JP5898581B2 - Two-fluid spray device, pressurized liquid supply device - Google Patents

Two-fluid spray device, pressurized liquid supply device Download PDF

Info

Publication number
JP5898581B2
JP5898581B2 JP2012163799A JP2012163799A JP5898581B2 JP 5898581 B2 JP5898581 B2 JP 5898581B2 JP 2012163799 A JP2012163799 A JP 2012163799A JP 2012163799 A JP2012163799 A JP 2012163799A JP 5898581 B2 JP5898581 B2 JP 5898581B2
Authority
JP
Japan
Prior art keywords
supply system
liquid
compressed gas
pressurized liquid
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012163799A
Other languages
Japanese (ja)
Other versions
JP2014023976A (en
Inventor
寧 森園
寧 森園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2012163799A priority Critical patent/JP5898581B2/en
Publication of JP2014023976A publication Critical patent/JP2014023976A/en
Application granted granted Critical
Publication of JP5898581B2 publication Critical patent/JP5898581B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本実施形態は、圧縮気体例えば圧縮空気により液体例えば水を加圧した液体を供給可能な加圧液体供給装置(加圧ポンプ)と、この加圧液体供給装置を利用した二流体噴霧装置に関する。   The present embodiment relates to a pressurized liquid supply apparatus (pressurization pump) capable of supplying a liquid, for example, a liquid pressurized with water by compressed gas, for example, compressed air, and a two-fluid spraying apparatus using the pressurized liquid supply apparatus.

従来、液体の加圧手段として、一般的に(1)ベーンポンプ、(2)タービンポンプ、
(3)ダイヤフラムポンプが用いられてきた。
Conventionally, as a means for pressurizing liquid, generally (1) a vane pump, (2) a turbine pump,
(3) Diaphragm pumps have been used.

特開2007−139403号公報JP 2007-139403 A 特開2011−21830号公報JP 2011-21830 A 特開2007−154733号公報JP 2007-154733 A 特開2010−247106号公報JP 2010-247106 A

しかしながら、各ポンプ(1)、(2)、(3)には次のような問題がある。(1)の問題として、高揚程時のポンプの大容量化がある。   However, each pump (1), (2), (3) has the following problems. As a problem of (1), there is an increase in capacity of a pump at a high head.

また、(1)と(2)の共通問題としてモータベアリングの寿命(15000h程度)によるポンプ自体の定期交換の必要性、圧力一定制御を行う場合、モータの回転数制御の為のインバータ設置の必要性がある。   In addition, the common problems of (1) and (2) are the necessity of periodic replacement of the pump itself due to the life of the motor bearing (about 15000h), and the necessity of installing an inverter for controlling the motor speed when performing constant pressure control. There is sex.

一方、(3)では脈動とダイヤフラムの劣化による8,000h程度毎の定期メンテナンスの問題、圧力についてはリリーフ弁に因る制御しかできず、正確な圧力制御は困難である点である。   On the other hand, in (3), the problem of regular maintenance every 8,000 hours due to pulsation and diaphragm deterioration, the pressure can only be controlled by the relief valve, and accurate pressure control is difficult.

また、全て(1)、(2)、(3)に共通して、流量と揚程に強い関係性があり、性能曲線により目的の流量と圧力を得ることができるか、ポンプ性能を見極める必要がある等の問題がある。   Also, common to all (1), (2) and (3), there is a strong relationship between the flow rate and the head, and it is necessary to determine whether the target flow rate and pressure can be obtained from the performance curve or to determine the pump performance. There are some problems.

また、以上述べた(1)、(2)、(3)を半導体製造工場のクリーンルーム内で使用する場合には、全てのポンプに共通して、モータからの発塵、(1)ではベーンがケーシングと接触しながら回転することによる、液体への磨耗粉の混入、(1)と(2)の共通問題として、メカニカルシール部からの僅かな異物の混入リスクがある等の問題があった。   When (1), (2) and (3) described above are used in a clean room of a semiconductor manufacturing factory, dust generation from the motor is common to all pumps, and vanes are generated in (1). As a problem common to both (1) and (2), there is a risk of contamination of a slight amount of foreign matter from the mechanical seal portion as a result of mixing of wear powder into the liquid by rotating while contacting the casing.

この様な問題への対策として特許文献3が挙げられるが、これはシリンダとピストンからなる駆動シリンダを使用していることから、ピストン製作時の寸法精度により流量と圧力の関係の制御範囲を広くしたり、大容量化することが困難と言う問題があった。   Patent Document 3 can be cited as a countermeasure to such a problem. Since this uses a drive cylinder consisting of a cylinder and a piston, the control range of the relationship between flow rate and pressure is widened by dimensional accuracy at the time of piston manufacture. There is a problem that it is difficult to increase the capacity.

本実施形態は、汎用の器具を用いて、流量と圧力の関係の制御範囲を広くでき、高い信頼性でメンテナンスフリー化が可能で、高精度かつ安定圧力が得られる液体供給装置と、この液体供給装置を利用した二流体噴霧装置を提供することを目的とする。   In the present embodiment, a general-purpose instrument can be used to widen the control range of the relationship between the flow rate and the pressure, and it is possible to make maintenance-free with high reliability and to obtain a highly accurate and stable pressure. It is an object of the present invention to provide a two-fluid spraying device using a supply device.

実施形態1は、加圧液体供給系からの加圧液体及び圧縮気体供給系からの圧縮気体を、二流体ノズルに供給して、これで得られる霧化流体を、必要とする箇所に噴射可能な二流体噴霧装置において、前記二流体ノズルの噴霧動作時に、前記圧縮気体供給系からの圧縮気体の圧力を、前記加圧液体供給系に印加できるようにすると共に、前記圧縮気体供給系からの圧縮気体により前記二流体ノズルに供給する液体の圧力を所望の値に制御するものであって、前記加圧液体供給系の内部の加圧液体の残量が不足したときに、補給液体を確保する液体補給系からの補給液体を、前記圧縮気体供給系の圧縮気体を用いて、前記加圧液体供給系の加圧液体より高い圧力として前記加圧液体供給系に供給する液体圧力制御手段を設け、前記加圧液体供給系の加圧液体の供給圧力を一定に保ちながら、連続的に噴霧することが可能である二流体噴霧装置である。 In the first embodiment, the pressurized liquid from the pressurized liquid supply system and the compressed gas from the compressed gas supply system are supplied to the two-fluid nozzle, and the atomized fluid obtained by this can be injected to a required place. In the two-fluid spraying device, during the spraying operation of the two-fluid nozzle, the pressure of the compressed gas from the compressed gas supply system can be applied to the pressurized liquid supply system, and from the compressed gas supply system Controls the pressure of the liquid supplied to the two-fluid nozzle by the compressed gas to a desired value, and secures replenishment liquid when the remaining amount of pressurized liquid in the pressurized liquid supply system is insufficient Liquid pressure control means for supplying the replenishment liquid from the liquid replenishment system to the pressurized liquid supply system as a pressure higher than the pressurized liquid of the pressurized liquid supply system using the compressed gas of the compressed gas supply system. The pressurized liquid supply system While maintaining the supply pressure of the pressurized liquid to a constant, a two-fluid spray device capable of spraying continuously.

実施形態4は、液体供給源から供給される液体の圧力を、供給される圧力より加圧して必要とする箇所に供給する加圧液体供給装置において、加圧液体供給系に、圧縮気体供給系からの圧縮気体の圧力が、印加できるように構成し、前記圧縮気体供給系からの圧縮気体により液体の圧力を一定に制御する液体圧力制御手段を設けた加圧液体供給装置である。   Embodiment 4 is a pressurized liquid supply apparatus that supplies a pressure of a liquid supplied from a liquid supply source to a required place by pressurizing from the supplied pressure, and the compressed liquid supply system includes a compressed gas supply system. The pressurized liquid supply device is provided with liquid pressure control means configured to be able to apply the pressure of the compressed gas from, and to control the pressure of the liquid constant by the compressed gas from the compressed gas supply system.

以上述べた実施形態によれば、汎用の器具を用いて、流量と圧力の関係の制御範囲を広くでき、高い信頼性でメンテナンスフリー化が可能で、高精度かつ安定圧力が得られる液体供給装置と、この液体供給装置を利用した二流体噴霧装置を提供することができる。   According to the embodiment described above, a liquid supply device that can widen the control range of the relationship between the flow rate and the pressure using a general-purpose instrument, can be made maintenance-free with high reliability, and can obtain a highly accurate and stable pressure. And the two-fluid spraying apparatus using this liquid supply apparatus can be provided.

本実施形態の加圧ポンプ、または、これを利用した二流体噴霧装置が適用されるシステムの概略構成図。1 is a schematic configuration diagram of a system to which a pressurizing pump of the present embodiment or a two-fluid spray device using the pressurizing pump is applied. 実施形態1の圧空加圧による連続給水二流体噴霧装置を説明するための概略構成図。The schematic block diagram for demonstrating the continuous water supply 2 fluid spraying apparatus by the pressurized air pressurization of Embodiment 1. FIG. 実施形態1の圧空加圧による連続給水二流体噴霧装置を説明するための概略構成図。The schematic block diagram for demonstrating the continuous water supply 2 fluid spraying apparatus by the pressurized air pressurization of Embodiment 1. FIG. 実施形態1の圧空加圧による連続給水二流体噴霧装置を説明するための概略構成図。The schematic block diagram for demonstrating the continuous water supply 2 fluid spraying apparatus by the pressurized air pressurization of Embodiment 1. FIG. 実施形態2の圧空加圧による連続給水二流体噴霧装置を説明するための概略構成図。The schematic block diagram for demonstrating the continuous water supply two-fluid spraying apparatus by the pressurized air pressurization of Embodiment 2. FIG. 実施形態2の圧空加圧による連続給水二流体噴霧装置を説明するための概略構成図。The schematic block diagram for demonstrating the continuous water supply two-fluid spraying apparatus by the pressurized air pressurization of Embodiment 2. FIG. 実施形態2の圧空加圧による連続給水二流体噴霧装置を説明するための概略構成図。The schematic block diagram for demonstrating the continuous water supply two-fluid spraying apparatus by the pressurized air pressurization of Embodiment 2. FIG. 実施形態3の圧空加圧による間欠給水二流体噴霧装置を説明するための概略構成図。The schematic block diagram for demonstrating the intermittent water supply two-fluid spraying apparatus by the compressed air pressurization of Embodiment 3. FIG. 実施形態3の圧空加圧による間欠給水二流体噴霧装置を説明するための概略構成図。The schematic block diagram for demonstrating the intermittent water supply two-fluid spraying apparatus by the compressed air pressurization of Embodiment 3. FIG. 実施形態3の圧空加圧による間欠給水二流体噴霧装置を説明するための概略構成図。The schematic block diagram for demonstrating the intermittent water supply two-fluid spraying apparatus by the compressed air pressurization of Embodiment 3. FIG. 実施形態4の圧空加圧による連続給水ポンプを説明するための概略構成図。The schematic block diagram for demonstrating the continuous water supply pump by the compressed air pressurization of Embodiment 4. FIG. 実施形態4の圧空加圧による連続給水ポンプを説明するための概略構成図。The schematic block diagram for demonstrating the continuous water supply pump by the compressed air pressurization of Embodiment 4. FIG. 実施形態4の圧空加圧による連続給水ポンプを説明するための概略構成図。The schematic block diagram for demonstrating the continuous water supply pump by the compressed air pressurization of Embodiment 4. FIG. 実施形態5の圧空加圧による連続給水ポンプを説明するための概略構成図。The schematic block diagram for demonstrating the continuous water supply pump by the pressurized air pressurization of Embodiment 5. FIG. 実施形態5の圧空加圧による連続給水ポンプを説明するための概略構成図。The schematic block diagram for demonstrating the continuous water supply pump by the pressurized air pressurization of Embodiment 5. FIG. 実施形態5の圧空加圧による連続給水ポンプを説明するための概略構成図。The schematic block diagram for demonstrating the continuous water supply pump by the pressurized air pressurization of Embodiment 5. FIG.

以下、実施の形態について、図面を参照して説明する。   Hereinafter, embodiments will be described with reference to the drawings.

始めに、図1を参照して、以下に述べる本案の装置100である、加圧液体供給装置と、この加圧液体供給装置を利用した二流体噴霧装置が適用されるシステムの概略について説明する。   First, an outline of a system to which a pressurized liquid supply apparatus and a two-fluid spraying apparatus using the pressurized liquid supply apparatus, which are the apparatus 100 of the present invention described below, is applied will be described with reference to FIG. .

例えば、クリーンルーム01内には半導体製造装置02が設置され、この内部の温度、湿度が所定値になるように、空調機03との間で給気、還気が行われるようになったり、
クリーンルーム01内の温度と湿度を検出器で検出し、これを空調制御盤09に取り込み、これらと目標値との差に応じて、空調機03内に有する冷却コイル04に供給する冷水供給系の比例制御弁011の指令を変更したり、さらには空調機03内に有する加熱コイル05に供給する温水供給系の比例制御弁012の指令を変更したりするようになっている。
For example, a semiconductor manufacturing apparatus 02 is installed in the clean room 01, and air supply and return air are performed with the air conditioner 03 so that the temperature and humidity inside the clean room 01 become predetermined values.
The temperature and humidity in the clean room 01 are detected by a detector, and this is taken into the air conditioning control panel 09, and the chilled water supply system that supplies the cooling coil 04 in the air conditioner 03 according to the difference between them and the target value. The command of the proportional control valve 011 is changed, and further, the command of the proportional control valve 012 of the hot water supply system supplied to the heating coil 05 provided in the air conditioner 03 is changed.

これ以外の構成として、空調機03の内部には、複数の二流体ノズル9を備えた二流体噴霧ヘッダーユニット06と、二流体噴霧ヘッダーユニット06から噴霧される雰囲気を、クリーンルーム01内に強制的に送るためのファン07と、後述する蒸気加湿ユニット08とを備えている。蒸気加湿ユニット08には、空調機03の外部に設置された蒸気系に設けられた比例制御弁013の二次側の蒸気が供給され、比例制御弁013の指令は後述するノズル制御盤010から与えられるようになっている。   As a configuration other than this, in the air conditioner 03, the two-fluid spray header unit 06 having a plurality of two-fluid nozzles 9 and the atmosphere sprayed from the two-fluid spray header unit 06 are forced into the clean room 01. And a steam humidifying unit 08 to be described later. The steam humidification unit 08 is supplied with the steam on the secondary side of the proportional control valve 013 provided in the steam system installed outside the air conditioner 03, and the command of the proportional control valve 013 is from a nozzle control panel 010 described later. It has come to be given.

二流体噴霧制御盤010は、空調制御盤09からの既設蒸気加湿指令が与えられ、これに基づいて比例制御弁013の指令が与えられ、二流体噴霧制御盤010には純水供給系及び圧空(圧縮空気)供給系が接続され、純水供給系からの純水及び圧空供給系からの圧空は、それぞれ二流体噴霧ヘッダーユニット06の各ノズル9に供給されるように配管が設けられ、本実施形態の加圧液体供給装置例えば加圧ポンプまたは加圧液体供給装置例えば加圧ポンプを利用した機構が設けられている。   The two-fluid spray control panel 010 is given an existing steam humidification command from the air-conditioning control panel 09, and based on this is given a command for the proportional control valve 013. The two-fluid spray control panel 010 is supplied with a pure water supply system and a compressed air. (Compressed air) supply system is connected, and piping is provided so that pure water from the pure water supply system and compressed air from the compressed air supply system are supplied to each nozzle 9 of the two-fluid spray header unit 06, respectively. A mechanism using a pressurized liquid supply apparatus such as a pressurized pump or a pressurized liquid supply apparatus such as a pressurized pump according to the embodiment is provided.

ここで、使用する二流体ノズル9は、例えば特許文献4に示すように、圧縮気体供給系例えば空気供給系からの圧縮空気及び加圧液体供給系例えば純水供給系からの水を供給し、水を微粒子化して噴霧できる複数の二流体ノズルである。   Here, the two-fluid nozzle 9 to be used supplies compressed air from a compressed gas supply system, for example, an air supply system and water from a pressurized liquid supply system, for example, a pure water supply system, as shown in Patent Document 4, for example, It is a plurality of two-fluid nozzles that can atomize and spray water.

次に実施形態1について図2乃至図4を参照して説明するが、実施形態1は概略、共通(同一)の圧縮気体供給系(圧縮気体供給系統)からの圧縮気体及び加圧液体供給系(加圧液体供給系統)から加圧液体を、二流体ノズルに供給して、これで得られる霧化流体を、必要とする箇所に噴射可能な二流体噴霧装置において、前記圧縮気体供給系からの圧縮気体の圧力が、前記加圧液体供給系に供給できるように、流体供給系(流体供給系統)を設け、この流体供給系に前記圧縮気体により前記液体の圧力を制御可能な液体圧力制御手段を設けた二流体噴霧装置である。   Next, the first embodiment will be described with reference to FIG. 2 to FIG. 4, but the first embodiment is generally a compressed gas and pressurized liquid supply system from a common (same) compressed gas supply system (compressed gas supply system). In a two-fluid spraying device capable of supplying a pressurized fluid from a (pressurized liquid supply system) to a two-fluid nozzle and injecting the atomized fluid obtained thereby to a required place, from the compressed gas supply system A fluid supply system (fluid supply system) is provided so that the pressure of the compressed gas can be supplied to the pressurized liquid supply system, and the pressure of the liquid can be controlled by the compressed gas in the fluid supply system A two-fluid spraying device provided with means.

また、実施形態1は概略、加圧液体供給系からの加圧液体及び共通(同一)の圧縮気体供給系からの圧縮気体を、二流体ノズルに供給して、これで得られる霧化流体を、必要とする箇所に噴射可能な二流体噴霧装置において、前記二流体ノズルの噴霧動作時に、前記圧縮気体供給系からの圧縮気体の圧力を、前記加圧液体供給系に印加できるようにすると共に、前記圧縮気体供給系からの圧縮気体により前記二流体ノズルに供給する液体の圧力を所望の値に制御するものであって、前記加圧液体供給系の内部の加圧液体の残量が不足したときに、補給加圧液体を確保する液体補給系からの補給加圧液体を、前記圧縮気体供給系の圧縮気体を用いて、前記加圧液体供給系の加圧液体より高い圧力として前記加圧液体供給系に供給する液体圧力制御手段を設け、前記加圧液体供給系の加圧液体の供給圧力を一定に保ちながら、連続的に噴霧することが可能である二流体噴霧装置である。   Further, the first embodiment generally supplies the pressurized fluid from the pressurized liquid supply system and the compressed gas from the common (same) compressed gas supply system to the two-fluid nozzle, and the atomized fluid obtained by this is supplied. In the two-fluid spray device capable of spraying to a required place, the pressure of the compressed gas from the compressed gas supply system can be applied to the pressurized liquid supply system during the spray operation of the two-fluid nozzle. The pressure of the liquid supplied to the two-fluid nozzle is controlled to a desired value by the compressed gas from the compressed gas supply system, and the remaining amount of the pressurized liquid in the pressurized liquid supply system is insufficient The replenished pressurized liquid from the liquid replenishment system that secures the replenished pressurized liquid is applied as a pressure higher than the pressurized liquid of the pressurized liquid supply system using the compressed gas of the compressed gas supply system. Liquid pressure control supplied to pressurized liquid supply system It means provided, while maintaining the supply pressure of the pressurized liquid of the pressurized liquid supply system constant, a two-fluid spray device capable of spraying continuously.

以下これについて具体的に説明する。圧縮気体供給系(圧縮気体供給系統)は、例えば圧縮空気供給系(圧縮空気供給系統)Aであり、これは図1のノズル制御盤010の外部に設置された空気圧縮機(図示しない)と、二流体ノズル9の空気供給口を接続する配管と、この配管の途中に設けられた空気系電磁弁11と、三方に分岐した空気系チーズ継手12と、三方に分岐した空気系のノズル側のチーズ継手13と、電空レギュレータ14を備えている。   This will be specifically described below. The compressed gas supply system (compressed gas supply system) is, for example, a compressed air supply system (compressed air supply system) A, which is an air compressor (not shown) installed outside the nozzle control panel 010 in FIG. , A pipe connecting the air supply port of the two-fluid nozzle 9, an air solenoid valve 11 provided in the middle of the pipe, an air cheese joint 12 branched in three directions, and an air system nozzle side branched in three directions The cheese joint 13 and the electropneumatic regulator 14 are provided.

空気系一次電磁弁(PA1V)11の一次側に例えば700kPaの圧縮空気が供給され、この圧縮空気は継手12、13を介して電空レギュレータ14により例えば300kPaに一定に減圧調整され、この減圧された空気が二流体ノズル9の空気供給口に供給されるようになっている。   Compressed air of 700 kPa, for example, is supplied to the primary side of the air system primary solenoid valve (PA1V) 11, and this compressed air is depressurized and adjusted to 300 kPa, for example, by the electropneumatic regulator 14 through the joints 12, 13, and this pressure is reduced The air is supplied to the air supply port of the two-fluid nozzle 9.

液体供給系(液体供給系統)は、例えば純水供給系(純水供給系統)Wであり、これは図1のノズル制御盤010の外部に設置された純水供給源(図示しない)と、二流体ノズル9の空気供給口を接続する配管と、この配管の途中に設けられた純水系一次電磁弁(PW1V)1と、チャッキ弁2と、三方に分岐した給水タンクチーズ継手3と、給水タンク下部側電磁弁(STLV)4と、チャッキ弁5と、三方に分岐したバッファタンクチーズ継手6と、ノズルチーズ継手7と、バッファタンク下部電磁弁(BTLV)8とを備えている。   The liquid supply system (liquid supply system) is, for example, a pure water supply system (pure water supply system) W, which includes a pure water supply source (not shown) installed outside the nozzle control panel 010 in FIG. A pipe connecting the air supply port of the two-fluid nozzle 9, a pure water primary solenoid valve (PW1V) 1 provided in the middle of the pipe, a check valve 2, a water tank cheese joint 3 branched in three directions, and a water supply A tank lower side solenoid valve (STLV) 4, a check valve 5, a buffer tank cheese joint 6 branched in three directions, a nozzle cheese joint 7, and a buffer tank lower solenoid valve (BTLV) 8 are provided.

液体圧力制御手段(圧縮気体印加制御手段)は、例えば圧縮空気系Aからの圧縮空気aを、例えば純水供給系Wに供給し、これにより給水wの圧力を制御可能に、流体供給系統例えば水圧力制御用配管を設け、この水圧力制御用配管の途中に以下に述べる水圧力制御機器を設けたものである。   The liquid pressure control means (compressed gas application control means) supplies, for example, the compressed air a from the compressed air system A to, for example, the pure water supply system W, thereby enabling the pressure of the feed water w to be controlled. A water pressure control pipe is provided, and a water pressure control device described below is provided in the middle of the water pressure control pipe.

すなわち、チーズ継手12の開口端の一つとチーズ継手3の開口端の一つとの間に、スピードコントローラ21を有しかつ大気側に開口部を有するスピードコントローラ29を備えた給水タンク上部側三方電磁弁(STHV)22と、高水位計(STHL)26と、三方に分岐した給水タンクチーズ継手23と、ポリプロピレン製ボールチャッキ弁24と、給水タンク25とが配設され、給水タンク25には低水位計(STLL)27が取付けられている。   That is, the water tank upper side three-way electromagnetic wave provided with a speed controller 21 having a speed controller 21 and having an opening on the atmosphere side between one open end of the cheese joint 12 and one open end of the cheese joint 3. A valve (STHV) 22, a high water level meter (STHL) 26, a water tank cheese joint 23 branched in three directions, a polypropylene ball check valve 24, and a water tank 25 are disposed. A water level gauge (STLL) 27 is attached.

チーズ継手13とチーズ継手6との間に、液体専用例えば水専用電空レギュレータ31と、三方に分岐したチーズ継手32と、ポリプロピレン製ボールチャッキ弁33と、三方に分岐した給水チーズ継手34と、バッファタンク(BT)35と、三方に分岐した給水チーズ継手37とが配設されている。チーズ継手34には高水位計(BTHL)36が取付けられ、チーズ継手37には低水位計(BTLL)38が取付けられ、チーズ継手32の一方の開口部にはバッファタンク内圧力の大気開放用の電磁弁(BTHV)28が接続されている。   Between the cheese joint 13 and the cheese joint 6, a liquid-only electropneumatic regulator 31, a cheese joint 32 branched in three directions, a polypropylene ball check valve 33, a water supply cheese joint 34 branched in three directions, A buffer tank (BT) 35 and a water supply cheese joint 37 branched in three directions are provided. A high water level gauge (BTHL) 36 is attached to the cheese joint 34, a low water level gauge (BTLL) 38 is attached to the cheese joint 37, and one opening of the cheese joint 32 is used to release the pressure in the buffer tank to the atmosphere. The solenoid valve (BTHV) 28 is connected.

電空レギュレータ31は、バッファタンク35内の純水に印加される圧縮空気の圧力を、一定に減圧するもので、給気系の一次圧力が例えば700kPaであるものを、例えば290kPa(一定)と減圧するものである。   The electropneumatic regulator 31 reduces the pressure of the compressed air applied to the pure water in the buffer tank 35 to a constant level. The primary pressure of the air supply system is, for example, 700 kPa, for example, 290 kPa (constant). The pressure is reduced.

図1のノズル制御盤010には、バッファタンク35に有し、内部の液位が最低になったことを検出する低水位計38の検出信号が入力され、これによりノズル制御盤010が給水タンク25内の水をバッファタンク35に移送するための移送指令、具体的には電磁弁11を開放状態、電磁弁22を開放状態、電磁弁1を開放状態、電磁弁4を開放状態にする指令が与えられる。この状態では給水タンク25内の水には、給気系の圧縮空気の圧力(700kPa)がスピードコントローラ21を介して徐々に印加されるので、給水タンク25内の水がバッファタンク35内に移送される。この時、電磁弁1は開放状態でも、2のチャッキ弁があるため、水がPW-1Vの一次側に逆流する事は無い。この移送状態が継続すると、給水タンク25内の水がバッファタンク35内に移送されて、給水タンク25内の水位が低下したことを、給水タンク25に有する低水位計27が検出し、この検出信号がノズル制御盤010に与えられ、移送停止指令、具体的に電磁弁22が閉止状態、電磁弁4が閉止状態となり、給水タンク25内の水がバッファタンク35内に移送されるのが停止すると共に給水源から純水が給水タンク25に供給される。この状態が所定時間継続し、給水タンク25が満杯になると、給水タンク25に有するチャッキ弁24の玉が浮かび、水の流れがせき止められることで給水源からの純水の供給が停止される。   The nozzle control panel 010 of FIG. 1 has a detection signal of a low water level meter 38 that is provided in the buffer tank 35 and detects that the internal liquid level has become the lowest, whereby the nozzle control panel 010 receives the water tank. A transfer command for transferring the water in the buffer tank 35 to the buffer tank 35, specifically, a command to open the electromagnetic valve 11, open the electromagnetic valve 22, open the electromagnetic valve 1, and open the electromagnetic valve 4. Is given. In this state, since the pressure (700 kPa) of compressed air in the air supply system is gradually applied to the water in the water supply tank 25 via the speed controller 21, the water in the water supply tank 25 is transferred into the buffer tank 35. Is done. At this time, even if the solenoid valve 1 is in an open state, since there is a check valve 2, water does not flow backward to the primary side of PW-1V. When this transfer state continues, the water in the water supply tank 25 is transferred into the buffer tank 35, and the low water level meter 27 in the water supply tank 25 detects that the water level in the water supply tank 25 has decreased. A signal is given to the nozzle control panel 010, a transfer stop command, specifically, the solenoid valve 22 is closed, the solenoid valve 4 is closed, and the water in the water supply tank 25 is stopped from being transferred into the buffer tank 35. At the same time, pure water is supplied from the water supply source to the water supply tank 25. When this state continues for a predetermined time and the water supply tank 25 becomes full, the ball of the check valve 24 in the water supply tank 25 floats and the flow of water is stopped, thereby stopping the supply of pure water from the water supply source.

なお、バッファタンク35及び給水タンク25には、それぞれ高水位となったことを検出する高水位計36、26が設けられており、この検出出力はノズル制御盤010に入力されるようになっており、これらは内部に水が満杯若しくはチャッキ弁24から水がリークしたときに生ずる致命的な問題を事前に防ぐための、フェールセーフ機能として利用できるようになっている。   The buffer tank 35 and the water supply tank 25 are respectively provided with high water level meters 36 and 26 for detecting that the water level has become high, and this detection output is input to the nozzle control panel 010. These can be used as a fail-safe function for preventing in advance a fatal problem that occurs when water is filled inside or water leaks from the check valve 24.

ここで、図2を参照して始動時水張り制御について説明する。始動時は、電磁弁11は閉じ、電空レギュレータ14、31の設定値は0で、電磁弁1、4、22、8、28を開いて、バッファタンク35内に水張りを行う。この後、バッファタンク35の高水位計36が動作して水位が検知されたとき、噴霧を開始する。始動時の水張り制御タイムアップ時間は例えば120秒以内に、高水位計36が液位を検知しない場合、始動時水張り制御タイムアップを発報して噴霧開始制御を開始する。次に、電磁弁22、4、28、8を閉止、電磁弁11を開き噴霧の開始制御が開始される。この場合、電磁弁8は閉止状態でも水の流れの方向は電磁弁の設置方向とは逆向きの流れのため、バッファタンク35内から水が二流体ノズル9の給水系に供給される。これと同時に、給水タンク25内にも水が供給され、給水タンク25内が満杯になると、高水位計26が動作して給水タンク25内への給水が止まる。このように始動時水張り制御が行われる。   Here, the start water filling control will be described with reference to FIG. At the time of starting, the solenoid valve 11 is closed, the set values of the electropneumatic regulators 14 and 31 are 0, the solenoid valves 1, 4, 22, 8 and 28 are opened to fill the buffer tank 35 with water. Thereafter, when the high water level meter 36 of the buffer tank 35 is operated and a water level is detected, spraying is started. When the high water level meter 36 does not detect the liquid level within 120 seconds, for example, the water filling control time-up time at start-up is started, and the spray start control is started by issuing a time-up water filling control time-up. Next, the solenoid valves 22, 4, 28, and 8 are closed, the solenoid valve 11 is opened, and spray start control is started. In this case, even when the solenoid valve 8 is closed, the direction of water flow is opposite to the direction in which the solenoid valve is installed, so that water is supplied from the buffer tank 35 to the water supply system of the two-fluid nozzle 9. At the same time, water is also supplied into the water supply tank 25, and when the water supply tank 25 is full, the high water level meter 26 operates to stop water supply into the water supply tank 25. In this way, water filling control at start-up is performed.

なお、電磁弁8としては、パイロット形を使用しているので、次のような効果がある。すなわち、ノズル9の通常噴霧中には、電磁弁8が閉止状態であるが、電磁弁8に表示されている流れ方向の矢印は、ヘッダ→バッファタンク35の方向で、逆方向であるため、給水供給系Wのバッファタンク35に対して水の供給が可能となる。ここで、電磁弁8として直動形の電磁弁を使用した場合、直動形の電磁弁は、1回の噴霧発停止に対して、2回の開閉動作が必要になることと、電磁弁28と、独立した二つの電磁弁指令用デジタル出力が必要となるため、電磁弁を使用している。   Since the solenoid valve 8 uses a pilot type, the following effects are obtained. That is, during normal spraying of the nozzle 9, the solenoid valve 8 is in a closed state, but the arrow of the flow direction displayed on the solenoid valve 8 is the reverse direction in the direction of the header → buffer tank 35. Water can be supplied to the buffer tank 35 of the water supply system W. Here, when a direct acting solenoid valve is used as the solenoid valve 8, the direct acting solenoid valve requires two opening and closing operations for one stop of spraying, and the solenoid valve 28 and two independent solenoid valve command digital outputs are required, so a solenoid valve is used.

以上述べた実施形態1によれば、特許文献1のようにシリンダとピストンからなる駆動シリンダを使用することなく、汎用の器具を用い、かつ2個の電空レギュレータを使用するだけで、駆動シリンダを使用することによる問題点を改善できる二流体噴霧装置を提供できる。具体的には、流量と圧力の関係の制御範囲を広くでき、高い信頼性でメンテナンスフリー化が可能で、高精度かつ安定圧力が連続的に得られる二流体噴霧装置を提供できる。また、給気系統に有する電空レギュレータ14とは別に給水専用の電空レギュレータ31を設けており、空気の膨張により液体圧力を制御する為、応答速度も非常に速い特性を有している。   According to Embodiment 1 described above, a drive cylinder can be obtained by using a general-purpose instrument and using two electropneumatic regulators without using a drive cylinder composed of a cylinder and a piston as in Patent Document 1. Thus, it is possible to provide a two-fluid spray device that can improve the problems caused by the use of. Specifically, it is possible to provide a two-fluid spray device that can widen the control range of the relationship between the flow rate and the pressure, can be maintenance-free with high reliability, and can obtain a highly accurate and stable pressure continuously. Further, an electropneumatic regulator 31 dedicated to water supply is provided separately from the electropneumatic regulator 14 included in the air supply system, and the liquid pressure is controlled by the expansion of air, so that the response speed is very fast.

実施形態2について図5乃至図7を参照して説明するが、図2乃至図4の実施形態1と異なる点は、圧縮空気供給系Aとバッファタンク35との間に設けた水専用電空レギュレータ31を設けず、バッファタンク35の吐出側と二流体ノズル9の給水系の間に比例制御弁41を設け、給気系の電磁弁11の一次側と給水タンク25の間に三方電磁弁42を設け、バッファタンク35の吐出側とチャッキ弁5の間に分岐した給水系を設け、これに排水用電磁弁43を設けた点である。これ以外の点は、図2乃至図4と同一であるが、図5乃至図7は図2乃至図4に比べて簡略化したものとなっている。   The second embodiment will be described with reference to FIGS. 5 to 7. The difference from the first embodiment shown in FIGS. 2 to 4 is that the water-only electropneumatic unit provided between the compressed air supply system A and the buffer tank 35 is described. Without the regulator 31, a proportional control valve 41 is provided between the discharge side of the buffer tank 35 and the water supply system of the two-fluid nozzle 9, and a three-way electromagnetic valve is provided between the primary side of the electromagnetic valve 11 of the air supply system and the water supply tank 25. 42, a water supply system branched between the discharge side of the buffer tank 35 and the check valve 5 is provided, and a drainage electromagnetic valve 43 is provided thereon. The other points are the same as those in FIGS. 2 to 4, but FIGS. 5 to 7 are simplified as compared with FIGS. 2 to 4.

図5は、通常噴霧中の状態を説明するための図である。この状態は、圧縮空気供給系Aの電磁弁11が開放状態、純水供給系Wの電磁弁1が開放状態で比例制御弁41は所望の開度で開放状態となっていて、三方弁42が開放状態になっている。圧縮空気供給系Aの配管の一次側の圧力例えば圧空は600kPaで、これが電空レギュレータ14によりバッファタンク35及び二流体ノズル9に供給される圧力例えば圧空は300kPaとなっている。   FIG. 5 is a diagram for explaining a state during normal spraying. In this state, the solenoid valve 11 of the compressed air supply system A is open, the solenoid valve 1 of the pure water supply system W is open, the proportional control valve 41 is open at a desired opening degree, and the three-way valve 42 Is open. The pressure on the primary side of the piping of the compressed air supply system A, for example, compressed air is 600 kPa, and the pressure supplied to the buffer tank 35 and the two-fluid nozzle 9 by the electropneumatic regulator 14 is 300 kPa.

一方、純水供給系Wの配管の一次側の圧力は200kPaとなっており、給水タンク25内には水が満杯となっている。二流体ノズル9に供給する際の水の圧力例えば300kPaは、比例制御弁41により任意の圧力にコントロールすることができるようになっている。   On the other hand, the pressure on the primary side of the pipe of the pure water supply system W is 200 kPa, and the water supply tank 25 is full of water. The pressure of water when supplying the two-fluid nozzle 9, for example, 300 kPa, can be controlled to an arbitrary pressure by the proportional control valve 41.

図6は、二流体ノズル9で噴霧中の状態において、バッファタンク35内の水位が低水位計38以下になると、給水タンク25からバッファタンク35に液体の移送を開始する。   In FIG. 6, when the water level in the buffer tank 35 falls below the low water level gauge 38 in the state where the two-fluid nozzle 9 is spraying, the liquid transfer from the water supply tank 25 to the buffer tank 35 is started.

図7は、給水タンク25の水位が図6の状態からさらに下がり、低水位計27以下になると、三方弁42が閉止し電磁弁1側から給水タンク25内に液体が供給されて給水タンク25内が満杯になると、給水タンク25に有するチャッキ弁24の玉が浮かび、水の流れがせき止められることで給水源からの純水の供給が停止される。   In FIG. 7, when the water level of the water supply tank 25 further falls from the state of FIG. 6 and becomes the low water level gauge 27 or less, the three-way valve 42 is closed and the liquid is supplied into the water supply tank 25 from the solenoid valve 1 side. When the interior is full, the ball of the check valve 24 in the water supply tank 25 floats and the flow of water is blocked, thereby stopping the supply of pure water from the water supply source.

実施形態3について図8乃至図10を参照して説明するが、圧縮気体加圧による間欠給水噴霧装置を説明するための図である。圧縮空気供給系Aは、図示しない圧縮空気供給源と二流体ノズル9とを接続する配管に、電磁弁11とレギュレータ14を備え、圧縮空気供給源の圧力は例えば700kPaで、レギュレータ14の出力は300kPa又は0kPaに設定できるようになっている。水供給系Wは、図示しない水供給源と二流体ノズル9とを接続する配管に、電磁弁1を備えている。   Although Embodiment 3 is demonstrated with reference to FIG. 8 thru | or FIG. 10, it is a figure for demonstrating the intermittent water spray apparatus by compressed gas pressurization. The compressed air supply system A includes a solenoid valve 11 and a regulator 14 in a pipe connecting a compressed air supply source and a two-fluid nozzle 9 (not shown). The pressure of the compressed air supply source is 700 kPa, for example, and the output of the regulator 14 is It can be set to 300 kPa or 0 kPa. The water supply system W includes a solenoid valve 1 in a pipe connecting a water supply source (not shown) and the two-fluid nozzle 9.

さらに、レギュレータ14と二流体ノズル9とを接続する配管及び電磁弁1と二流体ノズル9とを接続する配管の間に配設され、内部の水が満杯になったことを検出する高水位計36と、内部の液体が低位になったことを検出する低水位計38を有するバッファタンク35とを備えている。   Further, a high water level meter that is disposed between a pipe that connects the regulator 14 and the two-fluid nozzle 9 and a pipe that connects the solenoid valve 1 and the two-fluid nozzle 9 and detects that the water inside is full. 36 and a buffer tank 35 having a low water level meter 38 for detecting that the liquid inside has become low.

図8は、二流体ノズル9が噴霧中の状態を示している。この場合、レギュレータ14がオンとなっているので圧縮空気の圧力は300kPaになっているので、この圧力がバッファタンク35内の水に印加されて、圧縮空気の供給と加圧水が二流体ノズル9に供給されて噴霧状態となる。   FIG. 8 shows a state in which the two-fluid nozzle 9 is spraying. In this case, since the regulator 14 is on, the pressure of the compressed air is 300 kPa. Therefore, this pressure is applied to the water in the buffer tank 35, and the supply of compressed air and the pressurized water are supplied to the two-fluid nozzle 9. Supplied and sprayed.

図9は、二流体ノズル9の噴霧が停止した後、電磁弁1が開放されてバッファタンク35及び二流体ノズル9の配管に液体が供給されている状態を示している。   FIG. 9 shows a state where the solenoid valve 1 is opened after the spraying of the two-fluid nozzle 9 is stopped and the liquid is supplied to the pipes of the buffer tank 35 and the two-fluid nozzle 9.

図10は、図9の状態からバッファタンク35内に水が入り満杯となり、これを高水位計36が検出して電磁弁1が閉止して水供給が停止した状態を示している。   FIG. 10 shows a state in which water enters the buffer tank 35 from the state of FIG. 9 and is full, and this is detected by the high water level meter 36, the electromagnetic valve 1 is closed, and the water supply is stopped.

実施形態4について図11乃至図13を参照して説明するが、これは圧縮空気加圧による加圧液体供給装置の一例である連続給水ポンプを説明するための図である。これは、水供給系Wからの加圧水を、必要とする箇所に供給する水供給装置において、水供給系Wに、圧縮空気供給系Aからの圧縮空気aの圧力が、印加できるように構成し、圧縮空気供給系Aからの圧縮空気aにより水の圧力を一定に制御する液体圧力制御手段を設けたものである。   Although Embodiment 4 is demonstrated with reference to FIG. 11 thru | or FIG. 13, this is a figure for demonstrating the continuous water supply pump which is an example of the pressurized liquid supply apparatus by compressed air pressurization. This is configured so that the pressure of the compressed air a from the compressed air supply system A can be applied to the water supply system W in the water supply apparatus that supplies the pressurized water from the water supply system W to the required place. In addition, liquid pressure control means for controlling the pressure of water to be constant by the compressed air a from the compressed air supply system A is provided.

概略、図2から図4の実施形態1の二流体ノズル9と電空レギュレータ14と、電磁弁8と、分岐7を省いた構成である。   2 to 4, the two-fluid nozzle 9, the electropneumatic regulator 14, the electromagnetic valve 8, and the branch 7 are omitted.

具体的には、純水供給系Wは、電磁弁1と、ボールチャッキ弁2と、給水タンク分岐3と、電磁弁4と、チャッキ弁5と、バッファタンク分岐6とからなっている。   Specifically, the pure water supply system W includes an electromagnetic valve 1, a ball check valve 2, a water supply tank branch 3, an electromagnetic valve 4, a check valve 5, and a buffer tank branch 6.

気体系統は、圧空電磁弁11と、給水タンク分岐12と、バッファタンク分岐13とからなっている。   The gas system includes a compressed air solenoid valve 11, a water supply tank branch 12, and a buffer tank branch 13.

給水タンク分岐12と給水タンク分岐3との間に、スピードコントローラ21と、三方電磁弁22と、分岐23と、チャッキ弁24と、給水タンク25とが配設されている。   Between the water supply tank branch 12 and the water supply tank branch 3, a speed controller 21, a three-way electromagnetic valve 22, a branch 23, a check valve 24, and a water supply tank 25 are disposed.

分岐23には高水位計26が取付けられ、給水タンク25には低水位計27が取付けられている。 A high water level gauge 26 is attached to the branch 23, and a low water level gauge 27 is attached to the water supply tank 25.

バッファタンク分岐13とバッファタンク分岐6との間に、水用電空レギュレータ31と、分岐32と、チャッキ弁33と、分岐34と、バッファタンク35と、分岐37とが配設されている。分岐34には高水位計36が取付けられ、分岐37には低水位計38が取付けられている。   Between the buffer tank branch 13 and the buffer tank branch 6, a water electro-pneumatic regulator 31, a branch 32, a check valve 33, a branch 34, a buffer tank 35, and a branch 37 are disposed. A high water level gauge 36 is attached to the branch 34, and a low water level gauge 38 is attached to the branch 37.

図11は、圧縮空気加圧による連続液体ポンプの通常運転中の状態を説明するための図であり、三方弁22は閉止状態で、圧縮空気供給系Aの配管圧力は例えば290kPaになっている。この状態で連続運転により、バッファタンク35の液位が低下して、低水位計38がオフになり、図示しない制御装置からは液体供給指令が出される。   FIG. 11 is a diagram for explaining a state during normal operation of the continuous liquid pump by compressed air pressurization. The three-way valve 22 is closed and the piping pressure of the compressed air supply system A is, for example, 290 kPa. . By continuous operation in this state, the liquid level in the buffer tank 35 is lowered, the low water level gauge 38 is turned off, and a liquid supply command is issued from a control device (not shown).

図12は、給水タンク25内に液体が移送中の状態を示しており、三方弁22は開放状態で、気体系の配管圧力は例えば290kPaになっている。図示しない制御装置からの液体供給指令により、三方弁22は開放され、気体系一次圧力で給水タンク25内の水がバッファタンク35内に移送される。この後、低水位計27がオフで、図示しない制御装置から液体供給指令が停止される。   FIG. 12 shows a state in which the liquid is being transferred into the water supply tank 25, the three-way valve 22 is in an open state, and the gas piping pressure is 290 kPa, for example. In response to a liquid supply command from a control device (not shown), the three-way valve 22 is opened, and the water in the water supply tank 25 is transferred into the buffer tank 35 with the gas system primary pressure. Thereafter, the low water level gauge 27 is turned off, and the liquid supply command is stopped from a control device (not shown).

図13は、水供給中の状態を説明するための図であり、三方弁22は閉止状態で、圧縮空気供給系Aの配管圧力は例えば290kPaになっている。図示しない制御装置からの液体供給指令により、三方弁22は閉止され、水供給系Wの一次圧により給水タンク25に水が供給される。給水タンク25が満杯になると、チャッキ弁の玉が液体に浮かんで液体供給が停止される。この場合、液体供給スピードは、給水タンク25の上部の三方弁11の出口側に設置されたスピードコントローラにより調整が可能である。   FIG. 13 is a diagram for explaining a state during the water supply. The three-way valve 22 is closed, and the piping pressure of the compressed air supply system A is, for example, 290 kPa. The three-way valve 22 is closed by a liquid supply command from a control device (not shown), and water is supplied to the water supply tank 25 by the primary pressure of the water supply system W. When the water supply tank 25 is full, the check valve ball floats on the liquid and the liquid supply is stopped. In this case, the liquid supply speed can be adjusted by a speed controller installed on the outlet side of the three-way valve 11 at the top of the water supply tank 25.

実施形態5について図14乃至図16を参照して説明するが、これは圧縮空気加圧による連続給水ポンプを説明するための図で、給水タンク25及びバッファタンク35の少なくとも一方の内部に、圧縮空気供給系Aからの圧縮空気aを収納し、かつ水供給系Wからの水wとを分離する内部容器25a、35aをそれぞれ設けた水供給装置である。ここで用いる内部容器25a、35aは、例えばゴム製の隔膜である。   Embodiment 5 will be described with reference to FIG. 14 to FIG. 16, which is a diagram for explaining a continuous water supply pump by compressed air pressurization, and in which at least one of a water supply tank 25 and a buffer tank 35 is compressed. It is a water supply device provided with internal containers 25a and 35a for storing compressed air a from the air supply system A and separating water w from the water supply system W, respectively. The inner containers 25a and 35a used here are rubber diaphragms, for example.

このように構成することで、圧縮空気と加圧水が接触せずに液体供給装置であるポンプの機能を得ることができる。   By comprising in this way, the function of the pump which is a liquid supply apparatus can be acquired, without compressed air and pressurized water contacting.

ここでは、圧空加圧による連続水供給ポンプを説明するための図で、図14は通常運転中を説明するための図であり、図15は給水タンク25内に水移送中を説明するための図であり、図16は送水中を説明するための図である。   Here, it is a figure for demonstrating the continuous water supply pump by a pressurized air pressurization, FIG. 14 is a figure for demonstrating during a normal driving | operation, FIG. 15 is for demonstrating during a water transfer in the water supply tank 25 FIG. 16 is a diagram for explaining water feeding.

図14は、電磁弁22、4が閉止で、電磁弁1が開放状態にある。このとき、水専用電空レギュレータ31の設定値はこの出力圧力が290kPaとなるように設定されており、連続運転により、バッファタンク35内の水量が低下して、バッファタンク35内の内部容器35aの膨張により低水位計38がオンになると給水指令判定となる。   In FIG. 14, the solenoid valves 22 and 4 are closed, and the solenoid valve 1 is in an open state. At this time, the set value of the water-only electropneumatic regulator 31 is set so that the output pressure becomes 290 kPa, and the amount of water in the buffer tank 35 decreases due to continuous operation, and the internal container 35a in the buffer tank 35 is reduced. When the low water level gauge 38 is turned on due to the expansion of the water supply, the water supply command is determined.

図15は、電磁弁22、4が開放で、電磁弁1が閉止状態にある。このとき、水専用電空レギュレータ31の設定値はこの出力圧力が290kPaとなるように設定されており、給水指令により電磁弁22、4が開放で、電磁弁1が閉止され、圧縮空気の一時圧力で給水タンク25内の水がバッファタンク35内に移送される。バッファタンク35内の圧力は、水専用電空レギュレータ31により一定に保たれる。予め設定したタイマーにより、一定時間後に三方弁が閉止して液体の移送を中止する。   In FIG. 15, the solenoid valves 22 and 4 are open, and the solenoid valve 1 is in a closed state. At this time, the set value of the water-only electropneumatic regulator 31 is set so that the output pressure is 290 kPa, and the solenoid valves 22 and 4 are opened by the water supply command, the solenoid valve 1 is closed, and the compressed air is temporarily discharged. The water in the water supply tank 25 is transferred into the buffer tank 35 by pressure. The pressure in the buffer tank 35 is kept constant by the water-only electropneumatic regulator 31. By a preset timer, the three-way valve is closed after a certain time and the liquid transfer is stopped.

図16は水供給停止により、電磁弁22、4が閉止、電磁弁1が開放され、水の一次圧により給水タンク25に水が供給される。給水タンク25が満杯になると、この内部容器25aが満杯になった状態で、水供給が止まる。電磁弁22の出口に設置されたスピードコントローラ21により給水の速度を調整が可能である。   In FIG. 16, when the water supply is stopped, the electromagnetic valves 22 and 4 are closed, the electromagnetic valve 1 is opened, and water is supplied to the water supply tank 25 by the primary pressure of water. When the water supply tank 25 is full, the water supply is stopped in a state where the internal container 25a is full. The speed of water supply can be adjusted by a speed controller 21 installed at the outlet of the electromagnetic valve 22.

前述した実施形態において、液体供給装置の一例である加圧ポンプのバックアップとしてダイヤフラムポンプ、渦流タービンポンプのいずれかを組合わせることで、より信頼性が向上する。   In the above-described embodiment, the reliability is further improved by combining either a diaphragm pump or a vortex turbine pump as a backup of a pressurizing pump that is an example of a liquid supply apparatus.

01…クリーンルーム、02…半導体製造装置、03…空調機、04…冷却コイル、05…加熱コイル、06…ノズルコイルユニット、07…ファン、08…蒸気加湿ユニット、09…空調制御盤、010…ノズル制御盤、011…比例制御弁、012…比例制御弁、013…比例制御弁、1…純水系一次電磁弁、2…チャッキ弁、3…給水タンクチーズ継手、4…給水タンク下部側電磁弁、5…チャッキ弁、6…バッファタンクチーズ継手、7…ノズルチーズ継手、8…電磁弁、9…二流体ノズル、11…空気系一次電磁弁、12…空気系チーズ継手、13…チーズ継手、14…電空レギュレータ、21…スピードコントローラ、22…給水タンク上部側三方電磁弁、23…給水タンクチーズ継手、24…チャッキ弁、25…給水タンク、26…高水位計、27…低水位計、28…電磁弁、29…継手、31…水専用電空レギュレータ、32…チーズ継手、33…チャッキ弁、34…給水チーズ継手、35…バッファタンク、36…高水位計、37…給水チーズ継手、38…低水位計、41…比例制御弁、42…二方電磁弁、43…電磁弁、100…本案の装置。   DESCRIPTION OF SYMBOLS 01 ... Clean room, 02 ... Semiconductor manufacturing apparatus, 03 ... Air conditioner, 04 ... Cooling coil, 05 ... Heating coil, 06 ... Nozzle coil unit, 07 ... Fan, 08 ... Steam humidification unit, 09 ... Air conditioning control panel, 010 ... Nozzle Control panel, 011 ... proportional control valve, 012 ... proportional control valve, 013 ... proportional control valve, 1 ... pure water primary solenoid valve, 2 ... check valve, 3 ... water tank cheese joint, 4 ... water tank lower side solenoid valve, DESCRIPTION OF SYMBOLS 5 ... Check valve, 6 ... Buffer tank cheese joint, 7 ... Nozzle cheese joint, 8 ... Solenoid valve, 9 ... Two-fluid nozzle, 11 ... Air system primary solenoid valve, 12 ... Air system cheese joint, 13 ... Cheese joint, 14 ... Electropneumatic regulator, 21 ... Speed controller, 22 ... Water tank upper side three-way solenoid valve, 23 ... Water tank cheese joint, 24 ... Check valve, 25 ... Water tank, 6 ... High water level meter, 27 ... Low water level meter, 28 ... Solenoid valve, 29 ... Fitting, 31 ... Water-pneumatic regulator, 32 ... Cheese fitting, 33 ... Check valve, 34 ... Water supply cheese fitting, 35 ... Buffer tank, 36 ... High water level meter, 37 ... Water supply cheese joint, 38 ... Low water level meter, 41 ... Proportional control valve, 42 ... Two-way solenoid valve, 43 ... Solenoid valve, 100 ... Device of this proposal.

Claims (4)

加圧液体供給系からの加圧液体及び圧縮気体供給系からの圧縮気体を、二流体ノズルに供給して、これで得られる霧化流体を、必要とする箇所に噴射可能な二流体噴霧装置において、
前記二流体ノズルの噴霧動作時に、前記圧縮気体供給系からの圧縮気体の圧力を、前記加圧液体供給系に印加できるようにすると共に、前記圧縮気体供給系からの圧縮気体により前記二流体ノズルに供給する液体の圧力を所望の値に制御するものであって、前記加圧液体供給系の内部の加圧液体の残量が不足したときに、補給液体を確保する液体補給系からの補給液体を、前記圧縮気体供給系の圧縮気体を用いて、前記加圧液体供給系の加圧液体より高い圧力として前記加圧液体供給系に供給する共に、前記加圧液体供給系の加圧液体の供給圧力を一定に保ちながら、連続的に噴霧することが可能な液体圧力制御手段を設けたことを特徴とする二流体噴霧装置。
A two-fluid spray device capable of supplying a pressurized fluid from a pressurized liquid supply system and a compressed gas from a compressed gas supply system to a two-fluid nozzle and injecting the atomized fluid obtained thereby to a required place In
During the spraying operation of the two-fluid nozzle, the pressure of the compressed gas from the compressed gas supply system can be applied to the pressurized liquid supply system, and the two-fluid nozzle by the compressed gas from the compressed gas supply system The pressure of the liquid supplied to the liquid is controlled to a desired value, and replenishment from a liquid replenishment system that secures replenishment liquid when the remaining amount of pressurized liquid in the pressurized liquid supply system is insufficient Using the compressed gas of the compressed gas supply system, the liquid is supplied to the pressurized liquid supply system as a pressure higher than the pressurized liquid of the pressurized liquid supply system, and the pressurized liquid of the pressurized liquid supply system A two-fluid spraying device provided with a liquid pressure control means capable of spraying continuously while maintaining a constant supply pressure.
前記加圧液体供給系に有する液体供給タンク及び前記液体補給系に有するバッファタンクの少なくとも一方の内部に、前記圧縮気体供給系からの圧縮気体を収納し、かつ前記液体供給系からの加圧液体とを分離する容器を設けたことを特徴とする請求項1記載の二流体噴霧装置。   The compressed gas from the compressed gas supply system is housed in at least one of the liquid supply tank in the pressurized liquid supply system and the buffer tank in the liquid replenishment system, and the pressurized liquid from the liquid supply system A two-fluid spraying device according to claim 1, further comprising a container for separating the two. 液体供給源から供給される液体の圧力を、供給される圧力より加圧して必要とする箇所に供給する加圧液体供給装置において、
加圧液体供給系に、圧縮気体供給系からの圧縮気体の圧力を印加できるように構成し、前記圧縮気体供給系からの圧縮気体により液体の圧力を一定に制御するものであって、前記加圧液体供給系の内部の加圧液体の残量が不足したときに、補給加圧液体を確保する液体補給系からの補給液体を、前記圧縮気体供給系の圧縮気体を用いて、前記加圧液体供給系の加圧液体より高い圧力として前記加圧液体供給系に供給する共に、前記加圧液体供給系の加圧液体の供給圧力を一定に保ちながら、連続的に加圧液体を供給することが可能な液体圧力制御手段を設けたことを特徴とする加圧液体供給装置。
In a pressurized liquid supply apparatus for supplying a liquid pressure supplied from a liquid supply source to a required place by pressurizing from the supplied pressure,
The pressurized liquid supply system is configured so that the pressure of the compressed gas from the compressed gas supply system can be applied, and the pressure of the liquid is controlled to be constant by the compressed gas from the compressed gas supply system. When the remaining amount of pressurized liquid inside the pressurized liquid supply system is insufficient, the replenishment liquid from the liquid replenishment system that secures the replenished pressurized liquid is compressed using the compressed gas of the compressed gas supply system. While supplying the pressurized liquid supply system with a higher pressure than the pressurized liquid of the liquid supply system, the pressurized liquid is continuously supplied while maintaining the supply pressure of the pressurized liquid of the pressurized liquid supply system constant. A pressurized liquid supply apparatus, characterized in that a liquid pressure control means is provided.
前記加圧液体供給系に有する液体供給タンク及び前記液体補給系に有するバッファタンクの少なくとも一方の内部に、前記圧縮気体供給系からの圧縮気体を収納し、かつ前記液体供給系からの加圧液体とを分離する容器を設けたことを特徴とする請求項3記載の加圧液体供給装置。   The compressed gas from the compressed gas supply system is housed in at least one of the liquid supply tank in the pressurized liquid supply system and the buffer tank in the liquid replenishment system, and the pressurized liquid from the liquid supply system 4. A pressurized liquid supply apparatus according to claim 3, further comprising a container for separating the liquid from the pressurized liquid.
JP2012163799A 2012-07-24 2012-07-24 Two-fluid spray device, pressurized liquid supply device Active JP5898581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012163799A JP5898581B2 (en) 2012-07-24 2012-07-24 Two-fluid spray device, pressurized liquid supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012163799A JP5898581B2 (en) 2012-07-24 2012-07-24 Two-fluid spray device, pressurized liquid supply device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2015153366A Division JP6007294B2 (en) 2015-08-03 2015-08-03 Two-fluid spraying device
JP2015153367A Division JP5948475B2 (en) 2015-08-03 2015-08-03 Pressurized liquid supply device

Publications (2)

Publication Number Publication Date
JP2014023976A JP2014023976A (en) 2014-02-06
JP5898581B2 true JP5898581B2 (en) 2016-04-06

Family

ID=50198163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012163799A Active JP5898581B2 (en) 2012-07-24 2012-07-24 Two-fluid spray device, pressurized liquid supply device

Country Status (1)

Country Link
JP (1) JP5898581B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220069091A (en) 2020-10-13 2022-05-26 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Air Nozzle Atomizer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101639124B1 (en) * 2014-09-30 2016-07-22 동의대학교 산학협력단 Liquid injection apparatus for hydrodynamic
JP2017176975A (en) * 2016-03-29 2017-10-05 東芝三菱電機産業システム株式会社 Binary fluid spray system, control device for binary fluid spray system
JP6813082B2 (en) 2017-03-27 2021-01-13 東芝三菱電機産業システム株式会社 Two-fluid sprayer
JP6586125B2 (en) * 2017-04-19 2019-10-02 株式会社テクノコア Mist generator
CN112870423B (en) * 2021-01-19 2022-09-13 北京建筑大学 Two-phase low-pressure driving ultrasonic atomization deodorization device and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4125245Y1 (en) * 1966-01-19 1966-12-24
JPS59180760U (en) * 1983-05-17 1984-12-03 ランズバ−グ・ゲマ株式会社 paint supply device
JPH049662U (en) * 1990-05-09 1992-01-28
JPH10235235A (en) * 1997-02-27 1998-09-08 Inax Corp Coater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220069091A (en) 2020-10-13 2022-05-26 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Air Nozzle Atomizer

Also Published As

Publication number Publication date
JP2014023976A (en) 2014-02-06

Similar Documents

Publication Publication Date Title
JP5898581B2 (en) Two-fluid spray device, pressurized liquid supply device
JP2014034027A (en) Two-fluid sprayer
US9133772B2 (en) Fuel system
JP6200786B2 (en) Pressurized liquid supply device, two-fluid spray device
JP6007294B2 (en) Two-fluid spraying device
JP6122722B2 (en) Gas supply device
US20220059854A1 (en) Flushing system and method for monitoring same
CN101389894A (en) Method and device for measuring gas leakage
JP6171040B2 (en) Two-fluid spraying device
JP5948475B2 (en) Pressurized liquid supply device
JP5990546B2 (en) Equipment equipped with at least one accumulator with hydraulic pressure and automatic maintenance function
US20110185772A1 (en) Variable pressure water delivery system
KR20160074935A (en) Active heating control system using a flow sensor
WO2020012750A1 (en) Heat source system, heat source machine, and control device
JP6106240B2 (en) Fluid spraying device
JP6116172B2 (en) Fluid spraying device
JP2879470B2 (en) Control valve with flow meter function
US11491502B2 (en) Two fluid spray equipment
CN209194634U (en) A kind of aircraft kitchen testboard constant pressure water supply equipment
JP6007293B2 (en) Two-fluid spraying device
JP2011013098A (en) Liquid discharge flow rate measuring apparatus
WO2015147292A1 (en) Double fluid spraying device
JP5406417B1 (en) Control valve with flow meter function
JP5014922B2 (en) Heat medium circulation facility and heat medium circulation method
KR20070038652A (en) Oil shipping system, oil shipping volume control method and oil shipping control method using the oil shipping system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160304

R150 Certificate of patent or registration of utility model

Ref document number: 5898581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250