JP5879857B2 - トナーの製造法 - Google Patents

トナーの製造法 Download PDF

Info

Publication number
JP5879857B2
JP5879857B2 JP2011204107A JP2011204107A JP5879857B2 JP 5879857 B2 JP5879857 B2 JP 5879857B2 JP 2011204107 A JP2011204107 A JP 2011204107A JP 2011204107 A JP2011204107 A JP 2011204107A JP 5879857 B2 JP5879857 B2 JP 5879857B2
Authority
JP
Japan
Prior art keywords
toner
liquid
column resonance
liquid column
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011204107A
Other languages
English (en)
Other versions
JP2013064904A (ja
Inventor
増田 稔
増田  稔
泰禎 設楽
泰禎 設楽
清正 加藤
清正 加藤
高橋 聡
聡 高橋
義浩 法兼
義浩 法兼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2011204107A priority Critical patent/JP5879857B2/ja
Publication of JP2013064904A publication Critical patent/JP2013064904A/ja
Application granted granted Critical
Publication of JP5879857B2 publication Critical patent/JP5879857B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

本発明は、電子写真、静電記録、静電印刷等における静電荷像を現像するためのトナー、現像剤及び画像形成装置に関する。
電子写真、静電記録、静電印刷等において使用されるトナーは、その現像工程において、例えば、静電荷像が形成されている静電潜像担持体等の像担持体に一旦付着され、次に転写工程において静電潜像担持体から転写紙等の転写媒体に転写された後、定着工程において紙面に定着される。
その際、潜像保持面上に転写されなかったトナーが残存するため、次の静電荷像の形成を妨げないように残存トナーをクリーニングする必要がある。
残存トナーのクリーニングは、装置が簡便でクリーニング性が良好であるブレードクリーニングが多用されているが、トナー粒径が小さくなるほど、またトナー形状が球形に近づくほどクリーニングが困難となることが知られている。
従来より、電子写真、静電記録、静電印刷などに用いられる乾式トナーとしては、スチレン系樹脂、ポリエステル系樹脂などの結着樹脂を着色剤などと共に溶融混練し、微粉砕したもの、いわゆる粉砕型トナーが広く用いられている。
しかし、近年高画質な画像を得るためトナーが小粒径化する傾向に有り、上記の粉砕法では6μm以下の小粒径にすると粉砕効率が低下するとともに分級によるロスが大きくなり生産性が低くコストアップとなってしまう。
したがって、最近では、懸濁重合法、乳化重合凝集法といったいわゆる重合型トナーやポリマー溶解懸濁法と呼ばれる体積収縮を伴う工法が提案され実用化もされている(特許文献1参照)。
これらのトナーは、小粒径のトナーを製造する点では優れているが、基本的に球形のトナーが得られる。
しかし、乳化重合凝集法やポリマー溶解懸濁法では形状を異形化(非球形化)する技術が見出されブレードクリーニングに対応したトナーが得られてきた。
ところが、これらの工法は水系媒体中で粒子化を行うため、蒸発潜熱が大きい水を乾燥せねばならないため、多くの乾燥エネルギーを必要とし、更にこれらの工法は水系媒体中で分散剤を使用することを前提としているために、トナーの帯電特性を損なう分散剤がトナー表面に残存して環境安定性が損なわれるなどの不具合が発生したり、これを除去するために非常に大量の洗浄水を必要とすることが知られており、必ずしも満足のいくトナーやトナー製造方法とはいえない。
これに代わる水系媒体を用いないトナーの製造方法として、トナー組成物を有機溶剤に溶解乃至分散させたトナー組成液を気相中に噴霧・噴射して液滴化した後、有機溶剤を除去してトナー粒子を得る方法が提案されている(特許文献2参照)。
また、ノズル内の熱膨張を利用し、やはり微小液滴を形成し、該液滴れを乾燥固化してトナー化する工法が提案されている(特許文献3参照)。
また、音響レンズを利用し、同様の処理をする方法が提案されている(特許文献4参照)。
しかし、これらの方法では、一つのノズルから単位時間あたりに吐出できる液滴数が少なく、生産性が悪いという問題があると同時に、液滴同士の合一による粒度分布の広がりが避けられず、単一分散性という点においても満足のいくものではなく、また、この工法で得られるトナーもトナー組成液の表面張力により球形のものとなってしまうという課題がある。
本発明は、かかる現状に鑑みてなされたものであり、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。
本発明は、高画質な画像を得られる小粒径のトナーを低エネルギーで効率よく生産すること、及び従来の小粒径トナー以上に安定して良好なブレードクリーニング性が得られるトナーを製造する方法を提供することを目的とする。
本発明は、帯電特性を損なう分散剤を含有する水系媒体を用いることなく、トナー組成液を気相中に噴霧・噴射してトナー粒子を製造しながら、トナーの形状の異形化を達成し、高画質な画像を得られる小粒径のトナーであってもブレードクリーニング性に優れたトナー及びトナーの製造方法を提供することを目的とする。
本発明は、これまでにない粒度の単一分散性を有した粒子であるためブレードクリーニング性を低下させる微粉分が極めて少なく、非球形のトナー形状であることにより、安定して良好なブレードクリーニング性が得られるトナー及びトナー製造方法を提供することを目的とする。
本発明者らが鋭意検討を進めた結果、吐出孔を有する液柱共鳴液室内のトナー組成液に振動を付与することで液柱共鳴による定在波を形成させ、前記定在波の腹となる領域に配置された前記吐出孔から前記トナー組成液を吐出して液滴を形成し、前記液滴を固化することによってトナーを得るトナーの製造方法において、結着樹脂として互いに相溶しない少なくとも2種の結着樹脂を用いることにより、上記御課題を解決することができること見出して本発明を完成した。
すなわち、本発明は以下に記載する通りの構成を有するトナーの製造方法に係るものである。
(1)吐出孔を有する液柱共鳴液室内のトナー組成液に振動を付与することで液柱共鳴による定在波を形成させ、前記定在波の腹となる領域に配置された前記吐出孔から前記トナー組成液を吐出して液滴を形成し、前記液滴を固化してトナーを得るトナーの製造方法であって、
前記トナー組成液が、少なくとも2種の結着樹脂と着色剤とを含有するトナー組成物を有機溶剤に溶解乃至分散してなり、
前記少なくとも2種の結着樹脂が、互いに相溶しない結着樹脂であることを特徴とするトナーの製造方法。
(2)前記トナー組成液振動付与において、
N×c/(4L)≦f≦N×c/(4Le)
(ここで、L:液柱共鳴液室の長手方向の長さ、Le:液供給路側の端部と、該端部に最も近い吐出孔の中心部との距離、c:トナー組成液の音波の速度、N:自然数)
が成立する駆動周波数fの振動を付与することを特徴とする(1)に記載のトナーの製造方法。
(3)液柱共鳴液室が2つ以上の吐出孔を有することを特徴とする(1)または(2)に記載のトナーの製造方法。
(4)2種類の結着樹脂の少なくとも1種がポリエステル系樹脂であることを特徴とする(1)〜(3)のいずれかに記載のトナーの製造方法。
(5)2種類の結着樹脂が、ポリエステル系樹脂とスチレン−(メタ)アクリル系樹脂であることを特徴とする(1)〜(4)のいずれかに記載のトナーの製造方法。
(6)前記トナー組成液が離型剤を含有することを特徴とする(1)〜(5)のいずれかに記載のトナーの製造方法。
本発明によると、従来における問題を解決することができ、高画質な画像を得られる小粒径のトナーを低エネルギーで効率よく生産することができ、更に従来の小粒径トナー以上に安定して良好なブレードクリーニング性が得られるトナー及びトナーの製造方法を提供することができる。
液柱共鳴液滴形成手段の構成を示す断面図である。 液柱共鳴液滴形成ユニットの構成を示す断面図である。 N=1、2、3の場合の速度及び圧力変動の定在波を示す概略図である。 N=4、5の場合の速度及び圧力変動の定在波を示す概略図である。 液柱共鳴液滴形成手段の液柱共鳴流路で生じる液柱共鳴現象の様子を示す概略図である。 液柱共鳴液滴形成手段での実際の液滴吐出の様子を示す図である。 駆動周波数と液滴吐出速度周波数特性を示す特性図である。 吐出孔の構造を示す概略図である。 本発明のトナーの製造方法を実施するためのトナーの製造装置の一例を示す概略図である。 補助気流による合着防止手段の一例を示した概略図である。 合着防止できた場合のトナー粒径分布の一例を示したグラフである。 合着防止できなかった場合のトナー粒径分布の一例を示したグラフである。 液滴合着の機構を説明するための説明図である。 合着粒子の一例を示す写真と粒径を示す図である。 結着粒子の一例を示す写真である。 本発明の画像形成装置の一例を示す概略図である。 本発明の画像形成装置の他の一例を示す概略図である。 本発明の画像形成装置がタンデム型フルカラー画像形成装置である場合の一例を示す摸式図である。 図18におけるタンデム型現像手段の詳細を示す模式図である。 本発明の製造方法によって得られたトナーを用いたプロセスカートリッジの一例を示す概略図である。
(トナー)
本発明のトナーは、吐出孔を有する液柱共鳴液室内のトナー組成液に振動を付与することで液柱共鳴による定在波を形成させ、前記定在波の腹となる領域に配置された前記吐出孔から前記トナー組成液を吐出して液滴を形成し、前記液滴を固化することによって製造され、必要に応じて更にその他の工程を経ることによって製造される。
また、本発明のトナーを形成するための前記トナー組成液は、少なくとも2種類の結着樹脂と着色剤とを含むトナー組成物を有機溶剤に溶解乃至分散してなり、前記少なくとも2種類の結着樹脂は、互いに相溶しない。
(トナーの製造方法及びトナーの製造装置)
本発明のトナーの製造方法は、液滴吐出工程と、液滴固化工程とを少なくとも含み、更に必要に応じてその他の工程を含んでなる。
本発明のトナーの製造装置は、液滴吐出手段と、液滴固化手段とを少なくとも有し、更に必要に応じてその他の手段を有してなる。
<液滴吐出工程及び液滴吐出手段>
前記液滴吐出工程は、少なくとも1つの吐出孔からトナー組成液を液滴状に吐出する工程であり、液滴吐出手段により実施することができる。本発明においては、前記液滴吐出工程において、前記吐出孔が形成された液柱共鳴液室内の前記トナー組成液に振動を付与して液柱共鳴により圧力定在波を形成し、該圧力定在波の腹となる領域に形成された前記吐出孔から前記トナー組成液を液滴状に吐出する。
前記液滴吐出手段は、前記吐出孔が形成された液柱共鳴液室と、該液柱共鳴液室内の前記トナー組成液に振動を付与する振動発生部とを有し、該振動発生部によって前記液柱共鳴液室内の前記トナー組成液に振動を付与して液柱共鳴により圧力定在波を形成し、該圧力定在波の腹となる領域に形成された前記吐出孔から前記トナー組成液を液滴状に吐出する手段である。
前記吐出孔としては、前記圧力定在波の腹となる領域に形成されたものであれば、特に制限はなく、目的に応じて適宜選択することができるが、前記圧力定在波の腹となる領域の少なくとも1つに対して、複数形成されることが好ましく、また、1つの液柱共鳴液室に、複数形成されることが好ましい。
前記圧力定在波の腹となる領域とは、液柱共鳴定在波の圧力波において振幅が大きく、圧力変動が大きい領域であり、かつ液滴を吐出するのに十分な大きさの圧力変動を有する領域である。そのような圧力定在波の腹となる領域としては、特に制限はなく、目的に応じて適宜選択することができるが、前記圧力定在波の振幅が極大となる位置(速度定在波としての節)から極小となる位置に向かって±2/3波長が好ましく、±1/4波長がより好ましい。前記吐出孔が、前記圧力定在波の腹となる領域に形成されていると、複数の吐出孔が開口されていても、それぞれの吐出孔からほぼ均一な液滴を形成することができ、更には効率的に液滴の吐出を行うことができ、吐出孔の詰まりも生じ難くなる点で好ましい。
前記液柱共鳴液室とは、後述する液柱共鳴現象の原理に従い、前記振動発生部によって付与される振動により圧力定常波を形成することができる液室であり、該圧力定在波の腹となる領域に吐出孔が形成され、液柱共鳴液室の長手方向の端部にトナー組成液供給のための連通口を有してなり、必要に応じて、液柱共鳴液室の長手方向の片端乃至両端における、少なくとも一部に該長手方向の軸と垂直な反射壁面を有する。前記液柱共鳴液室としては、液柱共鳴液室の長手方向と平行な壁の1つに配置された振動発生部を有することが好ましく、また、振動発生部が配置された壁と対面する壁に吐出孔が形成されたことが好ましい。
前記液柱共鳴液室の形状としては、前記振動により圧力定常波を形成することができれば特に制限はなく、適宜選択することができ、例えば、四角柱(長方体)、円柱、円すい台などが挙げられる。
前記液柱共鳴液室の長手方向の両端における、少なくとも一部に反射壁面が設けられることが好ましい。ここで、「反射壁面」とは、液体の音波を反射させる程度に硬質な部材、例えば、アルミ、ステンレス等の金属部材、シリコーン等の部材などにより形成された壁面をいう。
以下、本発明のトナーの製造方法を実施するトナーの製造装置の一実施形態について図1及び図2を参照して説明する。
図1は、液柱共鳴液滴形成手段の構成を示す断面図である。また、図2は、液柱共鳴液滴ユニットの構成を示す断面図である。
図1に示す液柱共鳴液滴吐出手段11は、液共通供給路17及び液柱共鳴液室18を含んでなる。液柱共鳴液室18は、長手方向の両端の壁面のうち一方の壁面に設けられた液共通供給路17と連通されている。また、液柱共鳴液室18は、両端の壁面と連結する壁面のうち一つの壁面に液滴21を吐出する吐出孔19と、吐出孔19と対向する壁面に設けられ、かつ液柱共鳴定在波を形成するために高周波振動を発生する振動発生手段20とを有している。なお、振動発生手段20には、図示していない高周波電源が接続されている。
揮発可能な有機溶媒に、トナー組成物を溶解乃至分散させたトナー組成液(以下、単に「トナー組成液」と記す。)14は図示されない液循環ポンプにより液供給管を通って、図2に示す液柱共鳴液滴形成ユニット10の液共通供給路17内に流入し、図1に示す液柱共鳴液滴吐出手段11の液柱共鳴液室18に供給される。そして、トナー組成液14が充填されている液柱共鳴液室18内には、振動発生手段20によって発生する液柱共鳴定在波により圧力分布が形成される。そして、液柱共鳴定在波において振幅の大きな部分であって圧力変動が大きい、定在波の腹となる領域に配置されている吐出孔19から液滴21が吐出される。この液柱共鳴による定在波の腹となる領域とは、定在波の節以外の領域を意味するものである。好ましくは、定在波の圧力変動が液を吐出するのに十分な大きさの振幅を有する領域であり、より好ましくは圧力定在波の振幅が極大となる位置(速度定在波としての節)から極小となる位置に向かって±1/4波長の範囲である。
定在波の腹となる領域であれば、吐出孔が複数で開口されていても、それぞれからほぼ均一な液滴を形成することができ、更には効率的に液滴の吐出を行うことができ、吐出孔の詰まりも生じ難くなる。なお、液共通供給路17を通過したトナー組成液14は図示されない液戻り管を流れて原料収容器に戻される。液滴21の吐出によって液柱共鳴液室18内のトナー組成液14の量が減少すると、液柱共鳴液室18内の液柱共鳴定在波の作用による吸引力が作用し、液共通供給路17から供給されるトナー組成液14の流量が増加し、液柱共鳴液室18内にトナー組成液14が補充される。そして、液柱共鳴液室18内にトナー組成液14が補充されると、液共通供給路17を通過するトナー組成液14の流量が元に戻る。
液柱共鳴液滴吐出手段11における液柱共鳴液室18は、金属やセラミックス、シリコンなどの駆動周波数において液体の共鳴周波数に影響を与えない程度の高い剛性を持つ材質により形成されるフレームがそれぞれ接合されて形成されている。また、図1に示すように、液柱共鳴液室18の長手方向の両端の壁面間の長さLは、後述するような液柱共鳴原理に基づいて決定される。また、図2に示す液柱共鳴液室18の幅Wは、液柱共鳴に余分な周波数を与えないように、液柱共鳴液室18の長さLの2分の1より小さいことが望ましい。更に、液柱共鳴液室18は、生産性を飛躍的に向上させるために1つの液滴形成ユニット10に対して複数配置されているほうが好ましい。その範囲に限定はないが、100〜2,000個の液柱共鳴液室18が備えられた1つの液滴形成ユニットであれば操作性と生産性が両立でき、もっとも好ましい。また、液柱共鳴液室毎に、液供給のための流路が液共通供給路17から連通接続されており、液共通供給路17には複数の液柱共鳴液室18が連通している。
また、液柱共鳴液滴吐出手段11における振動発生手段20は所定の周波数で駆動できるものであれば特に制限はなく、目的に応じて適宜選択することができるが、圧電体を、弾性板9に貼りあわせた形態が好ましい。前記弾性板は、圧電体が接液しないように液柱共鳴液室の壁の一部を構成している。前記圧電体としては、例えば、チタン酸ジルコン酸鉛(PZT)等の圧電セラミックスなどが挙げられ、一般に変位量が小さいため積層して使用されることが多い。この他にも、ポリフッ化ビニリデン(PVDF)等の圧電高分子、水晶、LiNbO、LiTaO、KNbO等の単結晶などが挙げられる。更に、振動発生手段20は、1つの液柱共鳴液室毎に個別に制御できるように配置されていることが好ましい。また、上記の1つの材質のブロック状の振動部材を液柱共鳴液室の配置にあわせて、一部切断し、弾性板を介してそれぞれの液柱共鳴液室を個別制御できるような構成が好ましい。
吐出孔19の開口部の直径としては、特に制限はなく、目的に応じて適宜選択することができるが、1μm〜40μmが好ましい。前記直径が、1μmより小さいと、形成される液滴が非常に小さくなるためトナーを得ることができない場合があり、また、トナーの構成成分として顔料などの固形微粒子が含有された構成の場合、吐出孔19において閉塞を頻繁に発生して生産性が低下する恐れがある。また、前記直径が、40μmを超えると、液滴の直径が大きく、これを乾燥固化させて、所望のトナー粒子径3μm〜6μmを得る場合、有機溶媒でトナー組成を非常に希薄な液に希釈する必要がある場合があり、一定量のトナーを得るために乾燥エネルギーが大量に必要となってしまうことがある。
また、図2からわかるように、吐出孔19の開口を多数設けることができ、よって生産効率が高くなる点で、吐出孔19を液柱共鳴液室18内の幅方向に設ける構成を採用することが好ましい。また、吐出孔19の開口配置によって液柱共鳴周波数が変動するため、液柱共鳴周波数は液滴の吐出を確認して適宜決定することが好ましい。
次に、液柱共鳴における液滴形成ユニットによる液滴形成のメカニズムについて説明する。
先ず、図1の液柱共鳴液滴吐出手段11内の液柱共鳴液室18において生じる液柱共鳴現象の原理について説明すると、液柱共鳴液室内のトナー組成液の音速をcとし、振動発生手段20から媒質であるトナー組成液に与えられた駆動周波数をfとした場合、液体の共鳴が発生する波長λは、
λ=c/f ・・・(式1)
の関係にある。
また、図1の液柱共鳴液室18において固定端側のフレームの端部から液共通供給路17側の端部までの長さをLとし、更に液共通供給路17側のフレームの端部の高さh1(約80μm)は連通口の高さh2(約40μm)の約2倍あり、当該端部が閉じている固定端と等価であるとした両側固定端の場合には、長さLが波長λの4分の1の偶数倍に一致する場合に共鳴が最も効率的に形成される。つまり、次の式2で表現される。
L=(N/4)λ ・・・(式2)
(L:液柱共鳴液室の長手方向の長さ、N:偶数)
更に、両端が完全に開いている両側開放端の場合にも上記式2が成り立つ。
同様にして、片方側が圧力の逃げ部がある開放端と等価で、他方側が閉じている(固定端)の場合、つまり片側固定端又は片側開放端の場合には、長さLが波長λの4分の1の奇数倍に一致する場合に共鳴が最も効率的に形成される。つまり、上記式2のNが奇数で表現される。
最も効率の高い駆動周波数fは、上記式1と上記式2より、
f=N×c/(4L) ・・・(式3)
(L:液柱共鳴液室の長手方向の長さ、c:トナー組成液の音波の速度、N:自然数)
と導かれる。しかし、実際には、液体は共鳴を減衰させる粘性を持つために無限に振動が増幅されるわけではなく、Q値を持ち、後述する式4、式5に示すように、式3に示す最も効率の高い駆動周波数fの近傍の周波数でも共鳴は発生する。
図3にN=1、2、3の場合の速度及び圧力変動の定在波の形状(共鳴モード)を示し、かつ図4にN=4、5の場合の速度及び圧力変動の定在波の形状(共鳴モード)を示す。本来は疎密波(縦波)であるが、図3及び図4のように表記することが一般的である。実線が速度定在波、点線が圧力定在波である。例えば、N=1の片側固定端の場合を示す図3の(a)からわかるように、速度分布の場合閉口端で速度分布の振幅がゼロとなり、開口端で振幅が最大となり、直感的にわかりやすい。液柱共鳴液室の長手方向の両端の間の長さをLとしたとき、液体が液柱共鳴する波長をλとし、整数Nが1〜5の場合に定在波が最も効率よく発生する。また、両端の開閉状態によっても定在波パターンは異なるため、それらも併記した。後述するが、吐出孔の開口や供給側の開口の状態によって、端部の条件が決まる。なお、音響学において、開口端とは長手方向の媒質(液)の移動速度が極大となる端であり、逆に圧力はゼロとなる。閉口端においては、逆に媒質の移動速度がゼロとなる端と定義される。閉口端は音響的に硬い壁として考え、波の反射が発生する。理想的に完全に閉口、もしくは開口している場合は、波の重ね合わせによって図4及び図5のような形態の共鳴定在波を生じるが、吐出孔数、吐出孔の開口位置によっても定在波パターンは変動し、上記式3より求めた位置からずれた位置に共鳴周波数が現れるが、適宜駆動周波数を調整することで安定吐出条件を作り出すことができる。例えば、液体の音速cが1,200m/s、液柱共鳴液室の長さLが1.85mmを用い、両端に壁面が存在して、両側固定端と完全に等価のN=2の共鳴モードを用いた場合、上記式(2)より、最も効率の高い共鳴周波数は324kHzと導かれる。他の例では、液体の音速cが1,200m/s、液柱共鳴液室の長さLが1.85mmと、上記と同じ条件を用い、両端に壁面が存在して、両側固定端と等価のN=4の共鳴モードを用いた場合、上記式(2)より、最も効率の高い共鳴周波数は648kHzと導かれ、同じ構成の液柱共鳴液室においても、より高次の共鳴を利用することができる。
図1に示す液柱共鳴液滴吐出手段11における液柱共鳴液室は、両端が閉口端状態と等価であるか、吐出孔の開口の影響で、音響的に軟らかい壁として説明できるような端部であることが周波数を高めるためには好ましいが、それに限らず開放端であってもよい。ここでの吐出孔の開口の影響とは、音響インピーダンスが小さくなり、特にコンプライアンス成分が大きくなることを意味する。よって、図3の(b)及び図4の(a)のような液柱共鳴液室の長手方向の両端に壁面を形成する構成は、両側固定端の共鳴モード、そして吐出孔側が開口とみなす片側開放端の全ての共鳴モードが利用できる点で、好ましい。
また、吐出孔の開口数、開口配置位置、吐出孔の断面形状も駆動周波数を決定する因子となり、駆動周波数はこれに応じて適宜決定することができる。例えば、吐出孔の数を多くすると、徐々に固定端であった液柱共鳴液室の先端の拘束が緩くなり、ほぼ開口端に近い共鳴定在波が発生し、駆動周波数は高くなる。更に、最も液供給路側に存在する吐出孔の開口配置位置を起点に緩い拘束条件となり、また吐出孔の断面形状がラウンド形状となったりフレームの厚さによる吐出孔の体積が変動したり、実際上の定在波は短波長となり、駆動周波数よりも高くなる。このように決定された駆動周波数で振動発生手段に電圧を与えたとき、振動発生手段が変形し、駆動周波数にて最も効率よく共鳴定在波を発生する。また、共鳴定在波が最も効率よく発生する駆動周波数の近傍の周波数でも液柱共鳴定在波は発生する。つまり、液柱共鳴液室の長手方向の両端間の長さをL、液供給側の端部に最も近い吐出孔までの距離をLeとしたとき、L及びLeの両方の長さを用いて下記式4及び式5で決定される範囲の駆動周波数fを主成分とした駆動波形を用いて振動発生手段を振動させ、液柱共鳴を誘起して液滴を吐出孔から吐出することが可能である。
N×c/(4L)≦f≦N×c/(4Le) ・・・(式4)
N×c/(4L)≦f≦(N+1)×c/(4Le) ・・・(式5)
(L:液柱共鳴液室の長手方向の長さ、Le:液供給路側の端部と、該端部に最も近い吐出孔の中心部との距離、c:トナー組成液の音波の速度、N:自然数)
なお、液柱共鳴液室の長手方向の両端間の長さLと、液供給側の端部と該端部に最も近い吐出孔の中心部とのの距離Leの比(Le/L)が、下記式6を満たすことが好ましい。
Le/L>0.6 ・・・(式6)
以上説明した液柱共鳴現象の原理を用いて、図1の液柱共鳴液室18において液柱共鳴圧力定在波が形成され、液柱共鳴液室18の一部に配置された吐出孔19において連続的に液滴吐出が発生するのである。なお、定在波の圧力が最も大きく変動する位置に吐出孔19を配置すると、吐出効率が高くなり、低い電圧で駆動することができる点で好ましい。また、吐出孔19の個数としては、特に制限はなく、1つの液柱共鳴液室18に1つでもよいが、複数個配置することが生産性の観点から好ましく、具体的には、2個〜100個が好ましく、2個〜10個がより好ましい。前記吐出孔19の個数が、100個を超えると、100個を超える吐出孔19から所望の液滴を形成させるために振動発生手段20に与える電圧を高く設定する必要が生じ、振動発生手段20としての圧電体の挙動が不安定となることがある。
複数の吐出孔19を有する場合、吐出孔間のピッチ(隣接する吐出孔の中心部間の最短間隔)としては、特に制限はなく目的に応じて適宜選択することができるが、20μm以上、液柱共鳴液室の長さ以下が好ましく、40μm〜400μmがより好ましい。前記吐出孔間のピッチが、20μm未満であると、隣り合う吐出孔より放出された液滴同士が衝突して大きな滴となってしまう確率が高くなり、トナーの粒径分布悪化につながることがある。
次に、液滴形成ユニットにおける液滴吐出ヘッド内の液柱共鳴液室で生じる液柱共鳴現象の様子について図5を用いて説明する。なお、同図において、液柱共鳴液室内に記した実線は液柱共鳴液室内の固定端側から液共通供給路側の端部までの間の任意の各測定位置における速度をプロットした速度分布を示し、液共通供給路側から液柱共鳴液室への方向を+とし、その逆方向を−とする。また、液柱共鳴液室内に記した点線は液柱共鳴液室内の固定端側から液共通供給路側の端部までの間の任意の各測定位置における圧力値をプロットした圧力分布を示し、大気圧に対して正圧を+とし、負圧は−とする。また、正圧であれば図中の下方向に圧力が加わることになり、負圧であれば図中の上方向に圧力が加わることになる。更に、同図において、上述したように液共通供給路側が開放されているが液共通供給路17と液柱共鳴液室18とが連通する開口の高さ(図1に示す高さh2)に比して固定端となるフレームの高さ(図1に示す高さh1)が約2倍以上であるため、液柱共鳴液室18はほぼ両側固定端であるという近似的な条件のもとでの速度分布及び圧力分布の時間的なそれぞれの変化を示している。
図5の(a)は、液滴吐出時の液柱共鳴液室18内の圧力波形と速度波形を示している。また、図5の(b)は、液滴吐出直後の液引き込みを行った後再びメニスカス圧が増加してきた場合の波形を示している。これらの図に示すように、液柱共鳴液室18における吐出孔19が設けられている流路内での圧力は極大となっている。その後、図5の(c)に示すように、吐出孔19付近の正の圧力は小さくなり、負圧の方向へ移行して液滴21が吐出される。
そして、図5の(d)に示すように、吐出孔19付近の圧力は極小になる。このときから液柱共鳴液室18へのトナー組成液14の充填が始まる。その後、図5の(e)に示すように、吐出孔19付近の負の圧力は小さくなり、正圧の方向へ移行する。この時点で、トナー組成液14の充填が終了する。そして、再び、図5の(a)に示すように、液柱共鳴液室18の液滴吐出領域の正の圧力が極大となって、吐出孔19から液滴21が吐出される。このように、液柱共鳴液室内には振動発生手段の高周波駆動によって液柱共鳴による定在波が発生し、また圧力が最も大きく変動する位置となる液柱共鳴による定在波の腹に相当する液滴吐出領域に吐出孔19が配置されていることから、当該腹の周期に応じて液滴21が吐出孔19から連続的に吐出される。
次に、実際に液柱共鳴現象によって液滴が吐出された一例について説明する。この一例は、図1において液柱共鳴液室18の長手方向の両端間の長さLが1.85mm、N=2の共鳴モードであって、第一から第四の吐出孔がN=2モード圧力定在波の腹の位置に吐出孔を配置し、駆動周波数を340kHzのサイン波で行った吐出をレーザーシャドウグラフィ法にて撮影した様子を図6に示す。同図からわかるように、非常に径の揃った、速度もほぼ揃った液滴の吐出が実現している。
図7は、駆動周波数290kHz〜395kHzの同一振幅サイン波にて駆動した際の液滴速度周波数特性を示す特性図である。同図からわかるように、第一〜第四ノズルにおいて駆動周波数が340kHz付近では各ノズルからの吐出速度が均一となって、かつ最大吐出速度となっている。この特性結果から、液柱共鳴周波数の第二モードである340kHzにおいて、液柱共鳴定在波の腹の位置で均一吐出が実現していることがわかる。また、図7の特性結果から、第一モードである130kHzにおいての液滴吐出速度ピークと、第二モードである340kHzにおいての液滴吐出速度ピークとの間では液滴は吐出しないという液柱共鳴の特徴的な液柱共鳴定在波の周波数特性が液柱共鳴液室内で発生していることがわかる。
図8に吐出孔19の取りうる断面形状を示す。図8の(a)は、吐出孔19の接液面から吐出口に向かってラウンド形状を持ちながら開口径が狭くなるような形状を有しており、吐出孔19の出口付近でトナー組成液にかかる圧力が最大となるため、吐出の安定化に際しては最も好ましい形状である。
図8の(b)は、吐出孔19の接液面から吐出口に向かって一定の角度を持って開口径が狭くなるような形状を有しており、このノズル角度44は、適宜変更することができる。図8(a)の形状と同様に、このノズル角度によって吐出孔19の出口付近でトナー組成液にかかる圧力を高めることができる。前記ノズル角度44としては、特に制限はなく、目的に応じて適宜選択することができるが、60°〜90°が好ましい。前記ノズル角度が、60°未満であると、トナー組成液に圧力がかかりにくく、さらに加工もし難いため好ましくない。前記ノズル角度44が、90°を超えると、吐出孔19の出口付近で圧力がかからなくなるため、液滴吐出が非常に不安定化する。したがって、前記ノズル角度44としては、90°(図8の(c)に相当する)を最大値とすることが好ましい。
図8の(d)は、図8(a)と(b)とを組み合わせた形状である。このように段階的に形状を変更してもよい。
<<液滴個化工程及び液滴固化手段>>
前記液滴固化工程は、前記液滴を固化する工程であり、前記液滴固化手段により実施することができる。具体的には、先に説明した液滴吐出手段から気体中に吐出させたトナー組成液の液滴を固化(乾燥)させた後に、捕集する工程及び手段である。以下、固化(乾燥)及び捕集を行う液滴個化工程及び液滴個化手段(「乾燥捕集工程」、「乾燥捕集手段」ともいう)について説明する。
図9は、本発明のトナーの製造方法を実施する装置の一例の断面図である。トナー製造装置1は、主に、液滴吐出手段2及び乾燥捕集手段60を含んで構成されている。
前記液滴吐出手段2としては、前述した液柱共鳴液滴吐出手段14を好適に用いることができる。液滴吐出手段2には、トナー組成液14を収容する原料収容器13と、原料収容器13に収容されているトナー組成液14を液供給管16を通して液滴吐出手段2に供給し、更に液戻り管22を通って原料収容器13に戻すために液供給管16内のトナー組成液14を圧送する液循環ポンプ15とが連結されており、トナー組成液14を随時液滴吐出手段2に供給できる。前記液供給管16にはP1、前記乾燥捕集ユニットにはP2の圧力測定器が設けられており、液滴吐出手段2への送液圧力、及び乾燥捕集ユニット内の圧力は、それぞれ圧力測定器P1、P2によって管理される。このときに、P1の圧力測定値がP2の圧力測定値よりも大きい場合には、トナー組成液14が吐出孔19から染み出すおそれがあり、P1の圧力測定値がP2の圧力測定値よりも小さい場合には、液滴吐出手段2に気体が入り、吐出が停止する恐れがあるため、P1の圧力測定値とP2の圧力測定値とがほぼ同じあることが好ましい。
図9に示す乾燥捕集手段60は、チャンバ61、トナー捕集手段62、及びトナー貯留部63を含んで構成されている。
トナー組成液14を吐出して形成された液滴21は、液滴吐出手段2から吐出された直後は液体の状態であるが、チャンバー内を搬送される間にトナー組成液中に含まれる揮発溶剤が揮発することで乾燥が進行し、液体から固体に変化する。このような状態では、もはや粒子同士が接触しても合着は生じないため、トナー捕集手段62によってトナー粉体として回収することができ、トナー貯蔵部63に格納することができる。トナー貯蔵部63に格納されたトナーは、必要に応じて更に別の工程で乾燥される。
チャンバ61内では、搬送気流導入口64から作られる下降気流101が形成されている。液滴吐出手段2から吐出された液滴21は、重力によってのみではなく、搬送気流101によっても下方に向けて搬送されるため、噴射されたトナー液滴21が空気抵抗によって減速されることを抑制できる。これにより、トナー液滴21を連続的に噴射したときに、前に噴射されたトナー液滴21が乾燥する前に空気抵抗によって減速し、後に噴射されたトナー液滴21が前に噴射されたトナー液滴21に追い付くことで、トナー液滴21同士が合着して一体となり、トナー液滴21の粒径が大きくなることを抑制できる。図9では、液滴吐出手段2は重力方向に向かって液滴21を吐出しているが、必ずしもその必要はなく、吐出させる角度は適宜選択できる。なお、気流発生手段として、チャンバー61上部の搬送気流導入口64に送風機を設けて加圧する方法、及び搬送気流排出口65より吸引する方法のいずれを採用することもできる。
前記搬送気流101は、液滴21同士の合着を抑制することができれば、特に気流の状態として限定されることはなく、例えば、層流、旋回流、乱流などであってもよい。また、チャンバー61内に搬送気流101の気流状態を変えるような手段を備えていてもよい。
前記搬送気流101を構成する気体の種類としては、特に制限はなく、空気であっても、窒素等の不燃性気体であってもよいが、前述のように液滴21は乾燥することで合着しなくなる性質があるため、液滴21の乾燥を促進できる条件を持つことが好ましい。したがって、トナー組成液14に含まれる溶剤の蒸気を含まないことが好ましい。また、搬送気流101の温度としては、適宜調整可能であり、生産時において変動のないことが好ましい。
なお、前記搬送気流101は、液滴21同士の合着を防止するだけでなく、液滴21がチャンバ61に付着することを防止するために用いてもよい。
前記トナー捕集手段62としては、特に制限はなく、公知の捕集装置を用いることができ、例えば、サイクロン捕集機、バックフィルターなどが挙げられる。
図9で示された乾燥捕集手段によって得られたトナー粒子に含まれる残留有機溶剤量が多い場合は、これを低減するため、必要に応じて二次乾燥を行うことが好ましい。有機溶剤がトナー中に残留すると、耐熱保存性、定着性、帯電特性等のトナー特性が経時で変動するだけでなく、加熱を伴う定着時において前記有機溶剤が揮発するため、使用者及び周辺機器へ悪影響を及ぼす可能性が高まる。
前記二次乾燥としては、特に制限はなく、流動床乾燥や真空乾燥のような一般的な公知の乾燥手段を用いることができる。
<<合着防止工程及び手段>>
前記液滴乾燥捕集手段では、液滴の合着を搬送気流によって抑える説明を行っているが、合着防止が充分でない場合には、更なる合着防止手段を取り入れることもできる。
前記合着防止手段としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、液滴吐出手段2付近での補助搬送気流の導入、液滴への同一極性の帯電、電界制御などが挙げられる。
図10は、補助搬送気流を用いた合着防止手段を示している。液滴吐出手段2の周りには、シュラウド66が配置されており、その一部に補助搬送気流導入口67が配置されている。補助搬送気流導入口67から導入された気体は、シュラウド66によって形成された気流通路12を通って液滴吐出手段2の吐出孔19の周辺に補助搬送気流68が作られる。液滴吐出手段2から吐出された液滴21は、順次補助搬送気流68によって、液滴吐出手段2の近傍において速度を落とすことなく移動するので、液滴同士の合着の頻度を極めて低く抑えることができる。
前記補助搬送気流68の速度としては、特に制限はなく、目的に応じて適宜選択することができるが、液滴吐出手段2から吐出された直後の液滴速度に対して、同じ乃至より早いことが好ましく、より遅い場合には逆効果となる場合もある。
図10に記載されているように、補助搬送気流68は、液滴21の進行方向と同一であることが好ましいが、合着を防ぐことができれば、液滴吐出方向と補助搬送気流の方向とが同じである必要はない。
前記シュラウド66の形状としては、図10に示されるように液滴吐出手段2の吐出孔19付近で開口部を絞ることによって流速を制御してもよく、絞りを持たせなくてもよい。前記補助搬送気流68を構成する気体の種類としては、特に制限はなく、空気であっても窒素等の不燃性気体であってもよい。
このようにして捕集したトナーの粒径分布の一例を図11に示す。図11から、ほとんど単一粒径のトナー粒子しか存在しないことがわかる。このような粒径分布は、前述のように吐出された液滴13が合着することなく、乾燥して得られた場合に得られる。
次に、液滴が合着した場合のトナーの粒径分布を図12に示す。図12は、微量の搬送気流101及び補助搬送気流102を用いていないだけで、その他は図11と同じ条件で捕集された粒径分布である。
図13は液滴合着の機構を説明するための説明図である。図13に示すように、吐出孔19から吐出した液滴21は、空気抵抗を受けて吐出速度が急速に低下し、且つ自然落下を始める。吐出速度が低下すると、液滴間距離が短くなり、やがては液滴間での合着が生じ、合着液滴23が形成されるようになる。また、合着した液滴は、空気抵抗が増し、乾燥も遅れるため、更に別の液滴と合着を引き起こすようになり、数個の液滴が合着する場合もある。このような液滴が乾燥すると、合着した後に乾燥した粒子を生じ、結果として得られるトナーの粒径分布は広くなる。
図12において基本粒子として示したピークを構成する乾燥粒子は、合着しなかった液滴21がそのまま乾燥固化したものである。2倍と記載されたピークを形成する乾燥粒子は、液滴21が吐出後に合着し、その後に乾燥固化して得られたものである。これと同様に3倍、4倍、それ以上の合着が進行していることが粒径分布測定結果から推測することができる。
前記粒径分布測定は、フロー式粒子像解析装置(シスメックス社製、FPIA−3000)を用いて解析を行うことができる。図14にFPIA-3000で撮影された合着した粒子(合着粒子)の写真を示す。
図15では、基本粒子が結着した状態(結着粒子)を示している。前記結着粒子は、機械的強度を与えても粒子間のほぐれが無く、大きな粒子として振舞うため、基本粒子同士の結着も好ましくない。前記結着粒子は、ある程度粒子が乾燥した後に粒子同士が結合した結果得られるものと考えられる。このような粒子の発生は、ある程度乾燥が進行した粒子が配管壁面への付着し、やがて別の乾燥の進んでいない粒子が壁面に付着した粒子と結着した後に乾燥が進行し、配管から剥がれて回収されると考えられる。前記結着粒子の発生防止は、乾燥を早く確実に実施すること、気流制御によって配管内への粒子付着を抑えることなどにより達成できる。
<トナー組成液及びトナー組成物>
前記トナー組成液は、トナー組成物を有機溶剤に溶解乃至分散させた組成液であり、前記トナー組成物は、少なくとも2種類の相溶しない結着樹脂、着色剤を含み、さらに、必要に応じて、離型剤、帯電制御剤、磁性体などのその他の成分を含む。
<トナー組成液>
本発明におけるトナー組成液は、少なくとも前記結着樹脂、前記着色剤及び前記離型剤を含むトナー組成物を有機溶剤に溶解乃至分散することにより得ることができる。
前記トナー組成液の調製は、ホモミキサー乃至ビーズミルなどを用いて、着色剤、離型剤等の分散体を吐出孔の開口径に対して充分微細なものとすることが吐出孔の詰りを防止するために重要となる。
トナー組成液の固形分としては、5質量%〜40質量%であることが好ましい。前記固形分が、5質量%未満であると、生産性が低下するだけでなく、着色剤、離型剤等の分散体が沈降や凝集を起こしやすくなるため、トナー粒子ごとの組成が不均一になりやすく、トナー品質が低下する場合がある。前記固形分が、40質量%を超えると、小粒径のトナーが得られない場合がある。
<<有機溶剤>>
前記有機溶剤としては、結着樹脂を溶解し、着色剤、離型剤等の分散体を安定に分散できる限り特に制限はなく、目的に応じて適宜選択することができるが、トナー組成液を気相中で液滴化し乾燥してトナーを製造する場合に用いられるため、容易に乾燥できる有機溶剤が好ましい。
前記有機溶剤としては、例えば、エーテル類、ケトン類、エステル類、炭化水素類、アルコール類が好ましく、テトラヒドロフラン(THF)、アセトン、メチルエチルケトン(MEK)、酢酸エチル、トルエンがより好ましい。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
<<結着樹脂>>
本発明で用いられる結着樹脂としては、互いに相溶しない2種類以上の結着樹脂を用いる。ここで、この2種類の結着樹脂を樹脂Aと樹脂Bと名前を付けて以下説明を行う。
ここで、互いに相溶しないとは、樹脂Aと樹脂Bとを溶剤に溶解乃至分散させた後乾燥させて得られた樹脂のミクロ構造が相分離した状態にあるような場合を意味する。
これは、樹脂Aと樹脂Bを溶剤に溶解した混合液を乾燥させて、得られた乾燥物が不透明である場合には相分離しており、両者は相溶しないと判定でき、乾燥物が透明であった場合には、ミクロトームで超薄切片を作成し、RuO等で染色した後、透過型電子顕微鏡(TEM)で観察して相分離していれば両者は相溶しないと判定することができる。
通常は気相中で液滴化し固化したものは球形化し、異形化しないと考えられているが、前記のように非相溶の関係にある樹脂Aと樹脂Bを結着樹脂の成分とすることにより、液滴化した段階では球形であっても固形化した段階では異形化し、平均円形度が0.93〜0.98のトナーを得ることができる。
乾燥時に異形化する理由は、必ずしも定かになっているわけではないが、非相溶の関係にある樹脂Aと樹脂Bの溶剤に対する親和性が異なり、乾燥過程における相分離状態での各樹脂溶液の溶剤の濃度や乾燥速度の違いにより、それぞれの樹脂溶液の乾燥に伴う体積収縮速度が異なるためと推測している。
更に、トナー粒子の内側に溶剤を多く含有して乾燥速度が遅い樹脂を配置する構成とすることにより異形化が促進されるものと考えられる。
前記結着樹脂としては、特に制限はなく、従来公知のトナー用結着樹脂が用いられるが、溶剤に可溶であることが求められるため架橋構造をもたないものが好ましい。
前記結着樹脂としては、例えばスチレン系単量体、アクリル系単量体、メタクリル系単量体等のビニル重合体、これらの単量体又は2種類以上からなる共重合体、ポリエステル系樹脂、ポリオール系樹脂、フェノール樹脂、ポリウレタン樹脂、ポリアミド樹脂、エポキシ樹脂、キシレン樹脂、テルペン樹脂、クマロンインデン樹脂、ポリカーボネート樹脂、石油系樹脂、などが挙げられる。
これらの中でも、樹脂Aがポリエステル系樹脂であり、樹脂Bがスチレン−(メタ)アクリル系樹脂であることが特に好ましい。
なお、結着樹脂は少なくとも2種類が非相溶であればよく、3種類以上混合したときに樹脂A及び樹脂Bのそれぞれに相溶しても非相溶であっても構わないが、樹脂A及び樹脂Bを相溶化させてしまうような樹脂は用いることができない。
前記互いに相溶しない樹脂Aと、樹脂Bとの混合質量比率(A:B)は、1:99〜99:1が好ましく、5:95〜95:5がより好まし、更に好ましくは10:90〜90:10である
−スチレン−(メタ)アクリル系樹脂−
前記スチレン−(メタ)アクリル系樹脂としては、スチレン系単量体と(メタ)アクリル系単量体との共重合体が好適である。
前記スチレン系単量体としては、例えば、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−フェニルスチレン、p−エチルスチレン、2,4−ジメチルスチレン、p−n−アミルスチレン、p−tert−ブチルスチレン、p−n−へキシルスチレン、p−n−オクチルスチレン、p−n−ノニルスチレン、p−n−デシルスチレン、p−n−ドデシルスチレン、p−メトキシスチレン、p−クロルスチレン、3,4−ジクロロスチレン、m−ニトロスチレン、o−ニトロスチレン、p−ニトロスチレン、又はその誘導体、などが挙げられる。
前記アクリル系単量体としては、例えば、アクリル酸、又はそのエステル類が用いられる。
前記アクリル酸のエステル類としては、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸n−オクチル、アクリル酸n−ドデシル、アクリル酸2−エチルへキシル、アクリル酸ステアリル、アクリル酸2−クロルエチル、アクリル酸フェニル、などが挙げられる。
前記メタクリル系単量体としては、例えば、メタクリル酸、又はそのエステル類が用いられる。
前記メタクリル酸のエステル類としては、例えばメタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸n−オクチル、メタクリル酸n−ドデシル、メタクリル酸2−エチルへキシル、メタクリル酸ステアリル、メタクリル酸フェニル、メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチル、などが挙げられる。
前記スチレン系単量体と(メタ)アクリル系単量体との共重合体の製造に用いられる重合開始剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、2,2’ −アゾビスイソブチロニトリル、2,2’ −アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2’ −アゾビス(2,4−ジメチルバレロニトリル)、2,2’ −アゾビス(2−メチルブチロニトリル)、ジメチル−2,2’ −アゾビスイソブチレート、1,1’ −アゾビス(1−シクロへキサンカルボニトリル)、2−(カルバモイルアゾ)−イソブチロニトリル、2,2’ −アゾビス(2,4,4−トリメチルペンタン)、2−フェニルアゾ−2’,4’−ジメチル−4’−メトキシバレロニトリル、2,2’ −アゾビス(2−メチルプロパン)、メチルエチルケトンパ−オキサイド、アセチルアセトンパーオキサイド、シクロへキサノンパーオキサイド等のケトンパーオキサイド類;2,2−ビス(tert−ブチルパーオキシ)ブタン、tert−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、ジ−tert−ブチルパーオキサイド、tert−ブチルクミルパーオキサイド、ジークミルパーオキサイド、α−(tert−ブチルパーオキシ)イソプロピルべンゼン、イソブチルパーオキサイド、オクタノイルパーオキサイド、デカノイルパーオキサイド、ラウロイルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド、ベンゾイルパーオキサイド、m−トリルパーオキサイド、ジ−イソプロピルパーオキシジカーボネート、ジ−2−エチルへキシルパーオキシジカーボネート、ジ−n−プロピルパーオキシジカーボネート、ジ−2−エトキシエチルパーオキシカーボネート、ジ−エトキシイソプロピルパーオキシジカーボネート、ジ(3−メチル−3−メトキシブチル)パーオキシカーボネート、アセチルシクロへキシルスルホニルパーオキサイド、tert−ブチルパーオキシアセテート、tert−ブチルパーオキシイソブチレート、tert−ブチルパーオキシ−2−エチルへキサレート、tert−ブチルパーオキシラウレート、tert−ブチル−オキシベンゾエ−ト、tert−ブチルパーオキシイソプロピルカーボネート、ジ−tert−ブチルパーオキシイソフタレート、tert−ブチルパーオキアリルカーボネート、イソアミルパーオキシ−2−エチルへキサノエート、ジ−tert−ブチルパーオキシへキサハイドロテレフタレート、tert−ブチルパーオキシアゼレート、などが挙げられる。
−ポリエステル系樹脂−
前記ポリエステル系樹脂を構成するモノマーとしては、例えば2価のアルコール成分、酸成分、などが挙げられる。
前記2価のアルコール成分としては、例えば、エチレングリコール、プロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、ジエチレングリコール、トリエチレングリコール、1,5−ペンタンジオール、1,6−へキサジオール、ネオペンチルグリコール、2−エチル−1,3−ヘキサンジオール、水素化スフェノールA、又は、ビスフェノールAにエチレンオキシド、プロピレンオキシド等の環状エーテルが重合して得られるジオール、などが挙げられる。
前記酸成分としては、例えば、フタル酸、イソフタル酸、テレフタル酸等のべンゼンジカルボン酸類又はその無水物;コハク酸、アジピン酸、セバシン酸、アゼライン酸等のアルキルジカルボン酸類又はその無水物;マレイン酸、シトラコン酸、イタコン酸、アルケニルコハク酸、フマル酸、メサコン酸等の不飽和二塩基酸;マレイン酸無水物、シトラコン酸無水物、イタコン酸無水物、アルケニルコハク酸無水物等の不飽和二塩基酸無水物;などが挙げられる。
また、3価以上の多価カルボン酸成分としては、例えばトリメット酸、ピロメット酸、1,2,4−ベンゼントリカルボン酸、1,2,5−ベンゼントリカルボン酸、2,5,7−ナフタレントリカルボン酸、1,2,4−ナフタレントリカルボン酸、1,2,4−ブタントリカルボン酸、1,2,5−ヘキサントリカルボン酸、1,3−ジカルボキシ−2−メチル−2−メチレンカルボキシプロパン、テトラ(メチレンカルボキシ)メタン、1,2,7,8−オクタンテトラカルボン酸、エンポール三量体酸、又はこれらの無水物、部分低級アルキルエステル、などが挙げられる。
前記結着樹脂は、トナー保存性の観点から、ガラス転移温度(Tg)が35℃−80℃であるのが好ましく、40℃−75℃であるのがより好ましい。
前記ガラス転移温度(Tg)が、35℃未満であると、高温雰囲気下でトナーが劣化しやすくなることがあり、80℃を超えると、定着性が低下することがある。
<<着色剤>>
前記着色剤は、一般的にトナーに添加し、紙や画像保持体上で発色させるために用いられる。
前記着色剤としては、特に制限はなく、通常使用される着色剤を適宜選択して使用することができるが、例えば、カーボンブラック、ニグロシン染料、鉄黒、ナフトールイエローS、ハンザイエロー(10G、5G、G)、カドミウムイエロー、黄色酸化鉄、黄土、黄鉛、チタン黄、ポリアゾイエロー、オイルイエロー、ハンザイエロー(GR、A、RN、R)、ピグメントイエローL、ベンジジンイエロー(G、GR)、パーマネントイエロー(NCG)、バルカンファストイエロー(5G、R)、タートラジンレーキ、キノリンイエローレーキ、アンスラザンイエローBGL、イソインドリノンイエロー、ベンガラ、鉛丹、鉛朱、カドミウムレッド、カドミウムマーキュリレッド、アンチモン朱、パーマネントレッド4R、パラレッド、ファイセーレッド、パラクロルオルトニトロアニリンレッド、リソールファストスカーレットG、ブリリアントファストスカーレット、ブリリアントカーンミンBS、パーマネントレッド(F2R、F4R、FRL、FRLL、F4RH)、ファストスカーレットVD、ベルカンファストルビンB、ブリリアントスカーレットG、リソールルビンGX、パーマネントレッドF5R、ブリリアントカーミン6B、ポグメントスカーレット3B、ボルドー5B、トルイジンマルーン、パーマネントボルドーF2K、ヘリオボルドーBL、ボルドー10B、ボンマルーンライト、ボンマルーンメジアム、エオシンレーキ、ローダミンレーキB、ローダミンレーキY、アリザリンレーキ、チオインジゴレッドB、チオインジゴマルーン、オイルレッド、キナクリドンレッド、ピラゾロンレッド、ポリアゾレッド、クロームバーミリオン、ベンジジンオレンジ、ペリノンオレンジ、オイルオレンジ、コバルトブルー、セルリアンブルー、アルカリブルーレーキ、ピーコックブルーレーキ、ビクトリアブルーレーキ、無金属フタロシアニンブルー、フタロシアニンブルー、ファストスカイブルー、インダンスレンブルー(RS、BC)、インジゴ、群青、紺青、アントラキノンブルー、ファストバイオレットB、メチルバイオレットレーキ、コバルト紫、マンガン紫、ジオキサンバイオレット、アントラキノンバイオレット、クロムグリーン、ジンクグリーン、酸化クロム、ピリジアン、エメラルドグリーン、ピグメントグリーンB、ナフトールグリーンB、グリーンゴールド、アシッドグリーンレーキ、マラカイトグリーンレーキ、フタロシアニングリーン、アントラキノングリーン、酸化チタン、亜鉛華、リトボン、これらの混合物などが挙げられる。
前記着色剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、トナーに対して、1質量%〜15質量%が好ましく、3質量%〜10質量%がより好ましい。
本発明で用いる着色剤は、樹脂と複合化されたマスターバッチとして用いることもできる。
前記マスターバッチ用の樹脂としては、ポリエステル樹脂;ポリスチレン、ポリp−クロロスチレン、ポリビニルトルエン等のスチレン又はその置換体の重合体;スチレン−p−クロロスチレン共重合体、スチレン−プロピレン共重合体、スチレン−ビニルトルエン共重合体、スチレン−ビニルナフタリン共重合体、スチレン−アクリル酸メチル共重合体、スチレン−アクリル酸エチル共重合体、スチレン−アクリル酸ブチル共重合体、スチレン−アクリル酸オクチル共重合体、スチレン−メタクリル酸メチル共重合体、スチレン−メタクリル酸エチル共重合体、スチレン−メタクリル酸ブチル共重合体、スチレン−α−クロルメタクリル酸メチル共重合体、スチレン−アクリロニトリル共重合体、スチレン−ビニルメチルケトン共重合体、スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体、スチレン−アクリロニトリル−インデン共重合体、スチレン−マレイン酸共重合体、スチレン−マレイン酸エステル共重合体等のスチレン系共重合体;ポリメチルメタクリレート、ポリブチルメタクリレート、ポリ塩化ビニル、ポリ酢酸ビニル、ポリエチレン、ポリプロピレン、ポリエステル、エポキシ樹脂、エポキシポリオール樹脂、ポリウレタン、ポリアミド、ポリビニルブチラール、ポリアクリル酸樹脂、ロジン、変性ロジン、テルペン樹脂、脂肪族又は脂環族炭化水素樹脂、芳香族系石油樹脂、塩素化パラフィン、パラフィンワックスなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を混合して使用してもよい。
前記マスターバッチは、前記マスターバッチ用の樹脂と着色剤とを高せん断力をかけて混合、混練して得ることができる。この際、着色剤と樹脂の相互作用を高めるために、有機溶剤を用いることができる。
また、水を含んだ着色剤の水性ペーストを、前記樹脂と有機溶剤とともに混合混練し、着色剤を樹脂側に移行させ、水分と有機溶剤成分を除去する方法、いわゆるフラッシング法が、着色剤のウエットケーキをそのまま用いることができ、乾燥する必要がない点で、好適に使用される。
前記混合及び混練には、3本ロールミル等の高せん断分散装置が好適に使用される。
前記マスターバッチの使用量としては、結着樹脂100質量部に対して、2質量部〜30質量部が好ましい。
前記マスターバッチ用の樹脂の酸価としては、特に制限はなく、目的に応じて適宜選択することができるが、30mgKOH/g以下が好ましく、20mgKOH/g以下がより好ましい。前記酸価が、30mgKOH/gを超えると、高湿下での帯電性が低下し、顔料分散性も不十分となることがある。
また、前記マスターバッチ用の樹脂のアミン価としては、特に制限はなく、目的に応じて適宜選択することができるが、アミン価が1mgKOH/g〜100mgKOH/gが好ましく、10mgKOH/g〜50mgKOH/gがより好ましい。前記アミン価が、1mgKOH/g未満である、或いは100mgKOH/gを超えると、顔料分散性が不十分となることがある。
なお、前記酸価は、JIS K0070に記載の方法により測定することができ、前記アミン価は、JIS K7237に記載の方法により測定することができる。
前記着色剤をマスターバッチ用の樹脂に分散させるため、分散剤を用いてもよい。
前記分散剤としては、顔料分散性の点で、結着樹脂との相溶性が高いことが好ましく、具体的な市販品としては、「アジスパーPB821」、「アジスパーPB822」(味の素ファインテクノ社製)、「Disperbyk−2001」(ビックケミー社製)、「EFKA−4010」(EFKA社製)などが挙げられる。
前記分散剤の質量平均分子量(Mw)としては、特に制限はなく、目的に応じて適宜選択することができるが、ゲルパーミエーションクロマトグラフィーにおけるスチレン換算質量での、メインピークの極大値の分子量で、500〜100,000が好ましく、顔料分散性の観点から、3,000〜100,000がより好ましい。特に、5,000〜50,000が好ましく、5,000〜30,000が最も好ましい。分子量が500未満であると、極性が高くなり、着色剤の分散性が低下することがあり、分子量が100,000を超えると、溶剤との親和性が高くなり、着色剤の分散性が低下することがある。
前記分散剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、着色剤100質量部に対して、1質量部〜50質量部が好ましく、5質量部〜30質量部がより好ましい。前記含有量が、1質量部未満であると、分散能が低くなることがあり、50質量部を超えると、帯電性が低下することがある。
<<離型剤>>
本発明のトナーは、定着時のオフセット防止を目的とし、離型剤としてワックス類を含有してなる。
前記ワックス類としては、特に制限はなく、通常トナー用離型剤として使用されるものを適宜選択することができるが、例えば、低分子量ポリエチレン、低分子量ポリプロピレン、ポリオレフィンワックス、マイクロクリスタリンワックス、パラフィンワックス、サゾールワックス等の脂肪族炭化水素系ワックス;酸化ポリエチレンワックス等の脂肪族炭化水素系ワックスの酸化物又はそれらのブロック共重合体;キャンデリラワックス、カルナバワックス、ライスワックス、木ろう、ホホバろう等の植物系ワックス;みつろう、ラノリン、鯨ろう等の動物系ワックス;オゾケライト、セレシン、ペテロラタム等の鉱物系ワックス;モンタン酸エステルワックス、カスターワックスの等の脂肪酸エステルを主成分とするワックス類;脱酸カルナバワックスの等の脂肪酸エステルを一部又は全部を脱酸化したものなどが挙げられる。
前記離型剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、トナーに対して、1質量%〜30質量%が好ましく、2質量%〜20質量%がより好ましい。
<<その他の成分>>
本発明のトナーが含んでいてもよいその他の成分としては、帯電制御剤、磁性体微粒子、流動性向上剤、クリーニング性向上剤等の機能性微粒子(外添剤)などが挙げられる。
−帯電制御剤−
本発明のトナーは、必要に応じて従来公知の帯電制御剤を含んでいてもよい。
前記帯電制御剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えばニグロシン系染料、トリフェニルメタン系染料、クロム含有金属錯体染料、モリブデン酸キレート顔料、ローダミン系染料、アルコキシ系アミン、4級アンモニウム塩、アルキルアミド、燐の単体または化合物、タングステンの単体または化合物、フッ素系活性剤、サリチル酸金属塩及び、サリチル酸誘導体の金属塩、フェノール系樹脂などが挙げられる。
前記帯電制御剤は、市販品を用いてもよく、該市販品としては、例えば、ニグロシン系染料のボントロン03、第四級アンモニウム塩のボントロンP−51、含金属アゾ染料のボントロンS−34、オキシナフトエ酸系金属錯体のE−82、サリチル酸系金属錯体のE−84、フェノール系縮合物のE−89(以上、オリエント化学工業株式会社製)、第四級アンモニウム塩モリブデン錯体のTP−302、TP−415(以上、保土谷化学工業株式会社製)、第四級アンモニウム塩のコピーチャージPSY VP2038、トリフェニルメタン誘導体のコピーブルーPR、第四級アンモニウム塩のコピーチャージ NEG VP2036、コピーチャージ NX VP434(以上、ヘキスト社製)、LRA−901、ホウ素錯体であるLR−147(日本カーリット株式会社製)、フェノール系樹脂のFCA−2508N (藤倉化成株式会社製)、銅フタロシアニン、ペリレン、キナクリドン、アゾ系顔料、その他スルホン酸基、カルボキシル基、四級アンモニウム塩等の官能基を有する高分子系の化合物が挙げられる。
これらの中でも、 大きな負帯電性を得られる の点で、FCA−2508Nが好ましい。
前記帯電制御剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、結着樹脂100質量部に対して、20質量部〜0.1質量部が好ましく、5質量部〜0.5質量部がより好ましい。
−磁性体−
本発明のトナーは、必要に応じて磁性体を含有させて磁性トナーとすることができる。
前記磁性体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(1)マグネタイト、マグヘマイト、フェライト等の磁性酸化鉄、及び他の金属酸化物を含む酸化鉄、(2)鉄、コバルト、ニッケル等の金属、又はこれらの金属とアルミニウム、コバルト、銅、鉛、マグネシウム、錫、亜鉛、アンチモン、ベリリウム、ビスマス、カドミウム、カルシウム、マンガン、セレン、チタン、タングステン、バナジウム等の金属との合金、並びに(3)これらの混合物などが挙げられる。
前記磁性体の具体例としては、Fe、γ−Fe、ZnFe、YFe12、CdFe、GdFe12、CuFe、PbFe12O、NiFe、NdFeO、BaFe1219、MgFe、MnFe、LaFeO、鉄粉、コバルト粉、ニッケル粉などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。これらの中でも、Fe、γ−Feの微粉末が特に好ましい。
また、前記磁性体としては、異種元素を含有するマグネタイト、マグヘマイト、フェライト等の磁性酸化鉄、又はその混合物も使用できる。前記異種元素としては、例えば、リチウム、ベリリウム、ホウ素、マグネシウム、アルミニウム、ケイ素、リン、ゲルマニウム、ジルコニウム、錫、イオウ、カルシウム、スカンジウム、チタン、バナジウム、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウムなどが挙げられる。これらの中でも、マグネシウム、アルミニウム、ケイ素、リン、ジルコニウムが好ましい。
前記異種元素は、酸化鉄結晶格子の中に取り込まれていてもよく、酸化物として酸化鉄中に取り込まれていてもよく、或いは表面に酸化物乃至水酸化物として存在していてもよいが、酸化物として含有されていることが好ましい。
前記異種元素は、磁性体生成時にそれぞれの異種元素の塩を混在させ、pH調整により、粒子中に取り込むことができる。また、磁性体粒子生成後にpH調整すること、或いは各々の元素の塩を添加しpH調整することにより、磁性体粒子の表面に析出することができる。
前記磁性体の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、結着樹脂100質量部に対して、10質量部〜200質量部が好ましく、20質量部〜150質量部がより好ましい。
前記磁性体の個数平均粒径としては、特に制限はなく、目的に応じて適宜選択することができるが、0.1μm〜1μmが好ましく、0.1μm〜0.5μmがより好ましい。前記個数平均径は、透過電子顕微鏡により拡大撮影した写真をデジタイザー等で測定することにより求めることができる。
前記磁性体の磁気特性としては、特に制限はなく、目的に応じて適宜選択することができるが、10Kエルステッド印加での磁気特性として、それぞれ、抗磁力:20エルステッド〜150エルステッド、飽和磁化:50emu/g〜200emu/g、残留磁化:2emu/g〜20emu/gが好ましい。前記磁気特性の測定は、日本電磁測定器株式会社のB―Hカーブトレサーによって行うことができる。
なお、前記磁性体は、着色剤としても使用することができる。
−流動性向上剤−
本発明のトナーには、流動性向上剤を添加してもよい。該流動性向上剤は、トナー表面に添加することにより、トナーの流動性を改善する(トナーを流動しやすくする)ものである。
前記流動性向上剤としては、例えば、フッ化ビニリデン微粉末、ポリテトラフルオロエチレン微粉末等のフッ素系樹脂粉末、湿式製法シリカ、乾式製法シリカ等の微粉末シリカ、微粉末酸化チタン、微粉末アルミナ、それらをシランカップリング剤、チタンカップリング剤又はシリコーンオイルにより表面処理を施した処理シリカ、処理酸化チタン、処理アルミナなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、微粉末シリカ、微粉末酸化チタン、微粉末アルミナが好ましく、また、微粉末シリカをシランカップリング剤又はシリコーンオイルにより表面処理を施した処理シリカが更に好ましい。
前記微粉末シリカは、例えば、ケイ素ハロゲン化含物の気相酸化により生成されたシリカ微粉体であり、いわゆる乾式法シリカ又はヒュームドシリカと称されるものである。
前記ケイ素ハロゲン化合物の気相酸化により生成された微粉体としては、従来公知の方法により適宜製造してもよいし、市販品を用いてもよく、該市販品としては、例えば、AEROSIL(日本アエロジル社商品名、以下同じ)−130、−300、−380、−TT600、−MOX170、−MOX80、−COK84;Ca−O−SiL(CABOT社商品名)−M−5、−MS−7、−MS−75、−HS−5、−EH−5;Wacker HDK(WACKER−CHEMIEGMBH社商品名)−N20 V15、−N20E、−T30、−T40;D−CFineSi1ica(ダウコーニング社商品名);Franso1(Fransi1社商品名)などが挙げられる。
更には、ケイ素ハロゲン化合物の気相酸化により生成されたシリカ微粉体を疎水化処理した処理シリカ微粉体がより好ましい。前記処理シリカ微粉体において、メタノール滴定試験によって測定された疎水化度としては、30%〜80%が好ましい。疎水化は、前記シリカ微粉体と反応乃至物理吸着する有機ケイ素化合物等で化学的乃至物理的に処理することによって付与される。疎水化の方法としては、ケイ素ハロゲン化合物の気相酸化により生成されたシリカ微粉体を有機ケイ素化合物で処理する方法が好ましい。
前記有機ケイ素化合物としては、ヒドロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、n−ヘキサデシルトリメトキシシラン、n−オクタデシルトリメトキシシラン、ビニルメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ジメチルビニルクロロシラン、ジビニルクロロシラン、γ−メタクリルオキシプロピルトリメトキシシラン、へキサメチルジシラン、トリメチルシラン、トリメチルクロロシラン、ジメチルジクロロシラン、メチルトリクロロシラン、アリルジメチルクロロシラン、アリルフェニルジクロロシラン、ベンジルジメチルクロロシラン、ブロモメチルジメチルクロロシラン、α−クロルエチルトリクロロシラン、β−クロロエチルトリクロロシラン、クロロメチルジメチルクロロシラン、トリオルガノシリルメルカプタン、トリメチルシリルメルカプタン、トリオルガノシリルアクリレート、ビニルジメチルアセトキシシラン、ジメチルエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、メチルトリエトキシシラン、イソブチルトリメトキシシラン、ジメチルジメトキシシラン、ジフェニルジエトキシシラン、へキサメチルジシロキサン、1,3−ジビニルテトラメチルジシロキサン、1,3−ジフエニルテトラメチルジシロキサン及び1分子当り2から12個のシロキサン単位を有し、未端に位置する単位にそれぞれSiに結合した水酸基を0〜1個含有するジメチルポリシロキサン等が挙げられる。更に、ジメチルシリコーンオイル等のシリコーンオイルが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記流動性向上剤の粒径としては、平均一次粒径として、0.001μm〜2μmが好ましく、0.002μm〜0.2μmがより好ましい。
前記流動性向上剤の個数平均粒径としては、5nm〜100nmが好ましく、5nm〜50nmがより好ましい。
なお、前記個数平均径は、透過電子顕微鏡により拡大撮影した写真をデジタイザー等で測定することにより求めることができる。
前記流動性向上剤のBET法で測定した窒素吸着による比表面積としては、表面処理されていない微粉体の場合には、30m/g以上が好ましく、60m/g〜400m/gがより好ましく、表面処理された微粉体の場合には、20m/g以上が好ましく、40m/g〜300m/gがより好ましい。
前記流動性向上剤の含有量としては、トナー粒子100質量部に対して、0.03質量部〜8質量部が好ましい。
−クリーニング性向上剤−
本発明のトナーは、記録紙等にトナーを転写した後、静電潜像担持体や一次転写媒体に残存するトナーの除去性を向上させる目的で、クリーニング性向上剤を含んでいてもよい。
前記クリーニング性向上剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ステアリン酸亜鉛、ステアリン酸カルシウム等の脂肪酸金属塩、ポリメチルメタクリレート微粒子、ポリスチレン微粒子等のソープフリー乳化重合によって製造されたポリマー微粒子などが挙げられる。
前記ポリマー微粒子としては、比較的粒度分布が狭く、体積平均粒径が0.01μm〜1μmのものが好ましい。
なお、前記体積平均粒径は、例えば、粒度測定器(マルチサイザーIII、ベックマンコールター社製)を用い、解析ソフト(Beckman Coulter Mutlisizer 3 Version3.51)にて解析することができる。
前記流動性向上剤、前記クリーニング性向上剤などは、トナーの表面に付着乃至固定化させて用いられるため、外添剤とも呼ばれている。
前記外添剤をトナーに外添する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、各種の粉体混合機を用いる方法が挙げられる。
前記粉体混合機としては、例えば、V型混合機、ロッキングミキサー、レーディゲミキサー、ナウターミキサー、ヘンシェルミキサーなどが挙げられ、固定化を行う場合には、ハイブリタイザー、メカノフュージョン、Qミキサーなどが挙げられる。
<トナー粒径及び粒度分布>
本発明のトナーの粒子径としては、トナー粒径が小さいほど、ドットや細線の再現性が向上し、ざらつきがなくシャープで高品位な画像が得られるが、トナー粒径が小さすぎると見掛けの付着力が増加して現像性や転写性を低下させるため、重量平均粒径(D4)として、1μm〜15μmが好ましく、2μm〜10μmがより好ましく、3μm〜8μmが特に好ましい。
本発明のトナーの粒度分布は、重量平均粒径(D4)と個数平均粒径(Dn)の比D4/Dnで表され、D4/Dn=1であれば、均一な粒径をもった単分散のトナーであることを表す。
電子写真現像法は、一成分現像方式と二成分現像方式に大別されるが、いずれの現像方式においても現像され易い粒径が存在し、現像を繰り返すことにより現像装置内に残っているトナーの粒径や粒度分布が変化する結果、画像品質が変化してしまうことがあるため、できる限り粒度分布が狭いことが好ましい。しかし、従来のトナー生産工法においては、前記粒度分布を極めて狭くすることは困難であり、例えば、従来の粉砕トナー場合には、前記粒度分布(D4/Dn)は、分級による生産性の低下を考慮して、通常1.2〜1.4程度である。
一方、本発明のトナーは、その粒度分布が極めて狭く、粒度分布(D4/Dn)としては、現像を繰り返しても非常に安定した画像を得る観点から、1.00〜1.15が好ましく、1.00〜1.10がより好ましい。
なお、前記重量平均粒径(D4)及び個数平均粒径(Dn)は、例えば、粒度測定器(マルチサイザーIII、ベックマンコールター社製)を用い、解析ソフト(Beckman Coulter Mutlisizer 3 Version3.51)にて解析することができる。
(現像剤)
本発明の現像剤は、本発明のトナーを含んでなり、本発明のトナーを一成分現像剤として使用してもよく、本発明のトナーをキャリアと混合することにより二成分現像剤として使用してもよい。
前記キャリアとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、通常のフェライト、マグネタイト等のキャリア;樹脂コートキャリアなどが挙げられる。
前記樹脂コートキャリアは、キャリアコア粒子とキャリアコア粒子表面を被覆(コート)する樹脂である被覆材からなる。
なお、樹脂中に磁性粉が分散されたバインダー型のキャリアコアも用いることができる。
前記被覆材に使用する樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スチレン−アクリル酸エステル共重合体、スチレン−メタクリル酸エステル共重合体等のスチレン−アクリル系樹脂;アクリル酸エステル共重合体、メタクリル酸エステル共重合体等のアクリル系樹脂;ポリテトラフルオロエチレン、モノクロロトリフルオロエチレン重合体、ポリフッ化ビニリデン等のフッ素含有樹脂;シリコーン樹脂;ポリエステル樹脂;ポリアミド樹脂;ポリビニルブチラール;アミノアクリレート樹脂などが挙げられる。この他にも、アイオモノマー樹脂、ポリフェニレンサルファイド樹脂等のキャリアの被覆(コート)材として使用できる樹脂が挙げられる。これらの樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。
前記樹脂の中でも、スチレン−メタクリル酸メチル共重合体、含フッ素樹脂とスチレン系共重合体との混合物、シリコーン樹脂が好ましく、シリコーン樹脂が特に好ましい。
前記含フッ素樹脂とスチレン系共重合体との混合物としては、例えば、ポリフッ化ビニリデンとスチレン−メタクリ酸メチル共重合体との混合物、ポリテトラフルオロエチレンとスチレン−メタクリル酸メチル共重合体との混合物、フッ化ビニリデン−テトラフルオロエチレン共重合(共重合体質量比10:90〜90:10)とスチレン−アクリル酸2−エチルヘキシル共重合体(共重合質量比10:90〜90:10)とスチレン−アクリル酸2−エチルヘキシル−メタクリル酸メチル共重合体(共重合体質量比20〜60:5〜30:10:50)との混合物などが挙げられる。
前記シリコーン樹脂としては、例えば、含窒素シリコーン樹脂及び含窒素シランカップリング剤と、シリコーン樹脂とが反応することにより生成された、変性シリコーン樹脂などが挙げられる。
前記キャリアコア粒子の磁性材料としては、例えば、フェライト、鉄過剰型フェライト、マグネタイト、γ−酸化鉄等の酸化物;鉄、コバルト、ニッケル等の金属、又はこれらの合金が挙げられる。
前記磁性材料に含まれる元素としては、例えば、鉄、コバルト、ニッケル、アルミニウム、銅、鉛、マグネシウム、スズ、亜鉛、アンチモン、ベリリウム、ビスマス、カルシウム、マンガン、セレン、チタン、タングステン、バナジウムなどが挙げられる。これらの中でも、銅、亜鉛、及び鉄成分を主成分とする銅−亜鉛−鉄系フェライト;マンガン、マグネシウム及び鉄成分を主成分とするマンガン−マグネシウム−鉄系フェライトが好適に挙げられる。
前記樹脂コートキャリアにおいて、キャリアコアの表面を少なくとも前記被覆材で被覆する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記樹脂を溶剤中に溶解乃至懸濁させて塗布することによりキャリアコアに付着させる方法、単に粉体状態で混合する方法などが挙げられる。
前記樹脂コートキャリアに対する被覆材の含有量としては、特に制限はなく、目的に応じて適宜決定すればよいが、0.01質量%〜5質量%が好ましく、0.1質量%〜1質量%がより好ましい。
前記樹脂を2種以上併用した被覆(コート)材で磁性体を被覆した樹脂コートキャリアの具体例としては、例えば、(1)酸化チタン微粉体100質量部に対してジメチルジクロロシランとジメチルシリコーンオイル(質量比1:5)の混合物12質量部で処理したもの、(2)シリカ微粉体100質量部に対してジメチルジクロロシランとジメチルシリコーンオイル(質量比1:5)の混合物20質量部で処理したものなどが挙げられる。
前記キャリアの抵抗値としては、特に制限はなく、目的に応じて適宜選択することができるが、キャリアの表面の凹凸度合い、被覆する樹脂の量を調整して106Ω・cm〜1010Ω・cmにすることが好ましい。
前記キャリアの粒径としては、特に制限はなく、目的に応じて適宜選択することができるが、通常4μm〜200μmであり、10μm〜150μmが好ましく、20μm〜100μmがより好ましい。特に、キャリアが樹脂コートキャリアである場合には、質量百分率50%に該当する粒径(50%粒径)が、20μm〜70μmが好ましい。
本発明の現像剤が二成分系現像剤である場合、キャリア100質量部に対する本発明のトナーの含有量としては、1質量部〜100質量部が好ましく、2質量部〜50質量部がより好ましい。
また、本発明のトナーはキャリアを使用しない一成分系の磁性トナー乃至非磁性トナーとしても用いることができる。
(画像形成装置)
本発明の画像形成装置は、静電潜像担持体と、静電潜像担持体上に静電潜像を形成する静電潜像形成手段と、静電潜像を本発明の前記トナー乃至前記現像剤を用いて現像し可視像を形成する現像手段と、可視像を記録媒体に転写する転写手段と、記録媒体に転写された転写像をローラ状又はベルト状の定着部材を用いて加熱加圧し、定着する定着手段とを少なくとも有してなり、更に必要に応じて適宜選択したその他の手段、例えば、除電手段、クリーニング手段、リサイクル手段、制御手段等を有してなる。
(画像形成方法)
また、本発明の画像形成方法は、静電潜像担持体上に静電潜像を形成する静電潜像形成工程と、前記静電潜像を本発明のトナーまたは現像剤を用いて現像して可視像を形成する現像工程と、前記可視像を記録媒体に転写する転写工程と、前記記録媒体に転写された転写像をローラ状又はベルト状の定着部材を用いて加熱加圧し、定着する定着工程とを少なくとも含み、更に必要に応じて、例えば、除電工程、クリーニング工程、リサイクル工程等を有してなる。
<静電潜像形成工程及び手段>
前記静電潜像形成工程は、静電潜像担持体上に静電潜像を形成する工程である。
前記静電潜像担持体としては、その材質、形状、構造、大きさ、等について特に制限はなく、公知のものの中から適宜選択することができるが、その形状としてはドラム状が好適に挙げられ、材質としては、有機感光体やアモルファスシリコン、セレン等の無機感光体などが挙げられる。
前記静電潜像の形成は、例えば、前記静電潜像担持体の表面を一様に帯電させた後、像様に露光することにより行うことができ、前記静電潜像形成手段により行うことができる。前記静電潜像形成手段は、例えば、前記静電潜像担持体の表面を一様に帯電させる帯電器と、前記静電潜像担持体の表面を像様に露光する露光器とを少なくとも備える。
前記帯電は、例えば、前記帯電器を用いて前記静電潜像担持体の表面に電圧を印加することにより行うことができる。
前記帯電器としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、導電性又は半導電性のロール、ブラシ、フィルム、ゴムブレード等を備えたそれ自体公知の接触帯電器、コロトロン、スコロトロン等のコロナ放電を利用した非接触帯電器などが挙げられる。
前記露光は、例えば、前記露光器を用いて前記静電潜像担持体の表面を像様に露光することにより行うことができる。
前記露光器としては、前記帯電器により帯電された前記静電潜像担持体の表面に、形成すべき像様に露光を行うことができる限り特に制限はなく、目的に応じて適宜選択することができるが、例えば、複写光学系、ロッドレンズアレイ系、レーザー光学系、液晶シャッタ光学系などの各種露光器が挙げられる。
なお、本発明においては、前記静電潜像担持体の裏面側から像様に露光を行う光背面方式を採用してもよい。
<現像工程及び手段>
前記現像工程は、前記静電潜像を、本発明の前記トナー乃至前記現像剤を用いて現像して可視像を形成する工程である。
前記可視像の形成は、例えば、前記静電潜像を本発明の前記トナー乃至前記現像剤を用いて現像することにより行うことができ、前記現像手段により行うことができる。
前記現像手段は、例えば、本発明の前記トナー乃至前記現像剤を用いて現像することができる限り、特に制限はなく、公知のものの中から適宜選択することができ、例えば、本発明の前記トナー乃至現像剤を収容し、前記静電潜像に該トナー乃至該現像剤を接触又は非接触的に付与可能な現像器を少なくとも有するものが好適に挙げられ、前記トナー入り容器を備えた現像器などがより好ましい。
前記現像器は、単色用現像器であってもよいし、多色用現像器であってもよく、例えば、前記トナー乃至前記現像剤を摩擦攪拌させて帯電させる攪拌器と、回転可能なマグネットローラとを有してなるもの、などが好適に挙げられる。
前記現像器内では、例えば、前記トナーと前記キャリアとが混合攪拌され、その際の摩擦により該トナーが帯電し、回転するマグネットローラの表面に穂立ち状態で保持され、磁気ブラシが形成される。該マグネットローラは、前記静電潜像担持体(感光体)近傍に配置されているため、該マグネットローラの表面に形成された前記磁気ブラシを構成する前記トナーの一部は、電気的な吸引力によって該静電潜像担持体(感光体)の表面に移動する。その結果、前記静電潜像が該トナーにより現像されて該静電潜像担持体(感光体)の表面に該トナーによる可視像が形成される。
前記現像器に収容させる現像剤は、本発明の前記トナーを含む現像剤であるが、該現像剤としては一成分現像剤であってもよいし、二成分現像剤であってもよい。該現像剤に含まれるトナーは、本発明の前記トナーである。
<転写工程及び手段>
前記転写工程は、前記可視像を記録媒体に転写する工程であるが、中間転写体を用い、該中間転写体上に可視像を一次転写した後、該可視像を前記記録媒体上に二次転写する態様が好ましく、前記トナーとして二色以上、好ましくはフルカラートナーを用い、可視像を中間転写体上に転写して複合転写像を形成する第一次転写工程と、該複合転写像を記録媒体上に転写する第二次転写工程とを含む態様がより好ましい。
前記転写は、例えば、前記可視像を、転写帯電器を用いて前記中間転写体もしくは前記記録媒体を帯電することにより行うことができ、前記転写手段により行うことができる。前記転写手段としては、可視像を中間転写体上に転写して複合転写像を形成する第一次転写手段と、該複合転写像を記録媒体上に転写する第二次転写手段とを有する態様が好ましい。
なお、前記中間転写体としては、特に制限はなく、目的に応じて公知の転写体の中から適宜選択することができ、例えば、転写ベルト等が好適に挙げられる。
前記転写手段(前記第一次転写手段、前記第二次転写手段)は、前記静電潜像担持体(感光体)上に形成された前記可視像を前記記録媒体側へ剥離帯電させる転写器を少なくとも有するのが好ましい。前記転写手段は、1つであってもよいし、2つ以上であってもよい。
前記転写器としては、コロナ放電によるコロナ転写器、転写ベルト、転写ローラ、圧力転写ローラ、粘着転写器などが挙げられる。
なお、前記記録媒体としては、特に制限はなく、公知の記録媒体(記録紙)の中から適宜選択することができる。
<定着工程及び手段>
前記定着工程は、記録媒体に転写された可視像を定着装置を用いて定着させる工程であり、各色のトナーに対し前記記録媒体に転写する毎に行ってもよいし、各色のトナーに対しこれを積層した状態で一度に同時に行ってもよい。
前記定着装置としては、特に制限はなく、目的に応じて適宜選択することができるが、公知の加熱加圧手段が好適である。前記加熱加圧手段としては、加熱ローラと加圧ローラとの組合せ、加熱ローラと加圧ローラと無端ベルトとの組合せ、などが挙げられる。
前記加熱加圧手段における加熱は、通常、120℃〜200℃が好ましい。
なお、本発明においては、目的に応じて、前記定着工程及び定着手段と共にあるいはこれらに代えて、例えば、公知の光定着器を用いてもよい。
<その他の工程及び手段>
前記除電工程は、前記静電潜像担持体に対し除電バイアスを印加して除電を行う工程であり、除電手段により好適に行うことができる。
前記除電手段としては、特に制限はなく、前記静電潜像担持体に対し除電バイアスを印加することができればよく、公知の除電器の中から適宜選択することができ、例えば、除電ランプ等が好適に挙げられる。
前記クリーニング工程は、前記静電潜像担持体上に残留する前記トナーを除去する工程であり、クリーニング手段により好適に行うことができる。
前記クリーニング手段としては、特に制限はなく、前記静電潜像担持体上に残留する前記電子写真トナーを除去することができればよく、公知のクリーナの中から適宜選択することができ、例えば、磁気ブラシクリーナ、静電ブラシクリーナ、磁気ローラクリーナ、ブレードクリーナ、ブラシクリーナ、ウエブクリーナ等が好適に挙げられる。
前記リサイクル工程は、前記クリーニング工程により除去した前記トナーを前記現像手段にリサイクルさせる工程であり、リサイクル手段により好適に行うことができる。
前記リサイクル手段としては、特に制限はなく、公知の搬送手段等が挙げられる。
−画像形成装置の実施形態−
本発明の画像形成装置の一態様について、図16を参照しながら説明する。図16に示す画像形成装置800は、前記静電潜像担持体としての感光体ドラム810(以下「感光体810」という)と、前記帯電手段としての帯電ローラ820と、前記露光手段としての露光装置830と、前記現像手段としての現像装置840と、中間転写体850と、クリーニングブレードを有する前記クリーニング手段としてのクリーニング装置860と、前記除電手段としての除電ランプ870とを備える。
中間転写体850は、無端ベルトであり、その内側に配置されこれを張架する3個のローラ851によって、図16中矢印方向に移動可能に設計されている。3個のローラ851の一部は、中間転写体850へ所定の転写バイアス(一次転写バイアス)を印加可能な転写バイアスローラとしても機能する。中間転写体850には、その近傍に中間転写体用クリーニングブレード890が配置されており、また、記録媒体895に可視像(トナー像)を転写(二次転写)するための転写バイアスを印加可能な前記転写手段としての転写ローラ880が対向して配置されている。中間転写体850の周囲には、この中間転写体850上の可視像に電荷を付与するためのコロナ帯電器858が、該中間転写体850の回転方向において、静電潜像担持体810と中間転写体850との接触部と、中間転写体850と記録媒体895との接触部との間に配置されている。
現像装置840は、現像剤担持体としての現像ベルト841と、この現像ベルト841の周囲に併設したブラック現像ユニット845K、イエロー現像ユニット845Y、マゼンタ現像ユニット845M、及びシアン現像ユニット845Cとから構成されている。なお、ブラック現像ユニット845Kは、現像剤収容部842Kと現像剤供給ローラ843Kと現像ローラ844Kとを備えている。イエロー現像ユニット845Yは、現像剤収容部842Yと現像剤供給ローラ843Yと現像ローラ844Yとを備えている。マゼンタ現像ユニット845Mは、現像剤収容部842Mと現像剤供給ローラ843Mと現像ローラ844Mとを備えている。シアン現像ユニット845Cは、現像剤収容部842Cと現像剤供給ローラ843Cと現像ローラ844Cとを備えている。また、現像ベルト841は、無端ベルトであり、複数のベルトローラにより回転可能に張架され、一部が静電潜像担持体810と接触している。
図16に示す画像形成装置800において、例えば、帯電ローラ820が感光体ドラム810を一様に帯電させる。露光装置830が感光ドラム810上に像様に露光を行い、静電潜像を形成する。感光ドラム810上に形成された静電潜像を、現像装置840からトナーを供給して現像して可視像(トナー像)を形成する。該可視像(トナー像)が、ローラ851から印加された電圧により中間転写体850上に転写(一次転写)され、更に転写紙895上に転写(二次転写)される。その結果、転写紙895上には転写像が形成される。なお、感光体810上の残存トナーは、クリーニング装置860により除去され、感光体810における帯電は除電ランプ870により一旦、除去される。
本発明の画像形成装置の他の態様について、図17を参照しながら説明する。図17に示す画像形成装置900は、図16に示す画像形成装置800において、現像ベルト841を備えてなく、感光体810の周囲に、ブラック現像ユニット845K、イエロー現像ユニット845Y、マゼンタ現像ユニット845M及びシアン現像ユニット845Cが直接対向して配置されていること以外は、図16に示す画像形成装置800と同様の構成を有し、同様の作用効果を示す。なお、図17においては、図16おけるものと同じものは同符号で示した。
本発明の画像形成装置の更に他の態様について、図18を参照しながら説明する。図18に示すタンデム画像形成装置は、タンデム型カラー画像形成装置である。タンデム画像形成装置は、複写装置本体150と、給紙テーブル200と、スキャナ300と、原稿自動搬送装置(ADF)400とを備えている。
複写装置本体150には、無端ベルト状の中間転写体1050が中央部に設けられている。そして、中間転写体1050は、支持ローラ1014、1015及び1016に張架され、図2418中、時計回りに回転可能とされている。支持ローラ1015の近傍には、中間転写体1050上の残留トナーを除去するための中間転写体クリーニング装置1017が配置されている。支持ローラ1014と支持ローラ1015とにより張架された中間転写体1050には、その搬送方向に沿って、イエロー、シアン、マゼンタ、ブラックの4つの画像形成手段1018が対向して並置されたタンデム型現像器120が配置されている。タンデム型現像器120の近傍には、露光装置1021が配置されている。中間転写体1050における、タンデム型現像器120が配置された側とは反対側には、二次転写装置1022が配置されている。二次転写装置1022においては、無端ベルトである二次転写ベルト1024が一対のローラ1023に張架されており、二次転写ベルト1024上を搬送される転写紙と中間転写体1050とは互いに接触可能である。二次転写装置1022の近傍には定着装置1025が配置されている。定着装置1025は、無端ベルトである定着ベルト1026と、これに押圧されて配置された加圧ローラ1027とを備えている。
なお、タンデム画像形成装置においては、二次転写装置1022及び定着装置1025の近傍に、転写紙の両面に画像形成を行うために該転写紙を反転させるためのシート反転装置1028が配置されている。
次に、タンデム型現像器120を用いたフルカラー画像の形成(カラーコピー)について説明する。即ち、先ず、原稿自動搬送装置(ADF)400の原稿台130上に原稿をセットするか、あるいは原稿自動搬送装置400を開いてスキャナ300のコンタクトガラス1032上に原稿をセットし、原稿自動搬送装置400を閉じる。
スタートスイッチ(不図示)を押すと、原稿自動搬送装置400に原稿をセットした時は、原稿が搬送されてコンタクトガラス1032上へと移動された後で、一方、コンタクトガラス1032上に原稿をセットした時は直ちに、スキャナ300が駆動し、第1走行体1033及び第2走行体1034が走行する。このとき、第1走行体1033により、光源からの光が照射されると共に原稿面からの反射光を第2走行体1034におけるミラーで反射し、結像レンズ1035を通して読取りセンサ1036で受光されてカラー原稿(カラー画像)が読取られ、ブラック、イエロー、マゼンタ及びシアンの画像情報とされる。
そして、ブラック、イエロー、マゼンタ、及びシアンの各画像情報は、タンデム型現像手段120における各画像形成手段1018(ブラック用画像形成手段、イエロー用画像形成手段、マゼンタ用画像形成手段、及びシアン用画像形成手段)にそれぞれ伝達され、各画像形成手段において、ブラック、イエロー、マゼンタ、及びシアンの各トナー画像が形成される。即ち、タンデム型現像手段120における各画像形成手段1018(ブラック用画像形成手段、イエロー用画像形成手段、マゼンタ用画像形成手段及びシアン用画像形成手段)は、図19に示すように、それぞれ、静電潜像担持体1110(ブラック用静電潜像担持体1010K、イエロー用静電潜像担持体1010Y、マゼンタ用静電潜像担持体1010M、及びシアン用静電潜像担持体1010C)と、該静電潜像担持体1110を一様に帯電させる帯電装置160と、各カラー画像情報に基づいて各カラー画像対応画像用に前記静電潜像担持体を露光(図19中、L)し、該静電潜像担持体上に各カラー画像に対応する静電潜像を形成する露光装置と、該静電潜像を各カラートナー(ブラックトナー、イエロートナー、マゼンタトナー、及びシアントナー)を用いて現像して各カラートナーによるトナー画像を形成する現像装置610と、該トナー画像を中間転写体1050上に転写させるための転写帯電器1062と、クリーニング装置630と、除電器640とを備えており、それぞれのカラーの画像情報に基づいて各単色の画像(ブラック画像、イエロー画像、マゼンタ画像、及びシアン画像)を形成可能である。こうして形成された該ブラック画像、該イエロー画像、該マゼンタ画像及び該シアン画像は、支持ローラ1014、1015及び1016により回転移動される中間転写体1050上にそれぞれ、ブラック用静電潜像担持体1010K上に形成されたブラック画像、イエロー用静電潜像担持体1010Y上に形成されたイエロー画像、マゼンタ用静電潜像担持体1010M上に形成されたマゼンタ画像及びシアン用静電潜像担持体1010C上に形成されたシアン画像が、順次転写(一次転写)される。そして、中間転写体1050上に前記ブラック画像、前記イエロー画像、マゼンタ画像、及びシアン画像が重ね合わされて合成カラー画像(カラー転写像)が形成される。
一方、給紙テーブル200においては、給紙ローラ142の1つを選択的に回転させ、ペーパーバンク143に多段に備える給紙カセット144の1つからシート(記録紙)を繰り出し、分離ローラ145で1枚ずつ分離して給紙路146に送出し、搬送ローラ147で搬送して複写機本体150内の給紙路148に導き、レジストローラ1049に突き当てて止める。あるいは、給紙ローラ142を回転して手差しトレイ1054上のシート(記録紙)を繰り出し、分離ローラ1058で1枚ずつ分離して手差し給紙路1053に入れ、同じくレジストローラ1049に突き当てて止める。なお、レジストローラ1049は、一般には接地されて使用されるが、シートの紙粉除去のためにバイアスが印加された状態で使用されてもよい。そして、中間転写体1050上に合成された合成カラー画像(カラー転写像)にタイミングを合わせてレジストローラ1049を回転させ、中間転写体1050と二次転写装置1022との間にシート(記録紙)を送出させ、二次転写装置1022により該合成カラー画像(カラー転写像)を該シート(記録紙)上に転写(二次転写)することにより、該シート(記録紙)上にカラー画像が転写され形成される。なお、画像転写後の中間転写体1050上の残留トナーは、中間転写体クリーニング装置1017によりクリーニングされる。
カラー画像が転写され形成された前記シート(記録紙)は、二次転写装置1022により搬送されて、定着装置1025へと送出され、定着装置1025において、熱と圧力とにより前記合成カラー画像(カラー転写像)が該シート(記録紙)上に定着される。その後、該シート(記録紙)は、切換爪1055で切り換えて排出ローラ1056により排出され、排紙トレイ1057上にスタックされ、あるいは、切換爪1055で切り換えてシート反転装置1028により反転されて再び転写位置へと導き、裏面にも画像を記録した後、排出ローラ1056により排出され、排紙トレイ1057上にスタックされる。
本発明の画像形成方法及び前記画像形成装置では、シャープな粒度分布を有し、帯電性、環境性、経時安定性などのトナー特性が良好である本発明の前記トナーを用いているので、高画質画像を形成することができる。
図20に本発明のトナーを用いたプロセスカートリッジの概略構成を示す。プロセスカートリッジは、感光体701を内蔵し、他に帯電手段702、現像手段704、転写手段708、クリーニング手段707、除電手段(図示せず)の少なくとも一つを具備し、画像形成装置本体に着脱可能とした装置(部品)である。図20に例示される装置による画像形成プロセスについて示すと、感光体701は、矢印方向に回転しながら、帯電手段702による帯電、露光手段703による露光により、その表面に露光像に対応する静電潜像が形成され、この静電潜像は、現像手段704でトナー現像され、該トナー現像は転写手段708により、転写体705に転写され、プリントアウトされる。次いで、像転写後の感光体表面は、クリーニング手段707によりクリーニングされ、さらに除電手段(図示せず)により除電されて、再び以上の操作を繰り返すものである。
以下、実施例により本発明についてさらに詳細に説明するが、本発明は、下記実施例に何ら限定されるものではない。
<ポリエステル樹脂の溶解液の調製>
ポリエステル樹脂 1質量部に対し、酢酸エチル9質量部を混合させ、樹脂を完全に溶かし、ポリエステル樹脂の溶解液を調製した。
なお、ポリエステル樹脂の質量平均分子量は4.2万、ガラス転移温度は61℃である。ポリエステル樹脂のモノマーとしては、アルコール成分として、ビスフェノールAのエチレンオキサイド付加物0.5モル、ビスフェノールAのプロピレンオキサイド付加物0.5モル、酸成分として、フマル酸0.5モル、テレフタル酸0.41モル、無水トリメリット酸0.6モルである。
<スチレン−アクリル酸nブチル共重合樹脂の溶解液の調製>
スチレン−アクリル酸nブチル共重合樹脂 1質量部に対し、酢酸エチル9質量部を混合させ、樹脂を完全に溶かし、スチレン−アクリル酸nブチル共重合樹脂の溶解液を調製した。なお、スチレン−アクリル酸nブチル共重合樹脂の質量平均分子量は4.5万、ガラス転移温度は59℃であった。
<ポリオール樹脂の溶解液の調製>
ポリオール樹脂 1質量部に対し、酢酸エチル9質量部を混合させ、樹脂を完全に溶かし、ポリオール樹脂の溶解液を調製した。
なお、ポリオール樹脂の質量平均分子量は3.6万、ガラス転移温度は57℃である。ポリオール樹脂は下記の通り合成した。
攪拌装置、温度計、N導入口、冷却管付セパラブルフラスコに、低分子ビスフェノールA/エピクロルヒドリン型エポキシ樹脂(数平均分子量:約360)311.9g、高分子ビスフェノールA/エピクロルヒドリン型エポキシ樹脂(数平均分子量:約2900)135.8g、ビスフェノールA型プロピレンオキサイド付加物のジグリシジル化物230.3g、ビスフェノールA233.9g、p−クミルフェノール88.1g、キシレン200gを加えた。N雰囲気下で70〜100℃まで昇温し、塩化リチウムを0.183g加え、更に160℃まで昇温し減圧下でキシレンを留去し、180℃の反応温度で6〜9時間重合させて、軟化点110℃、Tg60℃のポリオール樹脂を得た。
<相溶性についての試験>
ポリエステル樹脂の溶解液、スチレン−アクリル酸nブチル共重合樹脂の溶解液をそれぞれ、1質量部と9質量部、5質量部と5質量部、9質量部と1質量部を混ぜた3種類の樹脂溶解液を作った。透明なPETフィルムにワイヤーバーを用いて塗布し、乾燥させると、3種類の塗膜は白濁しており、互いに非相溶であることが確認された。
また、ポリエステル樹脂の溶解液、ポリオール樹脂の溶解液をそれぞれ、9質量部と1質量部を混ぜた樹脂溶解液を作った。透明なPETフィルムにワイヤーバーを用いて塗布し、乾燥させると、塗膜は透明で、互いに相溶であることが確認された。
また、スチレン−アクリル酸nブチル共重合樹脂の溶解液、ポリオール樹脂の溶解液をそれぞれ、5質量部と5質量部を混ぜた樹脂溶解液を作った。透明なPETフィルムにワイヤーバーを用いて塗布し、乾燥させると、塗膜は白濁しており、互いに非相溶であることが確認された。
<評価方法>
<<数平均分子量(Mn)の測定方法>>
前記樹脂のTHF溶解分の分子量分布は、GPC(ゲルパーミエーションクロマトグラフィー)測定装置GPC−150C(ウォーターズ社製)によって測定した。カラムとしては、KF804(ショウデックス社製)を使用した。また、測定は以下の方法で行った。
40℃のヒートチャンバー中でカラムを安定させ、この温度におけるカラムに、溶媒としてTHFを毎分1mLの流速で流した。樹脂0.05gをTHF5gに十分に溶かした後、前処理用フィルター(孔径0.45μm クロマトディスク(クラボウ製))で濾過し、最終的に試料濃度として0.05質量%〜0.6質量%に調製した樹脂のTHF試料溶液を50μL〜200μL注入して測定した。前記樹脂のTHF溶解分の重量平均分子量Mw、数平均分子量Mnピークトップ分子量Mpの測定に当たっては、試料の有する分子量分布を数種の単分散ポリスチレン標準試料により作成された検量線の対数値とカウント数との関係から算出した。検量線作成用の標準ポリスチレン試料としては、PressureChemical Co.製、又は東洋ソーダ工業社製の分子量が、6×10、2.1×10、4×10、1.75×10、5.1×10、1.1×10、3.9×10、8.6×10、2×10、4.48×10のものを用い、少なくとも10点程度の標準ポリスチレン試料を用いた。また、検出器にはRI(屈折率)検出器を用いた。
<<ガラス転移温度(Tg)の測定方法>>
前記ガラス転移温度は、示差走査熱量計(DSC−6220R:セイコーインスツル社)を用い、樹脂を室温から昇温速度10℃/minで150℃まで加熱した後、150℃で10分間放置し、室温まで試料を冷却して10分間放置し、再度150℃まで昇温速度10℃/minで加熱して、ガラス転移温度以下のベースラインと、ガラス転移を示す曲線部分の接線との交点で求めた。
<<粒度分布>>
得られたトナーの重量平均粒径(D4)及び個数平均粒径(Dn)は、粒度測定器(マルチサイザーIII、ベックマンコールター社製)を用い、アパーチャー径100μmで測定し、解析ソフト(Beckman Coulter Mutlisizer 3 Version3.51)にて解析を行った。具体的にはガラス製100mLビーカーに10質量%界面活性剤(アルキルベンゼンスルフォン酸塩ネオゲンSC−A、第一工業製薬株式会社製)を0.5mL添加し、各トナー0.5g添加しミクロスパーテルでかき混ぜ、次いでイオン交換水80mLを添加した。得られた分散液を超音波分散器(W−113MK−II本多電子社製)で10分間分散処理した。前記分散液を前記マルチサイザーIIIを用い、測定用溶液としてアイソトンIII(ベックマンコールター製)を用いて測定を行った。測定は、装置が示す濃度が8±2%に成るように前記トナーサンプル分散液を滴下した。なお、本測定法は、粒径の測定再現性の点から前記濃度を8±2%にすることが重要である。この濃度範囲であれば粒径に誤差は生じない。
チャンネルとしては、2.00〜2.52μm未満;2.52〜3.17μm未満;3.17〜4.00μm未満;4.00〜5.04μm未満;5.04〜6.35μm未満;6.35〜8.00μm未満;8.00〜10.08μm未満;10.08〜12.70μm未満;12.70〜16.00μm未満;16.00〜20.20μm未満;20.20〜25.40μm未満;25.40〜32.00μm未満;32.00〜40.30μm未満の13チャンネルを使用し、粒径2.00μm以上乃至40.30μm未満の粒子を対象とした。トナー粒子又はトナーの体積、個数を測定後、体積分布と個数分布を算出し、得られた分布から、トナーの重量平均粒径(D4)、個数平均粒径(Dn)を求めた。粒度分布の指標としては、トナーの重量平均粒径(D4)を個数平均粒径(Dn)で除したD4/Dnを用いた。完全に単分散であれば1となり、数値が大きいほど分布が広いことを意味する。
<<平均円形度>>
フロー式粒子像分析装置FPIA−3000(東亜医用電子株式会社製)により、各トナーの平均円形度を測定した。
具体的な測定方法としては、容器中の予め不純固形物を除去した水100〜150ml中に分散剤として界面活性剤(アルキルベンゼンスフォン酸塩)を0.1〜0.5ml加え、更に測定試料を0.1〜0.5g程度加えた。
試料を分散した懸濁液は超音波分散器で1〜3分間分散処理を行い、分散液の粒子濃度を13000〜3万個になるように濃度調整し、前記装置によりトナーの形状及び分布を測定して、平均円形度を求めた。
<着色剤分散液の調製>
カーボンブラック(Regal400、Cabot社製)20質量部、顔料分散剤2質量部を、酢酸エチル78質量部に、攪拌羽を有するミキサーを使用し、一次分散させた。該顔料分散剤としては、アジスパーPB821(味の素ファインテクノ株式会社製)を使用した。得られた一次分散液を、ダイノーミルを用いて強力なせん断力により細かく分散し、凝集体を完全に除去した二次分散液を調製した。更に、1μmの細孔を有するポリテトラフルオロエチレン製フィルターを通過させ、サブミクロン領域まで分散させた分散液を調製した。
<カルナバワックス分散液の調製>
カルナバワックス(東亜化成株式会社製)1質量部、酢酸エチル4質量部を仕込み、85℃に加温し20分間撹拌しカルナバワックスを溶解させた後、急冷してカルナバワックスの微粒子を析出させた。このカルナバワックス分散液を直径0.1μmのジルコニアビーズを充填したスターミルLMZ06(アシザワファインテック株式会社製)を用いて強力なせん断力によりさらに細かく分散し、カルナバワックスの平均粒径が0.3μm、最大粒径が0.8μm以下になるように調整した。前記カルナバワックスの粒径測定には、マイクロトラック社製のNPA150を用いた。
(実施例1)
<トナー組成液の調製>
下記表1の処方に従い、ポリエステル樹脂の溶解液500質量部、スチレン−アクリル酸nブチル共重合樹脂の溶解液500質量部、着色剤分散液25質量部、カルナバワックス分散液50質量部、及び酢酸エチル80質量部を混合した。この混合液を目開き1μmのフィルターを通し、トナー組成液を調製した。
<トナーの作製>
得られたトナー組成液を、図1において吐出孔の数を液柱共鳴液室1つ当たり1個とした液柱共鳴液滴手段により、吐出液滴化し、図9及び図10の装置を使用して、乾燥させてトナー母体粒子を得た。なお、条件は下記の通りである。
−液柱共鳴条件−
共鳴モード :N=2
液柱共鳴液室の長手方向の両端間の長さ :L=1.8mm
液柱共鳴液室の液共通供給路側のフレームの端部の高さ :h1=80μm
液柱共鳴液室の連通口の高さ :h2=40μm
−トナー母体粒子作製条件−
分散液比重 :ρ=1.1g/cm
吐出孔の形状 :真円
吐出孔直径 :8.0μm
吐出孔の開口数 :1個(液柱共鳴液室1つ当たり)
液柱共鳴液室の数 :100室
乾燥エアー温度 :40℃
印加電圧 :12.0V
駆動周波数 :280kHz
得られたトナー母体粒子100.0質量部に対して、疎水性シリカ(H2000、クラリアントジャパン株式会社製)1.0質量部及び酸化チタン(JMT−150IB、テイカ株式会社製)1.0質量部を、ヘンシェルミキサー(三井鉱山株式会社製)を用いて外添処理を行い、その後目開き30μmの篩を通し、ブラックトナーを得た。
(実施例2)
実施例1において、トナー組成液を図1に示した液柱共鳴液室1つ当たり4つの吐出孔を有する液柱共鳴液滴手段により、吐出液滴化した以外は、実施例1と同様にしてトナーを得た。なお、条件は下記の通りである。
−液柱共鳴条件−
共鳴モード :N=2
液柱共鳴液室の長手方向の両端間の長さ :L=1.8mm
液柱共鳴液室の液共通供給路側のフレームの端部の高さ :h1=80μm
液柱共鳴液室の連通口の高さ :h2=40μm
−トナー母体粒子作製条件−
分散液比重 :ρ=1.1g/cm
吐出孔の形状 :真円
吐出孔直径 :8.0μm
吐出孔の開口数 :4個(液柱共鳴液室1つ当たり)
液柱共鳴液室の数 :100室
隣接する吐出孔の中心部間の最短間隔 :130μm(全て等間隔)
乾燥エアー温度 :40℃
印加電圧 :12.0V
駆動周波数 :340kHz
(実施例3)
ポリエステル樹脂の溶解液900質量部、スチレン−アクリル酸nブチル共重合樹脂の溶解液100質量部、着色剤分散液25質量部、カルナバワックス分散液50質量部、及び酢酸エチル80質量部を混合した。この混合液を目開き1μmのフィルターを通し、トナー組成液を調製した。実施例2と同様に、トナー組成液を図1に示した液柱共鳴液室1つ当たり4つの吐出孔を有する液柱共鳴液滴手段により。トナー母体を得た。外添処理は実施例1と同様に行いトナーを得た。
(実施例4)
ポリエステル樹脂の溶解液100質量部、スチレン−アクリル酸nブチル共重合樹脂の溶解液900質量部、着色剤分散液25質量部、カルナバワックス分散液50質量部、及び酢酸エチル80質量部を混合した。この混合液を目開き1μmのフィルターを通し、トナー組成液を調製した。実施例2と同様に、トナー組成液を図1に示した液柱共鳴液室1つ当たり4つの吐出孔を有する液柱共鳴液滴手段により。トナー母体を得た。外添処理は実施例1と同様に行いトナーを得た。
(実施例5)
スチレン−アクリル酸nブチル共重合樹脂の溶解液500質量部、ポリオール樹脂の溶解液500質量部、着色剤分散液25質量部、カルナバワックス分散液50質量部、及び酢酸エチル80質量部を混合した。この混合液を目開き1μmのフィルターを通し、トナー組成液を調製した。実施例2と同様に、トナー組成液を図1に示した液柱共鳴液室1つ当たり4つの吐出孔を有する液柱共鳴液滴手段により。トナー母体を得た。外添処理は実施例1と同様に行いトナーを得た。
(比較例1)
ポリエステル樹脂の溶解液1000質量部、着色剤分散液25質量部、カルナバワックス分散液50質量部、及び酢酸エチル80質量部を混合した。この混合液を目開き1μmのフィルターを通し、トナー組成液を調製した。実施例2と同様に、トナー組成液を図1に示した液柱共鳴液室1つ当たり4つの吐出孔を有する液柱共鳴液滴手段により。トナー母体を得た。外添処理は実施例1と同様に行いトナーを得た。
(比較例2)
スチレン−アクリル酸nブチル共重合樹脂の溶解液1000質量部、着色剤分散液25質量部、カルナバワックス分散液50質量部、及び酢酸エチル80質量部を混合した。この混合液を目開き1μmのフィルターを通し、トナー組成液を調製した。実施例2と同様に、トナー組成液を図1に示した液柱共鳴液室1つ当たり4つの吐出孔を有する液柱共鳴液滴手段により。トナー母体を得た。外添処理は実施例1と同様に行いトナーを得た。
(比較例3)
実施例1と同様のトナー組成液を、図9及び図10の装置の液滴吐出手段をノズル径250μmの二流体ノズルにして、空気圧0.1MPaにて噴霧し、粒子を得た。この粒子の粗紛/微粉をホソカワミクロン社製の100TTSPで分級して、トナー母体を得た。外添処理は実施例1と同様に行いトナーを得た。
(比較例4)
ポリエステル樹脂の溶解液900質量部、ポリオール樹脂の溶解液100質量部、着色剤分散液25質量部、カルナバワックス分散液50質量部、及び酢酸エチル80質量部を混合した。この混合液を目開き1μmのフィルターを通し、トナー組成液を調製した。実施例2と同様に、トナー組成液を図1に示した液柱共鳴液室1つ当たり4つの吐出孔を有する液柱共鳴液滴手段により。トナー母体を得た。外添処理は実施例1と同様に行いトナーを得た。
上記実施例1〜5、比較例1〜4のトナー処方を表1に示す。
<キャリアの作製>
シリコーン樹脂 100質量部
(オルガノストレートシリコ−ン、SR2406、東レダウコーニング社製)
触媒(TC-750、マツモトファインケミカル社製 1質量部
トルエン 100質量部
γ−(2−アミノエチル)アミノプロピルトリメトキシシラン 5質量部
カーボンブラック( #44 、 三菱化学 社製) 10質量部
上記混合物をホモミキサーで20分間分散し、コート層形成液を調製した。このコート層形成液を流動床型コーティング装置を用いて、粒径40μmの球状マグネタイト1,000部の表面にコーティングして磁性キャリアを得た。
上記の磁性キャリア95質量部と、実施例1〜5、比較例1〜4で得られたブラックトナー5質量部とを、それぞれターブラーシェーカーミキサー(シンマルエンタープライゼス社製)で混合し、実施例1〜5、比較例1〜4の現像剤を得た。
これをリコー社製の複写機(Imagio MP 7501)に入れ、クリーニング性を評価した。画像面積率30%の画像を現像し、転写紙に転写後、感光体に残存する転写残のトナーをクリーニングブレードでクリーニングしている最中に複写機を停止させ、クリーニング工程を通過した感光体上の転写残トナーをスコッチテープ(住友スリーエム株式会社製)で白紙に移し、それをマクベス反射濃度計RD514型で10箇所測定し、その平均値と単にテープを白紙に貼った時の測定結果との差を求め、下記基準により評価した。
なお、クリーニングブレードは2万枚クリーニング後のものを用いた。
〔評価基準〕
◎(極めて良好): 差が0.01以下
○(良好) : 差が0.015以下
×(不良) : 差が0.015を超える
クリーング性と併せて、トナーの重量平均粒径(D4)、個数平均粒径(Dn)、粒度分布(D4/Dn)、平均円形度を表2に示す。
本発明のトナーは、単一分散性と異形性を有し、ブレードクリーニング性に優れており、高解像度で、高精細及び高品質で、長期にわたって劣化のない画像を形成することができるので、電子写真、静電記録、静電印刷等における静電荷像を現像するための現像剤に好適に使用することができる。
1 トナー製造装置
2 液滴吐出手段
9 弾性板
10 液柱共鳴液滴吐出ユニット
11 液柱共鳴液滴吐出手段
12 気流通路
13 原料収容器
14 トナー組成液
15 液循環ポンプ
16 液供給管
17 液共通供給路
18 液柱共鳴液室
19 吐出孔
20 振動発生手段
21 液滴
22 液戻り管
23 合着液滴
41 薄膜
44 ノズル角度
60 乾燥捕集手段
61 チャンバ
62 トナー捕集手段
63 トナー貯留部
64 搬送気流導入口
65 搬送気流排出口
66 シュラウド
67 補助搬送気流導入口
68 補助搬送気流
P1 液圧力計
P2 チャンバ内圧力計
101 下降気流
120 タンデム型現像器
130 原稿台
142 給紙ローラ
143 ペーパーバンク
144 給紙カセット
145 分離ローラ
146、148 給紙路
147 搬送ローラ
150 複写装置本体
160 帯電装置
200 給紙テーブル
300 スキャナ
400 原稿自動搬送装置
610 現像装置
630 クリーニング装置
640 除電器
701 静電潜像担持体
702 帯電手段
703 露光
704 現像手段
705 記録媒体
707 クリーニング手段
708 転写手段
800、900 画像形成装置
810 感光体
820 帯電ローラ
830 露光装置
840 現像装置
841 現像ベルト
842K、842Y、842M、842C 現像剤収容部
843K、843Y、843M、843C 現像剤供給ローラ
844K、844Y、844M、844C 現像ローラ
845K ブラック現像ユニット
845Y イエロー現像ユニット
845M マゼンタ現像ユニット
845C シアン現像ユニット
850 中間転写体
851 ローラ
858 コロナ帯電器
860 クリーニング装置
870 除電ランプ
880 転写ローラ
890 中間転写体用クリーニングブレード
895 記録媒体
1010 静電潜像担持体
1014、1015、1016 支持ローラ
1017 中間転写体クリーニング装置
1018 画像形成手段
1021 露光装置
1022 二次転写装置
1023 ローラ
1024 二次転写ベルト
1025 定着装置
1026 定着ベルト
1027 加圧ローラ
1028 シート反転装置
1032 コンタクトガラス
1033 第1走行体
1034 第2走行体
1035 結像レンズ
1036 読取りセンサ
1049 レジストローラ
1050 中間転写体
1055 切換爪
1056 排出ローラ
1057 排紙トレイ
1062 転写帯電器
特開平7−152202号公報 特開2003−262976号公報 特開2003−280236号公報 特開2003−262977号公報

Claims (6)

  1. 吐出孔を有する液柱共鳴液室内のトナー組成液に振動を付与することで液柱共鳴による定在波を形成させ、前記定在波の腹となる領域に配置された前記吐出孔から前記トナー組成液を吐出して液滴を形成し、前記液滴を固化してトナーを得るトナーの製造方法であって、
    前記トナー組成液が、少なくとも2種の結着樹脂と着色剤とを含有するトナー組成物を有機溶剤に溶解乃至分散してなり、
    前記少なくとも2種の結着樹脂が、互いに相溶しない結着樹脂であることを特徴とするトナーの製造方法。
  2. 前記トナー組成液振動付与において、
    N×c/(4L)≦f≦N×c/(4Le)
    (ここで、L:液柱共鳴液室の長手方向の長さ、Le:液供給路側の端部と、該端部に最も近い吐出孔の中心部との距離、c:トナー組成液の音波の速度、N:自然数)
    が成立する駆動周波数fの振動を付与することを特徴とする請求項1に記載のトナーの製造方法。
  3. 液柱共鳴液室が2つ以上の吐出孔を有することを特徴とする請求項1または2に記載のトナーの製造方法。
  4. 2種類の結着樹脂の少なくとも1種がポリエステル系樹脂であることを特徴とする請求項1〜3のいずれかに記載のトナーの製造方法。
  5. 2種類の結着樹脂が、ポリエステル系樹脂とスチレン−(メタ)アクリル系樹脂であることを特徴とする請求項1〜4のいずれかに記載のトナーの製造方法。
  6. 前記トナー組成液が離型剤を含有することを特徴とする請求項1〜5のいずれかに記載のトナーの製造方法。
JP2011204107A 2011-09-20 2011-09-20 トナーの製造法 Expired - Fee Related JP5879857B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011204107A JP5879857B2 (ja) 2011-09-20 2011-09-20 トナーの製造法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011204107A JP5879857B2 (ja) 2011-09-20 2011-09-20 トナーの製造法

Publications (2)

Publication Number Publication Date
JP2013064904A JP2013064904A (ja) 2013-04-11
JP5879857B2 true JP5879857B2 (ja) 2016-03-08

Family

ID=48188459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011204107A Expired - Fee Related JP5879857B2 (ja) 2011-09-20 2011-09-20 トナーの製造法

Country Status (1)

Country Link
JP (1) JP5879857B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6350897B2 (ja) * 2013-06-19 2018-07-04 株式会社リコー トナーの製造方法
JP6332459B2 (ja) * 2014-08-06 2018-05-30 株式会社リコー トナー
JP7238119B2 (ja) * 2019-06-12 2023-03-13 オリンパス株式会社 超音波処置具、超音波治療システム、及び、内視鏡下手術システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5433986B2 (ja) * 2007-07-12 2014-03-05 株式会社リコー トナー及びその製造方法
JP5257676B2 (ja) * 2008-11-11 2013-08-07 株式会社リコー トナー及び現像剤、画像形成装置

Also Published As

Publication number Publication date
JP2013064904A (ja) 2013-04-11

Similar Documents

Publication Publication Date Title
JP5754219B2 (ja) トナーの製造方法
JP4966166B2 (ja) トナーの製造方法及びトナー、現像剤、画像形成方法
JP5500492B2 (ja) トナーの製造方法
US8034526B2 (en) Method for manufacturing toner and toner
JP4594789B2 (ja) 粒子製造装置及び粒子群の製造方法
JP5433986B2 (ja) トナー及びその製造方法
JP4896000B2 (ja) 静電荷像現像用トナー、製造方法、及び製造装置、並びに、現像剤、トナー入り容器、プロセスカートリッジ、画像形成方法、及び画像形成装置
JP5594580B2 (ja) トナーの製造方法
US20100003613A1 (en) Toner, method of producing toner, and image forming method
JP2007108731A (ja) 静電荷像現像用トナー、製造方法、及び製造装置、並びに、現像剤、トナー入り容器、プロセスカートリッジ、画像形成方法、及び画像形成装置
JP4587400B2 (ja) トナー製造方法及びトナー
JP4562707B2 (ja) トナー製造方法及びトナー
JP5239669B2 (ja) トナー及びその製造方法、並びに現像剤、プロセスカートリッジ、画像形成方法、及び画像形成装置
JP4629009B2 (ja) トナー製造方法、トナー、それを用いた画像形成装置及びプロセスカートリッジ
JP5257676B2 (ja) トナー及び現像剤、画像形成装置
JP5879857B2 (ja) トナーの製造法
JP5266744B2 (ja) 静電荷像現像用トナー、製造方法、及び製造装置、並びに、現像剤、トナー入り容器、プロセスカートリッジ、画像形成方法、及び画像形成装置
JP4721443B2 (ja) トナー、それを用いた画像形成装置及びプロセスカートリッジ
JP5239233B2 (ja) トナーの製造方法
JP4373884B2 (ja) 樹脂粒子の製造方法、樹脂粒子、画像形成剤、画像形成剤入り容器、画像形成方法、プロセスカートリッジ、及び画像形成装置
JP5834605B2 (ja) トナーの製造方法
JP2008229462A (ja) 粒子の製造方法及びトナーの製造方法、並びにトナー、現像剤、及び画像形成方法
JP2008070673A (ja) 現像装置及び現像方法、画像形成装置及び画像形成方法、並びにプロセスカートリッジ
CN106462093B (zh) 调色剂和调色剂制造方法
JP2008070728A (ja) トナー製造方法、トナー、及びトナー製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R151 Written notification of patent or utility model registration

Ref document number: 5879857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees