JP5877282B1 - Copper foil and copper-clad laminate for printed wiring boards - Google Patents

Copper foil and copper-clad laminate for printed wiring boards Download PDF

Info

Publication number
JP5877282B1
JP5877282B1 JP2015543166A JP2015543166A JP5877282B1 JP 5877282 B1 JP5877282 B1 JP 5877282B1 JP 2015543166 A JP2015543166 A JP 2015543166A JP 2015543166 A JP2015543166 A JP 2015543166A JP 5877282 B1 JP5877282 B1 JP 5877282B1
Authority
JP
Japan
Prior art keywords
copper
copper foil
roughened
roughening
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015543166A
Other languages
Japanese (ja)
Other versions
JPWO2016038923A1 (en
Inventor
諒太 藤田
諒太 藤田
裕文 河中
裕文 河中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2015543166A priority Critical patent/JP5877282B1/en
Priority claimed from PCT/JP2015/061878 external-priority patent/WO2016038923A1/en
Application granted granted Critical
Publication of JP5877282B1 publication Critical patent/JP5877282B1/en
Publication of JPWO2016038923A1 publication Critical patent/JPWO2016038923A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】回路パターン形成後の視認性が良好であり、常態ピール強度が高くかつ耐熱ピール強度が高水準で維持される配線板用銅箔及び銅張積層板を提供する。【解決手段】銅箔の少なくとも一表面に算術平均高さが0.05〜0.5μmである粗化粒子からなる粗化粒子層を有し、前記粗化粒子層の上に、少なくともニッケルと亜鉛を含み、亜鉛の前記粗化粒子層への付着量に対するニッケルの前記粗化粒子層への付着量の比(質量比)が0.5〜20の範囲内の拡散防止被覆を有する銅箔であって、前記一表面側から測定した波長600nmにおける拡散反射率(Rd)が5〜50%の範囲内及び彩度(C*)が30以下である銅箔と銅張積層板、及び特定の銅害防止剤を含むポリイミド樹脂層を該銅箔の前記一表面側に有する銅張積層板。【選択図】なしProvided are a copper foil for a wiring board and a copper clad laminate, which have good visibility after forming a circuit pattern, have a high normal peel strength, and a high level of heat-resistant peel strength. SOLUTION: At least one surface of a copper foil has a roughened particle layer composed of roughened particles having an arithmetic average height of 0.05 to 0.5 μm, and at least nickel is formed on the roughened particle layer. A copper foil containing zinc and having a diffusion prevention coating in which the ratio (mass ratio) of the adhesion amount of nickel to the roughening particle layer to the adhesion amount of zinc to the roughening particle layer is in the range of 0.5 to 20 A copper foil and a copper clad laminate having a diffuse reflectance (Rd) at a wavelength of 600 nm measured from the one surface side in a range of 5 to 50% and a chroma (C *) of 30 or less, and a specific A copper clad laminate having a polyimide resin layer containing a copper damage inhibitor on the one surface side of the copper foil. [Selection figure] None

Description

本発明は、配線板用の銅箔及び銅張積層板に関し、より詳しくは樹脂密着性と回路パターン形成後の樹脂透過視認性に優れる配線板用銅張積層板及びこれに使用する銅箔に関する。   The present invention relates to a copper foil for a wiring board and a copper clad laminate, and more particularly to a copper clad laminate for a wiring board excellent in resin adhesion and resin permeation visibility after forming a circuit pattern, and a copper foil used for the same. .

各種電子機器類において基板や接続材料として配線板が用いられており、配線板の導電層には銅箔が一般的に使用されている。   In various electronic devices, a wiring board is used as a substrate or a connection material, and a copper foil is generally used for a conductive layer of the wiring board.

上記配線板に採用される銅箔は一般的に圧延銅箔または電解銅箔の形で供給される。   The copper foil employed for the wiring board is generally supplied in the form of a rolled copper foil or an electrolytic copper foil.

配線板は、一般的には、電解銅箔などの銅箔とポリイミドなどの樹脂フィルムとを貼り合わせ、エッチングで回路パターンを形成する。回路パターンを形成された配線板は、その後の実装工程においては、回路パターン形成時に銅箔をエッチングして除去した箇所の樹脂フィルムを透かしてアライメントマーク等をカメラで認識し位置決めを行う場合がある。そのため、この樹脂フィルムを透過した光が拡散せず明瞭にカメラで認識できる樹脂透過視認性を有することが要求される。本明細書では以下、この樹脂透過視認性を単に「視認性」と表現する。   In general, a wiring board is formed by bonding a copper foil such as an electrolytic copper foil and a resin film such as polyimide, and forming a circuit pattern by etching. In the subsequent mounting process, the circuit board on which the circuit pattern is formed may be positioned by recognizing the alignment mark or the like with a camera through the resin film removed by etching the copper foil during the circuit pattern formation. . For this reason, it is required that the light transmitted through the resin film does not diffuse and has a resin transmission visibility that can be clearly recognized by a camera. In the present specification, the resin permeation visibility is hereinafter simply referred to as “visibility”.

樹脂フィルムの視認性は一般的にヘイズ値(曇値)で表される。樹脂フィルムの全光線透過率(T)、拡散透過率(T)に対してヘイズ値は、下記式
(T/T)×100(%)
で表される。この値が小さいほど視認性が高い。視認性の評価には一般に波長600nmのヘイズ値が採用される。
The visibility of a resin film is generally represented by a haze value (cloudiness value). The haze value with respect to the total light transmittance (T t ) and diffuse transmittance (T d ) of the resin film is expressed by the following formula (T d / T t ) × 100 (%)
It is represented by The smaller this value, the higher the visibility. In general, a haze value with a wavelength of 600 nm is adopted for evaluation of visibility.

樹脂フィルムの種類が同一であれば、樹脂フィルムのヘイズ値は表面形状に左右される。表面が荒れていると拡散透過成分が大きくなりヘイズ値は高くなるため、視認性を高くするには表面をある程度は平滑にする必要がある。   If the kind of the resin film is the same, the haze value of the resin film depends on the surface shape. If the surface is rough, the diffuse transmission component becomes large and the haze value becomes high. Therefore, in order to increase the visibility, the surface needs to be smooth to some extent.

また、樹脂フィルムの表面形状は、貼り合せた銅箔の表面形状を転写する。そのため、平滑な樹脂表面を得るためには平滑な銅箔を使用することが必要になる。   Moreover, the surface shape of the resin film transfers the surface shape of the bonded copper foil. Therefore, in order to obtain a smooth resin surface, it is necessary to use a smooth copper foil.

一方、配線板としての使用に対しては、樹脂フィルムと銅箔の密着性が要求される。密着性向上のためには銅箔表面を粗くして接触表面積の増大及びアンカー効果を利用することが多い。そのため密着性の向上は、一方で視認性の悪化に繋がり、樹脂密着性と視認性との両立は困難であるとされている。   On the other hand, for use as a wiring board, adhesion between the resin film and the copper foil is required. In order to improve adhesion, the copper foil surface is often roughened to increase the contact surface area and use the anchor effect. Therefore, the improvement of the adhesion leads to the deterioration of the visibility, and it is said that it is difficult to achieve both the resin adhesion and the visibility.

銅箔表面を粗くする方法(粗化処理)としては、銅箔上に粒状の銅めっきを施す(粗化めっき)ことが一般的である。その他にエッチングで表面を荒らす方法、銅以外の金属または合金めっきで粗化めっきを施すといった方法が用いられる。   As a method of roughening the copper foil surface (roughening treatment), it is common to apply granular copper plating (roughening plating) on the copper foil. In addition, a method of roughening the surface by etching or a method of roughening plating by metal or alloy plating other than copper is used.

特許文献1は、銅の粗化めっきを2種類施すことにより、一次粗化粒子の上により小さい二次粗化粒子を析出させることで樹脂との密着力を高めた電解銅箔を開示している。しかし、この電解銅箔は、表面が荒れすぎているために、密着性は優れるが視認性が低く、なお改良の余地があった。   Patent Document 1 discloses an electrolytic copper foil that has improved adhesion with a resin by precipitating smaller secondary roughened particles on the primary roughened particles by applying two types of copper roughened plating. Yes. However, since this electrolytic copper foil has an excessively rough surface, the adhesiveness is excellent but the visibility is low, and there is still room for improvement.

特許文献2は、特殊な熱圧着で得られる多層ポリイミドフィルムを平滑な銅箔に特殊な条件で熱圧着した銅張積層板を開示している。しかし、この銅張積層板では、樹脂の構成及び銅張積層板の製法に制約が多く、ある特定の条件でのみ実現できる内容であるといえる。   Patent Document 2 discloses a copper clad laminate obtained by thermocompression bonding a multilayer polyimide film obtained by special thermocompression bonding to a smooth copper foil under special conditions. However, this copper-clad laminate has many restrictions on the resin configuration and the method for producing the copper-clad laminate, and can be said to be a content that can be realized only under certain specific conditions.

また銅箔と樹脂フィルム密着性に関して、特にフレキシブルプリント配線基板(FPC)の基材として用いられるポリイミド樹脂との密着性に関しては、銅箔とポリイミド樹脂を積層した直後の密着強度(以後、常態ピール強度と呼称する。)の他に、長期信頼性の観点から長時間の熱負荷を加えた後のピール強度(以後、耐熱ピール強度と呼称する。)も重要である。   In addition, regarding the adhesiveness between the copper foil and the resin film, particularly the adhesiveness with the polyimide resin used as the base material of the flexible printed circuit board (FPC), the adhesive strength immediately after the lamination of the copper foil and the polyimide resin (hereinafter, normal peel) In addition to the term “strength”, the peel strength after applying a long-time heat load (hereinafter referred to as “heat-resistant peel strength”) is also important from the viewpoint of long-term reliability.

ポリイミド樹脂を基材としたプリント配線板の耐熱ピール強度は、150℃の大気雰囲気下で1000時間の熱負荷を加えた後に測定されることが一般的である。   The heat-resistant peel strength of a printed wiring board based on a polyimide resin is generally measured after applying a heat load of 1000 hours in an air atmosphere at 150 ° C.

上記の条件での熱負荷をプリント配線板に加えている最中に、銅箔表面の銅原子が銅イオンとなり、これが高分子樹脂を分解する現象(以後、銅害と呼称する。)が発生する。このため、一般的に耐熱ピール強度は常態ピール強度と比較して低い。   While the thermal load under the above conditions is applied to the printed wiring board, a copper atom on the surface of the copper foil becomes a copper ion, which causes a phenomenon (hereinafter referred to as copper damage) that decomposes the polymer resin. To do. For this reason, the heat-resistant peel strength is generally low compared to the normal peel strength.

耐熱ピール強度の向上には、前述の粗化によるアンカー効果を向上する手段がある。しかし、粗化粒子を大きくしすぎると視認性が低下するので、アンカー効果の向上のみで耐熱ピール強度を向上させることには限界がある。   In order to improve the heat-resistant peel strength, there is a means for improving the anchor effect by the aforementioned roughening. However, if the coarse particles are made too large, the visibility decreases, and there is a limit to improving the heat-resistant peel strength only by improving the anchor effect.

粗化によるアンカー効果向上の他に、特許文献3のように、粗化処理(粗化めっき)を施していない平滑な銅箔表面にニッケル及び亜鉛からなる銅以外の異種金属原子層(以後、拡散防止層と呼称する。)を形成して、銅の熱拡散による樹脂の劣化を防ぎ、ピール強度の向上を行うことが知られている。この手法のみでは、150℃で50時間という低い熱履歴ではピール強度がある一定以上の値が保たれる。しかし、銅箔が平滑であるが故にアンカー効果はほとんど得られないので、150℃で1000時間という高熱負荷の試験後にピール強度を高水準に保つことは困難である。また特許文献3では、ニッケル及び亜鉛を多く付着させて処理するものであり、銅箔のエッチング性が犠牲になる。加えて、ニッケル及び亜鉛の処理に用いるめっき液からの金属成分の持ち出し量が多くなり、製造コストの面から見ても不利になる。   In addition to improving the anchor effect by roughening, as in Patent Document 3, different metal atomic layers other than copper consisting of nickel and zinc on a smooth copper foil surface not subjected to roughening treatment (roughening plating) (hereinafter, It is known that an anti-diffusion layer is formed) to prevent deterioration of the resin due to thermal diffusion of copper and improve peel strength. With this method alone, the peel strength is maintained at a certain value or higher with a heat history as low as 50 hours at 150 ° C. However, since the copper foil is smooth, an anchor effect is hardly obtained, so that it is difficult to keep the peel strength at a high level after a high heat load test of 150 hours at 150 ° C. Moreover, in patent document 3, it processes by making many nickel and zinc adhere, and the etching property of copper foil is sacrificed. In addition, the amount of metal components taken out from the plating solution used for the treatment of nickel and zinc increases, which is disadvantageous from the viewpoint of manufacturing cost.

耐熱試験中の樹脂への銅害を防止するため、銅害防止剤を樹脂中に添加する手法がある。銅害防止剤により、銅イオンをキレート化することによって、銅イオンを不活性化し、過酸化物が接触分解してオキシラジカルを発生させるのを抑制することができる。すなわち、銅害防止剤の添加により、高分子材料が酸化劣化するのを抑制できる。具体的には、銅害防止剤としては、シュウ酸誘導体、サリチル酸誘導体、ヒドラジド誘導体、ベンゾトリアゾール等が挙げられる。   In order to prevent copper damage to the resin during the heat resistance test, there is a method of adding a copper damage inhibitor to the resin. By chelating the copper ions with the copper damage inhibitor, the copper ions can be inactivated, and the peroxide can be prevented from being catalytically decomposed to generate oxy radicals. That is, the addition of the copper damage inhibitor can suppress the oxidative degradation of the polymer material. Specific examples of the copper damage inhibitor include oxalic acid derivatives, salicylic acid derivatives, hydrazide derivatives, benzotriazole, and the like.

しかしながら表面凹凸が小さく視認性に優れる銅箔を用いたFPCにおいて、FPCの耐熱試験条件である150℃で1000時間という厳しい熱負荷では、銅害防止剤の添加のみで耐熱ピール強度の劣化を防ぐことは困難である。   However, in FPC using copper foil with small surface irregularities and excellent visibility, under severe heat load of 1000 hours at 150 ° C. which is the heat resistance test condition of FPC, deterioration of heat-resistant peel strength is prevented only by adding copper damage prevention agent. It is difficult.

特開平11−340596号公報JP 11-340596 A 特開2011−119759号公報JP 2011-119759 A 特許4090467号公報Japanese Patent No. 4090467

本発明は、回路パターン形成後の視認性が良好であり、常態ピール強度が高くかつ耐熱ピール強度が高水準で維持される配線板用銅箔及び銅張積層板を提供することを課題とする。   It is an object of the present invention to provide a copper foil for a wiring board and a copper clad laminate that have good visibility after forming a circuit pattern, have a high normal peel strength, and a high heat-resistant peel strength. .

本発明者らは、銅箔の一表面に視認性を低下させない範囲の凹凸高さを有する粗化処理を行って特定の粒子高さの、純銅で構成された粗化粒子層を形成するとともに、前記表面に、少なくともニッケル及び亜鉛を含んで構成される特定のニッケル/亜鉛付着量比の拡散防止被覆を有し、かつ、粗化処理を施した銅箔の前記一表面側の拡散反射率及び彩度を所定の範囲に制御することによって、高耐熱ピール強度と高視認性が実現されることを見出した。ここで拡散反射率とは、物体表面に入射した光束に対する拡散反射(乱反射)した光束の比をいい、物体表面の凹凸の程度を判定する指標となる。また、彩度とは色の三属性の1つで、色の鮮やかさの尺度である。また本発明者らは、絶縁層として使用されるポリイミド樹脂層にシュウ酸誘導体、サリチル酸誘導体、ヒドラジド誘導体、トリアゾール類から選ばれる少なくとも1種類以上の銅害防止剤を含有させることで、耐熱ピール強度がさらに向上した全く新しい銅張積層板が得られることを見出した。本発明はこれらの知見に基づいて完成するに至ったものである。
The present inventors perform a roughening treatment having an uneven height in a range that does not reduce the visibility on one surface of the copper foil to form a roughened particle layer made of pure copper having a specific particle height. And a diffusion reflection on the one surface side of the roughened copper foil having a diffusion prevention coating with a specific nickel / zinc adhesion ratio composed of at least nickel and zinc on the surface. It has been found that by controlling the rate and saturation within a predetermined range, high heat-resistant peel strength and high visibility can be realized. Here, the diffuse reflectance refers to the ratio of the diffusely reflected (irregularly reflected) light beam to the light beam incident on the object surface, and serves as an index for determining the degree of unevenness on the object surface. Saturation is one of the three attributes of color and is a measure of color vividness. In addition, the present inventors include a polyimide resin layer used as an insulating layer containing at least one copper damage inhibitor selected from an oxalic acid derivative, a salicylic acid derivative, a hydrazide derivative, and a triazole, so that heat-resistant peel strength is achieved. It has been found that a completely new copper-clad laminate can be obtained. The present invention has been completed based on these findings.

すなわち、本発明によれば、以下の手段が提供される。
(1)銅箔の少なくとも一表面に算術平均高さが0.05〜0.5μmである粗化粒子からなる粗化粒子層を有し、前記粗化粒子が純銅からなり、前記粗化粒子層の上に、少なくともニッケルと亜鉛を含み、亜鉛の前記粗化粒子層(表面)への付着量に対するニッケルの前記粗化粒子層への付着量の比(質量比)が0.5〜20の範囲内の拡散防止被覆を有する銅箔であって、前記一表面側から測定した波長600nmにおける拡散反射率(R)が5〜50%の範囲内及び彩度(C)が30以下であることを特徴とする銅箔。
(2)(1)項に記載の銅箔を有することを特徴とする銅張積層板。
(3)シュウ酸誘導体、サリチル酸誘導体、ヒドラジド誘導体、及びトリアゾール類から選ばれる少なくとも1種の銅害防止剤を含むポリイミド樹脂層を、(1)項に記載の銅箔の前記一表面側に有する銅張積層板。
That is, according to the present invention, the following means are provided.
(1) It has a roughened particle layer made of roughened particles having an arithmetic average height of 0.05 to 0.5 μm on at least one surface of the copper foil, the roughened particles are made of pure copper, and the roughened particles On the layer, at least nickel and zinc are included, and the ratio (mass ratio) of the adhesion amount of nickel to the roughening particle layer to the adhesion amount of zinc to the roughening particle layer (surface) is 0.5 to 20 A copper foil having a diffusion prevention coating within the range of 5%, wherein the diffuse reflectance (R d ) at a wavelength of 600 nm measured from the one surface side is in the range of 5 to 50% and the saturation (C * ) is 30 or less. Copper foil characterized by being.
(2) A copper-clad laminate comprising the copper foil according to item (1).
(3) oxalic acid derivatives, salicylic acid derivatives, hydrazide derivatives, and the polyimide resin layer comprising at least one copper inhibitor is selected from triazoles, having on the one surface side of a copper foil according to (1) claim Copper-clad laminate.

本発明により、回路パターン形成後の視認性と樹脂密着性の両者に優れるプリント配線板用銅箔及び銅張積層板を提供することができる。   According to the present invention, it is possible to provide a copper foil for a printed wiring board and a copper clad laminate which are excellent in both visibility and resin adhesion after forming a circuit pattern.

本発明における粗化粒子高さの測定法を説明する図である。It is a figure explaining the measuring method of the roughening particle height in this invention.

本発明の銅箔は、その少なくとも一表面に算術平均高さが0.05〜0.5μmである粗化粒子からなる粗化粒子層を有するとともに、前記粗化粒子層の上に、少なくともニッケルと亜鉛を含み、亜鉛の表面への付着量に対するニッケルの表面への付着量の比(質量比)が0.5〜20の範囲内の拡散防止被覆を有する銅箔であって、前記一表面側から測定した波長600nmにおける拡散反射率(R)が5〜50%の範囲内及び彩度(C)が30以下であることを特徴とする。
本発明の銅箔は、プリント配線板に好適に用いることができる。
The copper foil of the present invention has a roughened particle layer made of roughened particles having an arithmetic average height of 0.05 to 0.5 μm on at least one surface thereof, and at least nickel on the roughened particle layer. A copper foil having a diffusion-preventing coating in which the ratio (mass ratio) of the amount of adhesion to the surface of nickel with respect to the amount of adhesion to the surface of zinc is 0.5 to 20 The diffuse reflectance (R d ) at a wavelength of 600 nm measured from the side is in the range of 5 to 50% and the saturation (C * ) is 30 or less.
The copper foil of this invention can be used suitably for a printed wiring board.

樹脂フィルムの全光線透過率は、樹脂の種類及び厚さによっておおよそ定まり、樹脂表面形状によって少しは変化するもののその変化の程度は小さい。そのため、視認性を評価するヘイズ値は拡散透過率に大きく影響される。樹脂の拡散透過率はその表面形状に大きく影響される。樹脂の表面形状は銅箔の表面形状を転写したものとなる。そのため、銅箔の形状が樹脂の拡散透過率に大きく影響する。   The total light transmittance of the resin film is roughly determined by the type and thickness of the resin, and changes slightly depending on the resin surface shape, but the degree of change is small. Therefore, the haze value for evaluating the visibility is greatly influenced by the diffuse transmittance. The diffuse transmittance of the resin is greatly influenced by the surface shape. The surface shape of the resin is a transfer of the surface shape of the copper foil. Therefore, the shape of the copper foil greatly affects the diffuse transmittance of the resin.

銅箔表面の波長600nmにおける拡散反射率が50%より大きいと、転写された表面形状を持つ樹脂は拡散透過率が上昇し、密着力は優れるが視認性が悪くなる。一方、拡散反射率が5%より小さいと、極めて良好な光沢を持つ銅箔表面となるが、平滑すぎるために視認性は優れるが樹脂との密着性は低下する。   When the diffuse reflectance at a wavelength of 600 nm on the surface of the copper foil is greater than 50%, the resin having the transferred surface shape has an increased diffuse transmittance and excellent adhesion, but the visibility is deteriorated. On the other hand, if the diffuse reflectance is less than 5%, the surface of the copper foil has a very good gloss. However, since the surface is too smooth, the visibility is excellent, but the adhesion with the resin is reduced.

色を、明度指数Lとクロマネティクス指数a、bから成る均等色空間上の座標で表わした、CIE L表色系において、彩度(C)は式(1)で算出される。彩度が低いほど灰色な表面になる。彩度が高い表面は反射率が波長によって大きく異なり、反対に彩度が低い表面は分光反射率が平坦である。In the CIE L * a * b * color system in which colors are represented by coordinates on a uniform color space consisting of a lightness index L * and a chrominance index a * , b * , the saturation (C * ) is expressed by the formula (1 ). The lower the saturation, the grayer the surface. The surface with high saturation varies greatly depending on the wavelength, and the surface with low saturation has a flat spectral reflectance.

式(1)
Formula (1)

銅箔表面の色相は、表面処理によって大きく異なる。しかしヘイズ値は一般的に波長600nmの値を評価に使用する。   The hue of the copper foil surface varies greatly depending on the surface treatment. However, the haze value is generally a value having a wavelength of 600 nm for evaluation.

ヘイズ値の評価が一般的に波長600nmの値を採用することに注目した本発明者らは、彩度(C)が30以下、つまり彩度が低いことでどの色相の表面においても波長600nmの反射率は一定以上に保たれ、このような表面を有する銅箔は、表面を転写した樹脂フィルムの視認性に優れることを見出した。The inventors of the present invention who paid attention to the evaluation of the haze value generally adopting a wavelength of 600 nm have a saturation (C * ) of 30 or less, that is, a wavelength of 600 nm on the surface of any hue due to low saturation. The copper foil having such a surface was found to be excellent in the visibility of the resin film to which the surface was transferred.

また銅箔の表面から視認性が決定されるために、樹脂の種類、樹脂の製法、配線板の製法等に左右されにくいことを見出した。   Moreover, since visibility was determined from the surface of copper foil, it discovered that it was hard to be influenced by the kind of resin, the manufacturing method of resin, the manufacturing method of a wiring board, etc.

本発明のプリント配線板に用いる銅箔は、ポリイミド樹脂からなる絶縁層と接する側の銅箔の少なくとも一表面上に形成された粗化処理層における粗化粒子の算術平均高さが0.05μm〜0.5μmである。0.05μmより低いと初期ピール強度及び耐熱ピール強度が低下する。0.5μmより高いと視認性が低下する。   The copper foil used for the printed wiring board of the present invention has an arithmetic average height of the roughened particles in the roughened layer formed on at least one surface of the copper foil on the side in contact with the insulating layer made of polyimide resin is 0.05 μm. ˜0.5 μm. When it is lower than 0.05 μm, the initial peel strength and the heat-resistant peel strength are lowered. If it is higher than 0.5 μm, the visibility is lowered.

粗化処理層の形態をまとめると、表1のようになる。
本発明で規定する銅箔の断面形状は表1の形状1に相当する。
Table 1 summarizes the form of the roughened layer.
The cross-sectional shape of the copper foil defined in the present invention corresponds to the shape 1 in Table 1.

これに対して、形状2〜5は、本発明の規定範囲外の形状を示す。
形状2のように粗化粒子高さが形状1と同じ範囲であっても、最表面がなだらかになると、拡散反射率及び彩度は本発明の規定を超える。加えて、表面凹凸によるアンカー効果が少ないので密着性が低下する。
形状3のように粗化粒子高さが形状1と同じ範囲でも粗化粒子が細くなると、拡散反射率が本発明の規定未満となる。視認性は良いが、粗化粒子が脱落しやすくなり(粗化粒子が根元で折れ易くなるため)密着性が低下する。
形状4のように粗化粒子高さが高いと、拡散反射率及び彩度が本発明の規定を超える。粗化粒子が大きいのでアンカー効果が大きく密着性は満足するが、銅箔エッチング後の樹脂の視認性は悪くなる。
形状5のように粗化粒子高さが小さいと拡散反射率が本発明の規定未満となる。凹凸が小さい分アンカー効果が小さいので、密着性が低下する。
On the other hand, shapes 2 to 5 indicate shapes outside the specified range of the present invention.
Even if the roughened particle height is in the same range as in shape 1 as in shape 2, if the outermost surface becomes gentle, the diffuse reflectance and saturation exceed the provisions of the present invention. In addition, since the anchor effect due to surface irregularities is small, the adhesion is reduced.
If the roughened particles become thin even if the height of the roughened particles is the same as that of the shape 1 as in the shape 3, the diffuse reflectance becomes less than that of the present invention. Although the visibility is good, the roughened particles easily fall off (because the roughened particles are easy to break at the root), and the adhesiveness is lowered.
When the coarse particle height is high as in the shape 4, the diffuse reflectance and saturation exceed the provisions of the present invention. Since the coarse particles are large, the anchor effect is large and the adhesion is satisfactory, but the visibility of the resin after etching the copper foil is deteriorated.
When the rough particle height is small as in the shape 5, the diffuse reflectance is less than that of the present invention. Since the anchor effect is small due to the small unevenness, the adhesion is lowered.

本発明のプリント配線板に用いる銅箔は、ポリイミド樹脂からなる絶縁層と接する側の銅箔表面上に、少なくともニッケル及び亜鉛を含んで構成され、かつ亜鉛の表面への付着量に対するニッケルの表面への付着量の比(Ni/Znの質量比)が0.5〜20の範囲内の拡散防止被覆を有する。付着量比が20より高いと銅箔をエッチングする際の障害となり、配線の短絡を生じる。付着量比が0.5より低いと、銅の拡散を防止する効果が低下し、耐熱ピール強度の低下を招く。   The copper foil used for the printed wiring board of the present invention comprises at least nickel and zinc on the copper foil surface on the side in contact with the insulating layer made of polyimide resin, and the surface of nickel with respect to the amount of zinc adhered to the surface An anti-diffusion coating having an adhesion ratio (Ni / Zn mass ratio) in the range of 0.5 to 20 is provided. When the adhesion amount ratio is higher than 20, it becomes an obstacle when the copper foil is etched, causing a short circuit of the wiring. When the adhesion amount ratio is lower than 0.5, the effect of preventing the diffusion of copper is lowered, and the heat-resistant peel strength is lowered.

ここで、前記拡散防止被覆は、銅箔の前記表面の全面に行ってもよく、あるいは、その一部に行ってもよい。前記銅箔表面の一部を拡散防止被覆する場合は、被覆率が50%以上であることが好ましい。ここで、被覆率とは銅箔の前記表面の全面積を100%とした場合の、被覆面積の割合をいう。   Here, the diffusion prevention coating may be performed on the entire surface of the copper foil, or may be performed on a part thereof. When a part of the copper foil surface is subjected to diffusion prevention coating, the coverage is preferably 50% or more. Here, the covering rate means the ratio of the covering area when the total area of the surface of the copper foil is 100%.

銅箔に積層するポリイミド樹脂としては、市販のポリイミドフィルムをそのまま使用することも可能である。絶縁層としてのポリイミド樹脂層の厚さや物性のコントロールのし易さの観点からは、ポリアミド酸溶液を銅箔上に直接塗布した後、熱処理により乾燥、硬化する所謂キャスト(塗布)法によって生成させたポリイミド樹脂が好ましい。ポリイミド樹脂は、単一層から形成されるものでもよい。ポリイミド樹脂と銅箔との接着性等を考慮すると、複数層からなるポリイミド樹脂層とすることが好ましい。ポリイミド樹脂層を複数層とする場合、あるポリアミド酸溶液の上に異なる構成成分からなるポリアミド酸溶液を順次塗布して形成することができる。   As the polyimide resin laminated on the copper foil, a commercially available polyimide film can be used as it is. From the viewpoint of easy control of the thickness and physical properties of the polyimide resin layer as the insulating layer, the polyamic acid solution is directly applied on the copper foil, and then dried and cured by heat treatment, so-called cast (coating) method. Polyimide resin is preferred. The polyimide resin may be formed from a single layer. In consideration of the adhesiveness between the polyimide resin and the copper foil, it is preferable to form a polyimide resin layer composed of a plurality of layers. In the case where a plurality of polyimide resin layers are used, it can be formed by sequentially applying a polyamic acid solution composed of different components on a certain polyamic acid solution.

上記ポリイミド樹脂の前駆体であるポリアミド酸溶液は、常法に従って、任意のジアミンと任意の酸二無水物とを溶媒の存在下で重合して製造することができる。この溶媒としては、常法に従って任意の溶媒を用いることができる。   The polyamic acid solution that is a precursor of the polyimide resin can be produced by polymerizing an arbitrary diamine and an arbitrary acid dianhydride in the presence of a solvent in accordance with a conventional method. As this solvent, any solvent can be used according to a conventional method.

ポリイミド樹脂の原料として用いられるジアミンとしては、例えば、4,6−ジメチル−m−フェニレンジアミン、2,5−ジメチル−p−フェニレンジアミン、2,4−ジアミノメシチレン、4,4’−メチレンジ−o−トルイジン、4,4’−メチレンジ−2,6−キシリジン、4,4’−メチレン−2,6−ジエチルアニリン、2,4−トルエンジアミン、m−フェニレンジアミン、p−フェニレンジアミン、4,4’−ジアミノジフェニルプロパン、3,3’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルエタン、3,3’−ジアミノジフェニルエタン、4,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルメタン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルエーテル、3,3−ジアミノジフェニルエーテル、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、ベンジジン、3,3’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノビフェニル、3,3’−ジメトキシベンジジン、4,4’−ジアミノ−p−テルフェニル、3,3’−ジアミノ−p−テルフェニル、ビス(p−アミノシクロヘキシル)メタン、ビス(p−β−アミノ−t−ブチルフェニル)エーテル、ビス(p−β−メチル−δ−アミノペンチル)ベンゼン、p−ビス(2−メチル−4−アミノペンチル)ベンゼン、p−ビス(1,1−ジメチル−5−アミノペンチル)ベンゼン、1,5−ジアミノナフタレン、2,6−ジアミノナフタレン、2,4−ビス(β−アミノ−t−ブチル)トルエン、2,4−ジアミノトルエン、m−キシレン−2,5−ジアミン、p−キシレン−2,5−ジアミン、m−キシリレンジアミン、p−キシリレンジアミン、2,6−ジアミノピリジン、2,5−ジアミノピリジン、2,5−ジアミノ−1,3,4−オキサジアゾール、ピペラジン、2,2’−ジメチル−4,4’−ジアミノビフェニル、3,7−ジアミノジベンゾフラン、1,5−ジアミノフルオレン、ジベンゾ−p−ジオキシン−2,7−ジアミン、4,4’−ジアミノベンジルなどが挙げられる。   Examples of the diamine used as a raw material for the polyimide resin include 4,6-dimethyl-m-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, 2,4-diaminomesitylene, and 4,4′-methylenedi-o. -Toluidine, 4,4'-methylenedi-2,6-xylidine, 4,4'-methylene-2,6-diethylaniline, 2,4-toluenediamine, m-phenylenediamine, p-phenylenediamine, 4,4 '-Diaminodiphenylpropane, 3,3'-diaminodiphenylpropane, 4,4'-diaminodiphenylethane, 3,3'-diaminodiphenylethane, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 2 , 2-bis [4- (4-aminophenoxy) phenyl] propane, 4,4′- Aminodiphenyl sulfide, 3,3′-diaminodiphenyl sulfide, 4,4′-diaminodiphenyl sulfone, 3,3′-diaminodiphenyl sulfone, 4,4′-diaminodiphenyl ether, 3,3-diaminodiphenyl ether, 1,3- Bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, benzidine, 3,3′-diaminobiphenyl, 3,3′- Dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethoxybenzidine, 4,4′-diamino-p-terphenyl, 3,3′-diamino-p-terphenyl, bis (p-aminocyclohexyl) methane Bis (p-β-amino-t-butylphenyl) ether, bis (p-β-methyl) -Δ-aminopentyl) benzene, p-bis (2-methyl-4-aminopentyl) benzene, p-bis (1,1-dimethyl-5-aminopentyl) benzene, 1,5-diaminonaphthalene, 2,6 -Diaminonaphthalene, 2,4-bis (β-amino-t-butyl) toluene, 2,4-diaminotoluene, m-xylene-2,5-diamine, p-xylene-2,5-diamine, m-xylyl Range amine, p-xylylene diamine, 2,6-diaminopyridine, 2,5-diaminopyridine, 2,5-diamino-1,3,4-oxadiazole, piperazine, 2,2′-dimethyl-4, 4'-diaminobiphenyl, 3,7-diaminodibenzofuran, 1,5-diaminofluorene, dibenzo-p-dioxin-2,7-diamine, 4,4'-diamy Benzyl, and the like.

また、ポリイミド樹脂の原料として用いられる酸二無水物としては、例えば、ピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’−ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、ナフタレン−1,2,5,6−テトラカルボン酸二無水物、ナフタレン−1,2,4,5−テトラカルボン酸二無水物、ナフタレン−1,4,5,8−テトラカルボン酸二無水物、ナフタレン−1,2,6,7−テトラカルボン酸二無水物、4,8−ジメチル−1,2,3,5,6,7−ヘキサヒドロナフタレン−1,2,5,6−テトラカルボン酸二無水物、4,8−ジメチル−1,2,3,5,6,7−ヘキサヒドロナフタレン−2,3,6,7−テトラカルボン酸二無水物、2,6−ジクロロナフタレン−1,4,5,8−テトラカルボン酸二無水物、2,7−ジクロロナフタレン−1,4,5,8−テトラカルボン酸二無水物、2,3,6,7−テトラクロロナフタレン−1,4,5,8−テトラカルボン酸二無水物、1,4,5,8−テトラクロロナフタレン−2,3,6,7−テトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、3,3’’,4,4’’−p−テルフェニルテトラカルボン酸二無水物、2,2’’,3,3’’−p−テルフェニルテトラカルボン酸二無水物、2,3,3’’,4’’−p−テルフェニルテトラカルボン酸二無水物、2,2−ビス(2,3−ジカルボキシフェニル)−プロパン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、ビス(2,3−ジカルボキシフェニル)エーテル二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、ビス(2,3−ジカルボキシフェニル)スルホン二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、ペリレン−2,3,8,9−テトラカルボン酸二無水物、ペリレン−3,4,9,10−テトラカルボン酸二無水物、ペリレン−4,5,10,11−テトラカルボン酸二無水物、ペリレン−5,6,11,12−テトラカルボン酸二無水物、フェナンスレン−1,2,7,8−テトラカルボン酸二無水物、フェナンスレン−1,2,6,7−テトラカルボン酸二無水物、フェナンスレン−1,2,9,10−テトラカルボン酸二無水物、シクロペンタン−1,2,3,4−テトラカルボン酸二無水物、ピラジン−2,3,5,6−テトラカルボン酸二無水物、ピロリジン−2,3,4,5−テトラカルボン酸二無水物、チオフェン−2,3,4,5−テトラカルボン酸二無水物、4,4’−オキシジフタル酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物などが挙げられる。   Examples of the acid dianhydride used as a raw material for the polyimide resin include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,2 ′, 3, 3′-benzophenone tetracarboxylic dianhydride, 2,3,3 ′, 4′-benzophenone tetracarboxylic dianhydride, naphthalene-1,2,5,6-tetracarboxylic dianhydride, naphthalene-1, 2,4,5-tetracarboxylic dianhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride, naphthalene-1,2,6,7-tetracarboxylic dianhydride, 4,8 -Dimethyl-1,2,3,5,6,7-hexahydronaphthalene-1,2,5,6-tetracarboxylic dianhydride, 4,8-dimethyl-1,2,3,5,6, 7-Hexahydronaphthalene-2 3,6,7-tetracarboxylic dianhydride, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,7-dichloronaphthalene-1,4,5,8- Tetracarboxylic dianhydride, 2,3,6,7-tetrachloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 1,4,5,8-tetrachloronaphthalene-2,3 6,7-tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 2,3 , 3 ′, 4′-biphenyltetracarboxylic dianhydride, 3,3 ″, 4,4 ″ -p-terphenyltetracarboxylic dianhydride, 2,2 ″, 3,3 ″- p-terphenyltetracarboxylic dianhydride, 2,3,3 ", 4" p-terphenyltetracarboxylic dianhydride, 2,2-bis (2,3-dicarboxyphenyl) -propane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, Bis (2,3-dicarboxyphenyl) ether dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, bis (2,3 -Dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis ( 3,4-dicarboxyphenyl) ethane dianhydride, perylene-2,3,8,9-tetracarboxylic dianhydride, perylene-3,4,9,10-tetracarboxylic dianhydride, perylene 4,5,10,11-tetracarboxylic dianhydride, perylene-5,6,11,12-tetracarboxylic dianhydride, phenanthrene-1,2,7,8-tetracarboxylic dianhydride Phenanthrene-1,2,6,7-tetracarboxylic dianhydride, phenanthrene-1,2,9,10-tetracarboxylic dianhydride, cyclopentane-1,2,3,4-tetracarboxylic dianhydride Anhydride, pyrazine-2,3,5,6-tetracarboxylic dianhydride, pyrrolidine-2,3,4,5-tetracarboxylic dianhydride, thiophene-2,3,4,5-tetracarboxylic acid And dianhydrides, 4,4′-oxydiphthalic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, and the like.

本発明のプリント配線板に用いるポリイミド樹脂からなる絶縁層は、銅害防止剤としてシュウ酸誘導体、サリチル酸誘導体、ヒドラジド誘導体、及びトリアゾール類から選ばれる少なくとも1種類以上を含むポリイミド樹脂で構成されることが好ましい。   The insulating layer made of the polyimide resin used for the printed wiring board of the present invention is composed of a polyimide resin containing at least one or more selected from oxalic acid derivatives, salicylic acid derivatives, hydrazide derivatives, and triazoles as copper damage inhibitors. Is preferred.

本発明に用いられる銅害防止剤は、2,2’−オキサミド−ビス[エチル−3−(3,5−ジ−t−ブチル−4−ヒドロオキシフェニル)プロピオネート]等のシュウ酸誘導体、3−(N−サリチロイル)アミノ−1,2,4−トリアゾール等のサリチル酸誘導体及びトリアゾール類、N,N’−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン等のヒドラジド誘導体、等を使用することができる。これらの銅害防止剤を単独で用いてもよく、または2種以上を混合して用いてもよい。また、あらかじめ複数の銅害防止剤等が混合されている市販の銅害防止剤としては、アデカスタブZS−27(商品名、(株)ADEKA製)などを使用することもできる。   Copper damage inhibitors used in the present invention are oxalic acid derivatives such as 2,2′-oxamido-bis [ethyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 3 -Salicylic acid derivatives such as (N-salicyloyl) amino-1,2,4-triazole and triazoles, N, N'-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] A hydrazide derivative such as hydrazine can be used. These copper damage inhibitors may be used alone or in combination of two or more. Moreover, Adeka Stub ZS-27 (trade name, manufactured by ADEKA Corporation) can be used as a commercially available copper damage inhibitor in which a plurality of copper damage inhibitors and the like are mixed in advance.

その中でも、3−(N−サリチロイル)アミノ−1,2,4−トリアゾール等のサリチル酸誘導体及びトリアゾール類を用いた場合に本発明の効果がより顕著となる。   Among these, the effects of the present invention become more prominent when salicylic acid derivatives such as 3- (N-salicyloyl) amino-1,2,4-triazole and triazoles are used.

銅害防止剤の添加量は、ベース樹脂であるポリイミド樹脂100質量部に対して、0.05〜5.0質量部が好ましい。銅害防止剤の添加量が少なすぎると所望の効果が得られず、また、多すぎると銅害防止剤が樹脂表面にブルームする問題やコスト上昇などの問題が生じるようになるからである。   The addition amount of the copper damage inhibitor is preferably 0.05 to 5.0 parts by mass with respect to 100 parts by mass of the polyimide resin as the base resin. This is because if the amount of the copper damage inhibitor added is too small, the desired effect cannot be obtained, and if it is too large, problems such as blooming of the copper damage inhibitor on the resin surface and an increase in cost will occur.

また、本発明では上記の銅害防止剤の他に、市販の高分子材料に使用される酸化防止剤を併用することもできる。銅害防止剤と酸化防止剤を併用することで高分子材料の酸化劣化をより効果的に抑制することができる。本発明で用いられる酸化防止剤とは、高分子材料の酸化劣化途中に生じた過酸化物を分解し、その後の自動酸化のサイクルを停止するような機能を持つものである。   Moreover, in this invention, the antioxidant used for a commercially available polymeric material other than said copper damage inhibitor can also be used together. Oxidative degradation of the polymer material can be more effectively suppressed by using a copper damage inhibitor and an antioxidant together. The antioxidant used in the present invention has a function of decomposing a peroxide generated during the oxidative degradation of the polymer material and stopping the subsequent auto-oxidation cycle.

具体的には、本発明に係るポリイミド樹脂と銅害防止剤からなる組成物には、必要に応じて、フェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤等の酸化防止剤を併用することができる。   Specifically, the composition comprising the polyimide resin and copper damage inhibitor according to the present invention includes an antioxidant such as a phenol-based antioxidant, a phosphorus-based antioxidant, and a sulfur-based antioxidant as necessary. Can be used in combination.

前記フェノール系酸化防止剤としては、例えば、イルガノックス1010(商品名:Irganox 1010、物質名:ペンタエリスリトールテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、BASFジャパン(株)製)、イルガノックス1076(商品名:Irganox 1076、物質名:オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、BASFジャパン(株)製)、イルガノックス1330(商品名:Irganox 1330、物質名:3,3’,3’’,5,5’,5’’−ヘキサ−t−ブチル−α,α’,α’’−(メシチレン−2,4,6−トリイル)トリ−p−クレゾール、BASFジャパン(株)製)、イルガノックス3114(商品名:Irganox 3114、物質名:1,3,5−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン、BASFジャパン(株)製)、イルガノックス3790(商品名:Irganox 3790、物質名:1,3,5−トリス((4−t−ブチル−3−ヒドロキシ−2,6−キシリル)メチル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン、BASFジャパン(株)製)、イルガノックス1035(商品名:Irganox1035、物質名:チオジエチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、BASFジャパン(株)製)、イルガノックス1135(商品名:Irganox1135、物質名:ベンゼンプロパン酸 3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシのC7−C9側鎖アルキルエステル、BASFジャパン(株)製)、イルガノックス1520L(商品名:Irganox1520L、物質名:4,6−ビス(オクチルチオメチル)−o−クレゾール、BASFジャパン(株)製)、イルガノックス3125(商品名:Irganox 3125、BASFジャパン(株)製)、イルガノックス565(商品名:Irganox565、物質名:2,4−ビス(n−オクチルチオ)−6−(4−ヒドロキシ3’,5’−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、BASFジャパン(株)製)、アデカスタブAO−80(商品名:ADK STAB AO−80、物質名:3,9−ビス(2−(3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ)−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ(5,5)ウンデカン、(株)ADEKA製)、スミライザーBHT(商品名:Sumilizer BHT、住友化学(株)製)、スミライザーGA−80(商品名:Sumilizer GA−80、住友化学(株)製)、スミライザーGS(商品名:Sumilizer GS、住友化学(株)製)、シアノックス1790(商品名:Cyanox 1790、(株)サイテック製)及びビタミンE(例えば、エーザイ(株)製)などが挙げられる。
上記フェノール系酸化防止剤の含有量は、ベース樹脂であるポリイミド樹脂100質量部に対して、好ましくは0.001〜10質量部、より好ましくは0.05〜5質量部である。
Examples of the phenolic antioxidant include Irganox 1010 (trade name: Irganox 1010, substance name: pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], BASF. Manufactured by Japan Co., Ltd.), Irganox 1076 (trade name: Irganox 1076, substance name: octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, manufactured by BASF Japan Co., Ltd.), Irganox 1330 (trade name: Irganox 1330, substance name: 3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-t-butyl-α, α ′, α ″-(mesitylene-2 , 4,6-triyl) tri-p-cresol, manufactured by BASF Japan Ltd., Irganox 3114 (trade name: Irg nox 3114, substance name: 1,3,5-tris (3,5-di-tert-butyl-4-hydroxybenzyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -Trion, manufactured by BASF Japan Ltd., Irganox 3790 (trade name: Irganox 3790, substance name: 1,3,5-tris ((4-t-butyl-3-hydroxy-2,6-xylyl) methyl) ) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, manufactured by BASF Japan Ltd.), Irganox 1035 (trade name: Irganox 1035, substance name: thiodiethylenebis [3 -(3,5-di-tert-butyl-4-hydroxyphenyl) propionate], manufactured by BASF Japan Ltd.), Irganox 1135 (trade name: Irganox) 1135, substance name: benzenepropanoic acid 3,5-bis (1,1-dimethylethyl) -4-hydroxy C7-C9 side chain alkyl ester, manufactured by BASF Japan Ltd., Irganox 1520L (trade name: Irganox 1520L) , Substance name: 4,6-bis (octylthiomethyl) -o-cresol, manufactured by BASF Japan Ltd.), Irganox 3125 (trade name: Irganox 3125, manufactured by BASF Japan Ltd.), Irganox 565 (product) Name: Irganox 565, substance name: 2,4-bis (n-octylthio) -6- (4-hydroxy 3 ′, 5′-di-t-butylanilino) -1,3,5-triazine, BASF Japan Ltd. Adeka Stub AO-80 (trade name: ADK STAB AO-80, substance name: 3,9-bis) 2- (3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy) -1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro (5,5) undecane , Manufactured by ADEKA Co., Ltd.), Sumilizer BHT (trade name: Sumilizer BHT, manufactured by Sumitomo Chemical Co., Ltd.), Sumilizer GA-80 (trade name: Sumilizer GA-80, manufactured by Sumitomo Chemical Co., Ltd.), Sumilizer GS (commercial product) Name: Sumilizer GS, manufactured by Sumitomo Chemical Co., Ltd.), Cyanox 1790 (trade name: Cyanox 1790, manufactured by Cytec Co., Ltd.), vitamin E (for example, manufactured by Eisai Co., Ltd.), and the like.
The content of the phenolic antioxidant is preferably 0.001 to 10 parts by mass, and more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the polyimide resin that is the base resin.

前記リン系酸化防止剤としては、例えば、イルガフォス168(商品名:Irgafos 168、物質名:トリス(2,4−ジ−t−ブチルフェニル)フォスファイト、BASFジャパン(株)製)、イルガフォス12(商品名:Irgafos 12、物質名:トリス[2−[[2,4,8,10−テトラ−t−ブチルジベンゾ[d、f][1,3,2]ジオキサフォスフィン−6−イル]オキシ]エチル]アミン、BASFジャパン(株)製)、イルガフォス38(商品名:Irgafos 38、物質名:ビス(2,4−ビス(1,1−ジメチルエチル)−6−メチルフェニル)エチルエステル亜りん酸、BASFジャパン(株)製)、アデカスタブ329K(商品名、(株)ADEKA製)、アデカスタブPEP36(商品名、(株)ADEKA製)、アデカスタブPEP−8(商品名、(株)ADEKA製)、Sandstab P−EPQ(商品名、クラリアント社製)、ウェストン618(商品名:Weston 618、GE社製)、ウェストン619G(商品名:Weston 619G、GE社製)、ウルトラノックス626(商品名:Ultranox 626、GE社製)及びスミライザーGP(商品名:Sumilizer GP、物質名:6−[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロポキシ]−2,4,8,10−テトラ−t−ブチルジベンズ[d,f][1.3.2]ジオキサホスフェピン)(住友化学(株)製)などが挙げられる。
上記リン系酸化防止剤の含有量は、ポリイミド樹脂100質量部に対して、好ましくは0.01〜10質量部、より好ましくは0.05〜5質量部である。
Examples of the phosphorus antioxidant include Irgaphos 168 (trade name: Irgafos 168, substance name: Tris (2,4-di-t-butylphenyl) phosphite, manufactured by BASF Japan Ltd.), Irgaphos 12 ( Product name: Irgafos 12, substance name: Tris [2-[[2,4,8,10-tetra-t-butyldibenzo [d, f] [1,3,2] dioxaphosphin-6-yl] Oxy] ethyl] amine, manufactured by BASF Japan Ltd.), Irgaphos 38 (trade name: Irgafos 38, substance name: bis (2,4-bis (1,1-dimethylethyl) -6-methylphenyl) ethyl ester Phosphoric acid, manufactured by BASF Japan Ltd.), ADK STAB 329K (trade name, manufactured by ADEKA Corp.), ADK STAB PEP36 (trade name, Corp.) DEKA), ADK STAB PEP-8 (trade name, manufactured by ADEKA Corporation), Sandstab P-EPQ (trade name, manufactured by Clariant), Weston 618 (trade name: Weston 618, manufactured by GE), Weston 619G (product) Name: Weston 619G, manufactured by GE), Ultranox 626 (trade name: Ultranox 626, manufactured by GE) and Sumilizer GP (trade name: Sumilizer GP, substance name: 6- [3- (3-t-butyl-4 -Hydroxy-5-methylphenyl) propoxy] -2,4,8,10-tetra-t-butyldibenz [d, f] [1.3.2] dioxaphosphine) (manufactured by Sumitomo Chemical Co., Ltd.) Etc.
The content of the phosphorus antioxidant is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the polyimide resin.

前記硫黄系酸化防止剤としては、2−メルカプトベンズイミダゾール、チオジプロピオン酸ジラウリル、チオジプロピオン酸ジミリスチル、チオジプロピオン酸ジステアリル等のジアルキルチオジプロピオネート類、及びペンタエリスリトールテトラ(β−ドデシルメルカプトプロピオネート)等のポリオールのβ−アルキルメルカプトプロピオン酸エステル類が挙げられる。
上記硫黄系酸化防止剤の含有量は、ポリイミド樹脂100質量部に対して、好ましくは0.01〜10質量部、より好ましくは0.05〜5質量部用いられる。
Examples of the sulfur-based antioxidants include 2-mercaptobenzimidazole, dilauryl thiodipropionate, dimyristyl thiodipropionate, distearyl thiodipropionate, and pentaerythritol tetra (β-dodecyl). And β-alkyl mercaptopropionic esters of polyols such as mercaptopropionate).
The content of the sulfur-based antioxidant is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the polyimide resin.

銅害防止剤をポリイミド樹脂中に含有させることによって、耐熱ピール強度をさらに向上させることができるので好ましい。   It is preferable to contain a copper damage inhibitor in the polyimide resin since the heat-resistant peel strength can be further improved.

以下本発明の一実施形態につき詳細に説明する。
使用する本発明の銅箔は、ポリイミド樹脂と積層させる面(積層前に、粗化処理を含む以下に述べる各種の処理を行う面)が、後述する処理前の時点で光沢度が10以上であることが好ましい。使用前の未処理銅箔の光沢度は、無光沢箔で0〜30程度、光沢箔で100〜500程度であり、光沢度が10未満の表面形状では、粗化処理後に十分な視認性を得ることが難しくなるためである。
所望の表面光沢を有する銅箔は、以下の条件で作製することが可能である。以下、電解銅箔を例に説明する
Hereinafter, one embodiment of the present invention will be described in detail.
The copper foil of the present invention to be used has a surface to be laminated with a polyimide resin (a surface on which various treatments described below including a roughening treatment are performed before the lamination) has a glossiness of 10 or more before the treatment described later. Preferably there is. The gloss of the untreated copper foil before use is about 0 to 30 for the matte foil, about 100 to 500 for the glossy foil, and the surface shape with a gloss of less than 10 has sufficient visibility after the roughening treatment. This is because it becomes difficult to obtain.
A copper foil having a desired surface gloss can be produced under the following conditions. Hereinafter, an electrolytic copper foil will be described as an example .

〔電解銅箔製造条件〕
3−メルカプト1−プロパンスルホン酸ナトリウム:0.5〜3.0ppm
ヒドロキシエチルセルロース:2〜20ppm
膠(分子量=3000):1〜10ppm
Cu:40〜150g/L
SO:60〜160g/L
液温:40℃〜60℃
電流密度:30〜90A/dm
[Electrolytic copper foil production conditions]
3-Mercapto-1-sodium propanesulfonate: 0.5-3.0 ppm
Hydroxyethyl cellulose: 2-20ppm
Glue (molecular weight = 3000): 1-10ppm
Cu: 40 to 150 g / L
H 2 SO 4: 60~160g / L
Liquid temperature: 40 ° C to 60 ° C
Current density: 30 to 90 A / dm 2

上記銅箔の少なくとも片面(電解銅箔の場合はM面(Matte面)またはS面(Shiny面)の少なくとも一方の面(好ましくはM面)、圧延銅箔の場合は圧延面の少なくとも一方の面)に粗化処理を行う。無粗化の状態の銅箔では、視認性と樹脂密着性を両立することは難しい。以下に述べる後処理で箔表面を適切な状態に調整することが重要となる。   At least one surface of the copper foil (in the case of electrolytic copper foil, at least one surface (preferably the M surface) or S surface (Shiny surface) of the M surface (Shiny surface), in the case of rolled copper foil, at least one of the rolled surfaces. Surface). With a copper foil in a non-roughened state, it is difficult to achieve both visibility and resin adhesion. It is important to adjust the foil surface to an appropriate state by post-processing described below.

粗化処理の代表例の一つに、電気めっきにより微細な粒状の純銅を銅箔表面に形成する純銅(Cu)系粗化めっきがある。純銅系粗化めっきには硫酸銅めっき液を用いる。粗化めっき液の硫酸濃度は50〜250g/Lが好ましく、特に70〜200g/Lが好ましい。硫酸濃度が低すぎると導電率が低く、粗化粒子の電着性が悪くなる。硫酸濃度が高すぎると設備の腐食が促進される。   One typical example of the roughening treatment is pure copper (Cu) -based roughening plating in which fine granular pure copper is formed on the surface of the copper foil by electroplating. A copper sulfate plating solution is used for pure copper-based rough plating. The sulfuric acid concentration of the roughening plating solution is preferably 50 to 250 g / L, particularly preferably 70 to 200 g / L. If the sulfuric acid concentration is too low, the electrical conductivity is low, and the electrodeposition properties of the roughened particles are deteriorated. If the sulfuric acid concentration is too high, corrosion of the equipment is promoted.

純銅系粗化めっき液の銅濃度は6〜100g/Lが好ましく、特に10〜50g/Lが好ましい。銅濃度が低すぎると粗化粒子の電着性が悪くなる。銅濃度が高すぎると粒子状にめっきするにはより大電流が必要になり、設備上も現実的でない。   The copper concentration of the pure copper-based roughening plating solution is preferably 6 to 100 g / L, and particularly preferably 10 to 50 g / L. When the copper concentration is too low, the electrodeposition property of the roughened particles is deteriorated. If the copper concentration is too high, a larger current is required for plating in the form of particles, which is not realistic in terms of equipment.

もう一つの粗化処理の代表例として、電気めっきにより微細な粒状のCu−Co−Ni合金を銅箔表面に形成する合金系粗化めっきがある。Cu−Co−Ni合金めっきは、電気めっきにより、付着量が5〜15mg/dmの銅−20〜90μg/dmのコバルト−100〜900μg/dmのニッケルであるような3元系合金層を形成するように実施することができる。Co付着量が低すぎると、耐熱試験後のピール強度が低下することがある。Co付着量が高すぎると、エッチング残渣が発生しやすくなるので好ましくない。Ni付着量が低すぎると、耐熱試験後のピール強度が低下することがある。他方、Ni付着量が高すぎると、エッチング残渣が発生しやすくなるので好ましくない。より好ましいCo付着量は30〜80μg/dmであり、より好ましいニッケル付着量は200〜400μg/dmである。As a representative example of another roughening treatment, there is alloy-based roughening plating in which a fine granular Cu—Co—Ni alloy is formed on a copper foil surface by electroplating. Cu-Co-Ni alloy plating, by electroplating, coating weight of ternary alloys such that 5 to 15 mg / dm 2 of copper -20~90μg / dm 2 of cobalt -100~900μg / dm 2 of nickel It can be implemented to form a layer. If the amount of Co adhesion is too low, the peel strength after the heat resistance test may be lowered. If the amount of Co adhesion is too high, etching residues are likely to occur, which is not preferable. If the Ni adhesion amount is too low, the peel strength after the heat resistance test may be lowered. On the other hand, if the Ni adhesion amount is too high, an etching residue tends to be generated, which is not preferable. A more preferable amount of Co adhesion is 30 to 80 μg / dm 2 , and a more preferable amount of nickel adhesion is 200 to 400 μg / dm 2 .

Cu−Co−Ni合金系粗化めっき液の銅濃度は2〜10g/L、コバルト濃度は20〜40g/L、ニッケル濃度は20〜40g/L、硫酸濃度は50〜250g/Lとすることが好ましい。銅、コバルト及びニッケル濃度が前述の範囲未満となると、粗化粒子の電着性が悪くなり、前述の範囲を超えると粒子状にめっきするにはより大電流が必要になり、設備上も現実的でない。   The copper concentration of the Cu—Co—Ni alloy-based roughening plating solution is 2 to 10 g / L, the cobalt concentration is 20 to 40 g / L, the nickel concentration is 20 to 40 g / L, and the sulfuric acid concentration is 50 to 250 g / L. Is preferred. When the copper, cobalt and nickel concentrations are below the above range, the electrodeposition of the roughened particles becomes poor. When the copper, cobalt and nickel concentrations exceed the above range, a larger current is required for plating in the form of particles, which is also an actual facility. Not right.

純銅系及びCu−Co−Ni合金系粗化めっきする電流密度は共に5〜120A/dmが好ましく、特に25〜100A/dmが好ましい。電流密度が低すぎると処理に時間を要するために生産的でない。電流密度が高すぎると粗化粒子の電着性が悪くなる。Current density pure copper and Cu-Co-Ni alloy-based roughening plating are both preferably 5~120A / dm 2, in particular 25~100A / dm 2 is preferred. If the current density is too low, it takes time for processing, which is not productive. When the current density is too high, the electrodeposition property of the roughened particles is deteriorated.

粗化処理後の粗化粒子の脱落を防止するため、粗化粒子層の表面に薄い銅の平滑めっき(被せめっき)を行ってもよい。この時の液組成は銅濃度が40〜200g/L、硫酸濃度が70〜200g/Lで、電流値を0.4〜20A/dm、液温を40〜60℃、処理時間を1〜10秒間とすることが好ましい。In order to prevent the roughened particles from falling off after the roughening treatment, thin copper smooth plating (cover plating) may be performed on the surface of the roughened particle layer. The liquid composition at this time is a copper concentration of 40 to 200 g / L, a sulfuric acid concentration of 70 to 200 g / L, a current value of 0.4 to 20 A / dm 2 , a liquid temperature of 40 to 60 ° C., and a treatment time of 1 to 1. Preferably it is 10 seconds.

本発明で用いる粗化条件では、「粗化めっき」部分において、形成される粗化粒子の高さが優先的に変化する傾向にある。一方、「被せめっき」部分において、粗化粒子の幅が優先的に変化する傾向にある。また、被せめっきは粗化粒子間の谷を埋める働きもあるので、被せめっきをかけすぎると粗化粒子高さが減少しすぎる場合もある。この二種類のめっきを適宜制御することで、用途に応じた粗化粒子の形状が制御可能である。例えば粗化めっき電気量が小さく被せめっき電気量が大きい条件であれば、粗化粒子は裾が大きいなだらかな形状となる(例えば、前記表1に示した形状2)。逆に粗化めっき電気量が大きく被せめっき電気量が小さい条件であれば、粗化粒子が細長い形状となる(例えば、前記表1に示した形状3)。また粗化めっき液の銅濃度に関しては、濃度が濃いと粗化粒子形状がなだらかになり(例えば、前記表1に示した形状2)、薄いと細長い粗化粒子が高密度に形成される(例えば、前記表1に示した形状3)傾向にある。   In the roughening conditions used in the present invention, the height of the formed roughened particles tends to change preferentially in the “roughening plating” part. On the other hand, the width of the roughened particles tends to change preferentially in the “cover plating” portion. Moreover, since covering plating also has a function of filling the valleys between the roughening particles, if the covering plating is applied too much, the height of the roughening particles may be reduced too much. By appropriately controlling these two types of plating, it is possible to control the shape of the roughened particles according to the application. For example, if the amount of electric power for roughing plating is small and the amount of electric power for plating is large, the roughening particles have a gentle shape with a large skirt (for example, shape 2 shown in Table 1 above). On the other hand, if the amount of electric power for rough plating is large and the amount of electric power for plating is small, the rough particles have an elongated shape (for example, shape 3 shown in Table 1 above). Further, regarding the copper concentration of the roughening plating solution, when the concentration is high, the roughened particle shape becomes gentle (for example, the shape 2 shown in Table 1 above), and when it is thin, elongated roughened particles are formed with high density ( For example, the shape shown in Table 1 tends to be 3).

また、粗化めっき以外の手法により粗化処理を行ってもよい。例としては、エッチング処理によるもの、酸化剤または雰囲気調整により箔表面を酸化させ表面を荒らすもの、酸化させた表面を再還元することで表面を荒らすもの、及びこれらを組み合わせた処理によるものなどが挙げられる。   Moreover, you may perform a roughening process by methods other than roughening plating. Examples include those by etching treatment, those that oxidize and roughen the foil surface by oxidizing agent or atmosphere adjustment, those that roughen the surface by re-reducing the oxidized surface, and those that combine these. Can be mentioned.

次に、電解銅箔の少なくとも粗化処理した方の片面にPRパルス電解による処理を行う。PRパルス電解を施すことで粗化粒子の溶解、析出が繰り返され、粗化粒子の小型化、粗化粒子数の増大、粗化粒子表面の平滑化などが行われ、視認性を向上する粗化粒子形状となる。   Next, treatment by PR pulse electrolysis is performed on at least one surface of the electrolytic copper foil subjected to the roughening treatment. By applying PR pulse electrolysis, the dissolution and precipitation of the roughened particles are repeated, the roughened particles are reduced in size, the number of roughened particles is increased, and the surface of the roughened particles is smoothed to improve the visibility. It becomes a particle shape.

PRパルス電解処理に用いる電解液は、前述の純銅系粗化めっき液及びCu−Co−Ni合金系粗化めっき液を用いることが好ましい。また純銅系粗化処理を行ったものはPRパルス電解処理も純銅系粗化めっき液を用い、Cu−Co−Ni合金系粗化処理を行ったものはPRパルス電解処理もCu−Co−Ni合金系粗化めっき液を用いることで、使用する液の種類が少なくなり、めっき液の管理が容易になるメリットがある。
PRパルス電解の順電解時間および逆電解時間は50〜500ミリ秒の範囲が好ましい。この時間が短すぎると、PRパルス電解の効果が現れにくく、長すぎると粗化粒子がより粗大化する恐れがある。
PRパルス電解の順電流密度は0.5〜10A/dmが好ましい。この順電流密度が小さすぎるとパルス1回あたりの析出量が小さく、表面形状への効果が得られにくい。大きすぎると電着性が悪くなる。
逆電流密度は1〜20A/dmが好ましい。またこの範囲内であっても順電流密度に対して大きく下回る、または上回るような条件は好ましくない。PRパルス電解の条件は、それぞれの項目が密接に影響しあうために総合的に判断して条件を決定する。
As the electrolytic solution used for the PR pulse electrolytic treatment, it is preferable to use the above-described pure copper-based roughening plating solution and Cu-Co-Ni alloy-based roughening plating solution. In addition, a pure copper-based roughening treatment was performed using a pure copper-based roughening plating solution for a PR pulse electrolytic treatment, and a PR-pulse electrolytic treatment was also performed using a Cu-Co-Ni for a Cu-Co-Ni alloy roughening treatment. By using the alloy-based rough plating solution, there are advantages that the types of solutions to be used are reduced and the management of the plating solution is facilitated.
The forward electrolysis time and reverse electrolysis time of PR pulse electrolysis are preferably in the range of 50 to 500 milliseconds. If this time is too short, the effect of PR pulse electrolysis is hardly exhibited, and if it is too long, coarse particles may be coarsened.
Forward current density of the PR pulse electrolysis is preferably 0.5~10A / dm 2. If the forward current density is too small, the amount of precipitation per pulse is small, and it is difficult to obtain an effect on the surface shape. If it is too large, the electrodeposition property becomes worse.
Reverse current density is preferably 1 to 20A / dm 2. Further, even within this range, conditions that are greatly below or above the forward current density are not preferable. The conditions of the PR pulse electrolysis are determined by comprehensive judgment because each item has a close influence.

更に必要に応じて、後処理としてアルカリ浸漬処理を行う。この処理は、製箔用添加剤等の表面汚染物の残渣の除去や粗化粒子表面の平滑化を目的として行う。アルカリ溶液としてはNaOH水溶液を使用する。NaOH濃度は10〜60g/Lの範囲が好ましい。溶液温度は20〜50℃、浸漬時間は5〜50秒が好ましい。   Further, if necessary, an alkali immersion treatment is performed as a post treatment. This treatment is performed for the purpose of removing the residue of surface contaminants such as the additive for foil making and smoothing the surface of the roughened particles. An NaOH aqueous solution is used as the alkaline solution. The NaOH concentration is preferably in the range of 10 to 60 g / L. The solution temperature is preferably 20 to 50 ° C., and the immersion time is preferably 5 to 50 seconds.

粗化処理をした後に、粗化粒子を覆うニッケル及び亜鉛の拡散防止被覆を行う。本発明では下記条件でニッケル→亜鉛連続電気めっきまたはニッケル/亜鉛合金電気めっき法を用いることが好ましい
After the roughening treatment, a nickel and zinc diffusion-preventing coating covering the roughened particles is performed. In the present invention, it is preferable to use nickel-> zinc continuous electroplating or nickel / zinc alloy electroplating under the following conditions .

〔ニッケル→亜鉛連続電気めっき〕
・ニッケルめっき浴
NiSO・6HO:45g/L〜450g/L
BO:10g/L〜50g/L
pH:3.0〜4.5
浴温:30℃〜60℃
電流密度:0.1A/dm〜2.0A/dm
めっき時間:2秒〜30秒
・亜鉛めっき浴
ZnSO・7HO:3g/L〜100g/L
NaOH:20g/L〜80g/L
浴温:20℃〜40℃
電流密度:0.1A/dm〜2.0A/dm
めっき時間:2秒〜30秒
[Nickel → zinc continuous electroplating]
Nickel plating bath NiSO 4 · 6H 2 O: 45 g / L to 450 g / L
H 3 BO 3 : 10 g / L to 50 g / L
pH: 3.0-4.5
Bath temperature: 30 ° C-60 ° C
Current density: 0.1 A / dm 2 to 2.0 A / dm 2
Plating time: 2 seconds to 30 seconds, zinc plating bath ZnSO 4 .7H 2 O: 3 g / L to 100 g / L
NaOH: 20 g / L to 80 g / L
Bath temperature: 20-40 ° C
Current density: 0.1 A / dm 2 to 2.0 A / dm 2
Plating time: 2 to 30 seconds

〔ニッケル/亜鉛合金電気めっき〕
NiSO・6HO:45g/L〜450g/L
ZnSO・7HO:3g/L〜100g/L
(NHSO:3g/L〜30g/L
pH:4.0〜6.0
浴温:30℃〜50℃
電流密度:0.1A/dm〜2.0A/dm
めっき時間6秒〜60秒
[Nickel / Zinc Alloy Electroplating]
NiSO 4 · 6H 2 O: 45g / L~450g / L
ZnSO 4 · 7H 2 O: 3 g / L to 100 g / L
(NH 4 ) 2 SO 4 : 3 g / L to 30 g / L
pH: 4.0-6.0
Bath temperature: 30-50 ° C
Current density: 0.1 A / dm 2 to 2.0 A / dm 2
Plating time 6 to 60 seconds

上記電解銅箔の少なくとも片方の面(好ましくは、前記粗化処理と拡散防止被覆を行った側の銅箔表面)には、更に表面処理を施してもよい。具体的には密着性、耐薬品性、防錆を目的とした表面処理が挙げられる。表面処理の内、金属表面処理に用いる処理剤としてはCr、Si、Co、Moの単体または水和物が挙げられる。合金表面処理としては、Si、Co、Moの少なくとも1種類の金属または1種類以上の金属を含有する合金を付着させた後、Crを付着させる。   At least one surface of the electrolytic copper foil (preferably, the copper foil surface on the side subjected to the roughening treatment and the diffusion prevention coating) may be further subjected to a surface treatment. Specifically, surface treatment for the purpose of adhesion, chemical resistance and rust prevention can be mentioned. Among the surface treatments, examples of the treatment agent used for the metal surface treatment include Cr, Si, Co, and Mo alone or hydrates. As the alloy surface treatment, Cr is deposited after depositing at least one metal of Si, Co, and Mo or an alloy containing one or more metals.

上記金属表面処理または合金表面処理を施す(当該金属または合金を付着させる)めっき液とめっき条件の一例を下記に示す。   An example of the plating solution and plating conditions for performing the metal surface treatment or alloy surface treatment (attaching the metal or alloy) are shown below.

〔Mo−Coめっき〕
NaMoO・2HO 1〜30g/L
CoSO・7HO 1〜50g/L
クエン酸3ナトリウム2水和物 30〜200g/L
電流密度 1〜50A/dm
浴温 10〜70℃
処理時間 1秒〜2分
pH 1.0〜4.0
[Mo-Co plating]
Na 2 MoO 4 · 2H 2 O 1-30 g / L
CoSO 4 · 7H 2 O 1-50 g / L
Trisodium citrate dihydrate 30-200 g / L
Current density 1-50A / dm 2
Bath temperature 10-70 ° C
Treatment time 1 second to 2 minutes pH 1.0 to 4.0

〔Crめっき〕
CrO 0.5〜40g/L
浴温 20〜70℃
処理時間 1秒〜2分
電流密度 0.1〜10A/dm
pH 1.0〜4.0
[Cr plating]
CrO 3 0.5-40 g / L
Bath temperature 20-70 ° C
Processing time 1 second to 2 minutes Current density 0.1 to 10 A / dm 2
pH 1.0-4.0

前記拡散防止被覆に含有される及び前記表面処理によって粗化処理後の銅箔表面上に付着されるNiやMo等は、エッチング性を悪くする金属である。従って、これらの金属については表面への付着量を1mg/dm以下とすることが好ましい。また、Znについては表面への付着量が多すぎるとエッチング時に溶けてピール強度の劣化の原因になることがあるため0.2mg/dm以下であることが好ましい。また、いずれもこの程度の付着量であれば、上記表面処理後の電解銅箔粗化面の形状及び表面の色(外観)を大きく損なうことはない。Ni, Mo, and the like that are contained in the anti-diffusion coating and adhered to the surface of the copper foil after the roughening treatment by the surface treatment are metals that deteriorate the etching property. Therefore, it is preferable that the adhesion amount to the surface of these metals is 1 mg / dm 2 or less. In addition, Zn is preferably 0.2 mg / dm 2 or less because Zn may melt at the time of etching and cause deterioration in peel strength if the amount of adhesion to the surface is too large. Moreover, if both are such adhesion amounts, the shape and surface color (appearance) of the roughened surface of the electrolytic copper foil after the surface treatment will not be greatly impaired.

ピール強度向上のために、これら金属表面処理が施された表面上を、シランカップリング剤で処理(シランカップリング処理)することが好ましい。シランカップリング剤としては一般的に使用されているアミノ系、ビニル系、イソシアネート系、エポキシ系が挙げられるが、本発明においてはその種類は特に限定されない。   In order to improve the peel strength, it is preferable to treat the surface subjected to the metal surface treatment with a silane coupling agent (silane coupling treatment). Examples of the silane coupling agent include commonly used amino, vinyl, isocyanate, and epoxy types, but the type is not particularly limited in the present invention.

本発明の銅張積層板においては、銅箔とポリイミド樹脂層の積層には、接着剤の使用や熱圧着が不要である。銅箔の一表面上に粗化粒子層を設けて、この上にさらに前記特定のNi/Zn比を有する拡散防止被覆を行い、さらにその表面を金属表面処理または合金表面処理、クロメート処理及びシランカップリング処理、必要に応じて後処理としてアルカリ浸漬処理することで、銅箔のポリイミド樹脂層との密着性を担保することができる。   In the copper clad laminate of the present invention, the use of an adhesive or thermocompression bonding is not necessary for laminating the copper foil and the polyimide resin layer. A roughened particle layer is provided on one surface of the copper foil, and a diffusion preventing coating having the specific Ni / Zn ratio is further formed thereon, and the surface is further subjected to metal surface treatment or alloy surface treatment, chromate treatment and silane. Adhesion with the polyimide resin layer of the copper foil can be ensured by performing an alkali immersion treatment as a coupling treatment and, if necessary, a post-treatment.

本発明の銅箔として圧延銅箔の場合には、タフピッチ銅箔、銅銀合金箔(Cu−Ag0.02〜0.03質量%)など任意のものを用いることができる。圧延銅箔に対しても、前述の電解銅箔の場合と同様に、各種の処理を施してから、ポリイミド樹脂と積層する。   In the case of a rolled copper foil as the copper foil of the present invention, any one such as a tough pitch copper foil, a copper silver alloy foil (Cu-Ag 0.02-0.03% by mass) can be used. Similarly to the case of the above-described electrolytic copper foil, the rolled copper foil is subjected to various treatments and then laminated with a polyimide resin.

以下に本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらに限定されるものではない。   The present invention will be described below in more detail based on examples, but the present invention is not limited thereto.

実施例1〜13、比較例1〜12
<銅箔の調製>
M面(Matte面)の光沢度が230、S面(Shiny面)の光沢度が100である下記の電解銅箔製造条件で製造した電解銅箔(厚さ12μm)を準備した(以下、この銅箔の種類を「電解」と略記する。)。これとは別に圧延銅箔(タフピッチ銅、アズロール箔(as rolled foil))(厚さ12μm)も準備した(以下、この銅箔の種類を「圧延」と略記する。)。
Examples 1 to 13 and Comparative Examples 1 to 12
<Preparation of copper foil>
An electrolytic copper foil (thickness 12 μm) manufactured under the following electrolytic copper foil manufacturing conditions in which the glossiness of the M surface (Matté surface) is 230 and the glossiness of the S surface (Shiny surface) is 100 was prepared (hereinafter referred to as this). The type of copper foil is abbreviated as “electrolysis”.) Separately, a rolled copper foil (tough pitch copper, as roll foil) (thickness 12 μm) was also prepared (hereinafter, the type of the copper foil is abbreviated as “rolled”).

〔電解銅箔製造条件〕
3−メルカプト1−プロパンスルホン酸ナトリウム:0.5〜3.0ppm
ヒドロキシエチルセルロース:2〜20ppm
膠(分子量=3000):1〜10ppm
Cu:40〜150g/L
SO:60〜160g/L
浴温:40℃〜60℃
電流密度:30〜90A/dm
[Electrolytic copper foil production conditions]
3-Mercapto-1-sodium propanesulfonate: 0.5-3.0 ppm
Hydroxyethyl cellulose: 2-20ppm
Glue (molecular weight = 3000): 1-10ppm
Cu: 40 to 150 g / L
H 2 SO 4: 60~160g / L
Bath temperature: 40 ° C-60 ° C
Current density: 30 to 90 A / dm 2

これらの各銅箔を常法に従って脱脂、酸洗した後、下記に記載の条件で銅箔の片面に(電解銅箔ではマット面側に)純銅系又は合金系粗化処理を行い、次いで被せめっき処理を行った。純銅系及び合金系粗化めっき液の温度はともに25℃とした。   Each of these copper foils is degreased and pickled according to a conventional method, and then subjected to a pure copper-based or alloy-based roughening treatment on one side of the copper foil (on the matte side in the case of electrolytic copper foil) under the conditions described below, and then covered. Plating treatment was performed. The temperatures of the pure copper-based and alloy-based roughening plating solutions were both 25 ° C.

被せめっき液の銅濃度は70g/L、硫酸濃度は110g/L、液温は50℃とした。
その他の詳細な条件は表2に示す。「粗化めっき処理」と「被せめっき処理」の条件を、表2に示したように適宜制御することで、粗化粒子の形状を制御した。
The copper concentration of the plating solution was 70 g / L, the sulfuric acid concentration was 110 g / L, and the solution temperature was 50 ° C.
Other detailed conditions are shown in Table 2. By appropriately controlling the conditions of “roughening plating process” and “covering plating process” as shown in Table 2, the shape of the roughened particles was controlled.

一部の被せめっき後の試料の粗化処理面側に、粗化めっき液と同じ組成のめっき液を用いPRパルス電解処理を行った。パルス順電解(350ミリ秒)、パルス逆電解(100ミリ秒)、パルス電解停止(200ミリ秒)の順に、所定の時間この処理を繰り返し行った。その他の詳細な条件は表2に示す。   PR pulse electrolytic treatment was performed on the roughened surface side of some of the samples after the overplating using a plating solution having the same composition as the roughened plating solution. This treatment was repeated for a predetermined time in the order of pulse forward electrolysis (350 milliseconds), pulse reverse electrolysis (100 milliseconds), and pulse electrolysis stop (200 milliseconds). Other detailed conditions are shown in Table 2.

前記粗化めっきと被せめっき及びPRパルス電解処理を施した各銅箔にアルカリ浸漬処理を実施した。処理液はNaOHを40g/Lとし、液温を50℃とし、処理時間は32秒間とした。   Alkaline dipping treatment was performed on each of the copper foils subjected to the roughening plating, covering plating, and PR pulse electrolytic treatment. The treatment liquid was NaOH at 40 g / L, the liquid temperature was 50 ° C., and the treatment time was 32 seconds.

アルカリ浸漬処理後の銅箔の粗化処理面上に、拡散防止被覆(下記のニッケル→亜鉛連続電気めっき)、表面防錆処理(下記のCrめっき処理)及びシランカップリング処理をこの順で行った。シランカップリング剤にはアミノ系(信越化学製、商品名:KBM−903)を用い、濃度0.2質量%の水溶液に調製し、銅箔に塗布及び乾燥(120℃)を行ってシランカップリング処理を施した。   On the roughened surface of the copper foil after alkali immersion treatment, anti-diffusion coating (the following nickel → zinc continuous electroplating), surface rust prevention treatment (the following Cr plating treatment) and silane coupling treatment are performed in this order. It was. An amino system (trade name: KBM-903, manufactured by Shin-Etsu Chemical Co., Ltd.) is used as a silane coupling agent, and an aqueous solution having a concentration of 0.2% by mass is prepared, and applied to a copper foil and dried (120 ° C.) to obtain a silane cup. Ring treatment was applied.

〔ニッケル→亜鉛連続電気めっき〕
・ニッケルめっき浴
NiSO・6HO:45g/L〜450g/L
BO:10g/L〜50g/L
pH:3.0〜4.5
浴温:30℃〜60℃
電流密度:0.1A/dm〜2.0A/dm
めっき時間:2秒〜30秒
・亜鉛めっき浴
ZnSO・7HO:3g/L〜100g/L
NaOH:20g/L〜80g/L
浴温:20℃〜40℃
電流密度:0.1A/dm〜2.0A/dm
めっき時間:2秒〜30秒
[Nickel → zinc continuous electroplating]
Nickel plating bath NiSO 4 · 6H 2 O: 45 g / L to 450 g / L
H 3 BO 3 : 10 g / L to 50 g / L
pH: 3.0-4.5
Bath temperature: 30 ° C-60 ° C
Current density: 0.1 A / dm 2 to 2.0 A / dm 2
Plating time: 2 seconds to 30 seconds, zinc plating bath ZnSO 4 .7H 2 O: 3 g / L to 100 g / L
NaOH: 20 g / L to 80 g / L
Bath temperature: 20-40 ° C
Current density: 0.1 A / dm 2 to 2.0 A / dm 2
Plating time: 2 to 30 seconds

〔Crめっき〕(クロメート処理)
CrO 0.5〜40g/L
浴温 20〜70℃
処理時間 1秒〜2分
電流密度 0.1〜10A/dm
pH 1.0〜4.0
[Cr plating] (chromate treatment)
CrO 3 0.5-40 g / L
Bath temperature 20-70 ° C
Processing time 1 second to 2 minutes Current density 0.1 to 10 A / dm 2
pH 1.0-4.0

<ポリイミド樹脂の調製>
〔ポリアミド酸の合成〕
熱電対及び攪拌機を備えると共に窒素導入が可能な反応容器に、N,N−ジメチルアセトアミドを入れ、さらに、この反応容器に2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)を投入して容器中で撹拌しながら溶解させた。次に、ピロメリット酸二無水物(PMDA)を、前記ジアミン(BAPP)と酸二無水物(PMDA)とが約1:1のモル比、かつ、これらの合計量であるモノマーの投入総量が12質量%となるように投入した。
<Preparation of polyimide resin>
(Synthesis of polyamic acid)
A reaction vessel equipped with a thermocouple and a stirrer and capable of introducing nitrogen is charged with N, N-dimethylacetamide, and further, 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) is added to the reaction vessel. ) And dissolved in the container with stirring. Next, pyromellitic dianhydride (PMDA) is added to a monomer having a molar ratio of about 1: 1 of the diamine (BAPP) and acid dianhydride (PMDA), and the total amount of these monomers. It charged so that it might become 12 mass%.

前記調製したポリアミド酸100質量部に対して、下記の銅害防止剤の1種を0.2質量部加えたポリアミド酸も同様に作製した。   A polyamic acid obtained by adding 0.2 parts by mass of one of the following copper damage inhibitors to 100 parts by mass of the prepared polyamic acid was similarly prepared.

銅害防止剤1:サリチル酸誘導体・トリアゾール類(商品名:アデカスタブCDA−1、(株)ADEKA製)
物質名:3−(N−サリチロイル)アミノ−1,2,4−トリアゾール
Copper damage inhibitor 1: Salicylic acid derivative / triazoles (trade name: ADK STAB CDA-1, manufactured by ADEKA Corporation)
Substance name: 3- (N-salicyloyl) amino-1,2,4-triazole

銅害防止剤2:シュウ酸誘導体(商品名:Naugard XL−1、Addivant製)
物質名:2,2’−オキサミド−ビス[エチル−3−(3,5−ジ−t−ブチル−4−ヒドロオキシフェニル)プロピオネート]
Copper damage prevention agent 2: Oxalic acid derivative (trade name: Naugard XL-1, manufactured by Advantant)
Substance name: 2,2′-oxamido-bis [ethyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate]

銅害防止剤3:ヒドラジド誘導体(商品名:イルガノックスMD1024、BASFジャパン(株)製)
物質名:N,N’−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン
Copper damage inhibitor 3: hydrazide derivative (trade name: Irganox MD1024, manufactured by BASF Japan Ltd.)
Substance name: N, N′-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] hydrazine

各銅箔の前記シランカップリング処理まで施した表面上に、前記銅害防止剤を含有したもしくは銅害防止剤を含まないポリアミド酸溶液を、硬化後に生成されるポリイミド樹脂の厚みが2.5μmとなるように均一に塗布した後、130℃で加熱乾燥し溶媒を除去した。次に、この塗布面側に銅害防止剤を含まないポリアミド酸溶液を硬化後に生成されるポリイミド樹脂の厚みが20.0μmとなるように均一に塗布し、120℃で加熱乾燥し溶媒を除去した。更に、この塗布面側に第1層目で塗布したものと同じ(前記銅害防止剤を含有したもしくは銅害防止剤を含まない)ポリアミド酸溶液を硬化後に生成されるポリイミド樹脂の厚みが2.5μmとなるように均一に塗布し、130℃で加熱乾燥し溶媒を除去した。この長尺状の各銅箔を130℃から開始して300℃まで段階的に温度が上がるように設定した連続硬化炉にて、合計6分程度の時間をかけて熱処理し、各ポリアミド酸のイミド化を行って、生成した全3層からなるポリイミド樹脂層の合計厚みが25μmの銅張積層板を得た。   On the surface of each copper foil that has been subjected to the silane coupling treatment, the thickness of the polyimide resin produced after curing the polyamic acid solution containing the copper damage inhibitor or not containing the copper damage inhibitor is 2.5 μm. After uniform application, the solvent was removed by heating at 130 ° C. Next, a polyamic acid solution containing no copper damage inhibitor is applied uniformly to the coated surface so that the thickness of the polyimide resin produced after curing is 20.0 μm, and the solvent is removed by heating at 120 ° C. did. Furthermore, the thickness of the polyimide resin produced after curing the same polyamic acid solution (containing the copper damage inhibitor or not containing the copper damage inhibitor) as that applied to the first layer on the coated surface side is 2 The film was uniformly applied to a thickness of 5 μm and dried by heating at 130 ° C. to remove the solvent. Each long copper foil was heat-treated in a continuous curing furnace set so that the temperature gradually increased from 300 ° C. to 300 ° C. over a period of about 6 minutes. Imidization was performed to obtain a copper-clad laminate having a total thickness of 25 μm of the formed polyimide resin layer consisting of all three layers.

作製した各実施例、各比較例の銅箔について、各特性を表3に示す。   Each characteristic is shown in Table 3 about the copper foil of each produced Example and each comparative example.

各実施例、各比較例において、各特性の測定は、以下の方法で行った。   In each Example and each Comparative Example, each characteristic was measured by the following method.

(1)拡散反射率の測定
測定には、日本分光製 紫外可視分光光度計V−660(商品名、積分球ユニット)を使用した。ポリイミド樹脂に張り付ける前の銅箔の粗化処理面に対して垂直に測定光を入射し拡散反射率(Rd)を測定した。いずれも波長600nmのときの値を評価に使用した。
(1) Measurement of diffuse reflectance For measurement, UV-visible spectrophotometer V-660 (trade name, integrating sphere unit) manufactured by JASCO Corporation was used. Measuring light was incident perpendicularly to the roughened surface of the copper foil before being bonded to the polyimide resin, and the diffuse reflectance (Rd) was measured. In all cases, the value at a wavelength of 600 nm was used for evaluation.

(2)表面色(彩度(C))の測定
測定には、日本分光製 紫外可視分光光度計V−660(商品名、積分球ユニット)を使用した。波長870〜200nmの間でポリイミド樹脂に張り付ける前の銅箔の粗化処理面の全光線分光反射率を測定した。そのスペクトルから、測定機付属ソフトウェアによりL、a、bを算出した。Cは前記式1によりaとbから算出した。
(2) Measurement of surface color (saturation (C * )) An ultraviolet-visible spectrophotometer V-660 (trade name, integrating sphere unit) manufactured by JASCO was used for measurement. The total light spectral reflectance of the roughened surface of the copper foil before being attached to the polyimide resin at a wavelength of 870 to 200 nm was measured. From the spectrum, L * , a * , and b * were calculated by the software attached to the measuring instrument. C * was calculated from a * and b * according to Equation 1 above.

(3)粗化粒子高さの測定
作製した各銅張積層版を樹脂埋めし、断面出しを行った後にFE−SEM(電界放射型走査電子顕微鏡)(日立ハイテク製、商品名:SU8020)を用い50000倍で観察した。5μm角の視野中から無作為に選択した十個の粗化粒子の高さを測定し、その算術平均値を粗化粒子高さとした。粗化粒子高さの測定法の詳細を図1に示す。すなわち、
[1] 断面出しの際に切断された粗化粒子(図示したSEM写真中で最も手前側に見えている粗化粒子)の付け根二点と、粗化粒子の高さが最も高い点を結んだ三角形を描く。50000倍の観察では5μmの視野角を観察しきれず、条件によっては10個の粗化粒子を観察することができない場合があるので、その場合には、撮影箇所の異なる断面SEM画像を2〜3枚用いて算術平均高さを求める。
[2] [1]で描いた三角形について、粗化粒子の高さが最も高い点を頂点、粗化粒子の付け根を結んだ線を底辺とした場合の三角形の高さを測り、これを粗化粒子高さとする。その算術平均高さを求めて、粗化粒子高さとする。
(3) Measurement of roughened particle height Each of the produced copper-clad laminates was filled with a resin, and after the cross-section was taken out, FE-SEM (field emission scanning electron microscope) (trade name: SU8020, manufactured by Hitachi High-Technology) was used. Observed at 50000 times. The height of ten coarse particles randomly selected from a 5 μm square field of view was measured, and the arithmetic average value was defined as the coarse particle height. The details of the method for measuring the coarse particle height are shown in FIG. That is,
[1] The two roots of the roughened particles (the roughened particles that are visible on the front side in the SEM photograph shown in the figure) cut at the time of sectioning are connected to the point where the height of the roughened particles is the highest. Draw a triangle. In the observation at 50000 times, a viewing angle of 5 μm cannot be observed, and depending on conditions, 10 roughened particles may not be observed. In this case, two to three cross-sectional SEM images at different photographing locations are obtained. The arithmetic average height is obtained by using a sheet.
[2] For the triangle drawn in [1], measure the height of the triangle when the point where the height of the roughened particle is the highest is the apex and the line connecting the roots of the roughened particle is the base, and this is the rough The height of the particle size. The arithmetic average height is obtained and used as the coarse particle height.

(4)元素付着量比の測定
ICP発光分析装置(島津製作所製、商品名:ICPS−7000)を用い、ポリイミド樹脂に貼り付ける前の銅箔の粗化処理面のニッケル及び亜鉛付着量を、JIS K 0553−2002の規格に準じた手法で測定した。合金系粗化処理品のNi付着量は、粗化粒子を構成するNi及び拡散防止層を構成するNiの付着量の合計を測定した。測定された付着量から、Ni/Zn付着量比(質量比)を算出した。
(4) Measurement of element adhesion amount ratio Using an ICP emission analyzer (manufactured by Shimadzu Corporation, trade name: ICPS-7000), the adhesion amount of nickel and zinc on the roughened surface of the copper foil before being attached to the polyimide resin, It measured by the method according to the specification of JISK0553-2002. The Ni adhesion amount of the alloy-based roughened product was determined by measuring the total adhesion amount of Ni constituting the roughened particles and Ni constituting the diffusion preventing layer. From the measured adhesion amount, the Ni / Zn adhesion amount ratio (mass ratio) was calculated.

各実施例、各比較例の銅箔の性能評価は、以下の方法で行った。   Performance evaluation of the copper foil of each Example and each comparative example was performed by the following method.

(5)フィルム視認性評価
前記の各実施例、各比較例で作製した銅張積層板に対して、塩化銅エッチング液で銅箔を全て溶解させ、片面側に銅箔表面が転写されたポリイミドフィルムを作製した。
測定には、日本分光製 紫外可視分光光度計V−660(商品名、積分球ユニット)を使用し、光源は波長600nmの単色光を用い、その他の測定条件はJIS K 7136−2000に準拠した。ポリイミドフィルムの銅箔表面凹凸が転写された面に対して垂直に測定光を入射し、その透過光が積分球に入るようにした。入射光の光軸と積分球内壁が交差する箇所に積分球内壁と同様の標準反射板を設置したときの透過率が全光線透過率(T)であり、同箇所にトラッピングを設置し垂直に透過してきた光を積分球の外に出し除外した上で測定したときの透過率が拡散透過率(T)である。測定結果を表4に記載した。
(T/T)×100(%)をヘイズ値として算出した。
視認性の評価としては、ヘイズ値<40(%)のときを「優(A)」、40≦ヘイズ値<80(%)のときを「良(B)」、80(%)≦ヘイズ値のときを「劣(E)」とした。視認性評価Eのものは、プリント配線板用途としては適さない程度の劣った視認性であり、視認性評価Bのものはプリント配線板用途として適する程度の良好な視認性である。BからAの順に視認性が高くなり、視認性評価Aであればより好ましい視認性である。ヘイズ値を表4に併せて記載した。
(5) Film visibility evaluation Polyimide in which the copper foil surface was transferred to one side of the copper clad laminate produced in each of the above Examples and Comparative Examples by dissolving all of the copper foil with a copper chloride etchant. A film was prepared.
For the measurement, an ultraviolet-visible spectrophotometer V-660 (trade name, integrating sphere unit) manufactured by JASCO Corporation was used, a monochromatic light having a wavelength of 600 nm was used as the light source, and other measurement conditions were in accordance with JIS K 7136-2000. . Measuring light was incident perpendicularly to the surface of the polyimide film on which the copper foil surface irregularities were transferred, and the transmitted light entered the integrating sphere. The transmittance when a standard reflector similar to the inner wall of the integrating sphere is installed at the location where the optical axis of the incident light intersects with the inner wall of the integrating sphere is the total light transmittance (T t ). The transmittance when measured after the light transmitted through is removed from the integrating sphere is excluded is the diffuse transmittance (T d ). The measurement results are shown in Table 4.
(T d / T t ) × 100 (%) was calculated as a haze value.
As the evaluation of visibility, “excellent (A)” when haze value <40 (%), “good (B)” when 40 ≦ haze value <80 (%), and 80 (%) ≦ haze value. Was determined as “poor (E)”. The thing of visibility evaluation E is inferior visibility of the grade which is not suitable for a printed wiring board use, and the thing of visibility evaluation B is the favorable visibility of a grade suitable for a printed wiring board use. The visibility increases in the order of B to A, and a visibility evaluation A is more preferable. The haze values are also shown in Table 4.

(6)銅箔/樹脂間のピール強度の測定
銅箔とポリイミド樹脂層との密着性の尺度として、常態ピール強度及び耐熱ピール強度を以下のように測定した。前記の各実施例、各比較例で作製した銅張積層板の耐熱試験(150℃の大気中で1000時間の熱処理)前後の試料を使用して、銅箔部を10mm巾テープでマスキングし塩化銅エッチングを行った後でテープを除去して10mm巾のサンプルを作製し、JIS C 6481−1996の規格に従って常態ピール強度及び耐熱ピール強度を測定した。
常態ピール強度及び耐熱ピール強度の双方が1.0kN/m以上のときを「(A)」とし、どちらか一方のピール強度が1.0kN/m未満0.8kN/m以上のときを「(B)」とし、どちらか一方のピール強度が0.8kN/m未満0.5kN/m以上のときを「(C)」とし、どちらか一方のピール強度が0.5kN/m未満のときを「(D)」とした。結果を表4に併せて記載した。
(6) Measurement of peel strength between copper foil / resin The normal peel strength and heat-resistant peel strength were measured as follows as a measure of the adhesion between the copper foil and the polyimide resin layer. Using the samples before and after the heat resistance test (heat treatment for 1000 hours in the atmosphere at 150 ° C.) of the copper clad laminate prepared in each of the above Examples and Comparative Examples, the copper foil portion was masked with 10 mm width tape and chlorinated. After performing the copper etching, the tape was removed to prepare a sample having a width of 10 mm, and the normal peel strength and the heat-resistant peel strength were measured in accordance with the standard of JIS C 6481-1996.
When both the normal peel strength and the heat-resistant peel strength are 1.0 kN / m or more, “( A)” is designated, and when either one of the peel strength is less than 1.0 kN / m and 0.8 kN / m or more, “( and B) ", either when one of the peel strength of 0.5 or more kN / m less than 0.8 kN / m with a" (C) ", one of the peel strength 0.5 kN / m less than It was "(D)" the time of. The results were described together in Table 4.

(7)視認性と密着性の総合評価
上記(5)及び(6)の結果から、以下の基準に基づいて総合評価を行った。結果を表4に併せて記載した。
視認性、密着性の一つでも評価又はE評価のもの:
密着性評価に評価があり、かつ視認性がE評価で無いもの:
認性、密着性の少なくとも一方がB評価で、かつD評価及びE評価が無いもの: B
両方の評価項目でA評価であるもの: A
(7) Comprehensive evaluation of visibility and adhesion From the results of (5) and (6) above, comprehensive evaluation was performed based on the following criteria. The results are also shown in Table 4.
Even one of visibility and adhesion has a D rating or E rating : D
The adhesion evaluation has C evaluation and the visibility is not E evaluation: C
Visual認性, at least one of adhesion with B rating, and D evaluation and E evaluation having no: B
Both evaluation items are A evaluation: A

実施例1〜13は全て総合評価がC、B、Aであり、実用上問題のないレベルであると言える。銅箔表面の粗化の形状に関しても、断面観察の結果より全て本発明の規定を満たし、表1の形状1で示される形状となっていた。
施例1と実施例12の比較で、銅害防止剤を含むものの方が耐熱ピール強度は高く、より好ましいことが分かる。実施例1と実施例9の比較で、Rdはより好ましくは24%以上が良いことが分かる。実施例1〜6と実施例7〜11を比較すると、純銅系粗化処理で銅害防止剤を使用したものの中でも、Rdが24〜38%、Ni付着量比が5.6〜20%の方がより好ましいことが分かる。実施例1と実施例13とは同等の粗化粒子高さであったにもかかわらず、実施例13の方がヘイズ値が高く視認性に劣るが、圧延銅箔特有のオイルピットによる凹凸によるものと考えられ、電解銅箔を用いる方が好ましいことが分かる。
In all of Examples 1 to 13, the overall evaluation is C 1 , B, and A, which can be said to be at a level having no practical problem. As for the roughened shape of the copper foil surface, all of the results of the cross-sectional observation satisfied the definition of the present invention, and the shape indicated by shape 1 in Table 1 was obtained.
In comparison of the actual Example 1 Example 1 2, the heat-resistant peel strength towards those containing copper inhibitor is high, it can be seen more preferable. In comparison of the actual Example 1 and Example 9, Rd is more preferably it can be seen that it is more than 24%. Comparing the actual施例1-6 Example 7-11, among others those using copper deactivator in pure copper roughening treatment, Rd is 24 to 38%, Ni deposition amount ratio is 5.6 to 20% It can be seen that is more preferable. Although Example 1 and Example 13 had the same roughened particle height, Example 13 had a higher haze value and lower visibility, but due to irregularities due to oil pits specific to the rolled copper foil. It can be seen that it is preferable to use electrolytic copper foil.

これに対して、各比較例は、いずれも劣った性質を示した。
比較例1はR、C及び粗化粒子高さがいずれも本発明の規定より高く、断面観察を行うと表1の形状4で表される形状であった。それゆえ密着性には優れるが視認性が低く、実用には適さない。
比較例2は比較例1とは逆に、R及び粗化粒子高さが本発明の規定より低く、断面観察を行うと表1の形状5で表される形状であった。それゆえいずれも視認性には優れるが密着性が低いので実用には適さない。
比較例3及び4は、粗化粒子高さ、ニッケル/亜鉛付着量比が本発明の規定範囲内で、樹脂中に銅害防止剤を含むが、R及びCの少なくとも1つが本発明の規定範囲外であり、断面観察を行うとそれぞれ表1の形状2及び3で表される形状であった。共に視認性は良いが、密着性が低いので実用には適さない。
比較例5及び6はニッケル/亜鉛付着量比が本発明の規定よりも低かった。いずれも視認性は良いが、密着性が劣るので実用には適さない。
比較例7はR、C及び粗化粒子高さがいずれも本発明の規定より高く、断面観察を行うと表1の形状4で表される形状であった。それゆえ密着性には優れるが視認性が低く、実用には適さない。
比較例8は比較例1とは逆に、R及び粗化粒子高さが本発明の規定より低く、断面観察を行うと表1の形状5で表される形状であった。それゆえ視認性には優れるが密着性が低いので実用には適さない。
比較例10〜12はそれぞれ実施例1、8、12のPRパルス電解処理を行わなかったものに相当する。比較例10〜12の断面観察をすると、粗化粒子間の谷が非常に深くなっていた。それゆえ粗化粒子高さの平均値が高くなり、表1の形状4で表される形状に近くなった。よって密着性には優れるが、視認性が低いので実用に適さない。本発明のPRパルス電解処理は、粗化粒子間の谷をある程度埋めることで粗化粒子の高さを低くし、表1の形状1に近づけることで視認性の向上に寄与している。
On the other hand, each comparative example showed inferior properties.
In Comparative Example 1, R d , C *, and the roughened particle height were all higher than those defined in the present invention, and the shape represented by shape 4 in Table 1 was observed when the cross-section was observed. Therefore, the adhesiveness is excellent, but the visibility is low and it is not suitable for practical use.
Comparative Example 2 is opposite to the Comparative Example 1, R d and roughening particles height is lower than the provisions of this invention, has a shape represented by the shape 5 shown in Table 1 when performing cross-sectional observation. Therefore, both are excellent in visibility but are not suitable for practical use because of low adhesion.
In Comparative Examples 3 and 4, the roughened particle height and the nickel / zinc adhesion ratio are within the specified range of the present invention, and the resin contains a copper damage inhibitor, but at least one of R d and C * is the present invention. When the cross-sectional observation was performed, the shapes represented by the shapes 2 and 3 in Table 1 were obtained. Both have good visibility but are not suitable for practical use because of low adhesion.
In Comparative Examples 5 and 6, the nickel / zinc adhesion ratio was lower than specified in the present invention. All of them have good visibility but are not suitable for practical use because of poor adhesion.
In Comparative Example 7, R d , C *, and the roughened particle height were all higher than those defined in the present invention, and the shape represented by shape 4 in Table 1 was observed by cross-sectional observation. Therefore, the adhesiveness is excellent, but the visibility is low and it is not suitable for practical use.
Comparative Example 8 opposite to the Comparative Example 1, R d and roughening particles height is lower than the provisions of this invention, has a shape represented by the shape 5 shown in Table 1 when performing cross-sectional observation. Therefore, it is excellent in visibility but is not suitable for practical use because of low adhesion.
Comparative Examples 10 to 12 correspond to those in which PR pulse electrolytic treatment of Examples 1, 8, and 12 was not performed. When the cross sections of Comparative Examples 10 to 12 were observed, the valleys between the roughened particles were very deep. Therefore, the average value of the height of the roughened particles was high, and it was close to the shape represented by shape 4 in Table 1. Therefore, although it is excellent in adhesiveness, since visibility is low, it is not suitable for practical use. The PR pulse electrolytic treatment of the present invention contributes to the improvement of visibility by reducing the height of the roughened particles by filling the valleys between the roughened particles to some extent and bringing them close to the shape 1 in Table 1.

以上のように、銅箔表面の粗化粒子高さ、拡散反射率、彩度、拡散防止被覆のニッケル/亜鉛付着量比について、全て本発明の規定通りとなることで初めて実用上問題の無い水準に到達することがわかる。さらに銅害防止剤をポリイミド樹脂中に含有させることで、耐熱ピール強度が更に向上されることがわかる。   As mentioned above, there is no practical problem for the first time when the roughened particle height, diffuse reflectance, saturation, and nickel / zinc adhesion ratio of the diffusion prevention coating on the copper foil surface are all in accordance with the provisions of the present invention. It can be seen that the level is reached. Furthermore, it turns out that heat-resistant peel strength is further improved by containing a copper damage inhibitor in a polyimide resin.

本発明によって、プリント配線板用途に好適な樹脂密着性と視認性が優れた配線板用銅張積層板及びこれに使用される銅箔を提供することが可能となる。   By this invention, it becomes possible to provide the copper clad laminated board for wiring boards excellent in resin adhesiveness and visibility suitable for a printed wiring board use, and the copper foil used for this.

Claims (3)

銅箔の少なくとも一表面に算術平均高さが0.05〜0.5μmである粗化粒子からなる粗化粒子層を有し、前記粗化粒子が純銅からなり、前記粗化粒子層の上に、少なくともニッケルと亜鉛を含み、亜鉛の前記粗化粒子層への付着量に対するニッケルの前記粗化粒子層への付着量の比(質量比)が0.5〜20の範囲内の拡散防止被覆を有する銅箔であって、前記一表面側から測定した波長600nmにおける拡散反射率(R)が5〜50%の範囲内及び彩度(C)が30以下であることを特徴とする銅箔。 Having a roughened particle layer made of roughened particles having an arithmetic average height of 0.05 to 0.5 μm on at least one surface of the copper foil, the roughened particles being made of pure copper , In addition, at least nickel and zinc are included, and the ratio (mass ratio) of the adhesion amount of nickel to the roughening particle layer with respect to the adhesion amount of zinc to the roughening particle layer is within the range of 0.5 to 20 A copper foil having a coating, characterized in that a diffuse reflectance (R d ) at a wavelength of 600 nm measured from the one surface side is within a range of 5 to 50% and a saturation (C * ) is 30 or less. Copper foil. 請求項1に記載の銅箔を有することを特徴とする銅張積層板。   A copper clad laminate comprising the copper foil according to claim 1. シュウ酸誘導体、サリチル酸誘導体、ヒドラジド誘導体、及びトリアゾール類から選ばれる少なくとも1種の銅害防止剤を含むポリイミド樹脂層を、請求項1に記載の銅箔の前記一表面側に有する銅張積層板。
The copper clad laminated board which has the polyimide resin layer containing the at least 1 sort (s) of copper damage inhibitor chosen from an oxalic acid derivative, a salicylic acid derivative, a hydrazide derivative, and triazoles in the said one surface side of the copper foil of Claim 1 .
JP2015543166A 2014-09-09 2015-04-17 Copper foil and copper-clad laminate for printed wiring boards Active JP5877282B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015543166A JP5877282B1 (en) 2014-09-09 2015-04-17 Copper foil and copper-clad laminate for printed wiring boards

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014183358 2014-09-09
JP2014183358 2014-09-09
PCT/JP2015/061878 WO2016038923A1 (en) 2014-09-09 2015-04-17 Copper foil for printed wiring board, and copper-clad laminated board
JP2015543166A JP5877282B1 (en) 2014-09-09 2015-04-17 Copper foil and copper-clad laminate for printed wiring boards

Publications (2)

Publication Number Publication Date
JP5877282B1 true JP5877282B1 (en) 2016-03-02
JPWO2016038923A1 JPWO2016038923A1 (en) 2017-04-27

Family

ID=55434775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015543166A Active JP5877282B1 (en) 2014-09-09 2015-04-17 Copper foil and copper-clad laminate for printed wiring boards

Country Status (1)

Country Link
JP (1) JP5877282B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI664322B (en) * 2016-12-06 2019-07-01 日商Jx金屬股份有限公司 Method for manufacturing surface-treated copper foil, copper foil with carrier, laminated body, printed wiring board, and method for manufacturing electronic equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6733971B1 (en) * 2019-04-23 2020-08-05 株式会社シミズ Copper damage prevention film, method for producing copper member with copper damage prevention film, and copper damage prevention method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269959A (en) * 2003-03-07 2004-09-30 Asahi Kasei Corp Compound body having copper foil used for forming printed circuit or the like, and method for manufacturing the same
JP2005076091A (en) * 2003-09-01 2005-03-24 Furukawa Circuit Foil Kk Method of producing ultrathin copper foil with carrier, and ultrathin copper foil with carrier produced by the production method
JP2005254673A (en) * 2004-03-12 2005-09-22 Furukawa Circuit Foil Kk Ultrathin copper foil with carrier and wiring plate using ultrathin copper foil with carrier
JP2009019132A (en) * 2007-07-12 2009-01-29 Reika O Polyamic acid resin composition and flexible copper clad laminate
JP2011044550A (en) * 2009-08-20 2011-03-03 Hitachi Cable Ltd Copper foil for printed wiring board, and method of manufacturing the same
JP2011149067A (en) * 2010-01-22 2011-08-04 Furukawa Electric Co Ltd:The Surface-treated copper foil, method for producing the same, and copper-clad laminated board
JP5706026B1 (en) * 2013-07-30 2015-04-22 古河電気工業株式会社 Copper foil for wiring board and wiring board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269959A (en) * 2003-03-07 2004-09-30 Asahi Kasei Corp Compound body having copper foil used for forming printed circuit or the like, and method for manufacturing the same
JP2005076091A (en) * 2003-09-01 2005-03-24 Furukawa Circuit Foil Kk Method of producing ultrathin copper foil with carrier, and ultrathin copper foil with carrier produced by the production method
JP2005254673A (en) * 2004-03-12 2005-09-22 Furukawa Circuit Foil Kk Ultrathin copper foil with carrier and wiring plate using ultrathin copper foil with carrier
JP2009019132A (en) * 2007-07-12 2009-01-29 Reika O Polyamic acid resin composition and flexible copper clad laminate
JP2011044550A (en) * 2009-08-20 2011-03-03 Hitachi Cable Ltd Copper foil for printed wiring board, and method of manufacturing the same
JP2011149067A (en) * 2010-01-22 2011-08-04 Furukawa Electric Co Ltd:The Surface-treated copper foil, method for producing the same, and copper-clad laminated board
JP5706026B1 (en) * 2013-07-30 2015-04-22 古河電気工業株式会社 Copper foil for wiring board and wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI664322B (en) * 2016-12-06 2019-07-01 日商Jx金屬股份有限公司 Method for manufacturing surface-treated copper foil, copper foil with carrier, laminated body, printed wiring board, and method for manufacturing electronic equipment
US10791631B2 (en) 2016-12-06 2020-09-29 Jx Nippon Mining & Metals Corporation Surface treated copper foil, copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device

Also Published As

Publication number Publication date
JPWO2016038923A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
WO2016038923A1 (en) Copper foil for printed wiring board, and copper-clad laminated board
JP7330172B2 (en) Surface treated copper foil, copper clad laminate and printed wiring board
JP5181618B2 (en) Metal foil laminated polyimide resin substrate
US8852754B2 (en) Surface-treated copper foil, method for producing same, and copper clad laminated board
JP5634103B2 (en) A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate.
KR101632792B1 (en) Surface-treated copper foil, and laminate, printed wiring board and electronic device using the same, and method of maunfacturing printed wiring board
JP6182584B2 (en) Surface-treated copper foil for printed wiring board, copper-clad laminate for printed wiring board, and printed wiring board
JP5706026B1 (en) Copper foil for wiring board and wiring board
RU2287618C2 (en) Laminate foil and its production method
SG189489A1 (en) Liquid crystal polymer-copper clad laminate and copper foil used for liquid crystal polymer-copper clad laminate
CN108277513A (en) The copper foil of appendix body, the manufacturing method of copper-cover laminated plate, printed circuit board, e-machine and printed circuit board
WO2010147013A1 (en) Copper foil and a method for producing same
JP2005048269A (en) Surface treated copper foil, and board obtained by using the same
TWI730280B (en) Copper foil for flexible printed circuit boards, copper-clad laminates using the same, flexible printed circuit boards and electronic devices
JP5877282B1 (en) Copper foil and copper-clad laminate for printed wiring boards
JP6427454B2 (en) Copper-clad laminate and printed wiring board
JP5151761B2 (en) Method for producing rolled copper foil for printed wiring board
JP5171690B2 (en) Copper-clad laminate and manufacturing method thereof
JP2010202891A (en) Surface-treated copper foil and method of manufacturing the same
JP5129170B2 (en) Method for manufacturing circuit wiring board
JP5685061B2 (en) Copper foil for printed wiring board and printed wiring board
JP5129171B2 (en) Method for manufacturing circuit wiring board
WO2024070246A1 (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
JP2010047842A (en) Electrolytic copper foil and method for electropolishing glossy surface of electrolytic copper foil
JP2008166555A (en) Flexible printed wiring board

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20151125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160125

R151 Written notification of patent or utility model registration

Ref document number: 5877282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350