JP5888204B2 - 分配移相器及びアンテナ装置 - Google Patents

分配移相器及びアンテナ装置 Download PDF

Info

Publication number
JP5888204B2
JP5888204B2 JP2012238705A JP2012238705A JP5888204B2 JP 5888204 B2 JP5888204 B2 JP 5888204B2 JP 2012238705 A JP2012238705 A JP 2012238705A JP 2012238705 A JP2012238705 A JP 2012238705A JP 5888204 B2 JP5888204 B2 JP 5888204B2
Authority
JP
Japan
Prior art keywords
conductor
movable
phase shifter
movable conductor
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012238705A
Other languages
English (en)
Other versions
JP2014090292A (ja
Inventor
直樹 磯
直樹 磯
延明 北野
延明 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2012238705A priority Critical patent/JP5888204B2/ja
Publication of JP2014090292A publication Critical patent/JP2014090292A/ja
Application granted granted Critical
Publication of JP5888204B2 publication Critical patent/JP5888204B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Description

本発明は、分配移相器およびアンテナ装置に関する。
分配移相器は、入力された高周波信号を分配するとともに、分配された高周波信号の位相を互いに異ならせる機能を有し、例えば、フェイズドアレイアンテナ(PAアンテナ)のビームチルト角を調整するために用いられる。
本発明と関連する分配移相器が特許文献1に記載されている。特許文献1に記載されている分配移相器(特許文献1中では“可変移相器”と呼ばれている。)は、誘電体基板上に形成された2本のマイクロストリップ線路と、これらマイクロストリップ線路に跨る可動カプラとしてのハイブリッド回路とを有する。
2本のマイクロストリップ線路は互いに平行に配置されており、一方のマイクロストリップ線路(以下“入力側マイクロストリップ線路”と呼ぶ。)の一端は入力ポートとされ、他端はアイソレーションポートとされている。また、他方のマイクロストリップ線路(以下“出力側マイクロストリップ線路”と呼ぶ。)の両端は、それぞれ出力ポートとされている。入力ポートに入力された高周波信号は、入力側マイクロストリップ線路およびハイブリッド回路を経由して出力側マイクロストリップ線路に伝わり、それぞれの出力ポートから出力される。すなわち、高周波信号は二分配され、2つの出力ポートからそれぞれ出力される。
さらに、ハイブリッド回路は、入力側マイクロストリップ線路および出力側ストリップ線路と電磁的に結合した状態でこれら線路の上をスライド可能に構成されている。ハイブリッド回路をマイクロストリップ線路の長手方向一方へスライドさせると、入力ポートから一方の出力ポートに至る線路長は増加する一方で、入力ポートから他方の出力ポートに至る線路長は変化しない。すなわち、ハイブリッド回路をマイクロストリップ線路の長手方向一方へスライドさせることにより、一方の出力ポートから出力される高周波信号の位相を維持したまま他方の出力ポートから出力される高周波信号の位相を変化させることができ、これにより、それぞれの出力ポートから出力される高周波信号に位相差を与えることができる。
特開2005−64915号公報
特許文献1に記載されている分配移相器では、ハイブリッド回路のスライド量を増加させることによって、高周波信号間に与えられる位相差を大きくすることができる。しかし、ハイブリッド回路のスライド量を増加させると、分配移相器が大型化してしまう。
本発明の目的は、分配移相器の大型化を回避しつつ、分配された高周波信号間に大きな位相差を与えることである。
本発明の分配移相器は、高周波信号を分配するとともに、分配された高周波信号に位相差を与える分配移相器であって、一列に配置された第一導線および第二導線と、前記第一導線および前記第二導線と平行に配置された第三導線と、前記第一導線と前記第二導線とに跨る第一の可動導体と、前記第二導線と前記第三導線とに跨る第二の可動導体とを有し、前記第一の可動導体は、前記第一導線および前記第二導線のそれぞれと容量結合可能であり、かつ、前記第一導線および前記第二導線の長手方向に往復移動可能であり、前記第二の可動導体は、前記第二導線および前記第三導線のそれぞれと容量結合可能であり、かつ、前記第二導線および前記第三導線の長手方向に往復移動可能である。
本発明の一態様では、前記第一導線の一端部に接続される入力端子と、前記第三導線の両端部にそれぞれ接続される2つの出力端子とが設けられ、前記第二の可動導体が移動すると、前記入力端子から2つの前記出力端子の一方に至る線路の長さが前記第二の可動導体の移動距離の2倍増減し、前記入力端子から2つの前記出力端子の他方に至る線路の長さは変化しない。
本発明の他の態様では、前記第二の可動導体の最大移動距離は、前記第一の可動導体の最大移動距離の2倍以上である。
本発明の他の態様では、前記第二の可動導体は、前記第一の可動導体に連動して移動するとともに、前記第一の可動導体とは独立して単独でも移動可能である。
本発明の他の態様では、前記第二の可動導体は、前記第一の可動導体の移動に伴って移動する前記第二導線に押されて前記第一の可動導体の移動方向と同方向に移動する。
本発明の他の態様では、前記第二導線と、前記第一の可動導体または前記第二の可動導体のいずれか一方とが固定されている。
本発明の他の態様では、前記第一の可動導体には、前記第一導線の出力側端部が挿入された挿入孔と、前記第二導線の入力側端部が挿入された挿入孔とが設けられ、前記第二の可動導体には、前記第二導線の出力側端部が挿入された挿入孔と、前記第三導線が貫通する貫通孔とが設けられている。
本発明の他の態様では、前記第一の可動導体には、第一の特性インピーダンスおよび第一の長さを有する2つの第一変成部がそれぞれ設けられ、2つの前記第一変成部の間には、第二の特性インピーダンスおよび第二の長さを有する第二変成部が設けられている。
本発明の他の態様では、前記第二の可動導体は、前記第二導線と前記第三導線との間に、前記高周波信号の波長の1/4倍以上の長さを有する線路を形成する。
本発明の他の態様では、前記第一導線、前記第二導線および前記第三導線がトリプレート線路である。
本発明のアンテナ装置は、上記分配移相器のいずれかと、その分配移相器に接続された複数のアンテナ素子とを有する。
本発明によれば、小型でありながら分配された高周波信号間に大きな位相差を与えることができる分配移相器およびアンテナ装置が実現される。
第一の実施形態に係る分配移相器の平面図である。 (a)は図1に示されるA−A線に沿った拡大断面図であり、(b)は図1に示されるB−B線に沿った拡大断面図である。 図1に示されるC−C線に沿った拡大断面図である。 図1に示される第一の可動導体および第二の可動導体の移動前後における線路長の変化を示す説明図である。 第一の実施形態に係る分配移相器の平面図である。 図1に示される第一の可動導体がインピーダンス変成器として機能することを示す説明図である。 図1に示される第一の可動導体に関するスミスチャートを示す図である。 図5に示される第一の可動導体がインピーダンス変成器として機能することを示す説明図である。 図5に示される第一の可動導体に関するスミスチャートを示す図である。 図8に示される数式の導出過程を示す説明図である。 図1に示される第二の可動導体の変形例を示す拡大断面図である。
(第一の実施形態)
以下、本発明の実施形態の一例について図面を参照しつつ詳細に説明する。図1に示される分配移相器1Aは、第一導線10、第二導線20および第三導線30と、これら導線10,20,30に跨って設けられた2つの可動導体40,50とを有する。具体的には、第一導線10と第二導線20とに跨って設けられた第一の可動導体40と、第二導線20と第三導線30とに跨って設けられた第二の可動導体50とを有する。
第一導線10に入力された高周波信号は、第一の可動導体40を介して第二導線20に伝わる。第二導線20に伝った高周波信号は、第二の可動導体50を介して第三導線30に伝わり、第三導線30の両端からそれぞれ出力される。そこで、以下の説明では、第一導線10を“入力導線10”、第二導線20を“中間導線20”、第三導線30を“出力導線30”と呼んで区別する場合がある。もっとも、かかる区別は説明の便宜上の区別に過ぎない。
入力導線10、中間導線20および出力導線30は、一対のグランド層と、これらグランド層の間に挟まれた信号層とを少なくとも有するトリプレート線路である。入力導線10と中間導線20は間隔を置いて一列に配置されている。換言すれば、入力導線10と中間導線20は同一直線上に配置されている。一方、出力導線30は、入力導線10および中間導線20に隣接し、これら導線10,20に対して平行に配置されている。本実施形態では、入力導線10および中間導線20と出力導線30とは、入力される高周波信号の波長(λ)の1/4倍(=λ/4)未満の間隔で平行に並んでいる。本明細書では、図1に示されるように、導線10,20,30の線方向(長手方向)を“X方向”と定義し、X方向と直交する方向を“Y方向”と定義する。また、図1の紙面下方から上方へ向かう方向を“+X方向”、紙面上方から下方へ向かう方向を“−X方向”と定義する。さらに、図1の紙面左側から右側へ向かう方向を“+Y方向”、紙面右側から左側へ向かう方向を“−Y方向”と定義する。もっとも、かかる定義は説明の便宜上の定義に過ぎない。
入力導線10の−X方向の端部(入力側端部10a)は入力端子60に接続されている。入力導線10の+X方向の端部(出力側端部10b)と第一の可動導体40の−X方向の端部は、互いに重なり合って結合部を構成している。中間導線20の−X方向の端部(入力側端部20a)と第一の可動導体40の+X方向の端部は、互いに重なり合って結合部を構成している。また、中間導線の+X方向の端部(出力側端部20b)と第二の可動導体50の一部は、互いに重なり合って結合部を構成している。さらに、出力導線30のX方向中間部30aと第二の可動導体50の他の一部は、互いに重なり合って結合部を構成している。また、出力導線30のX方向両端部30bは出力端子61,62にそれぞれ接続されている。なお、出力導線30の「X方向中間部」との用語は、X方向における中心のみを意味する限定的な用語ではなく、X方向両端部よりも内側の任意の部分を意味する用語である。このことは、出力導線30のX方向中間部30aに結合された高周波信号が出力導線30のX方向両端部30bに接続されている出力端子61,62からそれぞれ出力されることからも明らかである。
第一の可動導体40および第二の可動導体50は、導電材料からなるブロックであり、それぞれ図1に示される平面形状を有する。
第一の可動導体40は、入力導線10の出力側端部10bと重なり合う入力部41と、中間導線20の入力側端部20aと重なり合う出力部42と、入力部41と出力部42とを繋ぐ接続部43とから構成されている。ここで、入力導線10および出力導線30は不図示の基板上に固定的に設けられているのに対し、中間導線20および第一の可動導体40は移動可能に設けられている。具体的には、第一の可動導体40は、不図示のガイド機構にガイドされて、入力導線10および中間導線20との重なり合いを維持したままX方向に往復移動可能(スライド可能)であり、第一の可動導体40の移動に伴って中間導線20も同方向に往復移動する。第一の可動導体40および中間導線20の移動については後に詳述する。
図1および図2に示されるように、第一の可動導体40はX方向に沿って一様な太さで細長く形成されており、その外形断面は矩形である。図2(a)に示されるように、入力部41には、その端面において開口し、かつ、+X方向に延びる断面円形の挿入孔41aが形成されており、この挿入孔41aに入力導線10の出力側端部10bが挿入されている。図2(b)に示されるように、第一の可動導体40の出力部42には、その端面において開口し、かつ、−X方向に延びる断面円形の挿入孔42aが形成されており、この挿入孔42aに中間導線20の入力側端部20aが挿入されている。換言すれば、第一の可動導体40のうち、挿入孔41aが形成されている部分が入力部41であり、挿入孔42aが形成されている部分が出力部42であり、入力部41および出力部42以外の部分が接続部43である。
図2(a)に示されるように、挿入孔41aの内周面と入力導線10の出力側端部10bの外周面とは、容量結合可能となるように互いに重なり合っている。また、図2(b)に示されるように、挿入孔42aの内周面と中間導線20の入力側端部20aの外周面とは、容量結合可能となるように互いに重なり合っている。具体的には、挿入孔41aの内周面と入力導線10の出力側端部10bの外周面とは誘電体としてのフッ素樹脂膜44aを介して重なり合っており、挿入孔42aの内周面と中間導線20の入力側端部20aの外周面とは誘電体としてのフッ素樹脂膜44bを介して重なり合っている。これらフッ素樹脂膜44a,44bは、挿入孔41a,42aの内周面に形成されていてもよく、入力導線10や中間導線20の外周面に形成されていてもよい。いずれにしても、フッ素樹脂膜44aは、挿入孔41aの内周面と入力導線10の外周面との間の摩擦抵抗を低減させ、フッ素樹脂膜44bは、挿入孔42aの内周面と中間導線20の外周面との摩擦抵抗を低減させ、総じて第一の可動導体40のスムーズな移動を実現する役割も果たす。
挿入孔41a,42aは有底であり、その全長(深さ)は35.0mmである。挿入孔42aに挿入されている中間導線20の入力側端部20aは、挿入孔42aの最底部まで挿入されている。換言すれば、入力側端部20aの端面は挿入孔42aの底面に突き当たっている。ここで、挿入孔42aの内周面と、この挿入孔42aに挿入されている中間導線20の入力側端部20aの外周面とは固定されている。一方、挿入孔41aの内周面と、この挿入孔41aに挿入されている入力導線10の出力側端部10bの外周面とは固定されておらず、互いに摺動可能である。すなわち、第一の可動導体40は、入力導線10および中間導線20との重なり合いを維持した状態でX方向に最大35.0mm往復移動可能である。もっとも、挿入孔41a,42aの全長(深さ)に関する上記数値は一例であり、挿入孔41a,42aの全長は任意に延長または短縮することができる。上記のとおり、第一の可動導体40のうち、挿入孔41aが形成されている部分が入力部41であり、挿入孔42aが形成されている部分が出力部42であり、これら以外の部分が接続部43である。よって、挿入孔41a,42aの全長が延長または短縮された場合、これに応じて入力部41、接続部43、出力部42の全長もそれぞれ変化する。また、第一の可動導体40の最大移動距離も変化する。
第二の可動導体50は、中間導線20の出力側端部20bと重なり合う入力部51と、出力導線30のX方向中間部30aと重なり合う出力部52と、入力部51と出力部52とを繋ぐ接続部53とから構成されている。ここで、出力導線30は不図示の基板上に固定的に設けられているのに対し、中間導線20および第二の可動導体50は移動可能に設けられている。具体的には、第二の可動導体50は、不図示のガイド機構にガイドされて、中間導線20および出力導線30との重なり合いを維持したままX方向に往復移動可能(スライド可能)である。ここで、第一の可動導体40の移動に伴って中間導線20が往復移動することは既述の通りである。第二の可動導体50は、第一の可動導体40の移動に伴って+X方向に移動する中間導線20に押されて同方向に同距離だけ移動する。すなわち、第二の可動導体50は、第一の可動導体40に連動して移動する。もっとも、第二の可動導体50は、第一の可動導体40から独立して単独でもX方向に往復移動可能である。第二の可動導体50の移動については後に詳述する。
図1および図3に示されるように、第二の可動導体50の入力部51はX方向に沿って細長く形成されており、その外形断面は矩形である。入力部51には、その端面において開口し、かつ、+X方向に延びる断面円形の挿入孔51aが形成されており、この挿入孔51aに中間導線20の出力側端部20bが挿入されている。また、第二の可動導体50の出力部52はX方向に沿って細長く形成されており、その外形断面は矩形である。換言すれば、出力部52は入力部51と平行であり、かつ、入力部51と略同一の断面形状を有する。出力部52には、その両端面において開口し、かつ、X方向に延びる断面円形の貫通孔52aが形成されており、この貫通孔52aに出力導線30が挿通されている。すなわち、出力導線30は出力部52を貫いている。換言すれば、第二の可動導体50のうち、挿入孔51aが形成されている部分が入力部51であり、貫通孔52aが形成されている部分が出力部52であり、入力部51および出力部52以外の部分が接続部53である。
図3に示されるように、挿入孔51aの内周面と中間導線20の出力側端部20bの外周面とは、容量結合可能となるように互いに重なり合っている。また、貫通孔52aの内周面と出力導線30のX方向中間部30aの外周面とは、容量結合可能となるように互いに重なり合っている。具体的には、挿入孔51aの内周面と中間導線20の出力側端部20bの外周面とは誘電体としてのフッ素樹脂膜54aを介して重なり合っており、貫通孔52aの内周面と出力導線30のX方向中間部30aの外周面とは誘電体としてのフッ素樹脂膜54bを介して重なり合っている。これらフッ素樹脂膜54a,54bは、挿入孔51aや貫通孔52aの内周面に形成されていてもよく、中間導線20や出力導線30の外周面に形成されていてもよい。いずれにしても、フッ素樹脂膜54aは、挿入孔51aの内周面と中間導線20の外周面との間の摩擦抵抗を低減させ、フッ素樹脂膜54bは、貫通孔52aの内周面と出力導線30の外周面との摩擦抵抗を低減させ、総じて第二の可動導体50のスムーズな移動を実現する役割も果たす。
挿入孔51aは有底であり、その全長(深さ)は35.0mmである。挿入孔51aの内周面と、この挿入孔51aに挿入されている中間導線20の出力側端部20bの外周面とは固定されておらず、互いに摺動可能である。また、貫通孔52aの内周面と、この貫通孔52aを貫通している出力導線30のX方向中間部30aの外周面とは固定されておらず、互いに摺動可能である。すなわち、第二の可動導体50は、中間導線20および出力導線30との重なり合いを維持した状態でX方向に単独で最大35.0mm往復移動可能である。ここで、第一の可動導体40の移動に伴って中間導線20が移動すると、中間導線20に押されて第二の可動導体50が移動することは既述の通りである。中間導線20に押されて第二の可動導体50が移動する際には、中間導線20と第二の可動導体50の相対的位置関係は変化しない。よって、中間導線20の出力側端部20bと第二の可動導体50の入力部51との重複部分の長さは変化しない。したがって、第二の可動導体50は、第一の可動導体40と一緒にX方向に最大35.0mm往復移動可能であり、かつ、単独でもX方向に最大35.0mm往復移動可能である。すなわち、第二の可動導体50は、中間導線20および出力導線30との重なり合いを維持した状態でX方向に最大70.0mm往復移動可能である。換言すれば、第二の可動導体50のX方向における最大移動距離は、第一の可動導体40の同方向における最大移動距離の2倍である。
もっとも、挿入孔51aの全長(深さ)に関する上記数値は一例であり、挿入孔51aの全長は任意に延長または短縮することができる。上記のとおり、第二の可動導体50のうち、挿入孔51aが形成されている部分が入力部51であり、貫通孔52aが形成されている部分が出力部52であり、これら以外の部分が接続部53である。よって、挿入孔51aの全長が延長または短縮された場合、これに応じて入力部51および接続部53の全長もそれぞれ変化する。また、第二の可動導体50の最大移動距離も変化する。
図1に示されるように、第二の可動導体50の接続部53は、入力部51の端部と出力部52の端部との間に延びて入力部51と出力部52とを繋いでいる。具体的には、接続部53は、入力部51の端部から+X方向に延在した後に+Y方向に延在して出力部52の端部に繋がっている。接続部53は、インピーダンスの整合を図るために、入力部51および出力部52に対して拡幅されている。
上記のような構成を有する分配移相器1Aでは、図1に示される入力端子60に入力された高周波信号は、入力導線10の入力側端部10aから出力側端部10bに伝わる。入力導線10の出力側端部10bに伝わった高周波信号は、フッ素樹脂膜44a(図2(a))を介して第一の可動導体40の入力部41に伝わり、接続部43を経由して出力部42に伝わる。第一の可動導体40の出力部42に伝った高周波信号は、フッ素樹脂膜44b(図2(b))を介して中間導線20の入力側端部20aに伝わり、出力側端部20bに至る。中間導線20の出力側端部20bに伝わった高周波信号は、フッ素樹脂膜54a(図3)を介して第二の可動導体50の入力部51に伝わり、接続部53を経由して出力部52に伝わる。第二の可動導体50の出力部52に伝わった高周波信号は、出力部52において分岐し、一部は+X方向へ伝わり、残りの一部は−X方向へ伝わる。+X方向へ分岐した高周波信号は、フッ素樹脂膜54b(図3)を介して出力導線30に伝わり、出力端子61から出力される。一方、−X方向へ分岐した高周波信号は、フッ素樹脂膜54b(図)3を介して出力導線30に伝わり、出力端子62から出力される。すなわち、入力端子60に入力された高周波信号は二分配されて出力端子61,62からそれぞれ出力される。
以下の説明では、第二の可動導体50の出力部52の両端部のうち、出力端子61に近接している端部を“第一出力部52c”、出力端子62に近接している端部を“第二出力部52d”と呼んで区別する場合がある。
図4(a)に示される第一の可動導体40を同図(b)に示されるように、+X方向へD1[mm]移動させると(スライドさせると)、これに連動して第二の可動導体50も同方向にD1[mm]移動する。すると、第一の可動導体40の入力部41は入力端子60からD1[mm]遠ざかる。また、第二の可動導体50の第一出力部52cは出力端子61にD1[mm]近づき、第二出力部52dは出力端子62からD1[mm]遠ざかる。すなわち、入力端子60から出力端子62までの距離(線路長)が2×D1[mm]増加する一方、入力端子60から出力端子61までの距離(線路長)は変化しない。
さらに、図4(b)に示される第二の可動導体50を同図(c)に示されるように、+X方向へD2[mm]移動させると(スライドさせると)、第二の可動導体50の入力部51は、第一の可動導体40の出力部42からD2[mm]遠ざかる。また、第二の可動導体50の第一出力部52cは出力端子61にD2[mm]近づき、第二出力部52dは出力端子62からD2[mm]遠ざかる。すなわち、入力端子60から出力端子62までの距離(線路長)が2×D2[mm]増加する一方、入力端子60から出力端子61までの距離(線路長)は変化しない。
上記のように、第二の可動導体50が第一の可動導体40に連動して±X方向に移動すると、入力端子60から出力端子62に至る線路の長さは、第一の可動導体40の移動距離(=第二の可動導体50の移動距離)の2倍増減するのに対し、入力端子60から出力端子61に至る線路の長さは変化しない。さらに、第二の可動導体のみが±X方向に移動した場合にも、入力端子60から出力端子62に至る線路の長さは、第二の可動導体50の移動距離の2倍増減するのに対し、入力端子60から出力端子61に至る線路の長さは変化しない。
よって、第一の可動導体40を±X方向にD1[mm]移動させ、かつ、第二の可動導体50を同方向にD2[mm]移動させると、入力端子60から出力端子62に至る線路の長さは2×(D1+D2)[mm]増減する一方、入力端子60から出力端子61に至る線路の長さは変化しない。
ここで、第二の可動導体50のみの移動によって入力端子60から出力端子62に至る線路の長さを2×(D1+D2)[mm]増減させるためには、第二の可動導体50が中間導線20との重なり合いを維持した状態で(D1+D2)[mm]移動できなくてはならない。さらに、中間導線20との重なり合いを維持した状態での第二の可動導体50の最大移動距離が挿入孔51a(図3)の全長(深さ)に依存することはこれまでの説明から明らかである。すなわち、第二の可動導体50のみの移動によって入力端子60から出力端子62に至る線路の長さを2×(D1+D2)[mm]増減させるためには、挿入孔51aの全長を延ばす必要がある。しかし、挿入孔51aの全長を延ばすと、第二の可動導体50が大型化してしまい、ひいては分配移相器1Aが大型化してしまう。この点、第二の可動導体50に加えて第一の可動導体40を有する本実施形態の分配移相器1Aによれば、第二の可動導体50の挿入孔51aの全長を可及的に短くしつつ、入力端子60から出力端子62に至る線路長の可変量を可及的に大きくすることができる。
以上のように、本実施形態の分配移相器1Aによれば、入力導線10、中間導線20および出力導線30の物理長を変化させることなく、入力端子60から出力端子61に至る線路長と入力端子60から出力端子62に至る線路長とを異ならせることができる。よって、出力端子62から出力される高周波信号の位相は、入力された高周波信号の位相に対して変化するが、出力端子61から出力される高周波信号の位相は変化しない。かくして、本実施形態の分配移相器1Aでは、第一の可動導体40および第二の可動導体50の少なくとも一方を移動させることにより、分配された高周波信号に所望に位相差を与えることができる。
また、第二の可動導体50に加えて第一の可動導体40を有する本実施形態の分配移相器1Aによれば、第二の可動導体50の挿入孔51aの全長を可及的に短くしつつ、入力端子60から出力端子62に至る線路長の可変量を可及的に大きくすることができる。かくして、本実施形態の分配移相器1Aは、小型でありながら、分配された高周波信号に大きな位相差を与えることができる。
さらに、本実施形態の分配移相器1Aでは、第二の可動導体50の入力部51および接続部53は、入力される高周波信号の波長(λ)の1/4倍以上の長さを有する。すなわち、入力部51は、高周波信号に対して、その波長の1/4倍以上の長さを有する第一の線路を形成する。また、接続部53は、高周波信号に対して、その波長の1/4倍以上の長さを有し、かつ、上記第一の線路に直列に接続された第二の線路を形成する。換言すれば、第二の可動導体50は多段のインピーダンス変成器(トランス)として機能する。具体的には、第二の可動導体50の入力部51は一段目のλ/4変成器として機能し、接続部53は二段目のλ/4変成器として機能する。このように、本実施形態の分配移相器1Aでは、入力導線10および中間導線20と出力導線30との間に高周波信号の波長の1/4倍以上(本実施形態では1/2倍)の長さを持った線路が挿入されているに等しい。よって、入力導線10および中間導線20と出力導線30との間隔を高周波信号の波長の1/4倍未満として小型化を図りつつ、広帯域でインピーダンスの整合を図ることができる。
(第二の実施形態)
以下、本発明の実施形態の他例について図面を参照しつつ詳細に説明する。本実施形態に係る分配移相器1Bの全体構成が図5に示されている。図5に示される分配移相器1Bは、図1に示される分配移相器1Aと同一の基本構成を有する。そこで、図1に示される分配移相器1Aと同一の構成については同一の符号を使用し、重複する説明は適宜省略する。
本実施形態に係る分配移相器1Bを構成する第一の可動導体70の長手方向途中には、所定の特性インピーダンスおよび所定の長さを有する調整部71が設けられている。具体的には、図1に示される第一の可動導体40は長手方向に沿って一様な太さ(幅)を有するのに対し、図5に示される第一の可動導体70の長手方向途中は他の部分よりも太く形成されている(幅広に形成されている。)。
第一の実施形態に係る分配移相器1Aと本実施形態に係る分配移相器1Bとは、入力導線10の端部が第一の可動導体40,70の一端に挿入され、中間導線20の端部が第一の可動導体40,70の他端に挿入されている点において共通している。かかる構造の場合、必然的に、第一の可動導体40,70が入力導線10および中間導線20よりも太くなるので(幅が広くなるので、)、第一の可動導体40,70の特性インピーダンスが入力導線10および中間導線20の特性インピーダンスよりも低くなり、入出力インピーダンスの不整合が生じる。
そこで、第一の実施形態に係る分配移相器1Aでは、第一の可動導体40をインピーダンス変成器として機能させて入出力インピーダンスの整合を図っている。図6に示されるように、第一の可動導体40は、第一の特性インピーダンス(Z1)、第一の長さ(L1)を有する変成部を二段有する多段インピーダンス変成器(トランス)として機能するように構成されている。具体的には、図6に示される特性インピーダンス(Z1)および長さ(L1)が同図に示される数式に従って設定されている。なお、第一の可動導体40は長手方向に沿って一様な太さ(幅)を有するので、図6に示される長さ(L2)は零となる。
上記のようにして第一の可動導体40における特性インピーダンス(Z1)および長さ(L1)が設定される場合、図6および図7に示されるように、一つの共振周波数が得られる。換言すれば、VSWRに関する最適周波数は一つになる。図6および図7では、最適周波数が(f1)として示され、最適周波数から外れる周波数の一つが(f2)として示されている。
例えば、上記周波数(f1)が2[GHz]、入力インピーダンス(Zin)および出力インピーダンス(Zout)が75[Ω]であり、その間のインピーダンス(Z2)を50[Ω]とすることを前提とした場合、図6に示される数式に従って、特性インピーダンス(Z1)は61.2[Ω]に設定され、長さ(L1)は37.5[mm]に設定される。
以上のように、第一の可動導体40の両端には、第一の特性インピーダンス(Z1)および第一の長さ(L1)を有する変成部(第一変成部)がそれぞれ設けられている。
これに対し、本実施形態における第一の可動導体70では、長手方向途中に、所定の特性インピーダンスおよび所定の長さを有する調整部71が設けられている。すなわち、本実施形態における第一の可動導体70は、図8に示されるように、特性インピーダンス(Z1)、長さ(L1)の変成部を二段有し、それら変成部の間に特性インピーダンス(Z2)、長さ(L2)の変成部をさらに有する多段インピーダンス変成器(トランス)として機能するように構成されている。具体的には、図8に示される長さ(L1,L2)および特性インピーダンス(Z1,Z2)が同図に示される数式に従って設定されている。なお、図8に示されるL2に関する数式は、図10に示されるようにして導出されたものである。
上記ようにして第一の可動導体70における特性インピーダンス(Z1,Z2)および長さ(L1,L2)が設定される場合、図8および図9に示されるように、2つの共振周波数が得られる。換言すれば、VSWRに関する最適周波数は2つになる。図8および図9では、2つの最適周波数(共振周波数)が(f1)および(f2)として示されている。
例えば、上記周波数(f1)が2[GHz]、上記周波数(f2)が2.4[GHz]、入力インピーダンス(Zin)および出力インピーダンス(Zout)が75[Ω]であり、その間のインピーダンス(Z2)を50[Ω]とすることを前提とした場合、特性インピーダンス(Z1)は61.2[Ω]に設定され、長さ(L1)は37.5[mm]に設定される。また、特性インピーダンス(Z2)は50.0[Ω]に設定され、長さ(L2)は25.0[mm]に設定される。
すなわち、第一の可動導体70の両端には、第一の特性インピーダンス(Z1)および第一の長さ(L1)を有する第一変成部がそれぞれ設けられ、2つの第一変成部の間には、第二の特性インピーダンス(Z2)および第二の長さ(L2)を有する第二変成部が設けられている。
以上のように、本実施形態の分配移相器1Bでは、共振周波数が2つ得られる。よって、本実施形態に係る分配移相器1Bによれば、第一の実施形態に係る分配移相器1Aに比べて、より広い帯域において所望のVSWR特性が得られる。
本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。図11(a)〜(c)に、第二の可動導体50の変形例のいくつかを示す。なお、既に説明した構成と同一または実質的に同一の構成については図11中に同一の符号を付して重複する説明は省略する。
図11(a)に示される可動導体50では、中間導線20および出力導線30の断面形状に応じて、挿入孔51aおよび貫通孔52aが矩形の断面を有する。
図11(b)に示される可動導体50は、板状の第一部材50aおよび第二部材50bから構成されている。第一部材50aおよび第二部材50bは、中間導線20および出力導線30を挟んで互いに対向している。第一部材50aおよび第二部材50bには凹部55が2つずつ設けられており、対応する凹部55が突き合わされることにより、相手部材との間に挿入孔51aおよび貫通孔52aが形成されている。
図11(c)に示される可動導体50は、第一基板50cおよび第二基板50dから構成されている。第一基板50cおよび第二基板50dは、中間導線20および出力導線30を挟んで互いに対向している。第一基板50cおよび第二基板50dと中間導線20および出力導線30との間には誘電体としてのフッ素樹脂膜54a,54bがそれぞれ介在している。
図11には、第二の可動導体50の変形例のみを示したが、第一の可動導体40も同様に変形させることができる。
第一の実施形態では、第二の可動導体50を第一の可動導体40に連動して移動させるために、中間導線20が第一の可動導体40に固定されていた。しかし、中間導線20が第二の可動導体50に固定されていても、第二の可動導体50を第一の可動導体40に連動して移動させることができる。また、中間導線20が第一の可動導体40および第二の可動導体50のいずれにも固定されていなくても、第一の可動導体40および第二の可動導体50を上記のように移動させることは可能であり、これにより線路長を上記のように変化させることが可能である。いずれにしても、第一の可動導体40および第二の可動導体50を上記のように移動させるための駆動機構は、2つの可動導体40,50に共通した単一の駆動機構であってもよく、それぞれの可動導体40,50に対応した2つ以上の独立した駆動機構であってもよい。
1A,1B 分配移相器
10 第一導線(入力導線)
20 第二導線(中間導線)
30 第三導線(出力導線)
40,70 第一の可動導体
41,51 入力部
42,52 出力部
43,53 接続部
50 第二の可動導体
60 入力端子
61,62 出力端子
41a,42a,51a 挿入孔
52a 貫通孔

Claims (9)

  1. 高周波信号を分配するとともに、分配された高周波信号に位相差を与える分配移相器であって、
    一列に配置された第一導線および第二導線と、
    前記第一導線および前記第二導線と平行に配置された第三導線と、
    前記第一導線と前記第二導線とに跨る第一の可動導体と、
    前記第二導線と前記第三導線とに跨る第二の可動導体と、を有し、
    前記第一の可動導体は、前記第一導線および前記第二導線のそれぞれと容量結合可能であり、かつ、前記第一導線および前記第二導線の長手方向に往復移動可能であり、
    前記第二の可動導体は、前記第二導線および前記第三導線のそれぞれと容量結合可能であり、かつ、前記第二導線および前記第三導線の長手方向に往復移動可能であり、
    前記第二の可動導体は前記第一の可動導体とは独立して単独で移動可能であり、かつ、前記第二の可動導体は、前記第一の可動導体の前記第二導線側に向かう方向の移動に伴って移動する前記第二導線に押されて前記第一の可動導体の移動方向と同方向に移動することを特徴とする分配移相器。
  2. 請求項1に記載の分配移相器において、
    前記第一導線の一端部に接続される入力端子と、
    前記第三導線の両端部にそれぞれ接続される2つの出力端子と、を有し、
    前記第二の可動導体が移動すると、前記入力端子から2つの前記出力端子の一方に至る線路の長さが前記第二の可動導体の移動距離の2倍増減し、前記入力端子から2つの前記出力端子の他方に至る線路の長さは変化しないことを特徴とする分配移相器。
  3. 請求項1又は請求項2に記載の分配移相器において、
    前記第二の可動導体の最大移動距離は、前記第一の可動導体の最大移動距離の2倍以上であることを特徴とする分配移相器。
  4. 請求項に記載の分配移相器において、
    前記第二導線と、前記第一の可動導体または前記第二の可動導体のいずれか一方とが固定されていることを特徴とする分配移相器。
  5. 請求項1乃至請求項のいずれかに記載の分配移相器において、
    前記第一の可動導体には、前記第一導線の出力側端部が挿入された挿入孔と、前記第二導線の入力側端部が挿入された挿入孔とが設けられ、
    前記第二の可動導体には、前記第二導線の出力側端部が挿入された挿入孔と、前記第三導線が貫通する貫通孔とが設けられていることを特徴とする分配移相器。
  6. 請求項1乃至請求項のいずれかに記載の分配移相器において、
    前記第一の可動導体には、第一の特性インピーダンスおよび第一の長さを有する2つの第一変成部がそれぞれ設けられ、
    2つの前記第一変成部の間には、第二の特性インピーダンスおよび第二の長さを有する第二変成部が設けられていることを特徴とする分配移相器。
  7. 請求項1乃至請求項のいずれかに記載の分配移相器において、
    前記第二の可動導体は、前記第二導線と前記第三導線との間に、前記高周波信号の波長の1/4倍以上の長さを有する線路を形成することを特徴とする分配移相器。
  8. 請求項1乃至請求項のいずれかに記載の分配移相器において、
    前記第一導線、前記第二導線および前記第三導線がトリプレート線路であることを特徴とする分配移相器。
  9. 請求項1乃至請求項のいずれかに記載の分配移相器と、前記分配移相器に接続された複数のアンテナ素子とを有することを特徴とするアンテナ装置。
JP2012238705A 2012-10-30 2012-10-30 分配移相器及びアンテナ装置 Expired - Fee Related JP5888204B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012238705A JP5888204B2 (ja) 2012-10-30 2012-10-30 分配移相器及びアンテナ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012238705A JP5888204B2 (ja) 2012-10-30 2012-10-30 分配移相器及びアンテナ装置

Publications (2)

Publication Number Publication Date
JP2014090292A JP2014090292A (ja) 2014-05-15
JP5888204B2 true JP5888204B2 (ja) 2016-03-16

Family

ID=50791888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012238705A Expired - Fee Related JP5888204B2 (ja) 2012-10-30 2012-10-30 分配移相器及びアンテナ装置

Country Status (1)

Country Link
JP (1) JP5888204B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108028449B (zh) * 2016-06-01 2021-04-13 日本电业工作株式会社 移相器、分配/合成装置、以及扇区天线

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066117A (ja) * 1992-06-24 1994-01-14 Nec Eng Ltd インピーダンス変成型高周波電力合成器
JP4826624B2 (ja) * 2008-12-02 2011-11-30 住友電気工業株式会社 移相器及びアンテナ装置
JP5862535B2 (ja) * 2012-09-28 2016-02-16 日立金属株式会社 分配移相器及びアンテナ装置

Also Published As

Publication number Publication date
JP2014090292A (ja) 2014-05-15

Similar Documents

Publication Publication Date Title
CN109314300B (zh) 功率分配/合成器
CN109980366B (zh) 一种基于间隙波导的宽频带双圆极化端射阵列天线
US9343795B1 (en) Wideband unbalanced waveguide power dividers and combiners
US9793589B2 (en) Band-pass filter comprised of a dielectric substrate having a pair of conductive layers connected by sidewall through holes and center through holes
WO2016165042A1 (zh) 一种频率和极化可编程贴片天线
CN110832696B (zh) 功率分配合成器
US20180174735A1 (en) Dual-Band Radio Frequency Devices Incorporating Metamaterial Type Structures And Related Methods
JP6347423B2 (ja) 移相回路及びアンテナ装置
JP5888204B2 (ja) 分配移相器及びアンテナ装置
Wincza et al. Ultrabroadband 4× 4 Butler matrix with the use of multisection coupled-line directional couplers and phase shifters
EP2697861B1 (en) Wide-band microwave hybrid coupler with arbitrary phase shifts and power splits
KR101464930B1 (ko) 광대역 특성을 갖는 소형 브랜치라인 커플러
JP5862535B2 (ja) 分配移相器及びアンテナ装置
Abdelghani et al. Design of a broadband multilayer coupler for UWB beamforming applications
US11631940B2 (en) Waveguide slot antenna
CN111146536B (zh) 一种低通道频率固定高通道频率可调的双工器及设计方法
Shahi et al. Balanced-to-Balanced series feeding network with common-mode suppression
JP2013021381A (ja) 電力分配合成器
JPH0878917A (ja) 方向性結合器
JP6823796B2 (ja) 移相器及びアンテナ装置
JP6337879B2 (ja) 方向性結合器及び高周波回路
AU2019290034B2 (en) An electromagnetic coupler
US11362407B2 (en) Directional couplers with DC insulated input and output ports
JP2011199368A (ja) 電力分配器
JP6735029B2 (ja) 移相器及びアンテナ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160201

R150 Certificate of patent or registration of utility model

Ref document number: 5888204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees