には正極活物質薄膜4のない隙間6があり、その隙間6と対向する負極活物質薄膜部分では実質的に電池反応しない。そのため、隙間6と対向する負極活物質薄膜部分が劣化領域2Aでの負極活物質の減少量を保障することができず、個々の微小領域4Aにおけるセパレータ3との接合面よりも小さな領域までしか劣化領域2Aが拡大することがない。その結果、負極活物質薄膜2の劣化領域2Aは正極活物質薄膜4に隙間のない場合に比べてはるかに小さな領域に抑えることができ、電池容量の低下を軽減することができる。   When charging / discharging with such a thin film battery, as shown in FIG. 2 (B), the negative electrode active material thin film 2 may be partially deteriorated for some reason to form a deteriorated region 2A. This deterioration includes (1) peeling of the negative electrode active material thin film 2 from the negative electrode current collector 1, (2) pulverization of the negative electrode active material thin film 2, and (3) immobilization of lithium ions. When this deteriorated area 2A occurs, in the negative electrode active material thin film 2, the amount of negative electrode active material that contributes to the battery reaction is reduced compared to other normal areas, so the negative electrode active material around the deteriorated area 2A decreases. The deterioration region 2A expands to the surroundings. However, since the positive electrode active material thin film 4 is divided into a plurality of minute areas 4A by the lattice-like gaps 6, there is a gap 6 without the positive electrode active material thin film 4 at a position opposite to the negative electrode active material thin film 2, The battery reaction does not substantially occur in the negative electrode active material thin film portion facing the gap 6. For this reason, the negative electrode active material thin film portion facing the gap 6 cannot guarantee the amount of decrease in the negative electrode active material in the deteriorated region 2A, and is only up to a region smaller than the bonding surface with the separator 3 in each minute region 4A. The deteriorated area 2A does not expand. As a result, the deteriorated region 2A of the negative electrode active material thin film 2 can be suppressed to a much smaller region than the case where there is no gap in the positive electrode active material thin film 4, and reduction in battery capacity can be reduced.

(実施例2)
次に、正極活物質薄膜におけるセパレータとの接触面のみを微小区域に分割した本発明実施例を図4に基づいて説明する。
(Example 2)
Next, an embodiment of the present invention in which only the contact surface of the positive electrode active material thin film with the separator is divided into minute areas will be described with reference to FIG.

本例と実施例1との相違点は、正極活物質薄膜4が厚さ方向には分割されていないこと、同薄膜4の微小区域4Aへの分割にメッシュ7(分割部材)を用いていることである。他の構成は実施例1と共通なので説明を省略し、これらの相違点を中心に以下の説明を行なう。   The difference between this example and Example 1 is that the positive electrode active material thin film 4 is not divided in the thickness direction, and a mesh 7 (divided member) is used to divide the thin film 4 into minute areas 4A. That is. Since other configurations are the same as those in the first embodiment, the description thereof will be omitted, and the following description will be made focusing on these differences.

本例では、セパレータ3と正極活物質薄膜4との間にメッシュ7を介在している。このメッシュ7は、正負極活物質薄膜2,4間でイオンの移動を抑制しLiを吸蔵しにくい金属であるFe、Co、Ni、Cu、Zn、Mn、Ti、Zrで構成された格子状部材である。メッシュ7を構成する帯状線の幅は、実施例1における隙間6(図2、図3)の幅に相当する。つまり、このメッシュ7を用いることで、正極活物質薄膜4におけるセパレータ3との接触面のみを微小区域4Aに分割し、その厚み方向には分割されていない正極活物質薄膜4を得ることができる。   In this example, a mesh 7 is interposed between the separator 3 and the positive electrode active material thin film 4. This mesh 7 is a lattice formed of Fe, Co, Ni, Cu, Zn, Mn, Ti, Zr, which is a metal that suppresses the movement of ions between the positive and negative electrode active material thin films 2, 4 and does not occlude Li. It is a member. The width of the strip-like line constituting the mesh 7 corresponds to the width of the gap 6 (FIGS. 2 and 3) in the first embodiment. That is, by using this mesh 7, only the contact surface of the positive electrode active material thin film 4 with the separator 3 can be divided into the minute areas 4A, and the positive electrode active material thin film 4 that is not divided in the thickness direction can be obtained. .

この構成の電池によれば、正極活物質薄膜4の表面のうちメッシュ7で覆われた部分は負極活物質薄膜2との電池反応が抑制されるため、実施例1と同様に、メッシュ7で構成される各格子よりも小さな領域で劣化領域2Aの拡大を停止できる。それに伴い、電池容量の低下を抑制することができる。また、本例では、単にメッシュ7をセパレータ3と正極活物質薄膜4との間に挟み込むだけの簡易な構成で正極活物質薄膜4を複数の微小区域に分割することができ製造性に優れる。とりわけ、正極活物質薄膜4は隙間を設けて微小区域に分割する必要がなく、平面状の薄膜を利用することができる。   According to the battery having this configuration, the portion of the surface of the positive electrode active material thin film 4 covered with the mesh 7 is inhibited from the battery reaction with the negative electrode active material thin film 2. Expansion of the deteriorated area 2A can be stopped in an area smaller than each configured grid. Accordingly, a decrease in battery capacity can be suppressed. Further, in this example, the positive electrode active material thin film 4 can be divided into a plurality of minute areas with a simple configuration in which the mesh 7 is simply sandwiched between the separator 3 and the positive electrode active material thin film 4, and the productivity is excellent. In particular, the positive electrode active material thin film 4 does not need to be divided into minute areas by providing a gap, and a planar thin film can be used.

<試験例1>
実施例1および実施例2の構成の各薄膜リチウム電池および正極活物質薄膜が微小区域に分割されていない比較例の薄膜リチウム電池を作製し、充放電サイクル試験を行った。試験に供した電池の仕様は、正極用集電体:Al箔、正極活物質薄膜:LiCoO2膜、セパレータ:LiPF6を有機溶媒(DECとECの混合物)に溶解した電解液をポリプロピレン製の多孔質シートに含浸したもの、負極活物質薄膜:Siである。試験条件は、充電終止電圧:4.2V、放電終止電圧:2.75V、放電電流:1mA/cm2である。
<Test Example 1>
Each thin film lithium battery having the configuration of Example 1 and Example 2 and a thin film lithium battery of a comparative example in which the positive electrode active material thin film was not divided into minute areas were produced, and a charge / discharge cycle test was performed. The specifications of the battery used for the test were as follows: current collector for positive electrode: Al foil, thin film for positive electrode active material: LiCoO 2 film, separator: LiPF 6 dissolved in organic solvent (a mixture of DEC and EC) made of polypropylene A porous sheet impregnated, negative electrode active material thin film: Si. The test conditions are a charge end voltage: 4.2 V, a discharge end voltage: 2.75 V, and a discharge current: 1 mA / cm 2 .

この試験の結果、100サイクル後の容量維持率が実施例1および実施例2では60%程度、比較例では30%程度であった。この試験結果より、各実施例電池は、比較例に比べて電池容量の低下が小さいことが確認された。   As a result of this test, the capacity retention after 100 cycles was about 60% in Example 1 and Example 2, and about 30% in the comparative example. From this test result, it was confirmed that each example battery had a smaller decrease in battery capacity than the comparative example.

本発明正極および電池は、充放電が可能な二次電池、特に負極活物質薄膜の劣化が抑制でき、電池容量の低下が小さいリチウム二次電池として好適に利用することができる。そして、その電池は、移動型、携帯型などの種々の電気・電子機器の電源として利用することが期待される。   The positive electrode and the battery of the present invention can be suitably used as a secondary battery that can be charged and discharged, particularly a lithium secondary battery that can suppress deterioration of the negative electrode active material thin film and has a small decrease in battery capacity. The battery is expected to be used as a power source for various electric / electronic devices such as a mobile type and a portable type.

本発明電池の原理説明図で、(A)が劣化前、(B)が劣化後の電池の状態を示す。In the principle explanatory view of the battery of the present invention, (A) shows the state of the battery before deterioration, and (B) shows the state of the battery after deterioration. 実施例1の本発明電池を示す説明図で、(A)が劣化前、(B)が劣化後の電池の状態を示す。It is explanatory drawing which shows this invention battery of Example 1, (A) shows the state of the battery before deterioration, (B) after deterioration. 実施例1の電池に用いる正極の模式斜視図である。3 is a schematic perspective view of a positive electrode used in the battery of Example 1. FIG. 実施例2の本発明電池を示す模式斜視図である。4 is a schematic perspective view showing a battery of the present invention of Example 2. FIG. 従来の電池を示す模式斜視図である。It is a model perspective view which shows the conventional battery. 従来の電池を示す説明図で、(A)が劣化前、(B)が劣化後の電池の状態を示す。In the explanatory view showing the conventional battery, (A) shows the state of the battery before deterioration, and (B) shows the state of the battery after deterioration.

符号の説明Explanation of symbols

1 負極集電体
2 負極活物質薄膜 2A 劣化領域
3 セパレータ
4 正極活物質薄膜 4A 微小区域
5 正極集電体
6 隙間
7 メッシュ
1 Negative electrode current collector
2 Negative electrode active material thin film 2A Degraded area
3 Separator
4 Cathode active material thin film 4A Micro area
5 Positive current collector
6 Clearance
7 mesh

Claims (5)

負極活物質薄膜に対向される正極活物質薄膜を有する薄膜リチウム電池の正極電極であって、
前記負極活物質薄膜の劣化を抑制するために、正極活物質薄膜における負極活物質薄膜との対向面に、微小区域の分割パターンに応じたパターンを有する分割部材を配することで、少なくとも正極活物質薄膜における負極活物質薄膜との対向面を複数の微小区域に分割したことを特徴とする薄膜リチウム電池の正極電極。
A positive electrode of a thin film lithium battery having a positive electrode active material thin film facing the negative electrode active material thin film,
In order to suppress the deterioration of the negative electrode active material thin film, at least the positive electrode active material thin film is disposed on the surface of the positive electrode active material thin film facing the negative electrode active material thin film, so as to have at least a positive electrode active material. A positive electrode of a thin film lithium battery, wherein a surface of the material thin film facing the negative electrode active material thin film is divided into a plurality of micro areas.
前記分割部材が、格子状に形成されていることを特徴とする請求項1に記載の薄膜リチウム電池の正極電極。 The positive electrode of the thin film lithium battery according to claim 1, wherein the dividing member is formed in a lattice shape. 前記分割部材の材質が、Fe、Co、Ni、Cu、Zn、Mn、Ti、Zrであることを特徴とする請求項1又は2に記載の薄膜リチウム電池の正極電極。 The material of the said division member is Fe, Co, Ni, Cu, Zn, Mn, Ti, Zr, The positive electrode of the thin film lithium battery of Claim 1 or 2 characterized by the above-mentioned. 請求項1〜請求項3のいずれかに記載の正極電極を用いたことを特徴とする薄膜リチウム電池。 A thin film lithium battery using the positive electrode according to any one of claims 1 to 3. 前記微小区域の合計面積よりも前記負極活物質薄膜における正極活物質薄膜との対向面の面積の方が大きいことを特徴とする請求項4に記載の薄膜リチウム電池。 5. The thin film lithium battery according to claim 4, wherein an area of a surface of the negative electrode active material thin film facing a positive electrode active material thin film is larger than a total area of the microscopic areas.
JP2005333212A 2005-11-17 2005-11-17 Positive electrode of thin film lithium battery and thin film lithium battery Expired - Fee Related JP5190746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005333212A JP5190746B2 (en) 2005-11-17 2005-11-17 Positive electrode of thin film lithium battery and thin film lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005333212A JP5190746B2 (en) 2005-11-17 2005-11-17 Positive electrode of thin film lithium battery and thin film lithium battery

Publications (2)

Publication Number Publication Date
JP2007141622A JP2007141622A (en) 2007-06-07
JP5190746B2 true JP5190746B2 (en) 2013-04-24

Family

ID=38204250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005333212A Expired - Fee Related JP5190746B2 (en) 2005-11-17 2005-11-17 Positive electrode of thin film lithium battery and thin film lithium battery

Country Status (1)

Country Link
JP (1) JP5190746B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5194362B2 (en) * 2005-12-26 2013-05-08 ソニー株式会社 Lithium ion secondary battery
JP2011253804A (en) * 2010-05-07 2011-12-15 Nissan Motor Co Ltd Electrode structure, method of manufacturing the same and bipolar battery
JP5755870B2 (en) * 2010-11-22 2015-07-29 シャープ株式会社 Positive electrode for secondary battery, secondary battery, and method for producing positive electrode for secondary battery
US9142837B2 (en) * 2011-09-09 2015-09-22 SCREEN Holdings Co., Ltd. Lithium ion secondary battery and preparation process of same
JP6058987B2 (en) * 2012-11-29 2017-01-11 京セラ株式会社 Secondary battery
JP7116890B2 (en) * 2018-10-29 2022-08-12 トヨタ自動車株式会社 secondary battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206366A (en) * 1990-11-30 1992-07-28 Shin Kobe Electric Mach Co Ltd Flat battery
JP3832100B2 (en) * 1998-08-04 2006-10-11 日産自動車株式会社 battery
JP2001035484A (en) * 1999-05-19 2001-02-09 Nec Corp Nonaqueous electrolyte secondary battery
JP2001023612A (en) * 1999-07-09 2001-01-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2001176558A (en) * 1999-12-20 2001-06-29 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2003187875A (en) * 2001-12-18 2003-07-04 Japan Storage Battery Co Ltd Secondary cell using nonaqueous electrolyte
JP4179778B2 (en) * 2001-12-27 2008-11-12 三洋電機株式会社 Non-aqueous electrolyte battery
JP2005011660A (en) * 2003-06-18 2005-01-13 Nissan Motor Co Ltd Secondary battery electrode, manufacturing method of the same, and secondary battery using the same

Also Published As

Publication number Publication date
JP2007141622A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
JP7430737B2 (en) Electrode sheets, electrochemical devices and their devices
US20220102732A1 (en) Electrode plate, electrochemical apparatus, and apparatus thereof
EP3029763B1 (en) Secondary battery
EP3032632B1 (en) Secondary battery and method for manufacturing same
WO2018154989A1 (en) Secondary battery and method for producing same
JP2010097843A (en) Lithium-ion secondary battery
JP5900281B2 (en) All-solid battery and method for manufacturing the same
JP2008269890A (en) Electrode for nonaqueous electrolyte secondary battery
JP5190746B2 (en) Positive electrode of thin film lithium battery and thin film lithium battery
JPWO2010134258A1 (en) Electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5190762B2 (en) Lithium battery
JP4779633B2 (en) Secondary battery
JP6634671B2 (en) Secondary battery, electric vehicle, power storage system, and manufacturing method
JP2013025999A (en) Nonaqueous secondary battery
JP5648896B2 (en) Method for manufacturing bipolar electrode for secondary battery and bipolar secondary battery
WO2018180599A1 (en) Secondary battery
JP2017016812A (en) Nonaqueous electrolyte secondary battery
JP2019121542A (en) Nonaqueous electrolyte secondary battery and manufacturing method of nonaqueous electrolyte secondary battery
US9865858B2 (en) Lithium ion secondary battery
JP2011048991A (en) Lithium ion secondary battery
JP2009032597A (en) Lithium battery
JP5463803B2 (en) Thin film electrode and laminated battery
JP6773208B2 (en) Secondary battery and its manufacturing method
JP2012190711A (en) Nonaqueous electrolyte secondary battery
US20160190539A1 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees