JP5888645B2 - 薬物投与システムの電子制御 - Google Patents

薬物投与システムの電子制御 Download PDF

Info

Publication number
JP5888645B2
JP5888645B2 JP2011544581A JP2011544581A JP5888645B2 JP 5888645 B2 JP5888645 B2 JP 5888645B2 JP 2011544581 A JP2011544581 A JP 2011544581A JP 2011544581 A JP2011544581 A JP 2011544581A JP 5888645 B2 JP5888645 B2 JP 5888645B2
Authority
JP
Japan
Prior art keywords
current
microcontroller
power supply
electrical transport
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011544581A
Other languages
English (en)
Other versions
JP2012513876A (ja
JP2012513876A5 (ja
Inventor
ザール,デヴィッド
バウディス,ボグダン,マリウス
グプタ,ライヌカ
カマット,ヴァイシャリ,ヴィラス
ライヒ,マシュー,ケント
スリニバサン,ラジャゴパラン
セブリー,テリ・ビー
スタソプロス,ロバート・ピー
ビナトル,ミハイ・エイ
Original Assignee
テバ・ファーマシューティカルズ・インターナショナル・ゲー・エム・ベー・ハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テバ・ファーマシューティカルズ・インターナショナル・ゲー・エム・ベー・ハー filed Critical テバ・ファーマシューティカルズ・インターナショナル・ゲー・エム・ベー・ハー
Publication of JP2012513876A publication Critical patent/JP2012513876A/ja
Publication of JP2012513876A5 publication Critical patent/JP2012513876A5/ja
Application granted granted Critical
Publication of JP5888645B2 publication Critical patent/JP5888645B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/325Applying electric currents by contact electrodes alternating or intermittent currents for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0428Specially adapted for iontophoresis, e.g. AC, DC or including drug reservoirs
    • A61N1/0432Anode and cathode
    • A61N1/0436Material of the electrode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/20Applying electric currents by contact electrodes continuous direct currents
    • A61N1/30Apparatus for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body, or cataphoresis
    • A61N1/303Constructional details
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0428Specially adapted for iontophoresis, e.g. AC, DC or including drug reservoirs
    • A61N1/0448Drug reservoir

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Electrotherapy Devices (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Medicinal Preparation (AREA)

Description

本出願は、2008年12月30日に出願された、米国仮出願番号第61/141,377号、発明の名称「Electronic Control Of Drug Delivery System」の優先権を主張し、この文献は、その全体が引用によって本願に援用される。
薬物投与(drug deliver)とは、ユーザ(人間又は動物として定義される。)に対する治療効果を得るために、調合された薬物又は薬剤を投与する方法又はプロセスである。薬物投与技術は、薬物の効力、並びに患者の利便性及び適応性を向上させるために薬物放出プロファイルを制御又は変更することを意図する。非経口投与にポピュラーな方法には、静脈内、筋肉内、皮下、皮内、経皮、吸入等の経路が含まれる。
薬物投与技術では、投与の継続時間又は調合された薬物若しくは薬剤の投与(量)を制御するために電子回路を使用することがある。イオントフォレシス(iontophoresis)は、薬物投与の電子制御を実現する薬物投与技術の一例である。イオントフォレシスは、電流を利用して、安全且つ有効な手法で、経皮的に、すなわちユーザの皮膚を介して、薬物又は薬剤を輸送する。
例示的な実施の形態は、調合された薬物又は薬剤の放出の電子制御を実現する薬物投与システム又はデバイスのための方法、システム及び装置を提供してもよい。本発明の文脈では、「薬物投与システム」及び「デバイス」という用語は、交換可能に使用できる。例示的な実施の形態では、電子制御は、薬剤をユーザに経皮的に投与する電気的輸送電流を制御してもよい。例示的な実施の形態では、電気的輸送電流の時間的プロファイルを制御することによって、ユーザの体内における薬剤の所望の時間的プロファイルを達成してもよい。
例示的な実施の形態では、リニアレギュレータ又は任意の型のスイッチングレギュレータを用いて電気的輸送電流を制御してもよい。
例示的な実施の形態では、パルス幅変調(PWM)を用いて、例えば、PWM電源のデューティサイクルを調整することによって、電気的輸送電流を制御してもよい。例示的な実施の形態では、一定の間隔で中断を生成し、各中断の生成の際に、電流補正を実行してもよい。例示的な実施の形態では、ユーザの皮膚を流れる電気的輸送電流を検出し、この電気的輸送電流と、目標電流を表す動的な値とを比較してもよい。目標電流は、所望の電流プロフィルに基づいていてもよい。例示的な実施の形態では、電気的輸送電流と、目標電流値を表す動的な値との比較に基づいて、PWM電源の電流デューティサイクルを増加、減少又は維持してもよい。
また、例示的な実施の形態は、薬物投与デバイス(すなわち、ここに開示するイオントフォレシス薬物投与システム)の電気的接続の検査のために使用される方法及び装置を含んでもよい。このような例示的な装置は、イオントフォレシス薬物投与システムの接続の検査及び検証の使用のために適応化された電極パッチ導通テスタを含んでいてもよい。
また、例示的な方法は、イオントフォレシス薬物投与システムの電気的接続の検査及び検証のための方法を含んでいてもよい。
また、例示的な方法は、ここに開示するイオントフォレシス薬物投与システムにおける、薬物を投与するための電極の容量の検査、測定又はこの他の定量化のための方法を含んでいてもよい。
例示的な一実施の形態は、パルス幅変調(PWM)コントローラを使用して、動物の生体表面に電気的輸送電流を流す方法を提供する。この方法は、PWM電源を用いて、動物の生体表面に電気的輸送電流を流すステップを含む。また、この方法は、タイマを用いて、所定の間隔で1つ以上の中断を生成するステップと、1つ以上の中断を生成したとき、PMWコントローラを用いて、PMW電源をオフにするステップとを含む。この方法は、PWMコントローラを用いて、少なくとも電気的輸送電流の現在の値及び目標電気的輸送電流を表す動的な値に基づいて、PWM電源のデューティサイクルを制御するステップを更に含む。
更なる例示的な実施の形態は、動物の生体表面に電気的輸送電流を流す薬物投与デバイスを提供する。このデバイスは、第1の電極と、第2の電極と、第1及び第2の電極の間を流れる電流を制御するように構成、プログラミング、又はこの両方が可能なコントローラ(例えば、プログラマブルプロセッサ)と、第1の導電性媒体及び治療薬物又は薬剤を保持し、第1の電極の上に配置される第1の導電性リザーバと、第2の導電性媒体及びオプションとしてイオン源を保持し、第2の電極の上に配置され、電流のための電気的経路を形成する第2の導電性リザーバとを含む。また、デバイスは、動物の生体表面に出力電圧を印加し、動物の生体表面に電気的輸送電流を流すためのパルス幅変調(PWM)電源を含む。デバイスは、所定のプロファイルで動物の生体表面に電気的輸送電流を流すコントローラを更に含む。コントローラは、電気的輸送電流を調整するために出力電圧補正を実行する電流モニタ、電圧モニタ及び電圧レギュレータを有する。
例示的な自己充足的な、予めパッケージ化されたイオントフォレシス薬物投与システムの平面図である。 図1に示す例示的なイオントフォレシス薬物投与システムの側面図である。 第1の電極、第2の電極及びコントローラを含む例示的なイオントフォレシス薬物投与システムの一部の断面図である。 図3に示す一部の分解斜視図である。 ここに開示する例示的な薬物投与システムの例示的なコントローラによって達成可能な例示的な電流プロフィルを示す図である。 ここに開示する例示的な薬物投与システムの例示的なコントローラによって達成可能な例示的な電流プロフィルを示す図である。 ここに開示する例示的な薬物投与システムの例示的なコントローラによって達成可能な例示的な電流プロフィルを示す図である。 ここに開示する例示的な薬物投与システムの例示的なコントローラによって達成可能な例示的な電流プロフィルを示す図である。 ここに開示する例示的な薬物投与システムを制御するための例示的な電子回路の包括的なブロック図である。 ここに開示する例示的な薬物投与システムを制御するための例示的な電子回路の概要図である。 図10に示す例示的な電子回路によって実行される例示的な制御ループのフローチャートである。 図10に示す例示的な電子回路によって実行される例示的な制御ループのフローチャートである。 図1に示すようなデバイスの電気的接続を検査する例示的な方法のフローチャートである。 図1に示すようなデバイスについて、目標の量の薬物を投与するための容量を検査する例示的な方法のフローチャートである。 図1に示すようなデバイスについて、目標の量の薬物を投与するための容量を検査する例示的な方法のフローチャートである。 図1に示すようなデバイスについて、目標の量の薬物を投与するための容量を検査する例示的な方法のフローチャートである。 図1に示すようなデバイスについて、目標の量の薬物を投与するための容量を検査する例示的な方法のフローチャートである。 図1に示すようなデバイスについて、目標の量の薬物を投与するための容量を検査する例示的な方法のフローチャートである。
以下、図面を参照して、例示的な実施の形態について説明する。異なる図面に亘って、同様の符号は、同じ部分を指している。
例示的な実施の形態は、ユーザにおける調合された薬物又は薬剤の放出の電子制御を実現する薬物投与システムのための方法、システム及び装置を提供する。例示的な実施の形態では、電子制御は、経皮的に薬物をユーザに投与する電気的輸送電流(electrotransport current)を制御してもよい。例示的な実施の形態では、電気的輸送電流の時間的プロファイルを制御することによって、ユーザの体内での薬物の投与時間及び投与量の所望のプロファイル(例えば、薬物投与プロファイル及び/又は血漿中濃度プロファイル)を達成してもよい。
例示的な実施の形態では、リニアレギュレータ又は任意の型のスイッチングレギュレータを用いて制御可能な電源を使用することによって、電気的輸送電流を制御してもよい。ある例示的な実施の形態では、パルス幅変調(pulse width modulation:PWM)によって電源を制御してもよい。薬物投与プロファイルのこのような制御によって、投与の間にユーザがシステムの設定を監視又は変更する必要なく、薬物の効力及び安全性を最適化し、処方計画を自動的に適応化することができる。
例示的な実施の形態では、PWM電源のデューティサイクルを調整することによって、電気的輸送電流を調整してもよい。例示的な実施の形態では、ある間隔で中断を生成し、各中断の生成の際に、必要に応じて、電流補正を実行してもよい。例示的な実施の形態では、ユーザの皮膚を流れる電気的輸送電流を検出し、この電気的輸送電流と、目標電流を表す動的な値とを比較してもよい。目標電流は、所望の電流プロフィルに基づいていてもよい。例示的な実施の形態では、電気的輸送電流と、目標電流値を表す動的な値との比較に基づいて、PWM電源の電流デューティサイクルを増加、減少又は維持してもよい。
更に説明を続ける前に、まず、明細書及び特許請求の範囲に亘って使用する幾つかの用語を定義する。
ここでは、「ユーザ(user)」及び「患者(subject)」という用語は、交換可能に使用され、本発明の方法、システム及び装置によって治療可能な動物(例えば、ネコ、イヌ、ウマ、ブタ、ウシ、ヒツジ、齧歯類動物、ウサギ、リス、クマ及び霊長類(例えば、チンパンジー、ゴリラ及びヒト)等の哺乳類)を含む。
「薬物(drug)」又は「薬剤(agent)」という用語は、本発明のデバイスを用いて、治療的に有効な量でユーザに投与できるあらゆる薬物又は薬剤を含む。本発明を用いて、分子サイズ及び電荷が異なる薬剤を投与することができる。ここでは、薬物又は薬剤は、薬物又は他の生理活性物質(biologically active agent)であってもよい。
ここで使用する「薬物(drug)」及び「治療薬物(therapeutic drug)」という用語は、交換可能である。
ここで使用する「薬剤(agent)」及び「治療薬剤(therapeutic agent)」という用語は、交換可能である。
「薬物投与システム」という用語は、電子回路によって制御され、治療上有効な手法で薬物又は薬剤を投与するあらゆるシステムを含む。薬物投与システムの具体例は、以下に限定されるものではないが、イオントフォレシスシステム(iontophoretic system)、静脈内(intravenous:IV)点滴、内部又は外部ポンプ、薬物又は薬剤の注射、及び薬物又は薬剤の吸入を含む。ここで使用する「システム」及び「デバイス」という用語は、交換可能である。
ここで使用する「コンピュータが読取可能な媒体」という用語は、例えば、磁気ディスク、光ディスク、メモリデバイス(例えば、フラッシュメモリデバイス、スタティックRAM(SRAM)デバイス、ダイナミックRAM(DRAM)デバイス又は他のメモリデバイス)等、情報又はコードを保存できる媒体を指す。
ここでは、ここに開示する方法、システム及び装置の構造、機能、製造及び使用の完全な理解のために、例示的な実施の形態について説明する。添付の図面は、これらの実施の形態の1つ以上の具体例を示している。ここに明示し、添付の図面に示す方法、システム及び装置は、非限定的な例示的な実施の形態であり、本発明の範囲は、特許請求の範囲によってのみ定義される。1つの例示的な実施の形態に関して図示し又は説明する特徴は、他の実施の形態の特徴に組み合わせてもよい。このような修正及び変更は、本発明の範囲内に含まれることを意図する。
図1及び図2は、イオントフォレシスを用いて経皮的に薬物をユーザに投与する薬物投与システム10の例示的な実施の形態を示している。イオントフォレシスは、ユーザの皮膚に電流を流し、ユーザの皮膚を介してユーザの体に薬剤を投与する投与法である。図1及び図2の薬物投与システム10は、パッチとしてパッケージ化することができ、このパッチは、ユーザの皮膚に貼り付け、薬物を投与した後に取り外すことができる。図2では、説明の目的のために、幾つかの厚さを強調して示している。
図2の断面図によって示すように、薬物投与システム10は、第1の電極12及び第2の電極14を含んでいてもよい。例示的な実施の形態では、電極12、14は、半円形、円形、楕円形又は他の如何なる幾何学的に適切な形状であってもよく、又はコーティングされたワイヤ(coated wire)であってもよい。更なる例示的な実施の形態では、ワイヤを亜鉛又は銀及び/又は銀−塩化銀でコーティングしてもよい。
例示的な実施の形態では、電極12、14は、ポリエステルフィルムを備えていてもよい。適切なポリエステルフィルムの1つとして、マイラー(Mylar:商標)という名称で販売されている二軸延伸ポリエチレンテレフタラートポリエステルフィルム(biaxially-oriented polyethylene terephthalate polyester film)がある。マイラー(商標)は、その薄さと柔軟性のために、好適な材料である。電極12、14のポリエステルフィルムは、このようなフィルム上に銀−塩化銀を含む導電性インクによってスクリーン印刷又はエッチングを施したものであってもよい。更に、ポリエステルフィルムは、電気的絶縁を提供する誘電体コーティングを含んでいてもよい。例示的な実施の形態では、電極12、14は、固定用テープを用いて、ユーザの体に貼り付けてもよい。更なる実施の形態では、マイクロプロセッサ及びバッテリ等の部品を、接着剤、導電性接着剤、はんだ又はタブによって、ポリエステルフィルムに直接取り付けてもよい。他の例示的な実施の形態では、電極12、14は、カプトン(Kapton:商標)ポリイミドフィルム等のポリイミドフィルムを含んでいてもよい。
薬物投与システム10は、第1の電極12と第2の電極14との間の電流のフローを制御するようにプログラミングされたマイクロコントローラ150を含む例示的な制御回路16を含んでいてもよい。制御回路16は、ドームスイッチ(dome switch)等のオン/オフスイッチを含んでいてもよい。例示的な実施の形態では、マイクロコントローラ150は、リニアレギュレータを用いて電源を制御することによって、電気的輸送電流を制御してもよい。他の例示的な実施の形態では、マイクロコントローラ150は、例えば、パルス幅変調(pulse width modulation:PWM)、パルス周波数変調(pulse frequency modulation:PFM)等、如何なる種類のスイッチングレギュレータを用いて電源を制御してもよい。マイクロコントローラ150の例示的な実施の形態については、図11A及びBを用いて後に説明する。
例示的な実施の形態では、制御回路16は、第1及び第2の電極12、14から分離してもよい。この実施の形態では、電極は、使い捨てにして、制御回路16は、再使用してもよい。他の例示的な実施の形態では、制御回路16を電極に一体に取り付けてもよい。
また、薬物投与システム10は、第1の導電性媒体及び第1の治療薬物又は薬剤を保持する第1の導電性リザーバ(conductive reservoir)30と、第2の導電性媒体を保持する第2の導電性リザーバ32とを含んでいてもよく、第2の導電性リザーバ32は、第2の治療薬物又は薬剤を保持していてもよい。使用時には、第1の電極12に供給された電流は、第1の導電性リザーバ30から、第1の導電性リザーバ30に接触するユーザの皮膚の一部を介して、第1の治療薬物又は薬剤を投与する。電流は、第2の導電性リザーバ32に接触するユーザの皮膚の一部を介して、第2の電極14に戻る。第2の治療薬物又は薬剤は、第1の治療薬物又は薬剤の電荷とは反対の電荷を有していてもよい。発泡体リング(foam ring)を用いて、導電性薬物リザーバを適所に保持してもよい。発泡体リングは、更に、電極のアノード及びカソードの分離を維持する。
第1のリムーバブルバリア34は、第1の電極12と第1の導電性リザーバ30との間に取り外し可能に配置された第1のバリアシールを形成してもよい。第2のリムーバブルバリア36は、第2の電極14と第2の導電性リザーバ32との間に取り外し可能に配置された第2のバリアシールを形成してもよい。これに代えて、第1のリムーバブルバリア34を、第2の電極14と第2の導電性リザーバ32との間に取り外し可能に配置して、第1のバリアシールと第2のバリアシールの両方を形成してもよい。例示的な実施の形態では、第1のリムーバブルバリア34は、フォイルを含んでいてもよい。治療薬剤46を含む第1の導電性リザーバ30と、第1の電極12との接触が長期に亘ると、第1の電極12、治療薬剤又はその両方が劣化することがある。第1のバリアシールを形成する第1のリムーバブルバリア34は、治療薬剤46を含む第1の導電性リザーバ30が第1の電極12に接触することを防止し、これによって、水の透過を防ぐことができる。封止バリア(封止的な分離)によって第1の導電性リザーバ30を第1の電極12から分離し、及び第2の導電性リザーバ32を第2の電極14から封止的に分離することによって、薬物投与システム10は、効力及び信頼性を維持し、有効期間がより長くなる。
また、薬物投与システム10は、第1の電極12、第2の電極14、制御回路16、第1の導電性リザーバ30及び第2の導電性リザーバ32を収容するための筐体38を含んでいてもよい。筐体38は、底部筐体部分38bに連結可能な上部筐体部分38aを有する。上部筐体部分38a及び底部筐体部分38bは、連結され、スロット付き側壁部分40aを形成し、ここから、第1のリムーバブルバリア34が延び出ている。同様に、上部筐体部分38a及び底部筐体部分38bは、第2のスロット付き側壁部分40bを形成してもよく、ここから、第2のリムーバブルバリア36が延び出てもよい。筐体38の外に延び出ている第1のリムーバブルバリア34の一部によって、ユーザは、筐体を開くことなく、第1のリムーバブルバリア34に触れることができる。リムーバブルバリア34は、第1の電極12、第2の電極14、制御回路16、第1の導電性リザーバ30及び第2の導電性リザーバ32を筐体に残したまま、取り除くことができるように構成されている。第1のリムーバブルバリア34の一部は、スロット付き側壁部分40aを介して、第1のタブ34aとして延び出ていてもよい。同様に、第2のリムーバブルバリア36の一部は、第2のスロット付き側壁部分40bを介して、第2のタブ36aとして延び出ていてもよい。
ユーザは、第1のタブ34a及び第2のタブ36aのそれぞれを引き抜くことによって、第1の電極12、第2の電極14、制御回路16、第1の導電性リザーバ30及び第2の導電性リザーバ32に触れることなく、第1のリムーバブルバリア34及び第2のリムーバブルバリア36を取り除くことができ、自己充足的なイオントフォレシス薬物投与システムの部品を筐体38内に残したまま、自己充足的なイオントフォレシス薬物投与システムを組み立てることができる。
図3及び図4は、第1の電極12、第2の電極14及び制御回路16を含む自己充足的なイオントフォレシス薬物投与システム10の具体例の一部を示している。図3の側断面図では、説明の目的のために、幾つかの厚さを強調して示している。
第1の電極12及び第2の電極14は、薬物投与システム10の電極領域と呼んでもよい。薬物投与システム10は、制御回路16、第1の電極12及び第2の電極14に電流を供給する少なくとも1つのバッテリ18を含んでいてもよい。制御回路16は、回路20によって、少なくとも1つのバッテリ18、第1の電極12及び第2の電極14に電気的に接続してもよい。回路20、第1の電極12及び第2の電極14は、電極支持層22上に配置してもよい。
制御回路16、第1の電極12及び第2の電極14は、裏打ち層(backing layer)24によって支持してもよい。電極支持層22を裏打ち層24に取り付けてもよい。
また、薬物投与システム10は、第1の導電性リザーバ30を受容するように構成された第1の凹部28aと、第2の導電性リザーバ32を受容するように構成された第2の凹部28bとを有する受容層(receiving layer)26を含んでいてもよい。
制御回路16によって制御された電流は、経皮的に薬物をユーザに投与できる。薬物のイオントフォレシス輸送(iontophoretic transport)は、治療電極(treatment electrode)の電流密度によって大きく影響される。したがって、時間的な電流プロフィルを調整して、薬物投与の所望のプロファイル、すなわち、総投与期間に対する(例えば、血漿内の)薬物濃度のプロファイルを達成してもよい。
制御回路16には、時間的な所望の電流プロフィルを設定又は調整するように構成可能なマイクロプロセッサ、プログラミング可能なマイクロプロセッサ、プログラミング可能なマイクロコントローラ、構成可能なマイクロコントローラ、又は構成可能であって、プログラミング可能なマイクロプロセッサを用いることができる。総投与期間は、単一の因子又は因子の組合せに基づいて調整してもよい。幾つかの因子としては、以下に限定されるものではないが、システム10の電源の寿命、投与される薬物の総量、ユーザの年齢、ユーザの体重、薬物の種類、ユーザの健康状態、薬物投与プロトコル及び他の同様の因子等が含まれる。これに代えて、総投与期間は、例えば、時間、日、週等、如何なる期間を単位として設定してもよい。例えば、総投与期間を数時間に設定し、この間に高濃度の薬物が放出されるようにしてもよく、総投与期間を数週間に設定し、この間に低濃度の薬物が持続的に放出されるようにしてもよい。
例示的な実施の形態では、薬物投与システム10は、投与される薬物の数量及び/又は1つ以上の特徴に基づいて、電気的輸送電流プロフィルを調整することによって、薬物投与プロファイルを調整してもよい。例示的な実施の形態では、薬物投与システム10は、ユーザの1つ以上の特徴、例えば、ユーザの体重、年齢、健康状態、皮膚電気抵抗等に基づいて、電気的輸送電流プロフィルを調整することによって、薬物投与プロファイルを調整してもよい。また、電気的輸送電流プロフィルは、他のパラメータに応じて適応化してもよい。例えば、システムは、ユーザの組織(例えば、ユーザの血液)内の薬物の濃度を測定する1つ以上のセンサを含んでいてもよく、電気的輸送電流プロフィルは、ユーザの組織内の薬物の濃度に応じて適応化してもよい。
例示的な実施の形態では、マイクロコントローラ150は、薬物投与システム10の製造側で、薬物投与プロファイルによってプログラミングしてもよい。他の例示的な実施の形態では、薬物投与システム10の製造後、薬局において、投与プロファイルによって、マイクロコントローラ150をプログラミング又は再プログラミングしてもよい。この実施の形態では、薬剤師が、薬物(例えば、薬物濃度、投与量等)及び/又はユーザ(例えば、ユーザのサイズ、年齢等)に基づいて、マイクロコントローラ150をプログラミング又は再プログラミングして、所望の薬物投与プロファイルを達成してもよい。マイクロコントローラ150のプログラミング又は再プログラミングによって、薬物投与プロファイルの1つ以上の側面、例えば、薬物投与の速度、薬物の濃度等を調整してもよい。
薬物投与システム10のマイクロコントローラ150は、ユーザの皮膚に所定のプロファイルの電流を流すようにプログラミングしてもよい。電流プロフィルは、特定の形状に限定されず、1つ以上の矩形波、正弦波、ランプ波、任意の形状、又は波形のあらゆる組合せ等を含んでいてもよい。
図1〜図4は、あるパッケージ構成を有する薬物投与システムの例示的な実施の形態(すなわち、「パッチ」)を示している。ここに開示する薬物投与システムの他の例示的な実施の形態は、例えば、Anderson他に付与されている米国特許番号第6,745,071号、発明の名称「Iontophoretic Drug Delivery System」、又はAnderson他による米国特許出願番号第12/181,142号、2008年11月20日に公開された米国特許公開番号第2008/0287497号、発明の名称「TRANSDERMAL METHODS AND SYSTEMS FOR THE DELIVERY OF ANTI-MIGRAINE COMPOUNDS」に開示されているような異なるパッケージ構成を有していてもよい。米国特許番号第6,745,071号及び米国特許公開番号第2008/0287497号は、引用によってその全体が本願に援用される。
図5〜図8は、マイクロコントローラ150によって達成可能な例示的な電流プロフィルを示しており、ここでは、時間に対して電流をプロットしており、電流は、一定であるか、増加しているか、減少している。図5では、電気的輸送電流は、4時間の総投与期間に亘って管理されている。電流は、最初の1時間は、4mAに維持され、2番目の1時間は3mAに維持され、3番目の1時間は、2mAに維持され、4番目の1時間は、1mAに維持されている。図6では、電流は、最初の1時間は、4mAに維持され、次の3時間は、2mAに維持されている。図7では、電流は、最初及び5番目の1時間は、2mAに維持され、2番目、4番目及び6番目の1時間は、0mAに維持され、3番目、7番目の1時間は、3mAに維持されている。図8では、電流は、最初の時間は、3mAに維持され、2番目の1時間の間に1mAに漸減され、3番目及び4番目の1時間は、1mAに維持されている。
マイクロコントローラ150は、昼間に第1の組の電流レベルを適用し、夜間に第2の組の電流レベルを適用するようにプログラミングしてもよい。
図9は、薬物投与システム10を制御する例示的な電子制御回路16のブロック図を示している。電子制御回路16は、マイクロコントローラ150に接続されたスイッチ106を含んでいてもよい。また、マイクロコントローラ150は、電源100及び制御可能な電源200に接続してもよい。制御可能な電源200を負荷300に接続して、負荷300に電気的輸送電流を流してもよい。負荷300、制御可能な電源200及びマイクロコントローラ150には、フィードバック回路250を接続してもよい。電子制御回路16は、フレキシブル回路(例えば、カプトン(商標)上の銅)、プリント回路板又はこれらの両方で実現可能である。
電源100は、回路に電気エネルギを供給してもよい。マイクロコントローラ150は、制御可能な電源200を制御するようにプログラミングしてもよい。
制御可能な電源200は、電源100の出力電圧を増加、減少又は維持して、負荷300に流れる負荷電流(I)を制御してもよい。例示的な実施の形態では、マイクロコントローラ150は、リニアレギュレータを用いて、制御可能な電源200を制御してもよい。他の例示的な実施の形態では、マイクロコントローラ150は、例えば、パルス幅変調(pulse width modulation:PWM)、パルス周波数変調(pulse frequency modulation:PFM)等、如何なる種類のスイッチングレギュレータを用いて制御可能な電源200を制御してもよい。PWMを採用する一実施の形態では、マイクロコントローラ150は、パルス幅変調を用いて、すなわち、デューティサイクル及びパルス幅を制御することによって、負荷電流(I)を制御又は調整してもよい。
負荷300は、ユーザの皮膚を含んでいてもよく、負荷300に負荷電流が流されると、皮膚を介して薬物が投与される。
フィードバック回路250によって、マイクロコントローラ150は、負荷300を流れる負荷電流及び負荷300における出力電圧を検出してもよい。これによって、マイクロコントローラ150は、電流補正を監視及び実行し、すなわち、負荷300に流れる負荷電流を調整することができる。また、これによって、マイクロコントローラ150は、制御可能な電源200によって生成される電圧レベルを監視及び制御することもできる。
パルス幅変調(PWM)制御可能な電源200を採用する一実施の形態では、マイクロコントローラ150は、時間ベースの中断を生成し、時間ベースの信号を送信して、PWM制御可能電源200において、スイッチをオン/オフにトグル切り換えする。PWM制御可能電源200のデューティサイクルとは、PWMのスイッチがオンになっている時間の割合である。電流補正を実行するために、マイクロコントローラ150は、PWMスイッチをオフにし、負荷電流(I)と、目標負荷電流値を表す動的な値とを比較し、比較の結果に基づいて、PWM制御可能電源200のデューティサイクルを調整してもよい。マイクロコントローラ150は、PWM制御可能電源200において、スイッチをオン/オフにトグル切り換えする時間ベースの信号の周波数及び/又は継続時間を変更することによって、デューティサイクルを調整してもよい。このように負荷電流を調整することによって、マイクロコントローラ150は、ユーザの体内への薬物の投与にとって望ましい負荷電流プロフィルを達成できる。
幾つかの実施の形態では、例示的な回路900は、0.4〜12V±10%の範囲で変化する電圧で、電気的輸送負荷電流(electrotransport load current)(I)を流す能力を有していてもよい。幾つかの実施の形態では、例示的な制御回路16は、0.4〜12V±10%の範囲で変化する電圧で電気的輸送負荷電流(I)を流す能力を有していてもよい。幾つかの実施の形態では、組織の抵抗は、200〜5,000Ωの範囲であってもよい。幾つかの実施の形態では、組織の抵抗は、100〜6,000Ωの範囲であってもよい。例示的な制御回路16は、最大3,000Ωの抵抗に対して4mAの電気的輸送負荷電流を流す12Vの最大出力電圧を提供する能力を有していてもよい。なお、例示的な実施の形態では、制御回路16は、最初の60分の動作の間、最長で5分間だけ10〜12Vを提供してもよい。このようにより高い電圧を5分間に制限することによって、バッテリ電力を節約することができる。
図10は、治療薬剤又は薬物の管理に適切な電子回路1000を図式的に表している。電子回路1000は、例示的な回路16の1つの例示的な実施の形態である。
このシステムは、電源100を含んでいてもよく、電源100は、直列又は並列に接続された1つ以上の電源102を含んでいてもよい。電源、例えば、1つ以上のバッテリの数及び接続は、薬物の投与及び回路の動作の総持続時間のための電力要求に基づいて決定してもよい。また、電源100は、電源102に並列接続された1つ以上のコンデンサ104を含んでいてもよい。
一実施の形態においては、電源100は、薬物投与システム10の他の部品に統合してもよい。他の実施の形態においては、電源100は、薬物投与システム10の他の部品から独立して設けてもよい。
このシステムは、スイッチ106を含んでいてもよく、このスイッチ106を閉じることによって、システムをアクティブ化してもよい。例示的な実施の形態では、スイッチ106は、マイクロコントローラ150をアクティブ化するモメンタリ式スイッチ、例えば、ボタン又はスライダであってもよい。他の例示的な実施の形態では、スイッチ106は、オン/オフにトグル切り換えされて、マイクロコントローラ150をアクティブ化又は非アクティブ化するオン/オフスイッチであってもよい。
また、システムは、オン/オフインジケータを含んでいてもよく、例えば、インジケータの動作パラメータにとって必要又は望ましい場合、抵抗器182に直列接続されたLED184を含んでいてもよい。例示的な実施の形態では、LED184は、点灯、消灯又は点滅して、システムの現在の動作モードをユーザに示す。更に、LED184は、例えば、消灯することによって、投与期間が終了したことを示してもよい。例示的な実施の形態では、LED184は、システムがオフモード(Off Mode)又は非アクティブモード(Inactive Mode)のときは、消灯し、システムがテストモード(Test Mode)のときは、点滅し、システムがランモード(Run Mode)のときは、点灯するようにしてもよい。これらの例示的なモードについては、図11A及びBを参照して後により詳細に説明する。他の例示的な実施の形態では、システムは、可聴音のみを発してもよく、可聴音と視覚的指示とを組み合わせて、システムがあるモードになったことを示してもよい。
また、システムは、現在の電気的輸送電流、経過時間及び/又は薬物投与プロファイルを表示する外部のLCDディスプレイを含んでいてもよい。
システムは、所望の薬物投与プロファイルを達成するための制御ループを実行できるマイクロコントローラ150を含んでいてもよい。マイクロコントローラには、回路内の他の部品への電気的接続のために、外部ノードを設けてもよい。マイクロコントローラ150の主要な機能は、負荷300を流れる電気的輸送負荷電流を制御することである。例示的な実施の形態では、マイクロコントローラ150は、リニアレギュレータを用いて、電気的輸送負荷電流を制御してもよい。他の例示的な実施の形態では、マイクロコントローラ150は、例えば、パルス幅変調(PWM)、パルス周波数変調(PFM)等、如何なる種類のスイッチングレギュレータを用いてもよい。制御可能な電源200のPWM制御を採用した一実施の形態では、マイクロコントローラ150は、PWM制御可能電源200のデューティサイクルを増加させ、又はPWM制御可能電源200のデューティサイクルを減少させることによって、電気的輸送負荷電流を制御してもよい。
一実施の形態においては、マイクロコントローラは、マイクロチップテクノロジー社(Microchip Technology Inc.)によって製造されている、フラッシュベースの8ビット相補型金属酸化膜半導体(CMOS)マイクロコントローラを含む8ピンパッケージを有するPIC12F615であってもよい。PIC12F615マイクロコントローラの詳細については、2008年にマイクロチップテクノロジー社が発行した、PIC12F609/615/12HV609/615データシートに開示されており、この文献は、引用によって本願に援用される。一実施の形態においては、マイクロコントローラ150は、予めプログラミングしてもよく、すなわち、システム回路内に組み込まれる前に、プログラムを含んでいてもよい。他の実施の形態においては、マイクロコントローラ150は、システム回路に組み込んだ後にプログラミングしてもよい。
例示的な実施の形態では、マイクロコントローラ150は、一回だけプログラミングできるものであってもよい。他の例示的な実施の形態では、マイクロコントローラ150は、最初に、第1の電流プロファイルによってプログラミングしてもよい。このマイクロコントローラ150は、再プログラミングしてもよく、すなわち、第2の電流プロファイルによって、2回目のプログラミングを行ってもよい。マイクロコントローラ150のこの再プログラミンによって、電流プロフィルを変更又は補正することができ、また、異なるユーザ及び/又は異なる薬物について、同じシステムを再使用することができる。
ここで、マイクロコントローラ150のプログラミングについて詳細に説明する。マイクロコントローラ150をプログラミングするために、プログラマは、マイクロコントローラ150の不揮発性メモリビットをどのように設定するかを指定するための適切な形式で、例えば、HEXファイルとしてプログラムを生成することができる。そして、プログラマは、プログラミングインタフェース170を用いて、マイクロコントローラ150にプログラムを格納する。プログラミングインタフェース170は、一方をPC(図示せず)のI/Oポートに接続し、他方をマイクロコントローラ150に接続してもよい。例示的な実施の形態では、プログラミングインタフェース170は、マイクロコントローラがシステム回路に接続された状態でマイクロコントローラ150に接続できるインサーキットプログラミングインタフェース(in-circuit programming interface)である。この実施の形態では、プログラミングインタフェース170によって制御されるクロックを使用する、2線式同期シリアル方式(two-wire synchronous serial scheme)を用い、マイクロコントローラ150にプログラムデータを転送してもよい。
プログラミングインタフェース170のグラウンド(GND)ノード180は、マイクロコントローラ150のノード160において、負の電力入力(VSS)に接続してもよい。プログラミングインタフェース170の正の電力入力(VDD)ノード172は、マイクロコントローラ150のノード152において、正の電力入力(VDD)に接続してもよい。プログラミングインタフェース170のプログラミング電圧(MCRL)ノード178は、マイクロコントローラ150のノード158において、プログラミングモード電圧に接続してもよい。マイクロコントローラ150をプログラミングモードにするには、このMCRLラインがVDDラインより上の特定の範囲になる必要がある。プログラミングインタフェース170のプログラミングクロック(programming clock:PGC)ノード176は、シリアルデータインタフェースのクロックラインであり、マイクロコントローラ150のノード164に接続してもよい。PGCノード176の電圧は、GNDからVDDに振れ(swing)、データは、立ち下がりエッジにおいて転送される。プログラミングインタフェース170のプログラミングデータ(programming data:PGD)ノード174は、シリアルデータラインであり、マイクロコントローラ150のノード162に接続してもよい。PGDノード174における電圧は、GNDからVDDに振れる。
次に、マイクロコントローラ150の外部ノードの接続について説明する。ノード152は、マイクロコントローラ150への正の電力入力(VDD)であり、電源100に接続してもよい。ノード154は、出力ノードであり、制御可能な電源200のスイッチに接続され、これによって、マイクロコントローラ150は、制御可能な電源200の動作を制御することができる。ノード154は、スイッチ202のゲートに接続してもよい。例示的な実施の形態では、スイッチ202は、Pチャネル金属酸化膜半導体電界効果トランジスタ(metal-oxide-semiconductor field-effect transistor:MOSFET)202であってもよい。ノード156は、感知抵抗器256の正端子に接続してもよい。ノード158は、プログラミングインタフェース170のMCRLノード178に接続してもよい。ノード160は、マイクロコントローラ150への負の電力入力であり、感知抵抗器256の負端子に接続してもよく、これによって、マイクロコントローラ150は、負荷300に亘る負荷電流(I)を監視することができる。ノード162は、プログラミングインタフェース170のPGDノード174に接続してもよい。ノード164は、システムの外部スイッチ106に接続してもよい。ノード166は、抵抗器252及び抵抗器254から構成される分圧器に接続してもよく、これによって、マイクロコントローラ150は、制御可能な電源200が生成する電圧を監視することができる。
例示的な実施の形態(図10には示していない。)では、制御可能な電源200は、負荷300における出力電圧を電源102の電圧より高く又は低くできる昇降圧コンバータ(buck-boost converter)として構成してもよい。「昇圧(boost)」ステージは、電源102の電圧より高い出力電圧を指し、「降圧(buck)」ステージは、電源102電圧より低い出力電圧を指す。
他の例示的な実施の形態(図10に示し、後述する。)では、制御可能な電源200は、標準の反転SEPIC(single-ended primary inductor converter)を含んでいてもよい。この実施の形態では、制御可能な電源200は、電源102の正端子に接続された正端子と、マイクロコントローラ150のノード154に接続された負端子とを有する抵抗器204を含んでいてもよい。また、制御可能な電源200は、マイクロコントローラ150のノード154に接続されたゲートと、電源102の正端子に接続されたソースと、第1のインダクタ208の正端子及び第1のコンデンサ206の正端子に接続されたドレインとを有するスイッチ202を含んでいてもよい。制御可能な電源200内の抵抗器204及びスイッチ202は、マイクロコントローラ150と連携して、スイッチのように動作し、第1のインダクタ208への電源電圧をゲート制御する。
制御可能な電源200は、スイッチ202のドレイン及び第1のコンデンサ206の第1の端子に接続された第1の端子を有する第1のインダクタ208を含んでいてもよい。第1のインダクタ208は、電源102の負端子に接続された第2の端子を有していてもよい。制御可能な電源200は、第1のインダクタ208の第1の端子及びスイッチ202のドレインに接続された第1の端子を有する第1のコンデンサ206を含んでいてもよい。第1のコンデンサ206は、第2のインダクタ212の第2の端子及びショットキーダイオード210の第1の端子に接続された第2の端子を有していてもよい。
制御可能な電源200は、第1のコンデンサ206の第1の端子及び第2のインダクタ212の第2の端子に接続された第1の端子を有するショットキーダイオード210を含んでいてもよい。ショットキーダイオード210は、電源102の負端子に接続された第2の端子を有する。制御可能な電源200は、第1のコンデンサ206の第2の端子及びショットキーダイオード210の第1の端子に接続された第1の端子を有する第2のインダクタ212を含んでいてもよい。第2のインダクタ212は、分圧器及び第2のコンデンサ214の第1の端子に接続された第2の端子を有する。制御可能な電源200は、分圧器及び第2のインダクタ212の第2の端子に接続された第1の端子を有する第2のコンデンサ214を含んでいてもよい。第2のコンデンサ214は、電源102の負端子に接続された第2の端子を有している。
負荷300は、第1の電極302と第2の電極304との間に接続してもよく、これらの電極は、ユーザの皮膚に貼り付けてもよい。
フィードバック回路250は、第1の抵抗器252及び第2の抵抗器254から構成される分圧器を含んでいてもよい。第1の抵抗器252は、第2のインダクタ212の第2の端子及び第2のコンデンサ214の第1の端子に接続された第1の端子を有していてもよい。第1の抵抗器252は、第2の抵抗器254の第1の端子に接続された第2の端子を有していてもよい。第2の抵抗器254は、電源102の負端子に接続された第2の端子を有していてもよい。この分圧器によって、マイクロコントローラ150は、制御可能な電源200が生成する電圧を監視及び制御することができる。また、フィードバック回路250は、感知抵抗器256を含んでいてもよく、感知抵抗器256を用いて、電極302と電極304の間を流れる電気的輸送電流を検出してもよい。
以下、図11A及びBを参照して、例示的な回路1000の動作について説明する。図11A及びBは、図10に示す例示的な電子回路によって実行される例示的な制御ループのフローチャートを示している。
ここでは、パルス幅変調(PWM)電源200、すなわち、PWMによって制御される制御可能な電源200と共に例示的な回路1000を説明する。但し、本発明は、制御可能な電源200のこの特定の実施の形態に制限されるわけではない。例示的な実施の形態では、例えば、リニアレギュレータによって制御された電源、あらゆる種類のスイッチングレギュレータによって制御された電源等、他のタイプの制御可能な電源200を使用してもよい。
システムは、デバイスの組立時から、ユーザが外部スイッチ106をアクティブ化してシステムをオンにするまで、オフモード(Off Mode)に維持してもよい。オフモードでは、マイクロコントローラ150は、例えば、ユーザが外部スイッチ106を用いてシステムをアクティブ化したことを検出する等、幾つかの最小限の動作を実行してもよい。オフモードでは、システムは、システムがオフモードであり、未だアクティブ化されていないことを示す視覚的又は聴覚的な指示を行ってもよい。例示的な実施の形態では、オフモードの間、LED184をオフにしてもよい。
ステップ504において、ユーザは、外部スイッチ106を閉じて、システムをオンにしてもよい。例示的な実施の形態では、システムが偶発的にアクティブ化されることを防止するため、ユーザが、一定の期間、例えば、1秒以上スイッチを押圧しなければ、システムがオンにならないようにしている。
外部スイッチ106を閉じると、システムは、薬物の投与のための投与モードを開始する前に、テストモード(Test Mode)に入ってもよい。ステップ506及びステップ508を参照して、例示的なテストモードについて説明する。テストモードでは、システムは、システムがテストモードにあることを示す視覚的又は聴覚的な指示を提供してもよい。例示的な実施の形態では、テストモードの間、LED184を点滅させてもよい。
ステップ506では、薬物の投与を開始する前に、マイクロコントローラ150は、完全な薬物投与プロトコルに基づく投与を完了するために、電源100が十分なエネルギを蓄えているかを判定してもよい。幾つかの状況では、例えば、電源が故障し、劣化し、及び/又は取り扱いの間に偶発的に何回もオンになったために、電源100に蓄えられているエネルギが使用前に既に消耗していることがある。このような消耗した電源を用いて薬物投与を開始すると、完全な投与期間が終了する前に、電源が切れて、ユーザに投与される量が意図された投与量を下回ってしまい、危険な場合がある。
電源が消耗した状態でユーザがシステムを動作させてしまうことを防止するため、ステップ506では、マイクロコントローラ150が、ノード152において電源100の電圧を検出し、この電圧が最小閾値電圧を上回っているかを判定してもよい。この最小閾値電圧は、薬物の総投与量を投与するために必要な電源電圧であってもよい。電源電圧が最小閾値電圧を下回っていると判定された場合、システムをアクティブ化せず、非アクティブモード(Inactive Mode)にしてもよい。非アクティブモードの間のシステムの出力電流は、有意な量の薬物を投与しない10μA以下であってもよい。システムは、システムが非アクティブモードであることを示す視覚的又は聴覚的な指示を提供してもよい。例示的な実施の形態では、非アクティブモードの間、LED184をオフにしてもよい。
一実施の形態においては、電源100は、システム回路から独立して設けてもよい。この場合、ユーザは、旧い電源100を新しい電源に置換して、システムを再びアクティブ化することができる。
ステップ506において、電源電圧が最小閾値電圧以上であると判定された場合、制御ループは、ステップ508に進むことができる。
幾つかの状況では、ユーザは、薬物投与システムを自らの体に貼り付ける前にスイッチ106を誤って押してしまうことがある。このような状況で投与を開始してしまうことを防止するために、マイクロコントローラ150は、電気的輸送電流が最小レベルに到達した場合にのみ、薬物の投与を開始する。ステップ508では、マイクロコントローラ150は、電気的輸送電流が最小レベル、例えば、1mAに到達したかを判定し、この最小レベルに到達している場合にのみ、プログラムされた電流プロフィルに基づく投与を開始してもよい。なお、スイッチ106がアクティブ化された状態のある期間、例えば、5分間、LED184を点滅させ、この間に電気的輸送電流が最小レベルに到達していない場合、システム回路をアクティブ化せず、システムを非アクティブモードにしてもよい。システム回路は、後に再開してもよい。
ステップ510では、システムは、ランモード(Run Mode)に入り、マイクロコントローラ150においてプログラミングされている電気的輸送電流プロフィルに基づく薬物の投与を開始することができる。システムは、システムがランモードになったことを示す視覚的又は聴覚的な指示を提供してもよい。例示的な実施の形態では、システムがランモードであることを示すために、LED184を点灯させてもよい。システムは、ランモードになってからの経過時間を監視してもよい。
皮膚電気抵抗は、電気的輸送電流がユーザの皮膚に流された当初は高く、電流を流し続けると、徐々に減少する傾向がある。ステップ512において、システムがランモードになった直後、マイクロコントローラ150は、皮膚電気抵抗を考慮して、波形を調整する前に、まず、10ミリ秒間、所定のPWM波形を出力する。例示的な実施の形態では、マイクロコントローラ150がユーザの皮膚電気抵抗を測定して、ステップ512で必要な期間、すなわち、皮膚電気抵抗を考慮して、PWM波形を調整しない期間を判定するようにマイクロコントローラ150をプログラミングしてもよい。
ステップ514では、PWM電源200は、その「オン」ステージで動作してもよい。ステップ516〜528の間、PWM電源200は、その「オフ」ステージで動作してもよい。以下、PWM電源200の動作を更に詳細に開示する。
スイッチ202及び抵抗器204は、マイクロコントローラ150と連携して動作して、インダクタ208への電源電圧をゲート制御する。インダクタ208への電源電圧のゲート制御は、負荷300を流れる負荷電流の量を制御できる。マイクロコントローラ150は、PWM電源200のデューティサイクルを調整することによって、すなわち、スイッチ202が「オン」である時間の割合を調整することによって、電気的輸送電流を制御してもよい。
PWM電源200の「オン」ステージの間、マイクロコントローラ150のノード154は、スイッチ202のゲートに電圧を印加し、スイッチ202を閉じてもよい。スイッチ202を閉じると、電源102の電圧がインダクタ208に印加され、また、これによって、コンデンサ206にも電圧が印加される。
PWM電源200の「オフ」ステージの間、マイクロコントローラ150のノード154は、スイッチ202のゲートにおいてスイッチ202を開き、電圧をオフにすることができる。スイッチ202が開くと、インダクタ208の周囲の磁界に蓄積された電気エネルギがインダクタ208に電流を流し続け、ショットキーダイオード210を「環流ダイオード(free wheeling diode)」として機能させる。これにより、インダクタ212に電流が流れ続ける。インダクタ212を流れる電流は、分圧器に供給される電流と、コンデンサ214をチャージする電流と、電極302、304に供給される電流とに分割される。
システムの動作周波数は、負荷抵抗によって、異なっていてもよい。例示的な実施の形態では、システムは、高い負荷抵抗に対しては約156kHzで動作し、低い負荷抵抗に対しては約78kHzで動作してもよい。動作周波数におけるこの変化は、PWM電源200の最短の「オン」時間に関するハードウェア上のあらゆる制約よりも優先される。
システムは、通常動作の間、電極を流れる電気的輸送電流を監視して、検出された電気的輸送電流と、目標電流を表す動的な値とを比較する。システムは、この比較に基づいて、上述のPWM電源200のデューティサイクルを制御することによって電気的輸送電流を増加又は減少させてもよい。上述したPWM電源200のデューティサイクルは、スイッチ202が「オン」状態である時間の割合である。例示的な実施の形態では、マイクロコントローラ150は、スイッチ202をオン/オフにする時間ベースの信号の周波数及び/又は継続時間を変更することによって、デューティサイクルを調整してもよい。
ステップ516では、マイクロコントローラ150のタイマが、ある間隔で、例えば、10ミリ秒の間隔で、1つ以上の中断を生成してもよい。中断は、マイクロコントローラ150のタイマ機能によって生成してもよい。マイクロコントローラ150は、クロック発振器を有していてもよい。例示的な実施の形態では、クロック発振器は、8MHzで走行してもよく、±2%の精度を有していてもよい。タイマ機能は、マイクロコントローラのクロックサイクルを計数し、タイマ値と、所望の回数を表す一定の数とを比較してもよい。例示的な実施の形態では、タイマは、メインクロックで、例えば、8MHzで走行し、10ミリ秒の間隔で中断を生成してもよい。
第2のコンデンサ214は、出力電圧及び電流を維持し、この結果、回路の有効な読取値を維持することができる。
ステップ518では、各中断の生成に応じて、マイクロコントローラ150がスイッチ202をオフにしてもよい。スイッチ202の「オフ」ステージの間、マイクロコントローラ150は、負荷300に印加される出力電圧を判定してもよく、負荷300を流れる電気的輸送電流を判定してもよく、マイクロコントローラ150に格納されている内部バンドギャップ電圧のデジタル表現を判定してもよい。これらの値を用いて、マイクロコントローラ150は、電気的輸送電流を所望のレベルに設定するために、PWM電源200のデューティサイクルを調整する必要があるか判定してもよい。
ステップ520では、スイッチ202の「オフ」ステージの間、マイクロコントローラは、負荷300を流れる電気的輸送電流のデジタル表現を判定してもよい。電気的輸送電流は、電極302、304に直列に接続された感知抵抗器256に亘る電圧降下によって判定してもよい。マイクロコントローラのノード156、160のそれぞれを感知抵抗器256の正端子及び負端子に接続して、感知抵抗器に亘る電圧を検出してもよい。この電圧を感知抵抗器256の抵抗によって分割することによって、マイクロコントローラ150のアナログ/デジタル変換器(ADC)が、感知抵抗器256に亘る電圧降下を検出し、電気的輸送電流のデジタル表現を判定してもよい。
また、マイクロコントローラは、負荷300に印加された出力電圧のデジタル表現を判定してもよい。出力電圧は、抵抗器252、254で構成される分圧器を用いて判定してもよい。分圧器は、検出された電圧を、マイクロコントローラ150内のADCによって処理できる範囲に低下させてもよい。マイクロコントローラのノード166は、分圧器を構成する抵抗器252と抵抗器254との間に接続してもよい。マイクロコントローラ150内のADCは、抵抗器254に印加された電圧を読み出し、この電圧に基づいて、電極に印加された出力電圧のデジタル表現を判定してもよい。
例示的な実施の形態では、マイクロコントローラ150のADCは、10ビットの逐次比較型ADC(1024段階フルスケール)であってもよい。ADCのフルスケールは、電源102の電圧である。
ステップ522において、スイッチ202の「オフ」ステージの間、マイクロコントローラ150は、目標電流を表す動的な値及び目標電圧を表す動的な値を判定してもよい。例示的な実施の形態では、まず、マイクロコントローラ150が判定した電気的輸送電流及び出力電圧値に、バンドギャップ基準(bandgap reference)の変動を修正する較正値を乗算してもよい。
上述したように、マイクロコントローラ150は、ADCを用いて、測定された電圧及び電流を、それぞれのデジタル表現に変換してもよい。ADCは、変換目的のために、電源100が提供する基準電圧を使用してもよい。
システム回路の動作は、電源100の電圧を低下させてもよく、続いて、ADCの基準電圧を低下させてもよい。マイクロコントローラ150は、各中断の生成に応じて、動的な値及び電圧値を再計算することによって、ADC基準電圧のこの緩やかな低下を実現してもよい。基準電圧が低下するに従って、マイクロコントローラ150は、電圧スケールを拡張して、電圧値の粒度を増加させることによって、逆の補正を実行してもよい。
例示的な実施の形態では、目標電流及び目標電圧を表す動的な値は、以下の式に基づいて判定してもよい。以下の式で用いられる電気的輸送電流(i)は、マイクロコントローラ150においてプログラミングされた所望の電気的輸送電流プロフィルから読み出してもよい。以下の式で用いられる電圧(v)は、システムにおいて許容された最大電圧であってもよい。
imAの目標電気的輸送電流を表す動的な値=((バンドギャップ電圧×imA×感知抵抗器256の抵抗)/1.20V基準電圧)×256ビットシフト×100.6公称基準値
vVの目標出力電圧を表す動的な値=((バンドギャップ電圧×vV×1/16抵抗分圧)/1.20V基準電圧)×256ビットシフト×100.6公称基準値
マイクロコントローラ150は、各中断の生成に応じて、目標電流及び目標電圧を表す動的な値を再計算することによって、ADC基準電圧の低下を実現してもよい。目標電流を表す動的な値の計算は、目標電流値、感知抵抗器の抵抗値、測定されたバンドギャップ電圧値、一定の電圧値及び定数に基づいて行ってもよい。続いて、感知抵抗器を流れる電流のデジタル表現を、目標電流を表す動的な値と比較して、感知抵抗器を流れる電流が目標電流値に一致しているかを判定する。
ステップ524において、スイッチ202の「オフ」ステージの間、マイクロコントローラ150は、出力電圧と、目標電圧を表す動的な値とをデジタル的に比較し、及び電気的輸送電流と、目標電流を表す動的な値とをデジタル的に比較してもよい。駆動時には、第2のコンデンサ214は、関連するリプル電流を生じる。スイッチ202の「オフ」ステージの間、このリプル電流は、消える。
ステップ526では、スイッチ202の「オフ」ステージの間、出力電圧が目標電圧を表す動的な値より大きい場合、マイクロコントローラ150は、PWM電源200のデューティサイクルを1段階減少させてもよい。このステップによって、マイクロコントローラは、ユーザの体の抵抗の変化の如何にかかわらず、出力電圧をある最大レベルより下に維持することができ、ユーザの皮膚を焼いてしまうことを回避することができる。ステップ526では、電流補正は、行わない。
ステップ528では、スイッチ202の「オフ」ステージの間、出力電圧が目標電圧を表す動的な値以下の場合、マイクロコントローラ150は、ステップ530において、電流補正を実行してもよい。ステップ530において、スイッチ202の「オフ」ステージの間、マイクロコントローラ150は、ステップ532〜536に概略を示している3つの条件に基づいて、電流補正を実行できる。
ステップ532では、電気的輸送電流が目標電流を表す動的な値より大きい場合、マイクロコントローラ150は、PWM電源200のデューティサイクルを1段階減少させてもよい。ステップ534では、電気的輸送電流が目標電流を表す動的な値に等しい場合、マイクロコントローラ150は、PWM電源200のデューティサイクルを変更しなくてもよい。ステップ536では、電気的輸送電流が目標電流を表す動的な値より小さい場合、マイクロコントローラ150は、PWM電源200のデューティサイクルを1段階増加させてもよい。
図11A及びBに示す制御ループに加えてシステムは、一定の間隔で、例えば、100Hzで、電気的輸送電流及び出力電圧を監視してもよい。また、システムは、一定の間隔で、例えば、1秒毎に、1つ以上の安全性検査を実行してもよい。
動作中に電源100の電圧がある限界を下回ると、マイクロコントローラ150が正しく動作しなくなるか停止してしまうリスクがある。例示的な実施の形態では、マイクロコントローラ150は、電源電圧が最小閾値電圧を下回っていないかを監視することによって、このリスクを検出してもよい。最小閾値電圧は、これを下回るとマイクロコントローラ150が正しく動作しなくなるか停止してしまうリスクが生じる電圧であってもよい。この最小閾値電圧は、マイクロコントローラ150のデータシートから読み出してもよく、マイクロコントローラの電圧公差に基づいて調整してもよい。電源電圧が最小閾値電圧を下回った場合、マイクロコントローラ150は、システムの動作を停止し、システムを非アクティブモードにしてもよい。電源電圧が最小閾値電圧以上である場合、システムは、動作を継続し、ランモードを維持してもよい。
例示的な実施の形態では、システムは、特定の時間(例えば、連続60秒を超える期間)、電気的輸送電流が高くなりすぎていないか(例えば、6mAを超えていないか)を監視してもよい。例示的な実施の形態では、システムは、特定の時間(例えば、連続60秒を超える期間)、出力電圧が高くなりすぎていないか(例えば、14Vを超えていないか)を監視してもよい。例示的な実施の形態では、システムは、特定の時間(例えば、1時間を超える期間)、電気的輸送電流が低くなりすぎていないか(例えば、0.2〜0.4mA未満のままでないか)を監視してもよい。一実施の形態においては、この特定の期間(例えば、1時間)は、累積的であってもよく、不連続な期間を含んでいてもよい。他の実施の形態においては、この特定の期間は、非累積的であってもよく、1つの連続した期間のみを含んでもよい。何れの場合も、条件が満たされると、マイクロコントローラ150は、システムの動作を停止し、システムを非アクティブモードにしてもよい。一方、条件が満たされない場合、システムは、動作を継続し、ランモードを維持してもよい。
例示的な実施の形態では、システムが上述の何れかの基準によって非アクティブモードになると、システム回路が非アクティブモードになったことをユーザに警告するために、インジケータをアクティブ化してもよい。例示的な実施の形態では、この指示は、LED184をオフにすることによって、又は可聴音を発することによって提供してもよい。
システムは、マイクロコントローラ150のプログラミングから判定される総投与期間の最後に非アクティブ化してもよい。投与量期間が無事に終了すると、システムは、投与が終了したことを示す視覚的又は聴覚的な指示を提供してもよい。例示的な実施の形態では、この指示は、LED184をオフにすることによって、又は可聴音を発することによって提供してもよい。
例示的な実施の形態では、デバイスは、1回の使用後、廃棄される。この実施の形態では、マイクロコントローラ150は、総投与期間が終了すると、再使用できないようにプログラミングしてもよい。総投与期間が終了しても、マイクロコントローラ150をオンのまま残し、電源100を徐々に空にしてもよい。これによって、デバイスが後にオンに戻るリスクを排除することができる。これに代えて、総投与期間の最後にマイクロコントローラ150がオフになる場合、総投与期間が終了すると、マイクロコントローラ150を自動的にオンにして、電源100を徐々に空にしてもよい。
他の例示的な実施の形態では、デバイスは、複数回使用できるように構成してもよい。この実施の形態では、投与量期間の終了時に、マイクロコントローラ150を再使用できるようにプログラミングしてもよく、マイクロコントローラ150は、再使用を防止するために電源100を空にすることを意図するモードには入らない。
上述した制御ループは、増分制御(incremental control)である。パッチに課される負荷の変化は、比較的遅いので、このような増分制御は、薬物投与システムに適している。有意な電流変化を引き起こす化学的な変化は、数秒から数分を要することが多い。パッチの動きに起因する変化であっても、数百ミリ秒を要する。
他の側面では、本発明は、ここに開示する薬物投与システムの何れかを用いて、ユーザに治療薬剤、例えば、コハク酸スマトリプタン(sumatriptan succinate)を投与する方法を提供する。
更に他の側面では、本発明は、ユーザを治療するための方法を提供する。この方法は、包括的に言えば、有効な量の薬物を経皮的にユーザに投与することを含み、この薬物は、ここに開示する薬物投与システムの何れかを用いて投与される。
薬物投与システムは、ユーザの如何なる適切な表面に貼り付けてもよい。幾つかの実施の形態では、デバイスは、上腕、脚(例えば、大腿部)又は背部(例えば、上背)に貼り付けてもよい。幾つかの実施の形態では、薬物投与システムは、処方された期間、例えば、約1時間、2時間、3時間、4時間、5時間、6時間、7時間、8時間、9時間、10時間又はこれ以上の期間で消耗する。例えば、一実施の形態では、薬物投与システムは、コハク酸スマトリプタンを含み、約4時間又は約5時間、上腕又は背部に貼り付けられる。他の実施の形態においては、コハク酸スマトリプタンを含む薬物投与システムは、約6時間、上腕又は背部に貼り付けられる。
治療薬物又は薬剤の具体例は、以下に限定されるものではないが、鎮痛薬、麻酔薬、抗関節炎薬、抗炎症薬、抗片頭痛薬、心血管作用薬(cardiovascularly active drug)、禁煙補助薬、ホルモン、非ステロイド性抗炎症薬、降圧剤、鎮痛剤、抗うつ薬、抗生物質、抗ガン剤、局部麻酔薬剤、鎮吐薬、抗感染症薬、避妊薬、抗糖尿病薬、ステロイド、抗アレルギー薬、禁煙のための薬剤、又は抗肥満薬を含む。治療薬物又は薬剤の具体例は、以下に限定されるものではないが、ニコチン、アンドロゲン、エストロゲン、テストステロン、エストラジオール、ニトログリセリン、クロニジン、デキサメサゾン、ウィンターグリーン油、テトラカイン、リドカイン、フェンタニル、スフェンタニル、アルフェンタニル、プロゲステロン、インシュリン、ビタミンA、ビタミンC、ビタミンE、プリロカイン、ブピバカイン、スコポラミン、ジヒドロエルゴタミン、及び薬学的に許容できるこれらの塩を含む。更なる実施の形態では、治療薬剤は、トリプタン化合物、例えば、スマトリプタン、アルモトリプタン、ゾルミトリプタン、リザトリプタン、ナラトリプタン又はこれらの組合せである。
トリプタン化合物は、反応状態(responsive state)を有することがあり、これは、片頭痛、(前兆を伴う及び前兆を伴わない)家族性片麻痺性片頭痛、慢性発作性頭痛、群発頭痛、片頭痛、脳底型片頭痛、自律神経症状を伴う非定型的な頭痛を含むグループから選択される少なくとも1つの状態である。
例示的な実施の形態では、治療薬剤は、トリプタン化合物であり、治療される状態は、トリプタン化合物反応状態(triptan compound responsive state)、例えば、トリプタン化合物の投与によって治療できる状態である。トリプタン化合物反応状態は、アルモトリプタン反応状態、ゾルミトリプタン反応状態、リザトリプタン反応状態、スマトリプタン反応状態及びナラトリプタン反応状態を含む。また、この用語も、片頭痛、(前兆を伴う及び前兆を伴わない)家族性片麻痺性片頭痛、慢性発作性頭痛、群発頭痛、片頭痛、脳底型片頭痛、自律神経症状を伴う非定型的な頭痛を含む。
「治療された」、「治療する」又は「治療」という用語は、治療的及び/又は予防的な治療を含む。治療は、少なくとも1つの症状の低減、軽減又は状態又は条件の完全な根絶を含む。
以下に説明するように、例示的な電極導通検査装置を用いて、薬物投与システム10(すなわち、ここに開示するイオントフォレシス薬物投与システム)の電気的接続の機能及び動作の検査及び検証を行ってもよい。このような例示的な検査及び検証電極導通テスタは、薬物投与システム10の電極接続の検査及び検証の使用のために適応化された電極パッチ導通検査装置を含んでいてもよい。
ある非制限的な具体例では、1つの例示的な電極導通検査装置は、表面に2個の銅ストリップが付着された平坦なベースパネルを含む。銅ストリップは、ベースパネルに接続された筐体内に設けられたスイッチに接続される。銅ストリップの1つには、1kΩの抵抗器がインラインで接続される。
例示的な電極導通検査装置は、更に、上板を含み、上板には、薬物投与システム10の上部へのアクセスを可能にする孔が開設されている。上板は、ベースパネルに取り付けられる。上板は、一方が他方の上になって確実に階層化されるように2つの層を取り付ける既知の如何なる技術を用いてベースパネルに取り付けてもよい。例えば、上板は、ヒンジによってベースパネルに取り付けてもよい。ある実施の形態では、イオントフォレシスシステムが上板とベースパネルとの間に配置され、上板がベースパネル上で閉じられたときに、イオントフォレシスシステムに圧力を加える2つのゴム又は発泡体リング、又は固体の環を上板は有する。この圧力によって、薬物投与システム10のプリント電極がベースパネルの銅ストリップに接触する。圧力は、上板をベースパネルに固定し、階層構造を形成する締結具によって維持される。例えば、締結手段は、上板に取り付けられ、上板をベースパネルに固定することができる手段を有するラッチであってもよい。
図12は、薬物投与システム10の電気的接続の検査及び検証のための例示的な方法を表すブロックフローチャートである。例示的な方法は、薬物投与システム10をベースパネル上に載置するステップ801を含む。ステップ802では、プリント電極を電極導通検査装置の銅ストリップに接触するように配置する。ステップ803では、薬物投与システム10上で上板を閉じる。ステップ804では、締結具によって上板をベースパネルに固定する。例えば、薬物投与システム10の電極がベースパネルの銅ストリップに接触するように薬物投与システム10をベースパネル上に載置し、上板をベースパネルに締結し、ベースパネルと上板との間に薬物投与システム10が挟み込まれた階層化されたデバイスを形成してもよい。上板には、孔が開設されており、これによって、図2に示すように、薬物投与システム10の制御回路16へのアクセスが提供される。必要であれば、薬物投与システム10に電源を接続する。ステップ805では、上板の孔を介して、約2〜8秒間、スイッチ106を押圧する。薬物投与システム10は、図10に示すように、LED184を含む。スイッチ106を2〜8秒間押圧すると、ステップ806において、LED184が点滅することになっており、これは、薬物投与システム10が検査モードになったことを表している。そして、ステップ807においてスイッチ106を押下すると、LED184は、完全な点灯状態に変化する。これは、薬物投与システム10の電源と電極との間の接続が機能していることを示している。
ここに開示する電極導通検査装置によって、薬物投与システム10の機能及び動作を速やかに査定することができる。検査装置及び検査方法は、薬物投与システム10の電極と回路板アセンブリとの間の接続に問題が生じていないか、例えば、薬物投与システム10の運送、取り扱い、処理のために破損していないかを評価する。
また、例示的な方法は、以下に説明するように、目標の量の薬物を投与するために、薬物投与システム10の電極の容量を検査及び測定する方法を含んでいてもよい。
ここで用いる「容量」という用語は、薬物投与システムが(目標の期間に亘って)目標の量の薬物を投与する能力の測定値を意味する。容量の検査及び計算によって、目標の量の薬物を患者に投与するために選択された金属が十分あることを確認する。
例えば、薬物投与システム10は、塩化銀(AgCl)カソードと、亜鉛(Zn)アノードとを有し、ユーザの皮膚を介して、例えば、正の電荷を有する薬物であるスマトリプタン等の活性物質を投与するために使用にされる。同時に、体内の負の電荷を有するイオンは、塩化銀(AgCl)カソードから離れ、正のアノードに向かって移動する。電極のための導電性金属は、イオントフォレシスプロセスに不可欠の電気化学反応に参加するイオンを提供する。
電極上に存在するイオンの数量及び使用可能性は、イオントフォレシス反応を継続させる能力と正比例の関係にある。電気化学的容量は、意図された使用期間に亘って薬物投与システム10のイオントフォレシス機能をサポートするために十分である必要がある。必要とされる容量の目標量は、薬物投与システム10に提供される電流の総量及び薬物投与システム10を消耗させることを意図した時間の総量を因子として考慮して判定される。電気化学セルの電気化学的容量は、一次電気化学反応内で動作している間は、アノード電極及びカソード電極の容量によって制限される。この意味で、容量は、適用される電流と時間の積分値として定義される。したがって、薬物投与システム10の容量は、アノード又はカソードの半電池の何れかの容量を超えることはできない。
一次電気化学反応から二次電気化学反応への電気化学的遷移は、比較的一定の電圧の期間に続く、曲率が高い変曲領域、比較的急な電圧−時間傾斜、第1の変曲とは反対の曲率を有する他の変曲領域、そして、二次電気化学反応を表す最終的な電圧停滞期として一般化できる。
薬物投与システム10の様々な実施の形態の目的のために、容量は、2つの変曲ゾーンの1つの一貫した点において測定される。カソードの場合、一次Ag/Ag−Cl還元電気化学反応に、水分解の二次還元電気化学反応が続き、これは、強塩基性の局所的環境(highly basic local environment)が生じるために、皮膚刺激を引き起こす場合がある。このため、カソード遷移は、第1の変曲点で発生すると定義される。アノードでは、一次亜鉛酸化電気化学反応に続いてより緩やかなAg酸化電気化学反応が生じる。したがって、アノードの終了点(endpoint)は、第2の変曲点において生じると定義される。
ここに開示する容量検査の方法は、最終用途において使用されるものと同じゲルパッドの異なる対によって分離されたZnアノード及びAg/AgClカソードの対の制御された電流放電を監視することによって達成される。アノードに面しているパッドは、例えば、レーヨン不織布パッドに吸収された4wt%のコハク酸スマトリプタンを含むポリアミンゲルからなる。この実施の形態は、例示的であり、薬物投与システム10は、スマトリプタン以外の薬剤を想定してもよい。カソードに面するパッドは、例えば、レーヨン不織布パッドに吸収された0.9wt%のNaClを含むゲルからなる。放電の間に用いられる電流は、4mAが1時間、これに続いて、2mAが3時間、最小の検査継続時間が約5時間、より好ましくは、約5.5時間の例示的な電流プロフィルによって特定される。例えば、4mAを1時間、2mAを4.5時間とする。検査の間、2つのAg/AgCl基準電極に対するアノード電位及びカソード電位を監視する。この検査の電極容量は、測定された電極電位に基づき、所与の電極がその特徴的な反応から逸脱した時点で測定された電流−時間の積分値として定義される。
図13A〜Eは、容量を測定するための方法の例示的なステップを表すブロックフローチャートである。ステップ901では、検査アセンブリの電圧を測定及び記録することによって、検査アセンブリに関する性能評価を行う。例えば、基準抵抗器コネクタに検査用クリップを取り付け、ソフトウェアを準備し、検査アセンブリに亘る電圧を測定及び記録する。ステップ901を継続し、特定の期間に亘って、電圧を基本又は公称電圧値と比較する。例えば、0〜12秒の時間窓に亘って、公称電圧は、アノードでは0.02Vであり、カソードでは−0.02Vである。この期間における合格測定値(passing measurement)は、±0.01V以内に収まる値である。15〜27秒の期間では、公称電圧は、アノードでは0.22Vであり、カソードでは−0.22Vである。この期間における合格測定値は、±0.02V以内に収まる値である。30〜42秒の期間の公称アノード電圧は、0.44Vであり、公称カソード電圧は、−0.44Vである。この期間における合格測定値は、±0.02V以内に収まる値である。45〜57秒の期間では、アノード及びカソードの公称電圧は、それぞれ0.88V及び−0.88Vである。この期間における合格測定値は、これらの値の±0.04V以内に収まる値である。60〜72秒の期間では、アノード及びカソードの公称電圧は、それぞれ0.02V及び−0.02Vである。この期間における合格測定値は、±0.01V以内に収まる値である。合格測定値を逸脱した電圧測定値は、検査アセンブリに欠陥があることを示し、ステップ902では、再検査を行ってもよい。薬物投与システム10の他の例示的な実施の形態では、他の公称値及び他の合格範囲を用いてもよい。
ステップ903では、アノード及びカソードの両方を有するパッケージを切断し、アノードをカソードから分離する。ステップ904では、カソード及びアノードに、それぞれが区別できるようにラベルを付す。ステップ905では、アノードを表面、例えば、テーブル上に載置する。アノードは、電極テール(electrode tail)と、一方の面に導電性インクを有する一対の表面とを含む。アノードは、導電性インクが上を向き、電極テールが12時の位置になるように表面に載置される。ステップ906では、インク側を上にして、基準電極の正方形のプリントされた端部を、端部から約1/4インチ折り上げる。ステップ907では、ラベルが付されたアノードの側辺から約1/4インチの位置に基準電極を配置する。基準電極の折られた端部は、裏打ちの端部を超えて、電極のテールと同じ方向に延び出る。ステップ908では、固定機構によって、例えば、一片のテープによって、テープが電極インクに接触しないように、基準電極をポリエステル材料に固定する。ステップ909では、先にアノードから分離され、ラベルが付されたカソード部分について、ステップ905〜908を繰り返す。
ステップ910では、HPC塩パッケージ(HPC salt package)を開き、HPC塩パッドを用いて、カソードに残りを塗布し、実質的に全ての表面、好ましくは、円形のカソード電極及び基準電極の100%が覆われるようにする。ステップ911では、鉗子又は他の種類の把持手段を用いて、HPCパッドを取り上げ、カソード上に配置する。ステップ912では、パッドの端部をカソードに接触させて、巻き広げ、カソード及び基準電極を覆うようにする。ステップ913では、湿潤標本(wet preparation)開始時刻を記録する。
ステップ914では、ポリアミンパッドを含むポリアミンパッケージを開き、鉗子又は他のタイプの把持手段を使用する。ステップ915では、HPCパッドについて説明したように、ポリアミンパッドをHPCパッドに重ね、HPCパッド及びポリアミンパッドの両方の端部が揃うようにする。ポリアミンパッケージからのポリアミンの残りは、アノードに塗布され、実質的に円形のアノード電極の全ての表面が覆われるようにする。好ましくは、表面の100%が覆われるようにする。ステップ916では、巻き広げ法(rolling method)を用いて、ポリアミンパッド上にアノードを配置する。伝導性インクダイは、下向きにされ、ポリアミンパッドに接触する。アノード及びアノード基準電極のテールは、カソード電極対から約1インチ、オフセットしている必要がある。
ステップ917では、組み立てられた電極対を取付板に載置する。ステップ918では、好ましくは、テープ又は他の適切な接着手段を用いて、電極対を取付板に固定する。ステップ919では、組み立てられた電極対の表面を丁寧に平滑化し、閉じ込められた気泡を除去する。ステップ920では、ドライバボードからのワイヤを取り付ける。これは、第1のワイヤをアノード基準電極にクリップし、第2のワイヤをアノードにクリップし、第3のラベルが付されたワイヤをカソードにクリップし、第4のラベルが付されたワイヤをカソード基準電極にクリップすることによって行われる。ステップ921では、アノード及びカソードの電圧を検証する。例えば、有効な電圧は、アノードでは、−0.9〜−1.2Vの範囲内に収まり、カソードでは、0〜−0.1Vの範囲内に収まる。ステップ922では、電圧を記録する。ステップ923では、ポリカーボネートブロックを、コーナの1つがアノード及びカソード接続の間になるように、電極アセンブリの上に載置する。このコーナは、取付板に固定される。そして、ステップ924において、組立体の全体を再密封可能なプラスチックバッグ内に収納する。ステップ925では、容量を測定する。例えば、カソード及びアノードにおける電圧値の測定及び記録測定のための容量ソフトウェアを実行する。ステップ926では、電極の容量を算出する。
本発明の装置及び方法の他の実施の形態では、電気的輸送電流は、所定の電流−時間プロフィルに従う。
ここに開示する方法の他の実施の形態では、動物の生体表面に印加される出力電圧は、動物の生体表面を焼いてしまうことを回避するために、動物の生体表面の抵抗の変化の如何にかかわらず、最大値より下に維持される。他の実施の形態では、方法は、更に、デバイスのバッテリが最小レベルのエネルギを有していることを検出するステップと、バッテリが最小レベルのエネルギを有している場合にのみ、動物の生体表面に電気的輸送電流を流すステップとを有する。
他の実施の形態では、方法は、潜在的な安全性問題の検出に応じてデバイスを停止し、デバイスが停止したことを示す指示を提供するステップを更に有する。
幾つかの実施の形態では、この指示は、デバイスのLED光の消灯である。他の実施の形態では、この指示は、デバイスが発する可聴音である。
ここに開示した方法の他の実施の形態は、更に、薬物投与デバイスをオンにした直後に、所定の持続時間に亘って、PWM電源のデューティサイクルを制御することなく、動物の生体表面に出力電圧を印加するステップを有する。
他の実施の形態では、方法は、所定のプロファイルにおける電気的輸送電流を制御するステップを有し、電気的輸送電流の所定のプロファイルは、第1の所定の持続時間における第1の一定の電流値と、第2の所定の持続時間における増加又は減少する電流値の傾斜とを含む。
他の実施の形態では、方法は、所定のプロファイルにおける電気的輸送電流を制御するステップを更に有し、所定のプロファイルは、第1の所定の持続時間における第1の一定の電流値と、第2の所定の持続時間における第2の一定の電流値とを含む。
また、この方法の他の実施の形態は、所定のプロファイルにおける電気的輸送電流を制御するステップを含み、所定のプロファイルは、所定の持続時間に亘る第1の電流値から開始し、第2の電流値で終了する傾斜を含む。
ここに開示する方法の幾つかの実施の形態では、第1の一定の電流値は、4mAであり、第1の所定の持続時間は、1時間であり、第2の一定の電流値は、2mAであり、第2の所定の持続時間は、3時間であり、所定の総実行時間は、4時間である。
ここに開示する方法の他の実施の形態は、デバイスをオンした後、電気的輸送電流が初期期間内に電流の最小レベルに達するか検出するステップと、電気的輸送電流が初期期間内に電流の最小レベルに達していない場合、電気的輸送電流をオフに切り換えるステップを更に有する。
他の実施の形態では、方法は、デバイスのバッテリが空になるまで、デバイスを1回以上オンに切り換えるステップを更に含む。
他の実施の形態は、所定のプロファイルで電気的輸送電流を制御するステップを更に有し、所定のプロファイルは、動物の生体表面の特徴に基づいて選択される。
他の幾つかの実施の形態では、方法は、所定のプロファイルで電気的輸送電流を制御するステップを更に有し、所定のプロファイルは、治療薬剤の特徴に基づいて選択される。
方法の他の実施の形態では、薬物投与デバイスの製造後に、デバイスをユーザに適応化するために、コントローラのプログラミングを変更する。
他の実施の形態では、方法は、第1の所定のプロファイルで動物の生体表面に電気的輸送電流を流すようにコントローラをプログラミングするステップと、第2の所定のプロファイルで動物の生体表面に電気的輸送電流を流すようにコントローラのプログラミングを変更するステップとを更に有する。
方法の他の実施の形態では、薬物投与デバイスの製造後に、デバイスをユーザに適応化するために、コントローラのプログラミングを変更する。
方法の他の実施の形態は、動物の生体表面の抵抗の変化を考慮して、電気的輸送電流を調整するステップを更に有する。
他の実施の形態では、方法は、動物の生体表面の抵抗の変化を考慮して、電気的輸送電流を調整するステップを更に有する。
他の実施の形態では、方法は、治療薬剤の投与が終了すると、PWM電源を徐々に空にするようにコントローラをプログラミングするステップを更に有する。
本発明の他の実施の形態は、動物の生体表面に電気的輸送電流を流す薬物投与デバイスを開示し、このデバイスは、2つの電極と、治療薬剤を格納する1つ以上のリザーバとを含むパッチを備える。1つ以上のリザーバは、1つ以上のリザーバが、電極上に配置され、一方の電極から他方の電極に流れる電気的輸送電流の電気的経路を形成すると、動物の生体表面を介して治療薬剤を放出するように適応化されている。このデバイスは、動物の生体表面に出力電圧を印加し、動物の生体表面に電気的輸送電流を流すように制御可能な電源を更に備える。このデバイスは、所定の間隔で1つ以上の中断を生成し、1つ以上の中断を生成したとき、制御可能な電源をオフにするステップと、所定のプロファイルで動物の生体表面に電気的輸送電流を流し、電気的輸送電流の現在の値及び目標電気的輸送電流を表す値を判定し、少なくとも現在の値及び目標電気的輸送電流を表す動的な値に基づいて、制御可能な電源を制御するようにプログラミングされたコントローラを更に備える。
デバイスの他の実施の形態では、コントローラは、リニアレギュレータを用いて、制御可能な電源を制御する。他の実施の形態では、パッチ及び電源は、一体化されている。
デバイスのある実施の形態では、電圧レギュレータは、反転SEPIC(single ended primary inductor converter)電圧レギュレータであり、他の実施の形態では、電圧レギュレータは、標準の降圧コンバータ電圧レギュレータ(buck converter voltage regulator)である。他の実施の形態で電圧レギュレータは、標準の昇圧コンバータ電圧レギュレータ(boost converter voltage regulator)である。幾つかの実施の形態で電圧レギュレータは、昇降圧コンバータ電圧レギュレータ(buck-boost converter voltage regulator)である。
他の実施の形態では、デバイスは、デバイスがアクティブであることを示す視覚的な指示を提供する発光ダイオード(light-emitting diode:LED)を更に備える。
他の実施の形態では、電気的輸送電流の所定のプロファイルは、所定の持続時間に亘る一定の電流値を含む。他の実施の形態では、電気的輸送電流の所定のプロファイルは、第1の所定の持続時間における第1の一定の電流値と、第2の所定の持続時間における増加又は減少する電流値の傾斜とを含む。
デバイスの他の実施の形態においては、電気的輸送電流の所定のプロファイルは、第1の所定の持続時間における第1の一定の電流値と、第2の所定の持続時間における第2の一定の電流値とを含む。
デバイスの他の実施の形態では、コントローラは、動物の生体表面の抵抗の変化を考慮して、電気的輸送電流を調整するように更にプログラミングされる。他の実施の形態では、コントローラは、動物の生体表面の抵抗の変化を考慮して、出力電圧を調整するように更にプログラミングされる。
デバイスの他の実施の形態では、デバイスの動作の間にバッテリ電圧が最小電圧を下回った場合に、潜在的安全性問題が検出され、ここで、最小電圧とは、コントローラが適切に機能できない電圧である。
デバイスの他の実施の形態では、潜在的な安全性問題は、デバイスの動作の間に、第1の所定の持続時間に亘って、電気的輸送電流が最大電流を上回った場合に検出される。
デバイスの幾つかの実施の形態では、潜在的な安全性問題は、デバイスの動作の間に、第2の所定の持続時間に亘って、電気的輸送電流が最小電流を下回った場合に検出され、他の実施の形態では、潜在的な安全性問題は、デバイスの動作の間に、所定の持続時間に亘って、出力電圧が最大電圧を上回った場合に検出される。
当業者は、上述した例示的な実施の形態に基づいて、本発明の更なる特徴及び利点を想到することができる。したがって、本発明は、添付の特許請求の範囲を除き、ここに特に示し及び開示したことによっては限定されない。
本発明の方法、システム及び装置について、これらの例示的な実施の形態を参照して、特定的に示し、説明したが、本発明の精神及び範囲から逸脱することなく、ここに示した形式及び詳細に様々な変更を加えることができることは、当業者にとって明らかである。当業者は、単なる通常の実験を用いて、ここに説明した特定の手順の多くの均等物を認識又は確認することができる。このような均等物は、本発明の範囲内にあり、添付の特許請求の範囲に包含されるとみなされる。

Claims (23)

  1. 動物の生体表面に電気的輸送(electrotransport)電流を流す薬物投与デバイス(10)において、
    2つの電極(12,14)と、治療薬剤を収納する1つ以上のリザーバ(30,32)であって、前記1つ以上のリザーバ(30,32)が、前記電極(12,14)上に配置され、前記一方の電極(12又は14)から前記他方の電極(14又は12)に流れる前記電気的輸送電流の電気的経路を形成すると、動物の生体表面を介して治療薬剤を放出する1つ以上のリザーバ(30,32)とを有するパッチと、
    前記動物の生体表面に出力電圧を印加し、前記動物の生体表面に前記電気的輸送電流を流すように制御可能な電源(200)と、
    マイクロコントローラ(150)と
    を備え、
    前記マイクロコントローラは、
    前記電気的輸送電流の現在の値を判定し、
    目標電気的輸送電流、前記薬物投与デバイスの前記電極の間を流れる前記電気的輸送電流の検出に使用される感知抵抗器の抵抗値、前記マイクロコントローラに関連付けられたバンドギャップ電圧の値及び固定電圧値に基づいて目標電気的輸送電流を表す動的な値を判定し、
    少なくとも前記電気的輸送電流の前記現在の値及び前記目標電気的輸送電流を表す前記動的な値に基づいて、前記制御可能な電源(200)を制御する
    ようにプログラミングされ
    ことを特徴とする、デバイス。
  2. 前記マイクロコントローラ(150)は、リニアレギュレータを用いて、前記制御可能な電源(200)を制御するように構成されている、請求項1記載のデバイス。
  3. 前記マイクロコントローラ(150)は、スイッチングレギュレータを用いて、前記制御可能な電源(200)を制御するように構成されている、請求項1記載のデバイス。
  4. 前記スイッチングレギュレータは、パルス幅変調(PWM)を実行するように構成されており、前記制御可能な電源(200)は、PWM電源である請求項3記載のデバイス。
  5. 前記マイクロコントローラ(150)は、さらに
    前記マイクロコントローラ(150)を用いて、少なくとも前記電気的輸送電流の前記現在の値及び前記目標電気的輸送電流を表す前記動的な値に基づいて、前記PWM電源(200)のデューティサイクルを制御するようにプログラミングされている請求項4記載のデバイス。
  6. 前記パッチ及び前記デバイス(10)の電源(100)は、分離可能である請求項1記載のデバイス。
  7. 前記マイクロコントローラ(150)は、
    前記デバイス(10)の電源(100)が最小レベルのエネルギを有していることを検出し、
    前記電源(100)が前記最小レベルのエネルギを有している場合にのみ、前記動物の生体表面に前記電気的輸送電流を流すように更にプログラミングされている請求項1記載のデバイス。
  8. 前記マイクロコントローラ(150)は、第2の所定のプロファイルで前記動物の生体表面に前記電気的輸送電流を流すように再プログラミング可能である請求項1記載のデバイス。
  9. 前記マイクロコントローラ(150)は、
    前記動物の生体表面の抵抗の変化にかかわらず、前記出力電圧を最大レベルより下に維持するように更にプログラミングされている請求項1記載のデバイス。
  10. 前記マイクロコントローラ(150)は、
    潜在的な安全性問題の検出に応じて、前記デバイス(10)を停止し、
    前記デバイス(10)が停止したことを示す指示を提供するように更にプログラミングされている請求項1記載のデバイス。
  11. 前記マイクロコントローラ(150)は、
    タイマを用いて、所定の間隔で、前記電気輸送電流の前記現在の値及び前記目標電気輸送電流を表す前記動的な値を判定するように更にプログラミングされている請求項1記載のデバイス。
  12. 前記マイクロコントローラ(150)は、
    前記出力電圧の現在の値を判定し、
    目標出力電圧を表す動的な値を判定し、
    前記出力電圧の前記現在の値と前記目標出力電圧を表す前記動的な値との間の第1の比較を行い、
    前記電気的輸送電流の前記現在の値と前記目標電気的輸送電流を表す前記動的な値との間の第2の比較を行い、
    前記第1の比較又は前記第2の比較に基づいて、前記PWM電源(200)のデューティサイクルを制御するように更にプログラミングされている請求項4記載のデバイス。
  13. 前記PWM電源(200)のデューティサイクルの制御は、
    前記第1の比較に基づいて、前記出力電圧の前記現在の値が、前記目標出力電圧を表す前記動的な値より大きいことを判定し、
    電気的輸送電流補正を実行しないで前記PWM電源(200)のデューティサイクルを1段階減少させることを更に含む請求項12記載のデバイス。
  14. 前記PWM電源(200)のデューティサイクルの制御は、
    前記第1の比較に基づいて、前記出力電圧の前記現在の値が前記目標出力電圧を表す前記動的な値以下であることを判定し、
    前記第2の比較に基づいて、電気的輸送電流補正を実行することを更に含む請求項12記載のデバイス。
  15. 前記電気的輸送電流補正の実行は、
    前記第2の比較に基づいて、前記電気的輸送電流の前記現在の値が前記目標電気的輸送電流を表す前記動的な値より大きいことを判定し、
    前記PWM電源(200)のデューティサイクルを1段階減少させることを含む請求項14記載のデバイス。
  16. 前記電気的輸送電流補正の実行は、
    前記第2の比較に基づいて、前記電気的輸送電流の前記現在の値が前記目標電気的輸送電流を表す前記動的な値と等しいことを判定し、
    前記PWM電源(200)のデューティサイクルを現在の段階で維持することを含む請求項14記載のデバイス。
  17. 前記電気的輸送電流補正の実行は、
    前記第2の比較に基づいて、前記電気的輸送電流の前記現在の値が前記目標電気的輸送電流を表す前記動的な値より小さいことを判定し、
    前記PWM電源(200)のデューティサイクルを1段階増加させることを含む請求項14記載のデバイス。
  18. 前記デバイス(10)は、使い捨て用に構成され、前記マイクロコントローラ(150)は、前記治療薬剤の投与が終了すると、前記デバイス(10)の電源(100)を徐々に空にするようにプログラミングされる請求項1記載のデバイス。
  19. 前記治療薬剤は、コハク酸スマトリプタン(sumatriptan succinate)を含む請求項1記載のデバイス。
  20. 前記目標電気的輸送電流を表す前記動的な値は、少なくとも前記目標電気的輸送電流及び電源(100)の動作中に変化する前記電源(100)の動作特性に基づいて判定される請求項1記載のデバイス。
  21. 前記電源(100)の動作特性は前記電源(100)の可変出力電圧である請求項20記載のデバイス。
  22. 前記目標電気的輸送電流を表す前記動的な値は、少なくとも前記目標電気的輸送電流及び前記電源(100)の動作中に変化するアナログデジタル変換器における基準電圧に基づいて判定される請求項20記載のデバイス。
  23. マイクロコントローラ(150)を用いて、動物の生体表面に電気的輸送電流を流し、治療薬剤の少なくとも一部を投与するように処理ユニットが実行可能な命令を保存するコンピュータが読取可能な1つ以上の媒体において、
    制御可能な電源(200)を用いて、動物の生体表面に前記電気的輸送電流を流し、
    前記電気的輸送電流の現在の値を判定し、
    目標電気的輸送電流を表す動的な値を、目標電気的輸送電流、薬物投与デバイスの電極の間を流れる前記電気的輸送電流の検出に使用される感知抵抗器の抵抗値、前記マイクロコントローラに関連付けられたバンドギャップ電圧の値及び固定電圧値に基づいて判定し、
    前記マイクロコントローラ(150)を用いて、少なくとも前記電気的輸送電流の前記現在の値及び前記目標電気的輸送電流を表す前記動的な値に基づいて、前記制御可能な電源(200)を制御するための命令を格納するコンピュータが読取可能な媒体。
JP2011544581A 2008-12-30 2009-12-29 薬物投与システムの電子制御 Expired - Fee Related JP5888645B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14137708P 2008-12-30 2008-12-30
US61/141,377 2008-12-30
PCT/US2009/069673 WO2010078313A1 (en) 2008-12-30 2009-12-29 Electronic control of drug delivery system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016019506A Division JP2016104225A (ja) 2008-12-30 2016-02-04 薬物投与システムの電子制御

Publications (3)

Publication Number Publication Date
JP2012513876A JP2012513876A (ja) 2012-06-21
JP2012513876A5 JP2012513876A5 (ja) 2013-02-14
JP5888645B2 true JP5888645B2 (ja) 2016-03-22

Family

ID=41728042

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011544581A Expired - Fee Related JP5888645B2 (ja) 2008-12-30 2009-12-29 薬物投与システムの電子制御
JP2016019506A Pending JP2016104225A (ja) 2008-12-30 2016-02-04 薬物投与システムの電子制御

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016019506A Pending JP2016104225A (ja) 2008-12-30 2016-02-04 薬物投与システムの電子制御

Country Status (15)

Country Link
US (2) US8983594B2 (ja)
EP (3) EP2810688B1 (ja)
JP (2) JP5888645B2 (ja)
CN (2) CN104043194A (ja)
AU (2) AU2009335085B2 (ja)
BR (1) BRPI0923808A2 (ja)
CA (2) CA2748569A1 (ja)
EA (1) EA201100891A1 (ja)
ES (2) ES2612830T3 (ja)
HK (3) HK1162992A1 (ja)
IL (1) IL213855A0 (ja)
MX (1) MX2011007137A (ja)
NZ (2) NZ593928A (ja)
WO (1) WO2010078313A1 (ja)
ZA (1) ZA201104832B (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013012117A8 (pt) * 2010-11-23 2017-10-10 Nupathe Inc Sistema de distribuição de fármaco iontoforético coempacotado de utilização única coempacotado autocontido, usos de fármaco e de composto de triptano
US8428708B1 (en) 2012-05-21 2013-04-23 Incline Therapeutics, Inc. Self-test for analgesic product
US8428709B1 (en) 2012-06-11 2013-04-23 Incline Therapeutics, Inc. Current control for electrotransport drug delivery
US9744353B2 (en) 2012-11-14 2017-08-29 Teva Pharmaceuticals International Gmbh Detection of presence and alignment of a therapeutic agent in an iontophoretic drug delivery device
FR3015300B1 (fr) * 2013-12-20 2018-03-02 L'oreal Dispositif d'iontophorese a reservoir
WO2016018627A1 (en) * 2014-08-01 2016-02-04 Thorley Industries Llc Infant chairs
CN107073259B (zh) * 2014-09-08 2021-03-02 法斯特麦德意大利有限公司 能够产生微电流的贴片
KR101912946B1 (ko) * 2016-03-22 2018-10-29 이태규 생체정보 유효기간에 기초한 타임패치 장치
CN107550728A (zh) * 2016-06-23 2018-01-09 陈家林 一种穴位电子药灸治疗装置
ES2885062T3 (es) 2017-06-28 2021-12-13 Fundacion Tecnalia Res & Innovation Dispositivo para la administración transdérmica controlada y vigilada de principios activos y uso del mismo
JP7480047B2 (ja) 2018-01-11 2024-05-09 セラニカ バイオ-エレクトロニクス リミティド 電極パッチ
KR102132370B1 (ko) * 2018-03-13 2020-08-05 주식회사 지씨에스 피부관리장치, 피부관리장치의 구동방법 및 컴퓨터 판독가능 기록매체
US11397455B2 (en) 2018-09-10 2022-07-26 Microsoft Technology Licensing, Llc Managing DC power
US20210379383A1 (en) * 2018-10-23 2021-12-09 Saluda Medical Pty Limited Supervisor for implantable stimulation devices
KR20210138590A (ko) * 2019-02-22 2021-11-19 페어 테라퓨틱스, 인코포레이티드 편두통들과 관련된 증상들의 치료를 위한 시스템들 및 방법들
CN110860029B (zh) * 2019-10-09 2022-04-22 杭州未名信科科技有限公司 一种经皮给药贴及经皮给药方法
WO2021167109A1 (ja) * 2020-04-27 2021-08-26 ヤーマン株式会社 美容機器および電流制御方法

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4141359A (en) 1976-08-16 1979-02-27 University Of Utah Epidermal iontophoresis device
US5042975A (en) * 1986-07-25 1991-08-27 Rutgers, The State University Of New Jersey Iontotherapeutic device and process and iontotherapeutic unit dose
US5961482A (en) * 1986-07-25 1999-10-05 Rutgers, The State University Of New Jersey Iontotherapeutic device and process and iontotherapeutic unit dose
US4927408A (en) 1988-10-03 1990-05-22 Alza Corporation Electrotransport transdermal system
US5047007A (en) 1989-12-22 1991-09-10 Medtronic, Inc. Method and apparatus for pulsed iontophoretic drug delivery
US5207752A (en) * 1990-03-30 1993-05-04 Alza Corporation Iontophoretic drug delivery system with two-stage delivery profile
US5246418A (en) 1991-12-17 1993-09-21 Becton Dickinson And Company Iontophresis system having features for reducing skin irritation
FR2688106B1 (fr) 1992-02-27 1994-09-09 Lhd Lab Hygiene Dietetique Dispositif de generation d'une tension electrique de forme d'onde predeterminee, appareil ionophoretique d'administration transdermique de medicaments.
US5499967A (en) 1992-02-27 1996-03-19 Societe Anonyme Dite: Laboratoires D'hygiene Societe Anonyme Dite: Et De Dietetique (L.H.D.) Transdermal drug delivery device with waveshape generator
IL105073A0 (en) * 1992-03-17 1993-07-08 Becton Dickinson Co User activated iontophoretic device and method for using same
US5310404A (en) * 1992-06-01 1994-05-10 Alza Corporation Iontophoretic delivery device and method of hydrating same
JP2542792B2 (ja) * 1992-11-05 1996-10-09 ベクトン・ディッキンソン・アンド・カンパニー ユ―ザ作動型のイオン導入式装置
US5254007A (en) 1993-01-29 1993-10-19 Eagan Chris S Baby entertainment and learning apparatus for highchairs
US5533971A (en) 1993-09-03 1996-07-09 Alza Corporation Reduction of skin irritation during electrotransport
US5551953A (en) * 1994-10-31 1996-09-03 Alza Corporation Electrotransport system with remote telemetry link
JPH08155041A (ja) * 1994-12-05 1996-06-18 Advance Co Ltd イオントフォレシス用新規高能率電極システム
US5697896A (en) * 1994-12-08 1997-12-16 Alza Corporation Electrotransport delivery device
US5879322A (en) 1995-03-24 1999-03-09 Alza Corporation Self-contained transdermal drug delivery device
IE960312A1 (en) * 1995-06-02 1996-12-11 Alza Corp An electrotransport delivery device with voltage boosting¹circuit
IE960375A1 (en) 1995-06-05 1996-12-11 Alza Corp Device for transdermal electrotransport delivery of fentanyl¹and sufentanil
US6881208B1 (en) 1995-06-05 2005-04-19 Joseph B. Phipps Method and device for transdermal electrotransport delivery of fentanyl and sufentanil
US5983130A (en) * 1995-06-07 1999-11-09 Alza Corporation Electrotransport agent delivery method and apparatus
US6167301A (en) 1995-08-29 2000-12-26 Flower; Ronald J. Iontophoretic drug delivery device having high-efficiency DC-to-DC energy conversion circuit
US6141582A (en) 1995-08-31 2000-10-31 Hisamitsu Pharmaceutical Co., Ltd. Iontophoresis system and its control process of current
US5688232A (en) 1995-09-28 1997-11-18 Becton Dickinson And Company Iontophoretic drug delivery device having an improved controller
FR2747313B1 (fr) * 1996-04-16 1998-06-05 Lhd Lab Hygiene Dietetique Dispositif d'administration transdermique de medicaments par ionophorese
US6086572A (en) * 1996-05-31 2000-07-11 Alza Corporation Electrotransport device and method of setting output
ZA975326B (en) * 1996-06-18 1998-01-14 Alza Corp Device and method for enhancing transdermal flux of agents being delivered or sampled.
US5693024A (en) * 1996-09-27 1997-12-02 Becton Dickinson And Company Iontophoretic drug delivery system, including method for determining hydration of patch
US5738647A (en) * 1996-09-27 1998-04-14 Becton Dickinson And Company User activated iontophoretic device and method for activating same
US6350259B1 (en) * 1996-09-30 2002-02-26 Vyteris, Inc. Selected drug delivery profiles using competing ions
US20010009983A1 (en) * 1997-09-29 2001-07-26 Drug Delivery Technologies, Inc. Methods for implementing current delivery profiles used in an iontophoretic system
AU1997699A (en) * 1997-12-16 1999-07-05 Alza Corporation Regulator with artificial load to maintain regulated delivery
WO1999030775A1 (en) 1997-12-17 1999-06-24 Alza Corporation Iontophoresis with programmed adjustment of electric current
JP4279992B2 (ja) 1999-04-12 2009-06-17 久光製薬株式会社 イオントフォレーシス用デバイス
US6385488B1 (en) 1999-05-20 2002-05-07 Vyteris, Inc. Circuits for increasing the reliability of an iontophoretic system
US6377848B1 (en) 1999-08-25 2002-04-23 Vyteris, Inc. Devices activating an iontophoretic delivery device
DE60228294D1 (en) * 2001-06-05 2008-09-25 Ronald Aung-Din Topische migränetherapie
US6708050B2 (en) * 2002-03-28 2004-03-16 3M Innovative Properties Company Wireless electrode having activatable power cell
FR2844719B1 (fr) * 2002-09-24 2004-11-19 Francois Duret Dispositif electro-chimique pour le blanchiment d'un corps
US6745071B1 (en) 2003-02-21 2004-06-01 Birch Point Medical, Inc. Iontophoretic drug delivery system
WO2006133103A2 (en) * 2005-06-03 2006-12-14 Trans-Dermal Patents Company, Llc Reservoir for delivery of agents
AU2007238685B2 (en) 2006-04-13 2012-09-13 Teva Pharmaceuticals International Gmbh Transdermal methods and systems for the delivery of anti-migraine compounds
JP2010502263A (ja) * 2006-08-30 2010-01-28 エルジー ハウスホールド アンド ヘルス ケア エルティーディー. イオン導入装置
US20080188791A1 (en) * 2007-02-02 2008-08-07 Difiore Attilio E Active iontophoresis delivery system

Also Published As

Publication number Publication date
EP2810688A2 (en) 2014-12-10
EP2810688B1 (en) 2016-11-16
ZA201104832B (en) 2016-03-30
AU2009335085B2 (en) 2015-11-05
JP2016104225A (ja) 2016-06-09
NZ593928A (en) 2014-03-28
JP2012513876A (ja) 2012-06-21
AU2009335085A1 (en) 2011-08-18
NZ622157A (en) 2015-10-30
HK1205026A1 (en) 2015-12-11
EP2810688A3 (en) 2015-04-08
US20100262066A1 (en) 2010-10-14
HK1162992A1 (en) 2012-09-07
BRPI0923808A2 (pt) 2015-07-14
CN102333566A (zh) 2012-01-25
AU2015242986A1 (en) 2015-11-05
EP2393549B1 (en) 2014-10-01
CA2944660A1 (en) 2010-07-08
MX2011007137A (es) 2011-12-06
EP2393549A1 (en) 2011-12-14
US8983594B2 (en) 2015-03-17
HK1202083A1 (en) 2015-09-18
ES2612830T3 (es) 2017-05-18
EP3120895A1 (en) 2017-01-25
CN104043194A (zh) 2014-09-17
WO2010078313A1 (en) 2010-07-08
US20150151120A1 (en) 2015-06-04
IL213855A0 (en) 2011-07-31
CN102333566B (zh) 2014-03-26
CA2748569A1 (en) 2010-07-08
EA201100891A1 (ru) 2012-05-30
ES2526118T3 (es) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5888645B2 (ja) 薬物投与システムの電子制御
US7660627B2 (en) Electrotransport delivery device having improved safety and reduced abuse potential
FI116272B (fi) Sähkökuljetusmenetelmää käyttävä annostelulaite
JP4162813B2 (ja) イオントフォレーシス装置
JP6363070B2 (ja) 電気輸送薬物配送のための電流制御
JP2001025509A (ja) イオン導入システムの信頼性を高めるための回路
JP2015534860A (ja) イオントフォレティック薬物送達装置における治療薬の存在および整列の検出
US20090043244A1 (en) Electrotransport Drug Delivery Device Adaptable to Skin Resistance Change
KR20010112420A (ko) 이온토포레시스용 디바이스

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140401

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150602

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150602

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160205

R150 Certificate of patent or registration of utility model

Ref document number: 5888645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees