JP7116890B2 - secondary battery - Google Patents

secondary battery Download PDF

Info

Publication number
JP7116890B2
JP7116890B2 JP2018202698A JP2018202698A JP7116890B2 JP 7116890 B2 JP7116890 B2 JP 7116890B2 JP 2018202698 A JP2018202698 A JP 2018202698A JP 2018202698 A JP2018202698 A JP 2018202698A JP 7116890 B2 JP7116890 B2 JP 7116890B2
Authority
JP
Japan
Prior art keywords
active material
positive electrode
current collector
material layer
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018202698A
Other languages
Japanese (ja)
Other versions
JP2020071906A (en
Inventor
英世 戎崎
知哉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018202698A priority Critical patent/JP7116890B2/en
Publication of JP2020071906A publication Critical patent/JP2020071906A/en
Application granted granted Critical
Publication of JP7116890B2 publication Critical patent/JP7116890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、二次電池に関する。詳しくは、該電池に備えられた電極体の構成に関する。 The present invention relates to secondary batteries. Specifically, it relates to the configuration of the electrode body provided in the battery.

リチウムイオン二次電池等の比較的高い出力と高い容量が実現できる二次電池は、電気を駆動源とする車両搭載用電源、あるいはパソコンおよび携帯端末等の電気製品等に搭載される電源として重要である。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、電気自動車(EV)、プラグインハイブリッド自動車(PHV)、ハイブリッド自動車(HV)等の車両の駆動用高出力電源として好ましく、今後ますます需要が拡大することが予想される。 Secondary batteries such as lithium-ion secondary batteries, which can achieve relatively high output and high capacity, are important as power sources for vehicles that use electricity as a driving source, and power sources for electrical products such as personal computers and mobile terminals. is. In particular, lithium-ion secondary batteries, which are lightweight and provide high energy density, are preferable as high-output power sources for driving vehicles such as electric vehicles (EV), plug-in hybrid vehicles (PHV), and hybrid vehicles (HV). Demand is expected to grow further.

典型的な二次電池の一形態として、矩形シート状の正極と、矩形シート状の負極とを、積層した構造のいわゆる積層電極体を、ラミネートフィルム等の外装体内に収容し、該外装体を密閉した構造の二次電池が挙げられる。
かかる構造の積層電極体を備える二次電池において、該積層電極体の正極および負極(以下、正負について特に区別しないときは「電極」という。)の構造として、種々の構造が提案されている。一般的には、正極として、アルミニウムなどの正極集電体(以下、正負について特に区別しないときは単に「集電体」という。)に正極活物質層(以下、正負について特に区別しないときは単に「活物質層」という。)を設けたものが挙げられる。同様に、負極として、銅などの負極集電体に負極活物質層を設けたものが挙げられる。
そして、正極活物質層と負極活物質層とが、これらの接触を防止するセパレータ層を介在させつつ重ね合わされ、積層方向に所定の圧力でプレスされる。これによって、積層電極体が構成される。
As one form of a typical secondary battery, a rectangular sheet-shaped positive electrode and a rectangular sheet-shaped negative electrode are laminated, and a so-called laminated electrode body is housed in an outer package such as a laminate film. A secondary battery with a closed structure can be mentioned.
In a secondary battery comprising a laminated electrode body having such a structure, various structures have been proposed as the structure of the positive electrode and the negative electrode of the laminated electrode body (hereinafter referred to as "electrodes" when the positive and negative are not particularly distinguished). In general, as a positive electrode, a positive electrode current collector such as aluminum (hereinafter simply referred to as a "current collector" when there is no particular distinction between positive and negative) is coated with a positive electrode active material layer (hereinafter, when there is no particular distinction between positive and negative, simply (referred to as an "active material layer"). Similarly, the negative electrode includes a negative electrode current collector such as copper provided with a negative electrode active material layer.
Then, the positive electrode active material layer and the negative electrode active material layer are overlapped with a separator layer interposed therebetween for preventing contact therebetween, and pressed in the stacking direction with a predetermined pressure. A laminated electrode assembly is thus constructed.

特開2001-15153号公報Japanese Patent Application Laid-Open No. 2001-15153

ところで、上述したような構成の積層電極体を備える二次電池の課題の一つとして、充放電を行った際の活物質層の膨張収縮が挙げられる。
活物質の膨張収縮にともなって、例えば、活物質層と集電体との間に摩擦力等、当該膨張収縮に対して抑制的に働く力(以下、「反力」という。)が生じることが知られている。本発明者は、特に積層電極体の水平面が長方形である場合、積層電極体の水平方向(以下、単に「水平方向」という。)における該長方形の短辺方向(以下、「Y方向」という。例えば、図2参照。)と長辺方向(以下、「X方向」という。例えば、図2参照。)で発生する反力の大きさに差が生じ得ることを突き止めた。具体的には、上記Y方向では活物質の充填距離が短く、当該活物質の充填距離がより長いX方向と比較して、上記反力が小さくなり得る。
このとき、上述のような反力の大きさの差は、そのまま水平方向における活物質層のX方向とY方向の膨張距離の差につながる。そして、かかる膨張距離の差によって、とりわけ急速充電時に当該活物質の膨張距離が相対的に大きくなるY方向では、X方向に比べて、当該活物質層に亀裂が生じやすく、また、積層電極体の端部から活物質が滑落しやすくなるおそれがある。当該亀裂の発生および活物質の滑落は、積層電極体内部でイオン経路が遮断される領域を形成して電池性能を劣化させる要因にもなるため、好ましくない。
By the way, one of the problems of the secondary battery including the laminated electrode body having the structure described above is the expansion and contraction of the active material layer during charging and discharging.
With the expansion and contraction of the active material, a force (hereinafter referred to as "reaction force") acting to suppress the expansion and contraction, such as a frictional force between the active material layer and the current collector, is generated. It has been known. In particular, when the horizontal plane of the laminated electrode body is rectangular, the short side direction of the rectangle in the horizontal direction of the laminated electrode body (hereinafter simply referred to as the "horizontal direction") (hereinafter referred to as the "Y direction"). For example, see FIG. 2.) and the long side direction (hereinafter referred to as “X direction”; see FIG. 2, for example). Specifically, in the Y direction, the filling distance of the active material is short, and the reaction force can be smaller than in the X direction, in which the filling distance of the active material is longer.
At this time, the difference in magnitude of the reaction force as described above directly leads to the difference in expansion distance of the active material layer in the horizontal direction between the X direction and the Y direction. Due to the difference in the expansion distance, cracks are more likely to occur in the active material layer in the Y direction than in the X direction, in which the expansion distance of the active material is relatively large particularly during rapid charging. The active material may easily slide down from the edge of the The occurrence of the cracks and the sliding of the active material are not preferable because they form a region in which the ion path is blocked inside the laminated electrode body, and also become a factor in deteriorating the battery performance.

かかる充放電時における活物質の膨張収縮にともなう、活物質層の亀裂の発生および活物質の滑落を防止するための手段として、活物質層とセパレータ層からなる複数の電池要素を適当な空隙を隔てて配置し、上記方向による反力の大きさの差を縮小させることが挙げられる(特許文献1)。しかしながら、特許文献1のような構成では、例えば、二次電池を積層方向に拘束して使用する際に、電極体内部の上記空隙が潰れて短絡が発生するおそれがある。さらに、集電体間に配置される電池要素の個数が増えるほど、このような短絡のリスクは高くなる。 As a means for preventing cracks in the active material layer and slipping of the active material due to the expansion and contraction of the active material during charging and discharging, a plurality of battery elements consisting of the active material layer and the separator layer are provided with appropriate gaps. For example, they are spaced apart to reduce the difference in the magnitude of the reaction force depending on the direction (Patent Document 1). However, in the configuration disclosed in Patent Document 1, for example, when the secondary battery is used while restrained in the stacking direction, there is a risk that the voids inside the electrode body will be crushed to cause a short circuit. Moreover, the greater the number of battery elements placed between current collectors, the greater the risk of such short circuits.

そこで、本発明は、上述した二次電池に関する課題を解決するべく創出されたものであり、積層電極体の水平方向において、活物質層のX方向とY方向の膨張距離の差の発生を抑制して、当該差に起因する電池性能の劣化を防止し得る二次電池の提供を目的とする。 Therefore, the present invention was created to solve the above-described problems related to the secondary battery, and suppresses the occurrence of a difference in expansion distance between the X direction and the Y direction of the active material layer in the horizontal direction of the laminated electrode body. An object of the present invention is to provide a secondary battery that can prevent deterioration of battery performance caused by the difference.

上記目的を実現するべく、ここで開示される二次電池は、矩形シート状の正極と、矩形シート状の負極と、が該正負極間を物理的に離隔するセパレータ層を間に介在させつつ交互に積層された構造の電極体を備える。上記正極は、正極集電体と、該正極集電体の少なくとも一方の面上において正極活物質層が配置されている。上記負極は、負極集電体と、該負極集電体の少なくとも一方の面上において負極活物質層が配置されている。上記正極および上記負極の少なくとも一方の電極において、上記活物質層は上記集電体上に相互に離間してアスペクト比(長辺の長さ/短辺の長さ)1以上1.5以下の矩形状に複数形成されており、かつ、該集電体には上記矩形状の活物質層が存在しない活物質層間露出部が形成されている。ここで、上記活物質層間露出部と、対向する他方の電極との間に上記セパレータ層が存在する。 In order to achieve the above object, the secondary battery disclosed herein comprises a rectangular sheet-shaped positive electrode and a rectangular sheet-shaped negative electrode with a separator layer interposed between them to physically separate the positive and negative electrodes. It has an electrode body with an alternately laminated structure. The positive electrode includes a positive electrode current collector and a positive electrode active material layer disposed on at least one surface of the positive electrode current collector. The negative electrode includes a negative electrode current collector and a negative electrode active material layer disposed on at least one surface of the negative electrode current collector. In at least one of the positive electrode and the negative electrode, the active material layers are spaced apart from each other on the current collector and have an aspect ratio (long side length/short side length) of 1 or more and 1.5 or less. A plurality of rectangular active material layers are formed, and the current collector has an active material layer exposed portion where the rectangular active material layer does not exist. Here, the separator layer is present between the exposed portion between the active material layers and the other opposing electrode.

かかる構成の二次電池では、上記少なくとも一方の電極における複数の上記活物質層の配置によって、積層電極体の水平方向において、X方向とY方向に生じる反力の大きさの差を縮小させることができる。この結果、これらの方向における膨張距離の差を縮小させることができる。これにより、該膨張距離の差にともなう電池性能の劣化を防止することができる。 In the secondary battery having such a configuration, the difference in the magnitude of the reaction force generated in the X direction and the Y direction in the horizontal direction of the laminated electrode assembly can be reduced by arranging the plurality of active material layers in the at least one electrode. can be done. As a result, the difference in expansion distances in these directions can be reduced. Thereby, it is possible to prevent the deterioration of the battery performance due to the difference in the expansion distance.

一実施形態に係る二次電池の構成を模式的に説明する断面図である。1 is a cross-sectional view schematically illustrating the configuration of a secondary battery according to one embodiment; FIG. 一実施形態に係る二次電池の積層電極体を構成する正極を模式的に説明する平面図である。FIG. 3 is a plan view schematically illustrating a positive electrode that constitutes a laminated electrode body of a secondary battery according to one embodiment; ある実施形態に係る二次電池の積層電極体を構成する正極を模式的に説明する平面図であって、(A)には実施例1の正極、(B)には実施例2の正極、(C)には比較例の正極が示されている。1 is a plan view schematically illustrating a positive electrode that constitutes a laminated electrode body of a secondary battery according to an embodiment, in which (A) is the positive electrode of Example 1, (B) is the positive electrode of Example 2, (C) shows the positive electrode of the comparative example.

以下、図面を適宜参照しながら、ここで開示される二次電池の好適な実施形態について説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、各図面においては、同じ作用を奏する部材・部位には同じ符号を付している。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。 Preferred embodiments of the secondary battery disclosed herein will be described below with appropriate reference to the drawings. Matters other than those specifically mentioned in this specification, which are necessary for carrying out the present invention, can be grasped as design matters by those skilled in the art based on the prior art in the field. The present invention can be implemented based on the contents disclosed in this specification and common general technical knowledge in the field. Further, in each drawing, the same reference numerals are given to the members and parts that have the same function. Also, the dimensional relationships (length, width, thickness, etc.) in each drawing do not reflect the actual dimensional relationships.

本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、リチウムイオン二次電池等のいわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する用語である。また、「リチウムイオン二次電池」とは、電荷担体としてリチウムイオンを利用し、正負極間のリチウムイオンの移動により充放電が行われる二次電池をいう。また、「全固体電池」とは、固体電解質を備えた二次電池をいう。
以下、扁平角型のリチウムイオン二次電池を例にして、本発明について詳細に説明する。なお、以下で説明する実施形態は、本発明をかかる実施形態に記載されたものに限定することを意図したものではない。
As used herein, the term "secondary battery" generally refers to a power storage device that can be repeatedly charged and discharged, and includes so-called storage batteries such as lithium ion secondary batteries and power storage elements such as electric double layer capacitors. The term "lithium ion secondary battery" refers to a secondary battery that uses lithium ions as charge carriers and is charged and discharged by movement of lithium ions between positive and negative electrodes. Further, the term "all-solid battery" refers to a secondary battery having a solid electrolyte.
Hereinafter, the present invention will be described in detail by taking a flat prismatic lithium ion secondary battery as an example. It should be noted that the embodiments described below are not intended to limit the present invention to those described in such embodiments.

図1に示すように、本実施形態に係る二次電池10(ここではリチウムイオン電池)は、扁平形状の積層電極体20が、当該積層電極体20の形状に対応する扁平な外装体60に収容されて構成される密閉構造の二次電池である。積層電極体20は、シート状の正極30およびシート状の負極40が、該正負極間を物理的に離隔するセパレータ層(全固体電池の場合は、固体電解質層)50を介在させつつ、所定の方向(図1中矢印Z)に積層されて構成されている。 As shown in FIG. 1 , in a secondary battery 10 (here, a lithium-ion battery) according to the present embodiment, a flat-shaped laminated electrode body 20 is attached to a flat exterior body 60 corresponding to the shape of the laminated electrode body 20 . It is a secondary battery with a sealed structure that is housed. The laminated electrode body 20 includes a sheet-shaped positive electrode 30 and a sheet-shaped negative electrode 40, while interposing a separator layer (a solid electrolyte layer in the case of an all-solid battery) 50 that physically separates the positive and negative electrodes from each other. (arrow Z in FIG. 1).

図1に示されるように、正極30は正極集電体32および正極活物質層34を備えている。一方、負極40は、負極集電体42および負極活物質層44を備えている。
ここで、正極集電体32には、複数の正極活物質層34がX方向において相互に離間して配置されている。また、正極集電体32には、正極活物質層34が存在しない正極活物質層間露出部33が形成されている。なお、Z方向において、正極活物質層間露出部33と、負極40との間(具体的には、負極活物質層44との間)には、これらの間を物理的に離隔するセパレータ層50が存在している。
As shown in FIG. 1, cathode 30 comprises cathode current collector 32 and cathode active material layer 34 . On the other hand, the negative electrode 40 includes a negative electrode current collector 42 and a negative electrode active material layer 44 .
Here, a plurality of positive electrode active material layers 34 are arranged on the positive electrode current collector 32 so as to be spaced apart from each other in the X direction. In addition, the positive electrode current collector 32 is formed with a positive electrode active material interlayer exposed portion 33 where the positive electrode active material layer 34 does not exist. In the Z direction, between the positive electrode active material layer exposed portion 33 and the negative electrode 40 (specifically, between the negative electrode active material layer 44) is a separator layer 50 that physically separates them. exists.

図2には、正極30の構成の平面視が示されている。正極集電体32は矩形であって、所定の位置に正極集電用タブ36を備える。正極集電体32は長方形であることが特に好ましいが、その長辺の長さWaと短辺の長さWbは特に限定されない。
正極活物質層34は矩形である。正極活物質層34は長方形であってよく、短辺の長さbに対する長辺の長さa(すなわち、a/b。以下、「アスペクト比」という。)が、正極集電体32上における正極活物質層34の占有面積を確保する観点から、1.5,1.4または1.3以下であることが好ましい。また、正極活物質層34は正方形であってもよく、その場合、上記アスペクト比は1.0である。すなわち、正極活物質層34のアスペクト比は1.0以上1.5以下、1.0以上1.4以下、1.0以上1.3以下であり得る。当該アスペクト比は、正極活物質層34の組成および正極集電体30の材質等に影響されない。
FIG. 2 shows a plan view of the configuration of the positive electrode 30 . The positive electrode current collector 32 is rectangular and has a positive electrode current collecting tab 36 at a predetermined position. Although it is particularly preferable that the positive electrode current collector 32 has a rectangular shape, the long side length Wa and the short side length Wb are not particularly limited.
The positive electrode active material layer 34 is rectangular. The positive electrode active material layer 34 may be rectangular, and the length a of the long side to the length b of the short side (i.e., a/b; hereinafter referred to as “aspect ratio”) is equal to From the viewpoint of securing the area occupied by the positive electrode active material layer 34, it is preferably 1.5, 1.4, or 1.3 or less. Also, the positive electrode active material layer 34 may be square, in which case the aspect ratio is 1.0. That is, the aspect ratio of the positive electrode active material layer 34 may be 1.0 or more and 1.5 or less, 1.0 or more and 1.4 or less, or 1.0 or more and 1.3 or less. The aspect ratio is not affected by the composition of the positive electrode active material layer 34, the material of the positive electrode current collector 30, and the like.

正極集電体32に配置される正極活物質層34の個数は上記アスペクト比を満たすものである限りは限定されないが、2,3個が特に好ましく、あるいは4個、またはそれ以上であってもよい。
また、正極集電体32上の正極活物質層間露出部33の距離αは、正極活物質層34が上記アスペクト比を満たすものである限りは特に限定されず、配置される正極活物質層34の大きさと個数に応じて適宜設定することができる。例えば、正極集電体32のX方向の長辺の長さWaに対して1%以上10%以下が好ましく、2%以上8%以下がより好ましく、3%以上6%以下がさらに好ましい。これにより、二次電池を充放電にともなう膨張収縮によるY方向への反力の集中を回避することができ、当該方向とX方向の膨張距離の差を縮小させることができる。
The number of positive electrode active material layers 34 arranged on the positive electrode current collector 32 is not limited as long as it satisfies the above aspect ratio. good.
In addition, the distance α of the positive electrode active material layer exposed portion 33 on the positive electrode current collector 32 is not particularly limited as long as the positive electrode active material layer 34 satisfies the above aspect ratio. can be appropriately set according to the size and number of the . For example, the length Wa of the long side of the positive electrode current collector 32 in the X direction is preferably 1% or more and 10% or less, more preferably 2% or more and 8% or less, and even more preferably 3% or more and 6% or less. This makes it possible to avoid the concentration of reaction force in the Y direction due to the expansion and contraction of the secondary battery due to charging and discharging, and reduce the difference in expansion distance between the direction and the X direction.

正極活物質層34の厚みは、特に限定されないが、典型的には、50μm以上300μm以下が適当であり、200μm以下がより好ましく、100μm以下がさらに好ましい。一方、負極活物質層44の厚みは、特に限定されない。典型的には、50μm以上300μm以下が適当であり、200μm以下がより好ましく、100μm以下さらに好ましい。 Although the thickness of the positive electrode active material layer 34 is not particularly limited, it is typically suitably 50 μm or more and 300 μm or less, more preferably 200 μm or less, and even more preferably 100 μm or less. On the other hand, the thickness of the negative electrode active material layer 44 is not particularly limited. Typically, 50 μm or more and 300 μm or less is suitable, 200 μm or less is more preferable, and 100 μm or less is even more preferable.

電極体20のセパレータ層50、正極30、負極40を構成する材料、部材は、従来の一般的な二次電池に用いられるものと同様のものを制限なく使用可能である。 Materials and members that constitute the separator layer 50, the positive electrode 30, and the negative electrode 40 of the electrode body 20 may be the same as those used in conventional general secondary batteries without limitation.

正極集電体32は、例えば、アルミニウム、ニッケル、チタン、ステンレス鋼等の金属材から構成される。 The positive electrode current collector 32 is made of, for example, a metal material such as aluminum, nickel, titanium, or stainless steel.

正極活物質として、LiNi1/3Mn1/3Co1/3、LiCoO、LiNiO、LiMn、LiNi0.5Mn1.5等のリチウム遷移金属酸化物、LiFePO等のリチウム遷移金属リン酸化合物等が挙げられる。 Lithium transition metal oxides such as LiNi 1/3 Mn 1/3 Co 1/3 O 2 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , and LiFePO as positive electrode active materials 4 and the like, and lithium transition metal phosphate compounds.

負極集電体42は、例えば、銅(例えば銅箔)や銅を主体とする合金を用いることができる。 For the negative electrode current collector 42, for example, copper (for example, copper foil) or an alloy mainly composed of copper can be used.

負極活物質として、例えば、グラファイト、メソカーボンマイクロビーズ、カーボンブラックのような炭素系の負極活物質、天然黒鉛(石墨)や人工黒鉛等の黒鉛系材料、シリコンおよびスズならびにこれらの化合物が挙げられる。 Examples of negative electrode active materials include carbon-based negative electrode active materials such as graphite, mesocarbon microbeads, and carbon black, graphite-based materials such as natural graphite (plumbago) and artificial graphite, silicon and tin, and compounds thereof. .

正極活物質層34および負極活物質層44は、必要に応じて、導電助剤やバインダ等を含有してもよい。
導電助剤としては、例えば、アセチレンブラック(AB)、気相成長炭素(VGC)、ケッチェンブラック等が挙げられる。また、バインダとしては、例えば、ポリフッ化ビニリデン(PVDF)、ブチルゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(ABR)等が挙げられる。
The positive electrode active material layer 34 and the negative electrode active material layer 44 may contain a conductive aid, a binder, or the like, if necessary.
Examples of conductive aids include acetylene black (AB), vapor growth carbon (VGC), and ketjen black. Examples of binders include polyvinylidene fluoride (PVDF), butyl rubber (BR), styrene-butadiene rubber (SBR), and acrylonitrile-butadiene rubber (ABR).

なお、本実施形態に係る二次電池10が全固体電池である場合は、セパレータ層50の代わりに固体電解質層が正極30と負極40の間を絶縁する。固体電解質としては、硫化物系固体電解質の使用が好ましく、結晶質硫化物、または、ガラスもしくはガラスセラミックスが挙げられる。また、酸化物系固体電解質でもよく、例えば、NASICON構造、ガーネット型構造あるいはペロブスカイト型構造を有する種々の酸化物が好適例として挙げられる。なお、必要に応じて正極活物質層34と負極活物質層44は固体電解質を含有できる。 Note that when the secondary battery 10 according to the present embodiment is an all-solid battery, a solid electrolyte layer instead of the separator layer 50 provides insulation between the positive electrode 30 and the negative electrode 40 . As the solid electrolyte, it is preferable to use a sulfide-based solid electrolyte, which includes crystalline sulfide, glass, or glass-ceramics. Also, an oxide-based solid electrolyte may be used, and suitable examples thereof include various oxides having a NASICON structure, a garnet-type structure, or a perovskite-type structure. In addition, the positive electrode active material layer 34 and the negative electrode active material layer 44 can contain a solid electrolyte as needed.

上述の材料、部材を用いて積層電極体20を作製し、本実施形態に係る二次電池10を構築する。当該二次電池は、上述した正極30の構成によって、X方向と、Y方向で生じる反力の大きさの差を縮小させることができる。このことによって、水平方向における膨張距離の差は小さくなり、特にY方向において活物質層に亀裂が生じることや活物質が滑落することを防止できる。したがって、積層電極体内部でイオン経路が遮断され得る領域の形成が妨げられ、当該電池の良好な電池性能を維持することができる。 The laminated electrode body 20 is produced using the materials and members described above, and the secondary battery 10 according to the present embodiment is constructed. In the secondary battery, the difference in the magnitude of the reaction force generated in the X direction and the Y direction can be reduced by the configuration of the positive electrode 30 described above. As a result, the difference in the expansion distance in the horizontal direction becomes small, and it is possible to prevent the active material layer from cracking and the active material from sliding down, particularly in the Y direction. Therefore, formation of a region in which an ion path may be blocked is prevented inside the laminated electrode body, and good battery performance of the battery can be maintained.

また、本実施形態に係る二次電池は、セパレータ層50が、正極活物質層間露出部33と、負極活物質44との間に存在する(図1参照)。これにより、充放電時に負極活物質が膨張しても、該負極活物質が正極活物質層間露出部33に侵入することが妨げられ、該負極活物質と正極活物質が直接的に接触して内部短絡が生じることを防止できる。さらに、集電体間に配置される活物質層の個数が所定の数であることで、従来技術と比べて電極体内部での活物質の滑落を低減でき、短絡のリスクを低減し得る。 Further, in the secondary battery according to the present embodiment, the separator layer 50 exists between the positive electrode active material interlayer exposed portion 33 and the negative electrode active material 44 (see FIG. 1). As a result, even if the negative electrode active material expands during charging and discharging, the negative electrode active material is prevented from entering the positive electrode active material interlayer exposed portion 33, and the negative electrode active material and the positive electrode active material are in direct contact with each other. It is possible to prevent an internal short circuit from occurring. Furthermore, since the number of active material layers arranged between the current collectors is a predetermined number, it is possible to reduce the slippage of the active material inside the electrode body compared to the conventional technology, and reduce the risk of short circuit.

以下、ここで開示される二次電池に関して、全固体リチウムイオン電池を例とした試験例を説明するが、本発明をかかる試験例に示すものに限定することを意図したものではない。なお、以下の配合比は、質量比である。 Hereinafter, test examples will be described with respect to the secondary battery disclosed herein using an all-solid-state lithium ion battery as an example, but the present invention is not intended to be limited to those shown in such test examples. In addition, the following compounding ratios are mass ratios.

[試験例1:試験用二次電池の製造]
以下に説明するプロセスにより、図3(A)~(C)に示す試験用二次電池(実施例1、実施例2、比較例)を作製した。
<実施例1>
-正極の作製-
正極活物質として、平均粒子径が1~10μmに粒度調整されたLiNi1/3Mn1/3Co1/3粉体(LNMC)と、固体電解質として硫化物固体電解質を用い、導電助剤としてABと、バインダとしてPVdFとを、LNMC:固体電解質=75:25、活物質100質量部に対して、導電助剤2質量部、バインダ1.5質量部の割合で口量し、これらの材料を、超音波ホモジナイザー(SMT社製、UH-50)を用いて酪酸に分散させることで固形分重量50質量%の正極ペーストを調製した。このペーストを、正極集電体32としてのアルミニウム箔の片面に、図3(A)に示す形状に塗布し、乾燥させることにより正極活物質層34を形成し、正極30とした。各々の正極活物質層34は、アスペクト比が1.0、正極活物質層間露出部33の距離αが2mmとなるように形成された。
[Test Example 1: Production of test secondary battery]
Test secondary batteries (Example 1, Example 2, Comparative Example) shown in FIGS. 3A to 3C were produced by the process described below.
<Example 1>
-Preparation of positive electrode-
LiNi 1/3 Mn 1/3 Co 1/3 O 2 powder (LNMC) having an average particle size of 1 to 10 μm was used as the positive electrode active material, and a sulfide solid electrolyte was used as the solid electrolyte. AB as an agent and PVdF as a binder, LNMC: solid electrolyte = 75:25, and 2 parts by mass of the conductive aid and 1.5 parts by mass of the binder were weighed with respect to 100 parts by mass of the active material. was dispersed in butyric acid using an ultrasonic homogenizer (manufactured by SMT, UH-50) to prepare a positive electrode paste having a solid content of 50% by mass. This paste was applied to one side of an aluminum foil as a positive electrode current collector 32 in the shape shown in FIG. Each positive electrode active material layer 34 was formed to have an aspect ratio of 1.0 and a distance α of the exposed portion 33 between the positive electrode active material layers of 2 mm.

-負極の作製-
負極活物質粉末として天然黒鉛(C)と、固体電解質としての硫化物固体電解質粉末と、バインダとしてSBRとを、活物質:固体電解質=58:42(質量比)、活物質100質量部に対して、バインダ1.1質量部の割合で口量し、これらの材料を、超音波ホモジナイザーを用いて酪酸と混練し、固形分重量50質量%の負極ペーストを調製した。このペーストを負極集電体としての銅箔の片面に塗布し(図3(C)に示す形状を参照)、乾燥させることにより所定の厚さの負極活物質層を形成し、負極とした。
-Preparation of negative electrode-
Natural graphite (C) as the negative electrode active material powder, sulfide solid electrolyte powder as the solid electrolyte, and SBR as the binder, active material: solid electrolyte = 58:42 (mass ratio), per 100 parts by mass of the active material These materials were kneaded with butyric acid using an ultrasonic homogenizer to prepare a negative electrode paste having a solid content of 50% by mass. This paste was applied to one side of a copper foil as a negative electrode current collector (see the shape shown in FIG. 3(C)) and dried to form a negative electrode active material layer with a predetermined thickness, which was used as a negative electrode.

-セパレータ層(ここでは固体電解質層)の作製-
固体電解質として硫化物固体電解質粉末と、バインダとしてPVDFとを、固体電解質:バインダ=95:5の質量比で用い、超音波ホモジナイザーを用いてヘプタンに分散させることで固形分重量50質量%の固体電解質ペーストを調製した。このペーストを、上記で用意した負極活物質層の表面に塗布し、乾燥させることにより固体電解質層を形成した。そして、用意した各電極の活物質層間を固体電解質層で絶縁するように重ねて積層型電極体を作製した。
-Preparation of separator layer (here, solid electrolyte layer)-
A sulfide solid electrolyte powder as a solid electrolyte and PVDF as a binder were used at a mass ratio of solid electrolyte:binder = 95:5. An electrolyte paste was prepared. This paste was applied to the surface of the negative electrode active material layer prepared above and dried to form a solid electrolyte layer. Then, the layers of the active material of each prepared electrode were stacked so as to be insulated by the solid electrolyte layer to produce a laminated electrode body.

-全固体電池の作製-
上記作製した正極を打ち抜き、次いで、負極を打ち抜き、これらを貼り合わせて積層電極体を作製した。当該積層電極体を、2枚のラミネートフィルムで挟み込み、全周縁部を熱溶着することで実施例1の評価試験用二次電池を作製した。
-Fabrication of all-solid-state battery-
The positive electrode prepared above was punched out, then the negative electrode was punched out, and these were bonded together to prepare a laminated electrode body. The laminated electrode assembly was sandwiched between two laminate films, and the entire periphery was heat-sealed to fabricate a secondary battery for evaluation test of Example 1.

<実施例2>
正極活物質層30の作製において、正極集電体32に塗布された正極活物質層34のアスペクト比が1.5であるものを、図3(B)に示す形状に塗布したこと以外は、実施例1と同様の材料および工程により、実施例2の評価試験用二次電池を作製した。
<Example 2>
In the fabrication of the positive electrode active material layer 30, except that the positive electrode active material layer 34 applied to the positive electrode current collector 32 and having an aspect ratio of 1.5 was applied in the shape shown in FIG. Using the same materials and steps as in Example 1, a secondary battery for evaluation test of Example 2 was produced.

<比較例>
正極活物質層30の作製において、正極集電体32に塗布された正極活物質層34のアスペクト比が3.0であるものを、図3(C)に示す形状に塗布したこと以外は、実施例1と同様の材料および工程により、比較例の評価試験用二次電池を作製した。
<Comparative example>
In the fabrication of the positive electrode active material layer 30, except that the positive electrode active material layer 34 applied to the positive electrode current collector 32 and having an aspect ratio of 3.0 was applied in the shape shown in FIG. Using the same materials and processes as in Example 1, a secondary battery for evaluation test of Comparative Example was produced.

[試験例2:各評価試験用二次電池のサイクル試験による容量維持率の判定]
各サンプルの電池を、2枚のSUS鋼製のエンドプレート(拘束板)と拘束部材(ボルト・ナット)からなる拘束治具とを用いて、10MPaで電極体の積層方向に定寸拘束した。次に、以下の条件で充放電サイクルを行い、1サイクル目の容量に対する100サイクル目の容量維持率を測定した。すなわち、60℃の環境下において、1/3Cで4.1Vまで定電流充電した後、1/3Cで3Vまで放電する充放電を1サイクルとした。そして、サイクル試験後の評価試験用二次電池を解体し、放電容量維持率(%)として、「(サイクル試験後の容量/初期容量)×100」を算出した。
結果を表1の該当欄に示す。
[Test Example 2: Determination of capacity retention rate by cycle test of secondary batteries for each evaluation test]
Each sample battery was constrained to a fixed size in the stacking direction of the electrode bodies at 10 MPa using a constraining jig consisting of two SUS steel end plates (constraining plates) and constraining members (bolts and nuts). Next, charge-discharge cycles were performed under the following conditions, and the capacity retention rate of the 100th cycle with respect to the capacity of the 1st cycle was measured. That is, in an environment of 60° C., one cycle of charging and discharging was defined as constant current charging to 4.1 V at 1/3 C and discharging to 3 V at 1/3 C. After the cycle test, the evaluation test secondary battery was dismantled, and the discharge capacity retention rate (%) was calculated as “(capacity after cycle test/initial capacity)×100”.
The results are shown in the corresponding columns of Table 1.

[試験例3:各評価試験用二次電池のサイクル試験によるY方向への電極伸び率の判定]
各正極サンプルにつき、熱プレス前における正極活物質層の短辺の長さLaおよびサイクル試験後における正極活物質層の短辺の長さLbを求め、以下の計算式(1)により電極伸び率を算出した。
電極伸び率(%)=(Lb-La)/La×100 ・・・(1)
結果を表1の該当欄に示す。
[Test Example 3: Determination of electrode elongation rate in Y direction by cycle test of secondary batteries for each evaluation test]
For each positive electrode sample, the short side length La of the positive electrode active material layer before hot pressing and the short side length Lb of the positive electrode active material layer after the cycle test were determined, and the electrode elongation rate was calculated by the following formula (1). was calculated.
Electrode elongation rate (%) = (Lb - La) / La x 100 (1)
The results are shown in the corresponding columns of Table 1.

Figure 0007116890000001
Figure 0007116890000001

表1に示す結果から明らかなように、アスペクト比が1.0以上1.5以下である正極活物質層を2個または3個並べた実施例1と実施例2では、サイクル試験後に90%以上の高い放電容量維持率が示された。また、実施例1と実施例2では、Y方向への電極伸び率が0.5%より低かった。
以上の結果から、本実施形態に係る二次電池は、サイクル特性(すなわち、良好な電池性能の維持)に優れた特徴を有する。
As is clear from the results shown in Table 1, in Examples 1 and 2 in which two or three positive electrode active material layers having an aspect ratio of 1.0 or more and 1.5 or less were arranged, 90% after the cycle test A high discharge capacity retention ratio was shown. Moreover, in Examples 1 and 2, the electrode elongation rate in the Y direction was lower than 0.5%.
From the above results, the secondary battery according to the present embodiment has excellent cycle characteristics (that is, maintenance of good battery performance).

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。例えば、上述した例では正極集電体に複数の活物質層を配置したが、負極集電体に複数の活物質層を設けてもよい。また、正極集電体および負極集電体の両方に複数の活物質層を設けてもよい。負極のリチウムイオン析出耐性向上の観点からは、負極活物質層は、正極活物質層より大きいことが好ましい。また、上記の実施形態では全固体リチウムイオン二次電池を例示したが、固体電解質を含ませず、電解質として非水電解液を使用した二次電池を作製してもよい。これらの場合においても、以上に例示した効果と同様の効果が発揮され得る。 Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. For example, in the above example, a plurality of active material layers are arranged on the positive electrode current collector, but a plurality of active material layers may be provided on the negative electrode current collector. Also, a plurality of active material layers may be provided on both the positive electrode current collector and the negative electrode current collector. From the viewpoint of improving the lithium ion deposition resistance of the negative electrode, the negative electrode active material layer is preferably larger than the positive electrode active material layer. Moreover, although the all-solid-state lithium-ion secondary battery was illustrated in the above embodiment, a secondary battery that does not contain a solid electrolyte and uses a non-aqueous electrolyte as an electrolyte may be produced. Also in these cases, the same effects as those exemplified above can be exhibited.

10:二次電池
20:電極体
30:正極
32:正極集電体
33:正極活物質層間露出部
34:正極活物質層
36:正極集電用タブ
40:負極
42:負極集電体
44:負極活物質層
50:セパレータ層
60:外装体
X:長辺方向
Y:短辺方向
Z:積層方向
α:距離
a:活物質層の長辺の長さ
b:活物質層の短辺の長さ
Wa:集電体の長辺の長さ
Wb:集電体の短辺の長さ
10: Secondary battery 20: Electrode body 30: Positive electrode 32: Positive electrode current collector 33: Positive electrode active material interlayer exposed portion 34: Positive electrode active material layer 36: Positive electrode current collecting tab 40: Negative electrode 42: Negative electrode current collector 44: Negative electrode active material layer 50: Separator layer 60: Armor X: Long side direction Y: Short side direction Z: Stacking direction α: Distance a: Length of long side of active material layer b: Length of short side of active material layer Wa: Length of long side of current collector Wb: Length of short side of current collector

Claims (1)

矩形シート状の正極と、矩形シート状の負極とが該正負極間を物理的に離隔するセパレータ層を間に介在させつつ交互に積層された構造の電極体を備える二次電池であって、
該二次電池は、前記セパレータ層として固体電解質層を備えた全固体電池であり、
前記正極は、矩形シート状の正極集電体と、該正極集電体の少なくとも一方の面上において正極活物質層が配置されており、
前記負極は、矩形シート状の負極集電体と、該負極集電体の少なくとも一方の面上において負極活物質層が配置されており、
前記正極および前記負極の少なくとも一方の電極において、
2個または3個の 前記活物質層が、前記集電体上に相互に離間してアスペクト比(長辺の長さ/短辺の長さ)1以上1.5以下の矩形状に形成されており、かつ、該集電体には前記矩形状の活物質層が存在しない活物質層間露出部が形成されており、
ここで、前記活物質層間露出部と、対向する他方の電極との間に前記セパレータ層が存在し、前記集電体の長辺方向における前記活物質層間露出部の長さαが該集電体の長辺の長さWaの3%以上6%以下である、二次電池。
A secondary battery comprising an electrode body having a structure in which a rectangular sheet-shaped positive electrode and a rectangular sheet-shaped negative electrode are alternately laminated with a separator layer interposed therebetween for physically separating the positive and negative electrodes,
The secondary battery is an all-solid battery comprising a solid electrolyte layer as the separator layer,
The positive electrode isrectangular sheetA positive electrode current collector and a positive electrode active material layer disposed on at least one surface of the positive electrode current collector,
The negative electrode isrectangular sheeta negative electrode current collector and a negative electrode active material layer disposed on at least one surface of the negative electrode current collector;
At least one electrode of the positive electrode and the negative electrode,
two or three the active material layerbut,Rectangular shapes having an aspect ratio (long side length/short side length) of 1 or more and 1.5 or less are spaced apart from each other on the current collector.shaped likeand the current collector is formed with an exposed portion between the active material layers where the rectangular active material layer does not exist,
Here, the separator layer is present between the active material layer exposed portion and the other opposing electrode.and the length α of the active material layer exposed portion in the long side direction of the current collector is 3% or more and 6% or less of the length Wa of the long side of the current collector., secondary battery.
JP2018202698A 2018-10-29 2018-10-29 secondary battery Active JP7116890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018202698A JP7116890B2 (en) 2018-10-29 2018-10-29 secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018202698A JP7116890B2 (en) 2018-10-29 2018-10-29 secondary battery

Publications (2)

Publication Number Publication Date
JP2020071906A JP2020071906A (en) 2020-05-07
JP7116890B2 true JP7116890B2 (en) 2022-08-12

Family

ID=70549584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018202698A Active JP7116890B2 (en) 2018-10-29 2018-10-29 secondary battery

Country Status (1)

Country Link
JP (1) JP7116890B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208136A (en) 1999-01-13 2000-07-28 Nec Corp Manufacture of battery electrode, battery electrode and secondary battery
JP2005011660A (en) 2003-06-18 2005-01-13 Nissan Motor Co Ltd Secondary battery electrode, manufacturing method of the same, and secondary battery using the same
JP2006338993A (en) 2005-06-01 2006-12-14 Sony Corp Nonaqueous electrolyte secondary battery
JP2007141622A (en) 2005-11-17 2007-06-07 Sumitomo Electric Ind Ltd Positive electrode for thin film battery and thin film battery
JP2008226639A (en) 2007-03-13 2008-09-25 Ngk Insulators Ltd All-solid battery
JP2012038528A (en) 2010-08-05 2012-02-23 Toyota Motor Corp Negative electrode plate, lithium ion secondary battery, and method for manufacturing negative electrode plate
JP2012113870A (en) 2010-11-22 2012-06-14 Sharp Corp Electrode for secondary battery, secondary battery, and manufacturing method of electrode for secondary battery
JP2014086174A (en) 2012-10-19 2014-05-12 Toyota Motor Corp All solid state battery and manufacturing method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294098A (en) * 1997-04-17 1998-11-04 Yuasa Corp Lithium battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208136A (en) 1999-01-13 2000-07-28 Nec Corp Manufacture of battery electrode, battery electrode and secondary battery
JP2005011660A (en) 2003-06-18 2005-01-13 Nissan Motor Co Ltd Secondary battery electrode, manufacturing method of the same, and secondary battery using the same
JP2006338993A (en) 2005-06-01 2006-12-14 Sony Corp Nonaqueous electrolyte secondary battery
JP2007141622A (en) 2005-11-17 2007-06-07 Sumitomo Electric Ind Ltd Positive electrode for thin film battery and thin film battery
JP2008226639A (en) 2007-03-13 2008-09-25 Ngk Insulators Ltd All-solid battery
JP2012038528A (en) 2010-08-05 2012-02-23 Toyota Motor Corp Negative electrode plate, lithium ion secondary battery, and method for manufacturing negative electrode plate
JP2012113870A (en) 2010-11-22 2012-06-14 Sharp Corp Electrode for secondary battery, secondary battery, and manufacturing method of electrode for secondary battery
JP2014086174A (en) 2012-10-19 2014-05-12 Toyota Motor Corp All solid state battery and manufacturing method therefor

Also Published As

Publication number Publication date
JP2020071906A (en) 2020-05-07

Similar Documents

Publication Publication Date Title
JP7018579B2 (en) battery
US20210359336A1 (en) Battery
US9373869B2 (en) Bipolar all-solid-state battery
JP5880409B2 (en) Manufacturing method of all-solid lithium secondary battery
EP2003722A2 (en) Stacked cell
EP2003723A1 (en) Stacked cell and method for manufacturing same
KR102303678B1 (en) All-solid-state battery stack
JP7562947B2 (en) All-solid-state battery stack
JP2007273349A (en) Stacked battery and manufacturing method therefor
WO2012077176A1 (en) Lithium ion secondary battery and process for manufacture of lithium ion secondary battery
JP7188991B2 (en) All-solid battery
JP7169520B2 (en) All-solid battery
JP2015018670A (en) Bipolar battery
CN112054189A (en) Nonaqueous electrolyte secondary battery
JP7116890B2 (en) secondary battery
JP7484683B2 (en) All-solid-state battery
JP7318672B2 (en) All-solid battery
JP2007234453A (en) Secondary battery and its vehicle mounting structure
JP2022108202A (en) All-solid-state battery
JP7433004B2 (en) all solid state battery
KR20200052234A (en) Non-aqueous electrolyte secondary battery
CN106165144B (en) Platypelloid type secondary cell
US20240178459A1 (en) Solid-state battery and method of manufacturing same
US20240154105A1 (en) Battery and method for producing the same
JP7174325B2 (en) All-solid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220713

R151 Written notification of patent or utility model registration

Ref document number: 7116890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151