JP5876684B2 - Method for manufacturing charging roller and conductive roller - Google Patents

Method for manufacturing charging roller and conductive roller Download PDF

Info

Publication number
JP5876684B2
JP5876684B2 JP2011173272A JP2011173272A JP5876684B2 JP 5876684 B2 JP5876684 B2 JP 5876684B2 JP 2011173272 A JP2011173272 A JP 2011173272A JP 2011173272 A JP2011173272 A JP 2011173272A JP 5876684 B2 JP5876684 B2 JP 5876684B2
Authority
JP
Japan
Prior art keywords
roller
conductive
conductive roller
electron beam
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011173272A
Other languages
Japanese (ja)
Other versions
JP2013037194A (en
Inventor
敏郎 鈴木
敏郎 鈴木
之則 永田
之則 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011173272A priority Critical patent/JP5876684B2/en
Publication of JP2013037194A publication Critical patent/JP2013037194A/en
Application granted granted Critical
Publication of JP5876684B2 publication Critical patent/JP5876684B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrophotography Configuration And Component (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Dry Development In Electrophotography (AREA)

Description

本発明は、帯電ローラ及び導電性ローラの製造方法に関する。 The present invention relates to a charging roller and a method for manufacturing a conductive roller.

電子写真画像形成装置において、感光ドラムを、感光ドラムに当接させた帯電ローラを用いて帯電させる際に、帯電ローラから感光ドラムの表面の微小な凹部(ピンホール)に過大な電流が流れ(ピンホールリーク)、当該ピンホールリークに起因するドット状の欠陥が電子写真画像に生じることがある。このピンホールリークは、帯電ローラの電気抵抗が低いほど発生しやすい。   In an electrophotographic image forming apparatus, when a photosensitive drum is charged using a charging roller in contact with the photosensitive drum, an excessive current flows from the charging roller to a minute recess (pinhole) on the surface of the photosensitive drum ( Pinhole leak) and dot-like defects caused by the pinhole leak may occur in the electrophotographic image. This pinhole leak is more likely to occur as the electric resistance of the charging roller is lower.

このピンホールリークを抑制するために、導電性弾性層の表面に導電性弾性層に比べ電気抵抗の高い樹脂層を保護層として設けることが行われている。当該保護層の電気抵抗が高いほど、ピンホールリークは生じにくくなる。しかし、電気抵抗が高すぎると感光ドラムの帯電能が低下する。これを回避するためには、保護層の導電性を中抵抗に制御することが必要であり、そのために、保護層に導電粒子が添加されている。この場合、添加した導電粒子に凝集塊があるとそれが画像不良になるために、均一な分散が得られることが好ましい。特許文献1には、多孔質化したフッ素樹脂を主成分としその多孔質内に導電粒子を充填させた保護層が開示されている。   In order to suppress this pinhole leak, a resin layer having a higher electrical resistance than the conductive elastic layer is provided as a protective layer on the surface of the conductive elastic layer. As the electrical resistance of the protective layer is higher, pinhole leakage is less likely to occur. However, if the electric resistance is too high, the charging ability of the photosensitive drum is lowered. In order to avoid this, it is necessary to control the conductivity of the protective layer to a medium resistance. For this purpose, conductive particles are added to the protective layer. In this case, if there is an agglomerate in the added conductive particles, it becomes an image defect, so that uniform dispersion is preferably obtained. Patent Document 1 discloses a protective layer in which a porous fluororesin is a main component and conductive particles are filled in the porous body.

特開2005−266312号公報Japanese Patent Laid-Open No. 2005-266312

しかしながら、本発明者らの検討によれば、特許文献1に係る発明によっても未だピンホールリークを十分に抑制するには至らず、更なる技術開発の必要性を認識した。
すなわち、本発明は、電子写真感光体にピンホールが存在していた場合であっても、ピンホールリークを生じさせにくい導電性ローラおよびその製造方法を提供することを目的とする。
However, according to the study by the present inventors, the invention according to Patent Document 1 has not yet sufficiently suppressed pinhole leakage, and has recognized the need for further technical development.
That is, an object of the present invention is to provide a conductive roller that hardly causes pinhole leakage even when pinholes exist in the electrophotographic photosensitive member, and a method for manufacturing the same.

本発明によれば、芯金と、表面層としての導電性ゴム弾性層とを有する帯電ローラであって、該導電性ゴム弾性層の表面に導電粒子が露出しており、該導電性ゴム弾性層の表面に、相対的に表面抵抗の高い第1領域Aと相対的に表面抵抗の低い第2領域Bとを有し、該第1領域Aと該第2領域Bが該帯電ローラの軸方向にスパイラル状に交互に配置されていることを特徴とする帯電ローラが提供される。
また、本発明によれば、導電性ゴム弾性層の表面に導電粒子が露出している導電性ローラの製造方法であって、電子線が照射される電子線照射領域に対して該導電性ローラの軸心を傾斜させた状態で、該軸心を中心に該導電性ローラを回転させ、かつ該導電性ローラを該電子線照射領域に対して垂直な方向に移動させながら、該導電性ゴム弾性層の表面に電子線を照射することにより、該導電性ローラの表面に、相対的に表面抵抗の高い第1領域Aと相対的に表面抵抗の低い第2領域Bとを導電性ローラの軸方向にスパイラル状に交互に形成することを特徴とする導電性ローラの製造方法が提供される。
According to the present invention, there is provided a charging roller having a cored bar and a conductive rubber elastic layer as a surface layer, wherein conductive particles are exposed on the surface of the conductive rubber elastic layer. The surface of the layer has a first area A having a relatively high surface resistance and a second area B having a relatively low surface resistance, and the first area A and the second area B are shafts of the charging roller. A charging roller is provided that is alternately arranged in a spiral shape in the direction.
According to the present invention, there is also provided a method for manufacturing a conductive roller in which conductive particles are exposed on the surface of the conductive rubber elastic layer, wherein the conductive roller is applied to an electron beam irradiation region irradiated with an electron beam. The conductive rubber is rotated while the conductive roller is rotated around the axial center and the conductive roller is moved in a direction perpendicular to the electron beam irradiation area. By irradiating the surface of the elastic layer with an electron beam, a first region A having a relatively high surface resistance and a second region B having a relatively low surface resistance are formed on the surface of the conductive roller. Provided is a method for manufacturing a conductive roller, wherein the conductive roller is alternately formed in a spiral shape in the axial direction.

本発明によれば、電子写真感光体との接触帯電に用いた場合において、ピンホールリークが生じにくく、ピンホールリークによる異常放電に起因する画像への欠陥の発生を抑制し得る導電性ローラを得ることができる。   According to the present invention, when used for contact charging with an electrophotographic photoreceptor, a conductive roller that is less likely to cause pinhole leakage and can suppress the occurrence of defects in an image due to abnormal discharge due to pinhole leakage. Can be obtained.

本発明の導電性ローラの模式図。The schematic diagram of the electroconductive roller of this invention. 電子線照射装置の概略構成図。The schematic block diagram of an electron beam irradiation apparatus. 照射口に対してローラを傾斜させて電子線を照射する方法の模式図。The schematic diagram of the method of inclining a roller with respect to an irradiation port and irradiating an electron beam. 加熱した金属部材をローラに押し当てる方法の模式図。The schematic diagram of the method of pressing the heated metal member against a roller. 画像形成装置の概略を示す模式図。1 is a schematic diagram illustrating an outline of an image forming apparatus. 電気抵抗の測定方法の概略図。Schematic of the measurement method of electrical resistance. 導電性ローラ表面の電気抵抗分布の測定方法の概略図。Schematic of the measuring method of the electrical resistance distribution of the conductive roller surface. 比較例1の導電性ローラ表面の電気抵抗分布図。FIG. 6 is an electric resistance distribution diagram on the surface of the conductive roller of Comparative Example 1; 比較例2の導電性ローラ表面の電気抵抗分布図。FIG. 9 is an electric resistance distribution diagram on the surface of the conductive roller of Comparative Example 2. 比較例3の導電性ローラ表面の電気抵抗分布図。FIG. 11 is an electric resistance distribution diagram on the surface of the conductive roller of Comparative Example 3.

<導電性ローラ>
本発明の導電性ローラの模式図を図1に示す。導電性ローラ10は、芯金11と、芯金11の外周に表面層としての導電性ゴム弾性層13とを有する。導電性ゴム弾性層13の表面には導電粒子12が露出しており、導電性ゴム弾性層表面は相対的に表面抵抗の高い第1領域A(14)と、相対的に表面抵抗の低い第2領域B(15)とを有する。
このような導電性ローラを接触帯電用の帯電ローラとして用いた場合、電子写真感光体の表面にピンホールがあったとしても、当該ピンホールに対しては、帯電ローラ52の表面抵抗の高い領域Aと表面抵抗の低い領域Bとが交互に接触することとなる。つまり、ピンホールに対して、帯電ローラの電気抵抗の高い領域が常に当接することを避け得る。その結果、ピンホールリークが発生する可能性を低減させることができる。
また表面抵抗の高い領域Aの幅が小さい場合には、ピンホールリークに起因する異常放電による軸方向でのスジ状の画像不良はさらに目立ちにくくなると考えられる。さらに、ローラが回転することにより電子写真感光体と当接する表面抵抗の低い領域Bは常に変化しているため、感光体にピンホールが存在する場合でも常にピンホールとローラの抵抗の低い領域Bが当接するわけではなくピンホールリーク画像不良が低減すると考えられる。また、抵抗の低い領域Bの幅が小さい場合には、さらにピンホールリーク画像不良は低減すると考えられる。
芯金11の外周に導電性ゴム弾性層13が設けられた導電性ローラ10の成形方法としては、円筒金型に同心に軸状の芯金11を保持する2つの円筒駒を組み、ゴム材料を注入後加熱することにより材料を硬化させて導電性ローラ10を成形する射出成形がある。または、ゴム材料をチューブ状に押出した後、芯金11にチューブ状のゴム材料を被せる、或いは芯金11とゴム材料を一体に押出して円筒状の導電性ローラ10を成形する押出成形、トランスファー成形、プレス成形等があるが、特に限定されるものではない。製造時間の短縮を考えるとゴム材料を芯金11と一体に押出して導電性ローラ10を成形する押出成形が好ましい。導電性ローラ10の加熱方法に関しては、熱風炉、加硫缶、熱盤、遠・近赤外線、誘導加熱等のいずれの方法でも良く、更に加熱状態の円筒状または平面状の部材に回転させながら押し当てる方法を用いても良い。また、加熱後に所望のローラ形状、ローラ表面粗さにするために回転砥石を用いた乾式研磨をする場合もある。なお、研磨手段としては、特に限定しないが、砥石が移動して研磨する所謂トラバース方式や、より幅の広い砥石により移動することなしに一括で研磨するプランジ方式がある。
ここで、導電性ローラ10の芯金11として使用する材質は、ニッケルメッキしたSUM材等の鋼材を含むステンレススチール棒、リン青銅棒、アルミニウム棒、耐熱樹脂棒が好ましい。
<Conductive roller>
A schematic diagram of the conductive roller of the present invention is shown in FIG. The conductive roller 10 has a cored bar 11 and a conductive rubber elastic layer 13 as a surface layer on the outer periphery of the cored bar 11. The conductive particles 12 are exposed on the surface of the conductive rubber elastic layer 13, and the surface of the conductive rubber elastic layer has a first region A (14) having a relatively high surface resistance and a first region A having a relatively low surface resistance. 2 regions B (15).
When such a conductive roller is used as a charging roller for contact charging, even if there is a pinhole on the surface of the electrophotographic photosensitive member, a region where the surface resistance of the charging roller 52 is high with respect to the pinhole. A and the area | region B with low surface resistance will contact alternately. That is, it can be avoided that a region having a high electric resistance of the charging roller always comes into contact with the pinhole. As a result, the possibility of pinhole leaks can be reduced.
Further, when the width of the region A having a high surface resistance is small, it is considered that the streak-like image defect in the axial direction due to the abnormal discharge caused by the pinhole leak becomes less noticeable. Further, since the low-surface-resistance region B that contacts the electrophotographic photosensitive member constantly changes as the roller rotates, even if pinholes exist in the photosensitive member, the low-resistance region B of the pinhole and roller is always present. It is considered that the pinhole leak image defect is reduced rather than contacting. Further, when the width of the low-resistance region B is small, it is considered that the pinhole leak image defect is further reduced.
As a molding method of the conductive roller 10 in which the conductive rubber elastic layer 13 is provided on the outer periphery of the cored bar 11, two cylindrical pieces that hold the shaft-shaped cored bar 11 concentrically are assembled in a cylindrical mold, and rubber material There is injection molding in which the conductive roller 10 is formed by curing the material by injecting and heating the material. Alternatively, after extruding the rubber material into a tube shape, the core metal 11 is covered with the tube-shaped rubber material, or the core metal 11 and the rubber material are integrally extruded to form the cylindrical conductive roller 10. There are molding, press molding and the like, but there is no particular limitation. In view of shortening the manufacturing time, extrusion molding in which the rubber material is extruded integrally with the core metal 11 to form the conductive roller 10 is preferable. Regarding the heating method of the conductive roller 10, any method such as a hot stove, vulcanizing can, hot platen, far / near infrared rays, induction heating, etc. may be used, and while rotating to a heated cylindrical or planar member You may use the method of pressing. In some cases, dry grinding using a rotating grindstone may be performed to obtain a desired roller shape and roller surface roughness after heating. The polishing means is not particularly limited, and there is a so-called traverse method in which a grindstone moves and polishes, and a plunge method in which lump polishing is performed without moving by a wider grindstone.
Here, the material used as the core metal 11 of the conductive roller 10 is preferably a stainless steel rod, a phosphor bronze rod, an aluminum rod, or a heat-resistant resin rod containing a steel material such as a nickel-plated SUM material.

本発明にかかる導電性ローラは、特に導電性ゴム弾性層13が後述の測定方法で10Ω以上10Ω以下の電気抵抗の範囲で使用する場合に、より効果的である。導電性ローラ10の電気抵抗が10Ω以上10Ω以下の範囲である場合には、帯電ローラとしては帯電能が充分にあり、異常放電に起因するスジ状の画像不良を起こすことは極めて少ない。しかし、通常は画像不良にはならない1mm以下の微小な凹み(ピンホール)が電子写真感光体にある場合には、過度の電流が流れ、凹みの大きさよりも大きい数mm単位の点(ブロッチ)が電子写真画像に生じることがあった。本発明に係る導電性ローラでは、電気抵抗が10Ω以上10Ω以下の範囲でもピンホールリークの画像不良を低減することもできる。 The conductive roller according to the present invention is more effective particularly when the conductive rubber elastic layer 13 is used in a range of electrical resistance of 10 3 Ω or more and 10 4 Ω or less by the measurement method described later. When the electrical resistance of the conductive roller 10 is in the range of 10 3 Ω or more and 10 4 Ω or less, the charging roller has sufficient charging ability, and it is extremely difficult to cause streak-like image defects due to abnormal discharge. Few. However, when the electrophotographic photosensitive member has a small dent (pinhole) of 1 mm or less that usually does not cause an image defect, an excessive current flows, and a point (blotch) in units of several mm larger than the size of the dent. May occur in electrophotographic images. In the conductive roller according to the present invention, pinhole leak image defects can be reduced even when the electrical resistance is in the range of 10 3 Ω to 10 4 Ω.

このような電気抵抗の範囲の導電性ゴム弾性層13を形成するためには、ゴム弾性層に導電粒子を分散し、複合したものが一般的である。ゴム弾性層のポリマーとしては、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン−ブタジエン(SBR)、ブチルゴム(IIR)、エチレン−プロピレン−ジエン3元共重合体ゴム(EPDM)、エピクロルヒドリンホモポリマー(CHC)、エピクロルヒドリン−エチレンオキサイド共重合体(CHR)、エピクロルヒドリン−エチレンオキサイド−アリルグリシジルエーテル3元共重合体(CHR−AGE)、アクリロニトリル−ブタジエン共重合体(NBR)、アクリロニトリル−ブタジエン共重合体の水添物(H−NBR)、クロロプレンゴム(CR)、アクリルゴム(ACM、ANM)等の原料ゴムに架橋剤を配合した熱硬化性のゴム材料や、ポリオレフィン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、塩ビ系熱可塑性エラストマー等の熱可塑性エラストマーのいずれでも良く、また2種類以上をブレンドして配合しても構わない。   In order to form the conductive rubber elastic layer 13 having such an electric resistance range, it is common that conductive particles are dispersed and combined in the rubber elastic layer. As the polymer of the rubber elastic layer, natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene (SBR), butyl rubber (IIR), ethylene-propylene-diene terpolymer rubber ( EPDM), epichlorohydrin homopolymer (CHC), epichlorohydrin-ethylene oxide copolymer (CHR), epichlorohydrin-ethylene oxide-allyl glycidyl ether terpolymer (CHR-AGE), acrylonitrile-butadiene copolymer (NBR), Thermosetting rubber materials in which raw materials such as acrylonitrile-butadiene copolymer hydrogenated (H-NBR), chloroprene rubber (CR), and acrylic rubber (ACM, ANM) are mixed with a crosslinking agent, and polyolefin heat Plastic elastomer, polystyrene Any of thermoplastic elastomers such as thermoplastic thermoplastic elastomer, polyester thermoplastic elastomer, polyurethane thermoplastic elastomer, polyamide thermoplastic elastomer, and vinyl chloride thermoplastic elastomer may be blended. It doesn't matter.

ゴム弾性層中に分散させる導電粒子12としては、ケッチェンブラックEC、アセチレンブラック等の導電性カーボン;SAF、ISAF、HAF、FEF、GPF、SRF、FT、MT等のゴム用カーボン;酸化処理を施したカラー(インク)用カーボン、熱分解カーボン、天然グラファイト、人造グラファイト;酸化錫、酸化チタン、酸化亜鉛、銅、銀、酸化スズ等の金属及び金属酸化物等、更にこれらの混合物が挙げられる。これらの導電粒子12の充填量としては、原料ポリマー、導電粒子12、及びその他配合剤の種類によって、導電性ゴム弾性層13が所望の電気抵抗を有するものとなるように、適宜選択することができる。例えば、ポリマー100質量部に対して、0.5質量部以上100質量部以下、好ましくは10質量部以上70質量部以下とすることができる。   As the conductive particles 12 dispersed in the rubber elastic layer, conductive carbon such as ketjen black EC and acetylene black; rubber carbon such as SAF, ISAF, HAF, FEF, GPF, SRF, FT, and MT; oxidation treatment Color (ink) carbon applied, pyrolytic carbon, natural graphite, artificial graphite; metals such as tin oxide, titanium oxide, zinc oxide, copper, silver, tin oxide, and metal oxides, and also mixtures thereof . The filling amount of the conductive particles 12 may be appropriately selected so that the conductive rubber elastic layer 13 has a desired electrical resistance depending on the types of raw material polymer, conductive particles 12, and other compounding agents. it can. For example, it is 0.5 mass part or more and 100 mass parts or less with respect to 100 mass parts of polymers, Preferably it can be 10 mass parts or more and 70 mass parts or less.

更に、研磨後の導電性ローラ10表面には電子線を照射することによる表面処理が行われる。本発明に用いた電子線照射装置の概略構成図を図2に示して詳細に説明する。
本発明に用いた電子線照射装置はローラを回転させながらローラ表面に電子線を照射するものであり、図2に示すように、電子線発生部21と照射室22と照射口23とを備えるものである。
Furthermore, surface treatment is performed by irradiating the surface of the conductive roller 10 after polishing with an electron beam. A schematic configuration diagram of the electron beam irradiation apparatus used in the present invention will be described in detail with reference to FIG.
The electron beam irradiation apparatus used in the present invention irradiates the surface of a roller with an electron beam while rotating the roller, and includes an electron beam generator 21, an irradiation chamber 22, and an irradiation port 23 as shown in FIG. Is.

電子線発生部21は、電子線を発生するターミナル24と、ターミナル24で発生した電子線を真空空間(加速空間)で加速する加速管25とを有するものである。また電子線発生部の内部は、電子が気体分子と衝突してエネルギーを失うことを防ぐため、不図示の真空ポンプ等により10−6Pa以上10−7Pa以下の真空に保たれている。
不図示の電源によりフィラメント26に電流を通じて加熱するとフィラメント26は熱電子を放出し、この熱電子のうち、ターミナル24を通過したものだけが電子線として有効に取り出される。そして、電子線の加速電圧により加速管25内の加速空間で加速された後、照射口箔27を突き抜け、照射口23の下方の照射室22内を搬送される導電性ローラ10に照射される。
The electron beam generator 21 includes a terminal 24 that generates an electron beam and an acceleration tube 25 that accelerates the electron beam generated at the terminal 24 in a vacuum space (acceleration space). The inside of the electron beam generator is kept at a vacuum of 10 −6 Pa to 10 −7 Pa by an unillustrated vacuum pump or the like in order to prevent electrons from colliding with gas molecules and losing energy.
When the filament 26 is heated by current from a power source (not shown), the filament 26 emits thermoelectrons, and only those thermoelectrons that have passed through the terminal 24 are effectively taken out as electron beams. And after accelerating in the acceleration space in the acceleration tube 25 by the acceleration voltage of an electron beam, it penetrates the irradiation port foil 27 and is irradiated to the conductive roller 10 conveyed in the irradiation chamber 22 below the irradiation port 23. .

本発明において、導電性ローラ10に電子線を照射する場合には、照射室22の内部は窒素雰囲気とする。また、導電性ローラ10はローラ回転用部材28で回転させて照射室内を搬送手段により、図2において左側から右側に移動する。尚、電子線発生部21及び照射室22の周囲は電子線照射時に二次的に発生するX線が外部へ漏出しないように、不図示の鉛遮蔽が施されている。   In the present invention, when the conductive roller 10 is irradiated with an electron beam, the inside of the irradiation chamber 22 is a nitrogen atmosphere. Further, the conductive roller 10 is rotated by a roller rotating member 28 and is moved from the left side to the right side in FIG. The surroundings of the electron beam generating unit 21 and the irradiation chamber 22 are shielded from lead (not shown) so that X-rays that are secondarily generated during electron beam irradiation do not leak to the outside.

照射口箔27は金属箔からなり、電子線発生部内の真空雰囲気と照射室内の空気雰囲気とを仕切るものであり、また照射口箔27を介して照射室内に電子線を取り出すものである。よって、電子線発生部21と照射室22との境界に設ける照射口箔27は、ピンホールがなく、電子線発生部内の真空雰囲気を十分維持できる機械的強度があり、電子線が透過しやすいことが望ましい。その為、照射口箔27は比重が小さく、肉厚の薄い金属が望ましく、通常、アルミニウム箔やチタン箔、ベリリウム箔が使用される。例えば、厚さ約5μm以上15μm以下程度のチタン箔が使用される。   The irradiation port foil 27 is made of a metal foil, and separates the vacuum atmosphere in the electron beam generator and the air atmosphere in the irradiation chamber, and takes out the electron beam into the irradiation chamber through the irradiation port foil 27. Therefore, the irradiation opening foil 27 provided at the boundary between the electron beam generating unit 21 and the irradiation chamber 22 has no pinhole, has a mechanical strength that can sufficiently maintain the vacuum atmosphere in the electron beam generating unit, and easily transmits the electron beam. It is desirable. Therefore, the irradiation port foil 27 is preferably made of a metal having a small specific gravity and a small thickness, and usually an aluminum foil, a titanium foil, or a beryllium foil is used. For example, a titanium foil having a thickness of about 5 μm to 15 μm is used.

電子線による照射条件は電子線の加速電圧と線量によって決定される。加速電圧は表面処理深さに影響し、本発明における加速電圧の条件としては、低エネルギー領域である40kV以上300kV以下の範囲が好ましい。40kV以上で本発明の効果を得る為の充分な処理厚みを得ることができる。また、300kV以下とすることで、電子線照射装置が大型化し、装置コストが増大する事を抑えることができる。より好ましい加速電圧の条件としては80kV以上150kV以下の範囲である。   Irradiation conditions with an electron beam are determined by the acceleration voltage and dose of the electron beam. The acceleration voltage affects the surface treatment depth, and the acceleration voltage condition in the present invention is preferably in the range of 40 kV to 300 kV, which is a low energy region. A treatment thickness sufficient for obtaining the effects of the present invention can be obtained at 40 kV or more. Moreover, it can suppress that an electron beam irradiation apparatus enlarges and an apparatus cost increases by setting it as 300 kV or less. A more preferable acceleration voltage condition is in the range of 80 kV to 150 kV.

電子線照射における電子線の線量は、下記式(1)で定義される。
D=(K・I)/V・・・・・・(1)
ここで、Dは線量(kGy)、Kは装置定数、Iは電子電流(mA)、Vは処理スピード(m/min)である。装置定数Kは、装置個々の効率を表す定数であって、装置の性能の指標である。装置定数Kは一定の加速電圧の条件で、電子電流と処理スピードを変えて線量を測定することによって求めることができる。電子線の線量測定は、線量測定用フィルムをローラ表面に貼り付け、これを実際に電子線照射装置で処理し、ローラ表面の線量測定用フィルムをフィルム線量計により測定することができる。使用した線量測定用フィルムはFWT−60(商品名、Far West Technology社製)、フィルム線量計はFWT−92D型(商品名、Far West Technology社製)である。
The dose of electron beam in electron beam irradiation is defined by the following formula (1).
D = (KI) / V (1)
Here, D is a dose (kGy), K is an apparatus constant, I is an electron current (mA), and V is a processing speed (m / min). The device constant K is a constant representing the efficiency of each device, and is an index of device performance. The apparatus constant K can be obtained by measuring the dose while changing the electron current and the processing speed under the condition of a constant acceleration voltage. The dose measurement of the electron beam can be performed by attaching a dose measurement film on the roller surface, actually processing it with an electron beam irradiation device, and measuring the dose measurement film on the roller surface with a film dosimeter. The dosimetry film used was FWT-60 (trade name, manufactured by Far West Technology), and the film dosimeter was FWT-92D (trade name, manufactured by Far West Technology).

電子線の線量については、表面処理の効果に応じて適宜選択することができる。その調節は、電子電流、処理スピードのいずれでも行うことが可能であり、所望の線量が得られるように決めればよい。本発明における電子線の線量は100kGy以上4000kGy以下の範囲が好ましく、さらに好ましい範囲としては500kGy以上3000kGy以下の範囲である。   About the dose of an electron beam, it can select suitably according to the effect of surface treatment. The adjustment can be performed by either the electronic current or the processing speed, and it may be determined so as to obtain a desired dose. The electron beam dose in the present invention is preferably in the range of 100 kGy to 4000 kGy, and more preferably in the range of 500 kGy to 3000 kGy.

<導電性ゴム弾性層>
次に、本発明である導電性ゴム弾性層13の表面に、相対的に表面抵抗の高い第1領域A(14)と相対的に表面抵抗の低い第2領域B(15)とを、導電性ローラ10の軸方向にスパイラル状に交互に形成する方法について説明する。導電性ローラ10の軸方向にスパイラル状に形成する方法としては、前記の導電性ローラ10表面に電子線を照射する方法であって、導電性ローラ10を回転させながら、電子線の照射口に対して導電性ローラ10を傾斜させて電子線を照射する方法が効果的である。ここで、図3に電子線の照射口23に対して導電性ローラ10を傾斜させて電子線を照射する方法の模式図を示す。1)電子線が照射される電子線照射領域33に対して導電性ローラ10の軸心34を傾斜角θ3だけ傾斜させる。2)軸心34を中心に導電性ローラ10を回転させる。3)導電性ローラ10を、電子線照射領域33に対して垂直な方向(矢印32の方向)に移動させる。1)かつ2)かつ3)の状態で、導電性ローラ10の導電性ゴム弾性層の表面に電子線を照射する。
<Conductive rubber elastic layer>
Next, the first region A (14) having a relatively high surface resistance and the second region B (15) having a relatively low surface resistance are provided on the surface of the conductive rubber elastic layer 13 of the present invention. A method of alternately forming spiral rollers 10 in the axial direction will be described. A method of forming the conductive roller 10 in a spiral shape in the axial direction is a method of irradiating the surface of the conductive roller 10 with an electron beam, while rotating the conductive roller 10 to the electron beam irradiation port. In contrast, a method of irradiating the conductive roller 10 with an electron beam by inclining the conductive roller 10 is effective. Here, FIG. 3 shows a schematic diagram of a method of irradiating the electron beam by inclining the conductive roller 10 with respect to the electron beam irradiation port 23. 1) The axis 34 of the conductive roller 10 is inclined by the inclination angle θ3 with respect to the electron beam irradiation region 33 irradiated with the electron beam. 2) The conductive roller 10 is rotated around the axis 34. 3) The conductive roller 10 is moved in a direction perpendicular to the electron beam irradiation region 33 (in the direction of the arrow 32). In the state of 1), 2) and 3), the surface of the conductive rubber elastic layer of the conductive roller 10 is irradiated with an electron beam.

また、相対的に表面抵抗の高い第1領域Aと相対的に表面抵抗の低い第2領域Bの幅、スパイラル状のピッチは、電子線照射の処理スピード、ローラ回転数、電子線の照射口とローラとの角度によって決定される。表面抵抗の高い領域Aと表面抵抗の低い領域Bの幅の目安としては、それぞれ1mm以上30mm以下の範囲でスパイラル状に領域Aと領域Bが交互に形成されるのが好ましい。表面抵抗の高い領域Aと表面抵抗の低い領域Bの幅としての、より好ましい範囲は1mm以上10mm以下である。また、表面抵抗の高い領域Aと表面抵抗の低い領域Bの幅の角度としては、10°以上80°以下の範囲が好ましく、より好ましい範囲は40°以上70°以下である。   Further, the width and spiral pitch of the first region A having a relatively high surface resistance and the second region B having a relatively low surface resistance are the processing speed of the electron beam irradiation, the number of rotations of the roller, and the electron beam irradiation port. And the angle between the roller and the roller. As a guideline for the width of the region A having a high surface resistance and the region B having a low surface resistance, it is preferable that the regions A and B are alternately formed in a spiral shape within a range of 1 mm to 30 mm. A more preferable range of the width of the region A having a high surface resistance and the region B having a low surface resistance is 1 mm or more and 10 mm or less. In addition, the width angle between the region A having a high surface resistance and the region B having a low surface resistance is preferably in the range of 10 ° to 80 °, and more preferably in the range of 40 ° to 70 °.

更に、表面抵抗の高い領域Aと表面抵抗の低い領域Bの深さとしては、最表面の抵抗のみが高い領域Aと低い領域Bでスパイラル状に交互に配置されていれば、特に限定されないが、目安としては、最表面から100μm程度の深さにまで、各領域が形成されていることが好ましい。
また、表面抵抗の高い領域Aと表面抵抗の低い領域Bの抵抗比は、1.2倍以上10倍以下が好ましく、1.2倍以上とすることで本発明の効果をより有効に発揮させ得る。また、10倍以下とすることで、電子写真画像への濃度ムラの発生を有効に抑制することができる。
表面抵抗の高い領域Aと表面抵抗の低い領域Bの境界部はなだらかな変化になっていても良く、表面抵抗の最も高い領域Aと表面抵抗の最も低い領域Bがスパイラル状に交互に形成されていれば良い。
Further, the depth of the region A having a high surface resistance and the region B having a low surface resistance is not particularly limited as long as the regions A and B having only the uppermost surface resistance are alternately arranged in a spiral shape. As a guide, each region is preferably formed from the outermost surface to a depth of about 100 μm.
Further, the resistance ratio between the region A having a high surface resistance and the region B having a low surface resistance is preferably 1.2 times or more and 10 times or less, and by making the resistance ratio 1.2 times or more, the effect of the present invention can be exhibited more effectively. obtain. Further, by setting it to 10 times or less, it is possible to effectively suppress the occurrence of density unevenness in the electrophotographic image.
The boundary between the region A having a high surface resistance and the region B having a low surface resistance may be gently changed, and the region A having the highest surface resistance and the region B having the lowest surface resistance are alternately formed in a spiral shape. It should be.

処理スピードとしては10mm/s以上200mm/s以下、ローラ回転数としては20rpm以上1000rpm以下、電子線の照射口と導電性ローラとの角度としては10°以上90°以下の範囲が好ましい。これらの範囲は、表面抵抗の高い第1領域Aと表面抵抗の低い第2領域Bの幅によって適宜選択すれば良い。   The processing speed is preferably 10 mm / s or more and 200 mm / s or less, the roller rotation speed is 20 rpm or more and 1000 rpm or less, and the angle between the electron beam irradiation port and the conductive roller is preferably 10 ° or more and 90 ° or less. These ranges may be appropriately selected depending on the widths of the first region A having a high surface resistance and the second region B having a low surface resistance.

前記以外で、導電性ローラの軸方向にスパイラル状に領域Aと領域Bを交互に形成する方法としては、1mm以上30mm以下程度の幅の加熱された金属部材に、ローラを押し当ててローラ回転、水平移動をさせる方法でも良い。図4にヒーター41により加熱した金属部材42を、導電性ローラ10に押し当て、ステージ44の上に設置したモータ43により導電ローラ10を矢印45の方向へ水平移動させる方法の模式図を示す。
また、導電性ローラの軸方向にスパイラル状に領域Aと領域Bを交互に形成する方法としては、ローラ表面に直接、スパイラル状にマスキングをして電子線による照射を行っても良い。この場合、マスキングする部材としては、電子線を透過しにくい金属箔、電子線を透過しにくくマスキング可能な厚さで使用すれば良い。
Other than the above, the method of alternately forming the regions A and B in a spiral shape in the axial direction of the conductive roller is to rotate the roller by pressing the roller against a heated metal member having a width of about 1 mm to 30 mm. Alternatively, a horizontal movement method may be used. FIG. 4 is a schematic diagram showing a method of pressing the metal member 42 heated by the heater 41 against the conductive roller 10 and horizontally moving the conductive roller 10 in the direction of the arrow 45 by the motor 43 installed on the stage 44.
Further, as a method of alternately forming the regions A and B in a spiral shape in the axial direction of the conductive roller, the surface of the roller may be directly masked in a spiral shape and irradiated with an electron beam. In this case, as a member to be masked, a metal foil that hardly transmits an electron beam or a thickness that can hardly mask an electron beam and can be masked may be used.

<画像形成装置>
本発明の実施の形態である導電性ローラ及び導電性ローラの製造方法により得られた導電性ローラ10は、LBP(Laser Beam Printer)、複写機及びファクシミリ等の画像形成装置の電子写真用部材として用いられる。ここでは、画像形成装置の概略を示す模式図を図5に示した。
<Image forming apparatus>
The conductive roller 10 obtained by the conductive roller and the conductive roller manufacturing method according to the embodiment of the present invention is used as an electrophotographic member of an image forming apparatus such as an LBP (Laser Beam Printer), a copying machine, or a facsimile. Used. Here, a schematic diagram showing an outline of the image forming apparatus is shown in FIG.

像担持体は、回転ドラム型の電子写真感光体(感光体ドラム)51である。この電子写真感光体51は、図中の矢印が示す時計回りに所定の周速度(プロセススピード)で回転駆動する。電子写真感光体51には、例えばロール状の導電性支持体と該支持体上に無機感光材料または有機感光材料を含有する感光層とを少なくとも有する公知の電子写真感光体等を採用すればよい。   The image carrier is a rotating drum type electrophotographic photosensitive member (photosensitive drum) 51. The electrophotographic photoreceptor 51 is rotationally driven at a predetermined peripheral speed (process speed) in the clockwise direction indicated by the arrow in the drawing. As the electrophotographic photoreceptor 51, for example, a known electrophotographic photoreceptor having at least a roll-like conductive support and a photosensitive layer containing an inorganic photosensitive material or an organic photosensitive material on the support may be employed. .

帯電ローラ52には本発明の導電性ローラ10を適用する。帯電ローラ52と帯電ローラ52に帯電バイアスを印加する帯電バイアス印加電源S1とによって帯電手段が構成されている。帯電ローラ52は、電子写真感光体51に所定の押圧力で接触させてあり、電子写真感光体51の回転に対して順方向に回転駆動する。この帯電ローラ52に対して帯電バイアス印加電源S1から、所定の直流電圧が印加されることで、被帯電体である電子写真感光体51の表面が所定の極性電位に一様に帯電処理される(DC帯電)。このDC帯電のほかにもAC/DC重畳帯電、注入帯電等の公知の帯電法を用いることができる。
また、露光手段53には公知の手段を利用することができ、例えばレーザービームスキャナー等を好適に例示することができる。
電子写真感光体51の帯電処理面に該露光手段53により目的の画像情報に対応した像露光がなされることにより、帯電面の露光明部の電位が選択的に低下(減衰)して電子写真感光体51に静電潜像が形成される。
The conductive roller 10 of the present invention is applied to the charging roller 52. The charging means is constituted by the charging roller 52 and a charging bias application power source S1 for applying a charging bias to the charging roller 52. The charging roller 52 is brought into contact with the electrophotographic photosensitive member 51 with a predetermined pressing force, and is driven to rotate in the forward direction with respect to the rotation of the electrophotographic photosensitive member 51. By applying a predetermined DC voltage from the charging bias application power source S1 to the charging roller 52, the surface of the electrophotographic photosensitive member 51, which is a member to be charged, is uniformly charged to a predetermined polarity potential. (DC charging). In addition to this DC charging, known charging methods such as AC / DC superimposed charging and injection charging can be used.
Moreover, a well-known means can be utilized for the exposure means 53, for example, a laser beam scanner etc. can be illustrated suitably.
The exposure unit 53 performs image exposure corresponding to the target image information on the charged surface of the electrophotographic photosensitive member 51, whereby the potential of the exposed bright portion of the charged surface is selectively lowered (attenuated), thereby causing electrophotography. An electrostatic latent image is formed on the photoreceptor 51.

現像手段54としては公知の手段を利用することができる。例えば、トナーを収容する現像容器の開口部に配設されてトナーを担持搬送するトナー担持体54aと、収容されているトナーを撹拌する撹拌部材54bと、トナー担持体54aのトナーの担持量を規制するトナー規制部材54cとを有する構成とすることができる。現像手段54は、電子写真感光体51表面の静電潜像の露光明部に、電子写真感光体51の帯電極性と同極性に帯電しているトナー(ネガトナー)を選択的に付着させて静電潜像をトナー像として可視化する。現像方式としては特に制限はなく、既存の方法を用いることができる。例えば、ジャンピング現像方式、接触現像方式及び磁気ブラシ方式等が存在するが、特にカラー画像を出力する画像形成装置には、トナーの飛散性改善等の目的より、接触現像方式の現像ローラが好ましい。   A known means can be used as the developing means 54. For example, a toner carrier 54a that is disposed in an opening of a developer container that contains toner and carries and transports the toner, an agitating member 54b that stirs the contained toner, and a toner carrying amount of the toner carrier 54a. The toner restricting member 54c may be configured to be restricted. The developing means 54 selectively adheres a toner (negative toner) charged to the same polarity as the charged polarity of the electrophotographic photosensitive member 51 to the exposed bright portion of the electrostatic latent image on the surface of the electrophotographic photosensitive member 51. The electrostatic latent image is visualized as a toner image. There is no restriction | limiting in particular as a image development system, The existing method can be used. For example, there are a jumping development system, a contact development system, a magnetic brush system, and the like. In particular, in an image forming apparatus that outputs a color image, a contact development system development roller is preferable for the purpose of improving toner scattering.

転写ローラ55は、電子写真感光体51に所定の押圧力で接触させて転写ニップ部を形成させてあり、電子写真感光体51の回転と順方向に電子写真感光体51の回転周速度とほぼ同じ周速度で回転する。また、転写バイアス印加電源S2からトナーの帯電特性とは逆極性の転写電圧が印加される。転写ニップ部に対して不図示の給紙機構部から転写材Pが所定のタイミングで給紙される。その転写材Pの裏面が転写電圧を印加した転写ローラ55により、トナーの帯電極性とは逆極性に帯電されることにより、転写ニップ部において電子写真感光体51面側のトナー画像が転写材Pの表面側に静電転写される。   The transfer roller 55 is brought into contact with the electrophotographic photosensitive member 51 with a predetermined pressing force to form a transfer nip portion. The transfer roller 55 is approximately equal to the rotational peripheral speed of the electrophotographic photosensitive member 51 in the forward direction with the rotation of the electrophotographic photosensitive member 51. Rotates at the same peripheral speed. Further, a transfer voltage having a polarity opposite to the charging characteristics of the toner is applied from the transfer bias application power source S2. The transfer material P is fed to the transfer nip portion from a paper feed mechanism portion (not shown) at a predetermined timing. The back surface of the transfer material P is charged to a polarity opposite to the charging polarity of the toner by the transfer roller 55 to which a transfer voltage is applied, so that the toner image on the surface of the electrophotographic photosensitive member 51 is transferred to the transfer material P at the transfer nip portion. Electrostatic transfer to the surface side of

転写ニップ部でトナー画像の転写を受けた転写材Pは電子写真感光体面から分離して、不図示のトナー画像定着手段へ導入されて、トナー画像の定着を受けて画像形成物として出力される。両面画像形成モードや多重画像形成モードの場合は、この画像形成物が不図示の再循環搬送機機構に導入されて転写ニップ部へ再導入される。
転写残余トナー等の電子写真感光体51の上の残留物は、ブレード型等のクリーニング手段56により、被帯電体上より回収される。
また、画像不良などの観点から、必要な場合には前露光手段57があるとよい。被帯電体51に滞留電荷が残るような場合には、帯電部材52による一次帯電を行う前に、前露光手段57によって被帯電体51の滞留電荷を除去した方が良い。
The transfer material P that has received the transfer of the toner image at the transfer nip is separated from the surface of the electrophotographic photosensitive member, introduced into a toner image fixing unit (not shown), and fixed as a toner image and output as an image formed product. . In the case of the double-sided image forming mode or the multiple image forming mode, the image formed product is introduced into a recirculation conveyance mechanism (not shown) and reintroduced into the transfer nip portion.
Residues on the electrophotographic photosensitive member 51 such as transfer residual toner are collected from the charged member by a cleaning means 56 such as a blade type.
Further, from the viewpoint of image defects and the like, pre-exposure means 57 may be provided if necessary. In the case where the staying charge remains on the member 51 to be charged, it is better to remove the staying charge on the member 51 to be charged by the pre-exposure means 57 before the primary charging by the charging member 52.

また、電子写真装置として、上述の電子写真感光体、帯電部材、現像部材、クリーニング部材、トナー等やトナー容器、廃トナー容器等のうち複数のものを一体に結合したプロセスカートリッジを電子写真装置本体に対して着脱自在に構成しても良い。プロセスカートリッジとすることで、劣化の激しい部材を一括して交換することができる、トナーが飛散することなくトナーの補充と廃トナーの回収をする事ができる等の利点がある。   In addition, as the electrophotographic apparatus, a process cartridge in which a plurality of the above-described electrophotographic photosensitive member, charging member, developing member, cleaning member, toner and the like, a toner container, a waste toner container, and the like are integrally coupled is an electrophotographic apparatus main body. However, it may be configured so as to be detachable. By using a process cartridge, it is possible to replace the members that are severely deteriorated at once, and to replenish the toner and collect the waste toner without scattering the toner.

また本発明の導電性ローラを帯電ローラの例で説明したが、導電性ローラであれば現像ローラ、転写ローラ、等でも良く、特に限定はしない。   Although the conductive roller of the present invention has been described as an example of a charging roller, it may be a developing roller, a transfer roller, or the like as long as it is a conductive roller, and is not particularly limited.

<電気抵抗測定>
図6に導電性ローラの電気抵抗の測定方法を示す。直径(φ)30mmのステンレスローラ61の上に導電性ローラ10を乗せ、その両端の芯金上に500gの荷重をかけ当接させて、ステンレスローラ61の回転速度を30rpmにして、導電性ローラ62を従動回転させる。従動回転させながらバイアス印加電源65から直流電圧−200Vを印加し、この時に流れる電流を、固定抵抗器(1kΩ)63とレコーダー64を並列につなぎ、レコーダー64で測定し、導電性ローラの電気抵抗を計算する。この状態で1000Hzの間隔で電気抵抗をサンプリングし、2秒間の平均値を、導電性ローラの軸方向全長の電気抵抗として測定する。試験環境としては、温度23℃湿度50%RHで行う。
<Electrical resistance measurement>
FIG. 6 shows a method for measuring the electrical resistance of the conductive roller. The conductive roller 10 is placed on a stainless roller 61 having a diameter (φ) of 30 mm, a load of 500 g is applied to the metal cores at both ends thereof, and the rotational speed of the stainless roller 61 is set to 30 rpm. 62 is driven to rotate. A DC voltage of −200 V is applied from the bias application power source 65 while being driven to rotate, and the current flowing at this time is measured by the recorder 64 by connecting the fixed resistor (1 kΩ) 63 and the recorder 64 in parallel, and the electric resistance of the conductive roller. Calculate In this state, the electrical resistance is sampled at intervals of 1000 Hz, and the average value for 2 seconds is measured as the electrical resistance of the entire length in the axial direction of the conductive roller. The test environment is a temperature of 23 ° C. and a humidity of 50% RH.

<電気抵抗分布測定>
図7に導電性ローラ表面の電気抵抗分布の測定方法を示す。直径(φ)30mmで幅2mmのステンレスローラ71に20gの荷重をかけ、導電性ローラ10に当接させて、導電性ローラ10を1回転させる。このときステンレスローラ71は従動回転させる。従動回転させながらバイアス印加電源75から直流電圧−10Vを印加し、この時に流れる電流を、固定抵抗器(10kΩ)73とレコーダー74を並列につなぎ、レコーダー74で測定し、導電性ローラ表面の電気抵抗分布を計算する。この状態で1000Hzの間隔で電気抵抗をサンプリングし、2秒間の平均値を、ローラの軸方向2mmピッチで繰り返し測定し、ローラの軸方向全長の電気抵抗分布を測定する。試験環境としては、温度23℃湿度50%RHで行う。
また、導電性ローラの円周方向全長及び軸方向全長の電気抵抗分布をつなぎ合わせることで、導電性ローラ表面を展開させた電気抵抗分布を得ることができる。この導電性ローラ表面を展開させた電気抵抗分布より、高抵抗領域及び低抵抗領域の配置状態、高抵抗領域と低抵抗領域の抵抗差を算出することができる。
<Electrical resistance distribution measurement>
FIG. 7 shows a method for measuring the electrical resistance distribution on the surface of the conductive roller. A load of 20 g is applied to a stainless roller 71 having a diameter (φ) of 30 mm and a width of 2 mm and brought into contact with the conductive roller 10 to rotate the conductive roller 10 once. At this time, the stainless steel roller 71 is driven to rotate. A DC voltage of −10 V is applied from the bias application power source 75 while being driven to rotate, and the current flowing at this time is measured by connecting the fixed resistor (10 kΩ) 73 and the recorder 74 in parallel, and measuring the electric current on the surface of the conductive roller. Calculate the resistance distribution. In this state, the electrical resistance is sampled at an interval of 1000 Hz, and the average value for 2 seconds is repeatedly measured at a pitch of 2 mm in the axial direction of the roller to measure the electrical resistance distribution of the entire length in the axial direction of the roller. The test environment is a temperature of 23 ° C. and a humidity of 50% RH.
Further, by connecting the electrical resistance distributions of the entire length in the circumferential direction and the entire length in the axial direction of the conductive roller, an electrical resistance distribution in which the surface of the conductive roller is developed can be obtained. From the electric resistance distribution developed on the surface of the conductive roller, the arrangement state of the high resistance region and the low resistance region, and the resistance difference between the high resistance region and the low resistance region can be calculated.

以下、実施例、比較例を示して、更に本発明を具体的に説明する。
〔実施例1〕
〈導電性ローラ1の作製〉
表1に記載の原料を加圧式ニーダーで15分間混練した。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[Example 1]
<Preparation of conductive roller 1>
The raw materials shown in Table 1 were kneaded with a pressure kneader for 15 minutes.

更に、加硫促進剤(TBzTD:テトラベンジルチウラムジスルフィド)4.5質量部及び加硫剤としてイオウ1.2質量部を加えて、15分間オープンロールで混練して未加硫ゴム組成物を作製した。
次いで、外径(φ)6mm、長さ252mmのステンレス棒の芯金を用意した。芯金の円柱面の軸方向中央部230mmに導電性加硫接着剤(商品名:「メタロックU−20」、東洋化学研究所製)を塗布し、温度80℃で30分間乾燥した。ここで、クロスヘッド押出機を用いて芯金と未加硫ゴム組成物とを一体に押出して、直径8.80mmの未加硫ゴムの導電性ローラを成形した。押出機は、シリンダー径45mm、L/D=20の押出機を使用し、押出時の温調はヘッド温度90℃、シリンダー温度90℃、スクリュー温度90℃とした。成形した未加硫ゴムの導電性ローラの両端を切断し、弾性層部分の軸方向幅を232mmとした後、温度160℃で1時間の加熱加硫を行った。更にプランジ方式の研磨機で回転砥石を用いた乾式研磨により、端部外径(φ)8.35mm、中央部外径(φ)8.50mmの芯金両端部10mmが露出したクラウン形状の導電性ローラを得た。
Further, 4.5 parts by mass of a vulcanization accelerator (TBzTD: tetrabenzylthiuram disulfide) and 1.2 parts by mass of sulfur as a vulcanizing agent were added and kneaded with an open roll for 15 minutes to produce an unvulcanized rubber composition. did.
Next, a stainless bar core bar having an outer diameter (φ) of 6 mm and a length of 252 mm was prepared. A conductive vulcanizing adhesive (trade name: “Metaloc U-20”, manufactured by Toyo Chemical Research Laboratories) was applied to 230 mm in the axial central portion of the cylindrical surface of the cored bar, and dried at a temperature of 80 ° C. for 30 minutes. Here, the cored bar and the unvulcanized rubber composition were integrally extruded using a crosshead extruder to form an unvulcanized rubber conductive roller having a diameter of 8.80 mm. The extruder used was an extruder with a cylinder diameter of 45 mm and L / D = 20. The temperature during extrusion was adjusted to a head temperature of 90 ° C., a cylinder temperature of 90 ° C., and a screw temperature of 90 ° C. Both ends of the molded unvulcanized rubber conductive roller were cut so that the axial width of the elastic layer portion was 232 mm, followed by heat vulcanization at a temperature of 160 ° C. for 1 hour. Further, by dry polishing using a rotating grindstone with a plunge type polishing machine, a crown-shaped conductive body having 10 mm of both ends exposed at the core outer diameter (φ) of 8.35 mm and the center outer diameter (φ) of 8.50 mm is exposed. A sex roller was obtained.

〈表面処理工程〉
得られた導電性ローラの表面に電子線の照射を行った。電子線の照射には電子線照射装置(商品名:「EC150/45/40mA」、岩崎電気株式会社製)を用い、照射時の雰囲気に窒素ガスパージを行った。電子線照射条件:加速電圧150kV、電子電流30mAで電子線の照射を行い、照射時の雰囲気の酸素濃度は500ppmであった。導電性ローラを照射口に対して60°に傾け、200rpmで回転させながら処理スピード50mm/sで搬送して電子線の照射を行った。このようにして、導電性ローラ1を得た。
<Surface treatment process>
The surface of the obtained conductive roller was irradiated with an electron beam. An electron beam irradiation apparatus (trade name: “EC150 / 45/40 mA”, manufactured by Iwasaki Electric Co., Ltd.) was used for electron beam irradiation, and nitrogen atmosphere was purged into the atmosphere during irradiation. Electron beam irradiation conditions: An electron beam was irradiated at an acceleration voltage of 150 kV and an electron current of 30 mA, and the oxygen concentration in the atmosphere at the time of irradiation was 500 ppm. The conductive roller was tilted at 60 ° with respect to the irradiation port, and conveyed at a processing speed of 50 mm / s while being rotated at 200 rpm, and was irradiated with an electron beam. In this way, a conductive roller 1 was obtained.

[画像評価]
導電性ローラを帯電ローラとして図5に示す電子写真用カートリッジに組込み、この電子写真用カートリッジをA4紙縦出力用の電子写真装置(商品名:「LaserJet P1005」、 ヒューレット・パッカード製)に組込み画像評価を行った。温度23℃、湿度50%RHの環境下において、ハーフトーン画像(電子写真感光体の回転方向と垂直方向に幅1ドットの線を間隔2ドットで描く画像)を出力し、画像の均一性を目視することによって、帯電ローラのリーク性能と帯電均一性の評価を行った。
[Image evaluation]
A conductive roller is incorporated into the electrophotographic cartridge shown in FIG. 5 as a charging roller, and this electrophotographic cartridge is incorporated into an electrophotographic apparatus for A4 paper vertical output (trade name: “LaserJet P1005”, manufactured by Hewlett-Packard). Evaluation was performed. A halftone image (an image in which a line with a width of 1 dot is drawn at intervals of 2 dots in the direction perpendicular to the rotation direction of the electrophotographic photosensitive member) is output in an environment of a temperature of 23 ° C. and a humidity of 50% RH, and the uniformity of the image is output. The leakage performance and charging uniformity of the charging roller were evaluated by visual inspection.

[リーク性能の評価]
帯電ローラのリーク性能の評価は、電子写真感光体(感光体ドラム)に、直径が0.3mmで深さが下引き層の手前までのピンホールを電子写真感光体の表面に対し垂直に空け、これを用いてハーフトーン画像を出力し、評価を行った。このときに感光体上のピンホールの位置から画像出力方向に対し水平に周囲との画像濃度が著しく異なる場合をピンホールリークという画像不良が起こっている(電子写真感光体の軸方向、すなわち画像の両端まで横線が入る)と判断し、表2のように評価した。また、実用可能なレベルとしては、Bランクレベル以上と判断した。
[Evaluation of leak performance]
To evaluate the leakage performance of the charging roller, a pinhole with a diameter of 0.3 mm and a depth just before the undercoat layer is made perpendicular to the surface of the electrophotographic photosensitive member. This was used to output a halftone image for evaluation. At this time, when the image density is significantly different from the position of the pinhole on the photoreceptor horizontally with respect to the image output direction, an image defect called pinhole leak occurs (the axial direction of the electrophotographic photoreceptor, that is, the image A horizontal line was inserted to both ends of the plate) and evaluated as shown in Table 2. Moreover, it was determined that the practical level was B rank level or higher.

[帯電均一性の評価]
帯電ローラの帯電均一性の評価は、電子写真感光体(感光体ドラム)にピンホールを作製していない電子写真感光体を用いてハーフトーン画像を出力し、表3のように評価した。また、実用可能なレベルとしては、Bランクレベル以上と判断した。
[Evaluation of charging uniformity]
Evaluation of the charging uniformity of the charging roller was carried out by outputting a halftone image using an electrophotographic photosensitive member in which no pinhole was formed on the electrophotographic photosensitive member (photosensitive drum). Moreover, it was determined that the practical level was B rank level or higher.

導電性ローラ1の電気抵抗を測定した結果、5×10Ωであった。導電性ローラ1の表面の電気抵抗分布を測定した結果、図1(b)における領域の幅の角度θ1が60度、高抵抗領域の幅(16)が6mm、低抵抗領域の幅(17)が9mm、抵抗比が1.8倍であった。導電性ローラ1の処方、電子線照射条件、導電性ローラの特性、及び画像評価結果を表4に示す。 The electric resistance of the conductive roller 1 was measured and found to be 5 × 10 3 Ω. As a result of measuring the electrical resistance distribution on the surface of the conductive roller 1, the region width angle θ1 in FIG. 1B is 60 degrees, the high resistance region width (16) is 6 mm, and the low resistance region width (17). Was 9 mm, and the resistance ratio was 1.8 times. Table 4 shows the prescription of the conductive roller 1, the electron beam irradiation conditions, the characteristics of the conductive roller, and the image evaluation results.

〔実施例2〕
〈導電性ローラ2の作製〉
電子線照射条件を加速電圧80kV、電子電流30mAに変更した以外は実施例1と同様な方法で、導電性ローラ2を得た。導電性ローラ2の電気抵抗を測定した結果、5×10Ωであった。導電性ローラ2の処方、電子線照射条件、導電性ローラの特性、及び画像評価結果を表4に示す。
[Example 2]
<Preparation of conductive roller 2>
A conductive roller 2 was obtained in the same manner as in Example 1 except that the electron beam irradiation conditions were changed to an acceleration voltage of 80 kV and an electron current of 30 mA. As a result of measuring the electric resistance of the conductive roller 2, it was 5 × 10 3 Ω. Table 4 shows the prescription of the conductive roller 2, the electron beam irradiation conditions, the characteristics of the conductive roller, and the image evaluation results.

〔実施例3〕
〈導電性ローラ3の作製〉
電子線照射条件を加速電圧150kV、電子電流10mAとし、導電性ローラを照射口に対して45°に傾け、200rpmで回転させながら処理スピード50mm/sで搬送した以外は、実施例1と同様な方法で、導電性ローラ3を得た。導電性ローラ3の電気抵抗を測定した結果、5×10Ωであった。導電性ローラ3の処方、電子線照射条件、導電性ローラの特性、及び画像評価結果を表4に示す。
Example 3
<Preparation of conductive roller 3>
Except that the electron beam irradiation conditions were an acceleration voltage of 150 kV and an electron current of 10 mA, the conductive roller was inclined at 45 ° with respect to the irradiation port, and was rotated at 200 rpm and conveyed at a processing speed of 50 mm / s. In this way, a conductive roller 3 was obtained. As a result of measuring the electric resistance of the conductive roller 3, it was 5 × 10 3 Ω. Table 4 shows the prescription of the conductive roller 3, the electron beam irradiation conditions, the characteristics of the conductive roller, and the image evaluation results.

〔実施例4〕
〈導電性ローラ4の作製〉
導電性ローラを照射口に対して60°に傾け、180rpmで回転させながら処理スピード30mm/sで搬送した以外は、実施例1と同様な方法で、導電性ローラ4を得た。導電性ローラ4の電気抵抗を測定した結果、5×10Ωであった。導電性ローラ4の処方、電子線照射条件、導電性ローラの特性、及び画像評価結果を表4に示す。
Example 4
<Preparation of conductive roller 4>
A conductive roller 4 was obtained in the same manner as in Example 1 except that the conductive roller was inclined at 60 ° with respect to the irradiation port and conveyed at a processing speed of 30 mm / s while rotating at 180 rpm. As a result of measuring the electric resistance of the conductive roller 4, it was 5 × 10 3 Ω. Table 4 shows the prescription of the conductive roller 4, the electron beam irradiation conditions, the characteristics of the conductive roller, and the image evaluation results.

〔実施例5〕
〈導電性ローラ5の作製〉
導電性ローラを照射口に対して60°に傾け、150rpmで回転させながら処理スピード50mm/sで搬送した以外は、実施例1と同様な方法で、導電性ローラ5を得た。導電性ローラ5の電気抵抗を測定した結果、5×10Ωであった。導電性ローラ5の処方、電子線照射条件、導電性ローラの特性、及び画像評価結果を表4に示す。
Example 5
<Preparation of conductive roller 5>
A conductive roller 5 was obtained in the same manner as in Example 1 except that the conductive roller was inclined at 60 ° with respect to the irradiation port and conveyed at a processing speed of 50 mm / s while rotating at 150 rpm. As a result of measuring the electric resistance of the conductive roller 5, it was 5 × 10 3 Ω. Table 4 shows the prescription of the conductive roller 5, the electron beam irradiation conditions, the characteristics of the conductive roller, and the image evaluation results.

〔実施例6〕
〈導電性ローラ6の作製〉
原料のNBRからSBR(溶液重合SBR、商品名:「タフデン2003」、旭化成ケミカルズ社製)に変更し、カーボンブラックの配合量を58質量部に変更した以外は、実施例1と同様な方法で導電性ローラ6を得た。導電性ローラ6の電気抵抗を測定した結果、5×10Ωであった。導電性ローラ6の処方、電子線照射条件、導電性ローラの特性、及び画像評価結果を表4に示す。
Example 6
<Preparation of conductive roller 6>
The same method as in Example 1 except that the raw material NBR was changed to SBR (solution polymerization SBR, trade name: “Toughden 2003”, manufactured by Asahi Kasei Chemicals Corporation), and the amount of carbon black was changed to 58 parts by mass. A conductive roller 6 was obtained. As a result of measuring the electric resistance of the conductive roller 6, it was 5 × 10 3 Ω. Table 4 shows the prescription of the conductive roller 6, the electron beam irradiation conditions, the characteristics of the conductive roller, and the image evaluation results.

〔実施例7〕
〈導電性ローラ7の作製〉
原料のNBRからNBR:SBR=55質量部:45質量部のブレンド混合に変更し、カーボンブラックの配合量を40質量部に変更した以外は、実施例1と同様な方法で導電性ローラ7を得た。導電性ローラ7の電気抵抗を測定した結果、5×10Ωであった。導電性ローラ7の処方、電子線照射条件、導電性ローラの特性、及び画像評価結果を表4に示す。
Example 7
<Preparation of conductive roller 7>
The conductive roller 7 was changed in the same manner as in Example 1 except that the raw material NBR was changed to blend mixing of NBR: SBR = 55 parts by mass: 45 parts by mass and the compounding amount of carbon black was changed to 40 parts by mass. Obtained. As a result of measuring the electric resistance of the conductive roller 7, it was 5 × 10 3 Ω. Table 4 shows the prescription of the conductive roller 7, the electron beam irradiation conditions, the characteristics of the conductive roller, and the image evaluation results.

〔比較例1〕
〈導電性ローラ8の作製〉
電子線照射の際に、導電性ローラを照射口に対して0°すなわち導電性ローラを照射口と平行に配置して、500rpmで回転させながら処理スピード20mm/sで搬送して電子線の照射を行った以外は、実施例1と同様な方法で導電性ローラ8を得た。
導電性ローラ8の電気抵抗を測定した結果、5×10Ωであった。導電性ローラ表面の電気抵抗分布を測定した結果を、図8に示す。図8において、81は導電性ローラ8の円周方向、82は導電性ローラ8の軸方向を示す。導電性ローラ8の処方、電子線照射条件、導電性ローラの特性、及び画像評価結果を表4に示す。
[Comparative Example 1]
<Preparation of conductive roller 8>
When irradiating an electron beam, the conductive roller is placed at 0 ° with respect to the irradiation port, that is, the conductive roller is arranged in parallel with the irradiation port, and is rotated at 500 rpm and conveyed at a processing speed of 20 mm / s. A conductive roller 8 was obtained in the same manner as in Example 1 except that the above was performed.
As a result of measuring the electric resistance of the conductive roller 8, it was 5 × 10 3 Ω. The result of measuring the electrical resistance distribution on the surface of the conductive roller is shown in FIG. In FIG. 8, 81 indicates the circumferential direction of the conductive roller 8, and 82 indicates the axial direction of the conductive roller 8. Table 4 shows the prescription of the conductive roller 8, the electron beam irradiation conditions, the characteristics of the conductive roller, and the image evaluation results.

〔比較例2〕
〈導電性ローラ9の作製〉
導電性ローラの円周方向に対して、垂直に帯状のステンレス箔(厚さ200μm、幅2.7mm、長さ232mm)を等間隔に5.4mmのピッチで円周方向の5箇所に配置してマスキングをした。それ以外は、比較例1と同様な方法で、導電性ローラ表面に電子線の照射を行った。導電性ローラ9の電気抵抗を測定した結果、5×10Ωであった。導電性ローラ表面の電気抵抗分布を測定した結果を、図9に示す。図9において、91は導電性ローラ9の円周方向、92は導電性ローラ9の軸方向、93は高抵抗領域、94は低抵抗領域を示す。導電性ローラ9の処方、電子線照射条件、導電性ローラの特性、及び画像評価結果を表4に示す。
[Comparative Example 2]
<Preparation of conductive roller 9>
A strip-shaped stainless steel foil (thickness: 200 μm, width: 2.7 mm, length: 232 mm) is arranged at five intervals in the circumferential direction at equal intervals of 5.4 mm with respect to the circumferential direction of the conductive roller. And masked. Otherwise, the surface of the conductive roller was irradiated with an electron beam in the same manner as in Comparative Example 1. The electric resistance of the conductive roller 9 was measured and found to be 5 × 10 3 Ω. The result of measuring the electrical resistance distribution on the surface of the conductive roller is shown in FIG. In FIG. 9, 91 indicates the circumferential direction of the conductive roller 9, 92 indicates the axial direction of the conductive roller 9, 93 indicates a high resistance region, and 94 indicates a low resistance region. Table 4 shows the prescription of the conductive roller 9, the electron beam irradiation conditions, the characteristics of the conductive roller, and the image evaluation results.

〔比較例3〕
〈導電性ローラ10の作製〉
導電性ローラの軸方向に対して垂直に帯状のステンレス箔(厚さ200μm、幅7mm、φ8.5mmローラ全周26.7mm)を等間隔に13.6mmのピッチで導電性ローラの軸方向の17箇所に配置してマスキングをした。それ以外は比較例1と同様な方法で、導電性ローラ表面に電子線の照射を行った。導電性ローラ10の電気抵抗を測定した結果、5×10Ωであった。導電性ローラ表面の電気抵抗分布を測定した結果を、図10に示す。図10において、101は導電性ローラ10の円周方向、102は導電性ローラの軸方向、103は高抵抗領域、104は低抵抗領域を示す。導電性ローラ10の処方、電子線照射条件、導電性ローラの特性、及び画像評価結果を表4に示す。
[Comparative Example 3]
<Production of Conductive Roller 10>
A strip-shaped stainless steel foil (thickness 200 μm, width 7 mm, φ8.5 mm roller circumference 26.7 mm) perpendicular to the axial direction of the conductive roller is spaced at an equal interval of 13.6 mm in the axial direction of the conductive roller. Masking was performed at 17 locations. Otherwise, the surface of the conductive roller was irradiated with an electron beam in the same manner as in Comparative Example 1. As a result of measuring the electric resistance of the conductive roller 10, it was 5 × 10 3 Ω. The result of measuring the electrical resistance distribution on the surface of the conductive roller is shown in FIG. In FIG. 10, 101 indicates the circumferential direction of the conductive roller 10, 102 indicates the axial direction of the conductive roller, 103 indicates a high resistance region, and 104 indicates a low resistance region. Table 4 shows the prescription of the conductive roller 10, electron beam irradiation conditions, the characteristics of the conductive roller, and the image evaluation results.

10 導電性ローラ
11 芯金
12 導電粒子
13 導電性ゴム弾性層
14 導電性ゴム弾性層表面の相対的に表面抵抗の高い第1領域A
15 導電性ゴム弾性層表面の相対的に表面抵抗の低い第2領域B
16 高抵抗領域の幅
17 低抵抗領域の幅
DESCRIPTION OF SYMBOLS 10 Conductive roller 11 Core metal 12 Conductive particle 13 Conductive rubber elastic layer 14 1st area | region A with relatively high surface resistance of the conductive rubber elastic layer surface
15 Second region B having a relatively low surface resistance on the surface of the conductive rubber elastic layer
16 Width of high resistance region 17 Width of low resistance region

Claims (3)

芯金と、表面層としての導電性ゴム弾性層とを有する帯電ローラであって、
該導電性ゴム弾性層の表面に導電粒子が露出しており、該導電性ゴム弾性層の表面に、相対的に表面抵抗の高い第1領域Aと相対的に表面抵抗の低い第2領域Bとを有し、
該第1領域Aと該第2領域Bが該帯電ローラの軸方向にスパイラル状に交互に配置されていることを特徴とする帯電ローラ。
A charging roller having a cored bar and a conductive rubber elastic layer as a surface layer,
Conductive particles are exposed on the surface of the conductive rubber elastic layer, and the first region A having a relatively high surface resistance and the second region B having a relatively low surface resistance are exposed on the surface of the conductive rubber elastic layer. And
Charging roller first region A and the second region B is characterized in that it is arranged alternately in a spiral shape in the axial direction of the charging roller.
前記第1領域Aと前記第2領域Bとの表面抵抗比は、1.2倍以上10倍以下である請求項1に記載の帯電ローラ。  2. The charging roller according to claim 1, wherein a surface resistance ratio between the first region A and the second region B is 1.2 times or more and 10 times or less. 導電性ゴム弾性層の表面に導電粒子が露出している導電性ローラの製造方法であって、
電子線が照射される電子線照射領域に対して該導電性ローラの軸心を傾斜させた状態で、該軸心を中心に該導電性ローラを回転させ、かつ該導電性ローラを該電子線照射領域に対して垂直な方向に移動させながら、該導電性ゴム弾性層の表面に電子線を照射することにより、該導電性ローラの表面に、相対的に表面抵抗の高い第1領域Aと相対的に表面抵抗の低い第2領域Bとを導電性ローラの軸方向にスパイラル状に交互に形成することを特徴とする導電性ローラの製造方法。
A method for producing a conductive roller in which conductive particles are exposed on the surface of the conductive rubber elastic layer,
In a state where the axis of the conductive roller is inclined with respect to the electron beam irradiation region irradiated with the electron beam, the conductive roller is rotated around the axis and the conductive roller is moved to the electron beam. By irradiating the surface of the conductive rubber elastic layer with an electron beam while moving in a direction perpendicular to the irradiation region, the surface of the conductive roller has a first region A having a relatively high surface resistance. A method of manufacturing a conductive roller, wherein the second regions B having relatively low surface resistance are alternately formed in a spiral shape in the axial direction of the conductive roller.
JP2011173272A 2011-08-08 2011-08-08 Method for manufacturing charging roller and conductive roller Active JP5876684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011173272A JP5876684B2 (en) 2011-08-08 2011-08-08 Method for manufacturing charging roller and conductive roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011173272A JP5876684B2 (en) 2011-08-08 2011-08-08 Method for manufacturing charging roller and conductive roller

Publications (2)

Publication Number Publication Date
JP2013037194A JP2013037194A (en) 2013-02-21
JP5876684B2 true JP5876684B2 (en) 2016-03-02

Family

ID=47886847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011173272A Active JP5876684B2 (en) 2011-08-08 2011-08-08 Method for manufacturing charging roller and conductive roller

Country Status (1)

Country Link
JP (1) JP5876684B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11487214B2 (en) * 2020-11-09 2022-11-01 Canon Kabushiki Kaisha Charging roller, process cartridge, and electrophotographic image forming apparatus
CN116420032A (en) 2020-11-09 2023-07-11 佳能株式会社 Conductive member, process cartridge, and electrophotographic image forming apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2849507B2 (en) * 1992-08-07 1999-01-20 シャープ株式会社 Charging device
JP2007206473A (en) * 2006-02-03 2007-08-16 Fuji Xerox Co Ltd Semiconductive belt, semiconductive roll, and image forming apparatus using them
JP4923827B2 (en) * 2006-07-31 2012-04-25 富士ゼロックス株式会社 Rotating body for cleaning, replacement unit body and image forming apparatus
JP2007004206A (en) * 2006-09-28 2007-01-11 Sharp Corp Developing method and image forming apparatus
JP5414497B2 (en) * 2009-12-11 2014-02-12 キヤノン株式会社 Manufacturing method of rubber roller

Also Published As

Publication number Publication date
JP2013037194A (en) 2013-02-21

Similar Documents

Publication Publication Date Title
US9372429B2 (en) Charging member, manufacturing method for charging member, electrophotographic apparatus, and process cartridge
JP5220230B1 (en) Charging member, method for manufacturing the same, and electrophotographic apparatus
JP5875264B2 (en) Method for manufacturing charging member
KR101569639B1 (en) Charged member, method of manufacturing same, and electronic photograph device
JP5220231B1 (en) Charging member, electrophotographic apparatus and process cartridge
JP4928120B2 (en) Conductive member for electrophotography, electrophotographic apparatus and process cartridge using the same
JP2010256617A (en) Method of manufacturing surface modified rubber roller
JP6724554B2 (en) Intermediate transfer member and image forming apparatus
JP5220222B1 (en) Conductive member
JP2010217521A (en) Conductive rubber roller and transfer roller
JP5876684B2 (en) Method for manufacturing charging roller and conductive roller
JP7046598B2 (en) Manufacturing method of charged member
JP2014228800A (en) Method of manufacturing charging member
JP2011053536A (en) Method of manufacturing elastic member
US9008552B2 (en) Charging member and electrophotographic apparatus
JP5377024B2 (en) Method for manufacturing charging member
CN104145220B (en) Charging member, electronic photographing device and handle box
JP6223068B2 (en) Charging member, process cartridge, electrophotographic apparatus, and method of manufacturing charging member
JP5832262B2 (en) Manufacturing method of conductive roller
JP5317510B2 (en) Charging member, electrophotographic image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160122

R151 Written notification of patent or utility model registration

Ref document number: 5876684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03