JP2010256617A - Method of manufacturing surface modified rubber roller - Google Patents

Method of manufacturing surface modified rubber roller Download PDF

Info

Publication number
JP2010256617A
JP2010256617A JP2009106446A JP2009106446A JP2010256617A JP 2010256617 A JP2010256617 A JP 2010256617A JP 2009106446 A JP2009106446 A JP 2009106446A JP 2009106446 A JP2009106446 A JP 2009106446A JP 2010256617 A JP2010256617 A JP 2010256617A
Authority
JP
Japan
Prior art keywords
electron beam
rubber roller
image
roller
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009106446A
Other languages
Japanese (ja)
Inventor
Toshiro Suzuki
敏郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009106446A priority Critical patent/JP2010256617A/en
Publication of JP2010256617A publication Critical patent/JP2010256617A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Rolls And Other Rotary Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a conductive roller by which soiling of a surface of a rubber roller by toner and external additive adhering to the toner is prevented, oozing of low molecular weight compound from the rubber roller is suppressed and a photoreceptor drum is hardly soiled. <P>SOLUTION: The method of manufacturing a surface modified rubber roller includes: (1) a step of providing a layer composed of material of a rubber layer containing unvulcanized rubber on the peripheral surface of a core bar 4, and forming a vulcanized rubber roller 6 having a vulcanized rubber layer on the peripheral surface of the core bar by heating and vulcanizing the layer; and (2) a step of irradiating the surface of the vulcanized rubber roller with an electron beam to modify the surface thereof. The step (2) includes a step of irradiating the vulcanized rubber layer with the first electron beam and then with the second electron beam, wherein transmission depth of the second electron beam to the vulcanized rubber layer is made smaller than the transmission depth of the first electron beam to the vulcanized rubber layer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電子写真プロセスを利用した画像形成装置に用いる表面改質ゴムローラ(帯電ゴムローラ等)の製造方法に関するものである。   The present invention relates to a method of manufacturing a surface-modified rubber roller (charging rubber roller or the like) used in an image forming apparatus using an electrophotographic process.

近年の画像形成装置は高速化、高耐久化に伴い、画像形成装置に使用される導電性のゴムローラ(帯電ゴムローラ等)には高精度、高耐久化が要求されてきている。画像形成装置に使用される帯電ゴムローラは帯電部材のうち最も一般的なものであり、感光体ドラムに接触して帯電処理を行うものである。帯電ゴムローラに関して、画像形成装置に帯電ゴムローラを用いてハーフトーン画像による画像耐久試験を行った場合、画像耐久をしていくと共にトナー及びトナーに付着している外添剤等により帯電ゴムローラの表面が汚れるという問題がある。その結果、帯電ゴムローラの表面の酷く汚れた部分を起点に白スジといった画像不良が生じる。これは帯電ゴムローラの表面が汚れる事により感光体ドラムに均一な帯電処理ができなくなるからである。帯電ゴムローラの表面が汚れる原因の一つとして、帯電ゴムローラの表面の硬度及び表面近傍の内部の硬度が大きすぎるとトナー及びトナーに付着している外添剤等と帯電ゴムローラの表面との圧力が大きくなり押し潰されることがある。その結果、帯電ゴムローラの表面が汚れてしまう場合がある。また、放置環境によっては、特に苛酷な環境(40℃/90%RH)下での放置において帯電ゴムローラの導電性加硫ゴム層(抵抗層)から低分子量化合物等が染み出し、帯電ゴムローラ表面及び感光体ドラム表面が汚れるという問題がある。この汚れによりハーフトーン画像において画像不良が生じる。これは帯電ゴムローラの表面が汚れる事により感光体ドラムに均一な帯電処理ができなくなるからである。帯電ゴムローラの導電性加硫ゴム層からの低分子量化合物等の染み出し防止のため、保護層、改質層、固化層等でゴム層表面を覆うという提案が多くなされている。保護層は、例えばバインダー高分子に、導電フィラーを適量分散させて電気抵抗を調整した材料から形成される。バインダー高分子としては、例えば、アクリル樹脂、ポリウレタン、ポリアミド、ポリエステル、ポリオレフィン、シリコーン樹脂等が用いられる。また、導電フィラーとしては、例えば、カーボンブラック、グラファイト、酸化チタン、酸化錫等の酸化物、Cu、Ag等の金属酸化物や金属を粒子表面に被覆して導電化した導電粒子などが用いられる。しかし、これら保護層を用いた場合でも、導電性加硫ゴム層内の低分子量化合物のブリードアウトを抑制するためには層の厚みを10μm以上にする必要がある。また保護層内に存在するモノマーや触媒等の低分子量化合物がローラ表面に染み出すこともある。更に、抵抗調整のための膜厚調整や導電剤の分散が困難な場合がある。これに対して、特許文献1は、ゴムローラに紫外線照射をしてゴムローラ表面を改質させる技術を開示している。また、特許文献2は、ゴムローラに電子線照射をしてゴムローラ表面に固化層を形成させる技術を開示している。   In recent years, image forming apparatuses have been required to have high accuracy and high durability for conductive rubber rollers (charging rubber rollers and the like) used in the image forming apparatus as the speed and durability thereof have increased. The charging rubber roller used in the image forming apparatus is the most common charging member, and performs charging processing in contact with the photosensitive drum. Regarding the charging rubber roller, when an image durability test using a half-tone image is performed using a charging rubber roller in the image forming apparatus, the surface of the charging rubber roller is maintained due to the endurance of the image and the toner and external additives attached to the toner. There is a problem of getting dirty. As a result, an image defect such as a white streak occurs starting from a heavily soiled portion of the surface of the charging rubber roller. This is because the surface of the charging rubber roller becomes dirty, so that the photosensitive drum cannot be uniformly charged. As one of the causes of the surface of the charging rubber roller becoming dirty, if the hardness of the surface of the charging rubber roller and the internal hardness in the vicinity of the surface are too large, the pressure between the toner and the external additive attached to the toner and the surface of the charging rubber roller It can become large and crushed. As a result, the surface of the charged rubber roller may become dirty. Further, depending on the leaving environment, a low molecular weight compound or the like may ooze out from the conductive vulcanized rubber layer (resistive layer) of the charging rubber roller, particularly in a harsh environment (40 ° C./90% RH). There is a problem that the surface of the photosensitive drum becomes dirty. This stain causes image defects in the halftone image. This is because the surface of the charging rubber roller becomes dirty, so that the photosensitive drum cannot be uniformly charged. Many proposals have been made to cover the surface of the rubber layer with a protective layer, a modified layer, a solidified layer, or the like in order to prevent the low molecular weight compound from seeping out from the conductive vulcanized rubber layer of the charged rubber roller. The protective layer is formed of, for example, a material in which an electrical resistance is adjusted by dispersing an appropriate amount of a conductive filler in a binder polymer. As the binder polymer, for example, acrylic resin, polyurethane, polyamide, polyester, polyolefin, silicone resin and the like are used. Examples of the conductive filler include oxides such as carbon black, graphite, titanium oxide, and tin oxide, metal oxides such as Cu and Ag, and conductive particles obtained by coating the surface of the particles with metal and the like. . However, even when these protective layers are used, the thickness of the layer needs to be 10 μm or more in order to suppress bleed-out of low molecular weight compounds in the conductive vulcanized rubber layer. Further, low molecular weight compounds such as monomers and catalysts existing in the protective layer may ooze out on the roller surface. Furthermore, it may be difficult to adjust the film thickness for resistance adjustment or to disperse the conductive agent. On the other hand, Patent Document 1 discloses a technique for modifying a rubber roller surface by irradiating the rubber roller with ultraviolet rays. Patent Document 2 discloses a technique for irradiating a rubber roller with an electron beam to form a solidified layer on the surface of the rubber roller.

特開平8−292640号公報JP-A-8-292640 特開平8−283578号公報JP-A-8-283578

本発明者らの検討によれば、上記特許文献1に開示の技術によれば、ゴムローラ表面の硬度を上げて摩擦係数を下げ、感光体に対する粘着力を低減する事ができた。その結果、感光体への汚染をより効果的に抑制できた。しかし、ゴムローラへの紫外線の照射によってはゴムローラ表面の硬度を十分に上げることが困難であった。そのため、導電性加硫ゴム層からの低分子量化合物等のブリードアウトが認められた。一方、特許文献2に開示の技術によれば、ゴムローラ表面の硬度を大きく上げることができた。その結果、導電性加硫ゴム層からの低分子量化合物等のブリードアウトを有効に抑えられた。しかし、ゴムローラに電子線を照射する場合ではゴムローラ表面の硬度が大きくなり、ゴムローラの表面とトナー及びトナーに付着している外添剤等との圧力が大きくなり押し潰され、ゴムローラが汚れてしまうことがあった。このように、上記、導電性加硫ゴム層からの低分子量化合物等のブリードアウトの抑制と、トナー及びトナーに付着している外添剤等によるゴムローラ表面の汚れの抑制との双方を高いレベルで満足させることが従来は困難であった。   According to the study by the present inventors, according to the technique disclosed in Patent Document 1, the hardness of the rubber roller surface is increased to reduce the friction coefficient, and the adhesive force to the photoreceptor can be reduced. As a result, it was possible to more effectively suppress the contamination of the photoreceptor. However, it has been difficult to sufficiently increase the hardness of the rubber roller surface by irradiating the rubber roller with ultraviolet rays. Therefore, bleed out of low molecular weight compounds and the like from the conductive vulcanized rubber layer was observed. On the other hand, according to the technique disclosed in Patent Document 2, the hardness of the rubber roller surface can be greatly increased. As a result, bleeding out of low molecular weight compounds and the like from the conductive vulcanized rubber layer was effectively suppressed. However, when the electron beam is applied to the rubber roller, the hardness of the rubber roller surface is increased, and the pressure between the surface of the rubber roller and the toner and the external additive attached to the toner is increased and crushed, and the rubber roller becomes dirty. There was a thing. As described above, both the suppression of bleed-out of low molecular weight compounds and the like from the conductive vulcanized rubber layer and the suppression of contamination on the surface of the rubber roller due to the toner and external additives attached to the toner are at a high level. In the past, it was difficult to satisfy the above.

そこで、本発明はトナー及びトナーに付着している外添剤等のゴムローラ表面の汚れを防ぎ、且つゴムローラからの低分子量化合物の染み出しを抑制し、感光体ドラムの汚染しにくい導電性ローラの製造方法に向けたものである。   Therefore, the present invention prevents the contamination of the surface of the rubber roller such as the toner and the external additive adhering to the toner, suppresses the leakage of the low molecular weight compound from the rubber roller, and prevents the photosensitive drum from being contaminated. It is for a manufacturing method.

本発明は、芯金と、該芯金の周面に設けられたゴム層とを有する表面改質ゴムローラの製造方法であって、
(1)芯金の周面に未加硫ゴムを含むゴム層の材料からなる層を設け、該層を加熱加硫させて芯金の周面に加硫ゴム層を有する加硫ゴムローラを形成する工程と、
(2)該加硫ゴムローラの表面に電子線を照射して表面改質する工程とを有し、
該工程(2)は、該加硫ゴム層に第1の電子線を照射し、次いで該2の電子線を照射する工程を含み、かつ、該第2の電子線の該加硫ゴム層への透過深さを、該第1の電子線の該加硫ゴム層への透過深さよりも浅くすることを特徴とする表面改質ゴムローラの製造方法である。
The present invention is a method for producing a surface-modified rubber roller having a cored bar and a rubber layer provided on the peripheral surface of the cored bar,
(1) A layer made of a rubber layer material containing unvulcanized rubber is provided on the peripheral surface of the core metal, and the layer is heated and vulcanized to form a vulcanized rubber roller having a vulcanized rubber layer on the peripheral surface of the core metal. And a process of
(2) having a step of surface modification by irradiating the surface of the vulcanized rubber roller with an electron beam;
The step (2) includes a step of irradiating the vulcanized rubber layer with a first electron beam and then irradiating the second electron beam, and the second electron beam is applied to the vulcanized rubber layer. Is made shallower than the penetration depth of the first electron beam into the vulcanized rubber layer.

本発明によれば、ゴムローラの表面近傍の硬度を制御し、トナー及びトナーに付着している外添剤等のゴムローラ表面の汚れを有効に抑制でき、また低分子量化合物等のブリードアウトを有効に抑制できる導電性ローラを低コストで製造することが可能である。   According to the present invention, the hardness in the vicinity of the surface of the rubber roller can be controlled to effectively suppress the contamination of the surface of the rubber roller such as toner and an external additive attached to the toner, and also effectively bleed out low molecular weight compounds and the like. It is possible to manufacture a conductive roller that can be suppressed at low cost.

押出機の模式図Schematic diagram of extruder 電子線照射装置の概略を示す構成図Configuration diagram showing the outline of the electron beam irradiation device 電子線透過部材及び電子線照射装置の概略を示す構成図The block diagram which shows the outline of an electron beam transmission member and an electron beam irradiation apparatus 画像形成装置の概略を示す構成図Configuration diagram showing outline of image forming apparatus 本発明で得られた帯電ゴムローラ断面の一例を示す模式図Schematic diagram showing an example of a cross section of the charged rubber roller obtained in the present invention 本発明で得られた帯電ゴムローラ表面から深さ方向の硬さ分布の一例を示す図The figure which shows an example of the hardness distribution of the depth direction from the charging rubber roller surface obtained by this invention

以下、本発明を、芯金と、該芯金の周面に加硫ゴム層を有し、加硫ゴム層の表面が改質されてなる表面改質ゴムローラ(帯電ローラ)の例で詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to an example of a cored bar and a surface-modified rubber roller (charging roller) having a vulcanized rubber layer on the peripheral surface of the cored bar and the surface of the vulcanized rubber layer being modified. explain.

まず、芯金の周面に未加硫ゴムを含む加硫ゴム層の材料からなる層を設ける。この方法としては以下の方法が挙げられる。射出成形法;加硫ゴム層の材料からなるチューブを芯金に被せる、或いは芯金と加硫ゴム層の材料とを一体に押出して円筒状のゴムローラを成形する押出成形法;トランスファー成形法;プレス成形等。製造時間の短縮を考えると加硫ゴム層の材料を芯金と一体に押出す押出成形法が好ましい。加硫ゴム層の材料からなる層を加熱加硫して加硫ゴム層とする方法に関しては、熱風炉、加硫缶、熱盤、遠・近赤外線、誘導加熱等のいずれの方法でも良く、更に加熱状態の円筒状または平面状の部材に回転させながら押し当てる方法を用いても良い。また、加熱後に所望のローラ形状、ローラ表面粗さにするために回転砥石を用いた乾式研磨をする場合もある。図1には押出機の模式図を示す。押出機1はクロスヘッド2を備える。クロスヘッドは芯金送りローラ3によって送られた芯金4を後ろから挿入でき、芯金と同時に円筒状のゴム材料を一体に押出す事ができる。ゴム材料を芯金の周囲に円筒状に成形した後に、端部を切断・除去処理5を行い、ゴムローラ6とした。   First, a layer made of a vulcanized rubber layer material containing unvulcanized rubber is provided on the peripheral surface of the cored bar. Examples of this method include the following methods. Injection molding method; Extrusion method in which a tube made of a vulcanized rubber layer material is placed on a core metal, or a cylindrical rubber roller is molded by integrally extruding a core metal and a vulcanized rubber layer material; Transfer molding method; Press molding etc. In view of shortening the production time, an extrusion method in which the material of the vulcanized rubber layer is extruded integrally with the core metal is preferable. As for the method of heating and vulcanizing the layer made of the material of the vulcanized rubber layer to make a vulcanized rubber layer, any method such as a hot stove, vulcanized can, hot platen, far / near infrared, induction heating, etc. Furthermore, you may use the method of pressing while rotating on the cylindrical or planar member of a heating state. In some cases, dry grinding using a rotating grindstone may be performed to obtain a desired roller shape and roller surface roughness after heating. FIG. 1 shows a schematic diagram of an extruder. The extruder 1 includes a crosshead 2. The crosshead can insert the cored bar 4 fed by the cored bar feeding roller 3 from behind, and can simultaneously extrude the cylindrical rubber material simultaneously with the cored bar. After the rubber material was formed in a cylindrical shape around the core metal, the end portion was cut and removed 5 to obtain a rubber roller 6.

上記のゴムローラの芯金として使用する材質は、ニッケルメッキしたSUM材等の鋼材を含むステンレススチール棒、リン青銅棒、アルミニウム棒、耐熱樹脂棒が好ましい。   The material used as the core of the rubber roller is preferably a stainless steel rod, a phosphor bronze rod, an aluminum rod, or a heat-resistant resin rod containing a steel material such as a nickel-plated SUM material.

芯金上に設けられたゴム層は導電性の弾性層である。ポリマーとしては、天然ゴム、ブタジエンゴム、ヒドリンゴム、スチレン−ブタジエンゴム、ニトリルゴム、エチレン−プロピレンゴム、ブチルゴム、シリコーンゴム、ウレタンゴム、フッソゴム、塩素ゴム、熱可塑エラストマー等のいずれでも良い。ポリマー中に分散させる導電粉としてはカーボンブラック、導電性カーボン等のカーボン類、及び金属粉、導電性の繊維、或いは酸化スズ等の半導電性金属酸化物粉体、更にこれらの混合物等のいずれでも良い。   The rubber layer provided on the mandrel is a conductive elastic layer. The polymer may be any of natural rubber, butadiene rubber, hydrin rubber, styrene-butadiene rubber, nitrile rubber, ethylene-propylene rubber, butyl rubber, silicone rubber, urethane rubber, fluorine rubber, chlorine rubber, thermoplastic elastomer, and the like. Examples of the conductive powder dispersed in the polymer include carbons such as carbon black and conductive carbon, and metal powder, conductive fiber, semiconductive metal oxide powder such as tin oxide, and a mixture thereof. But it ’s okay.

次に、本発明に用いた電子線照射装置の概略構成図を図2に示して詳細に説明する。   Next, a schematic configuration diagram of the electron beam irradiation apparatus used in the present invention will be described in detail with reference to FIG.

本発明に用いた電子線照射装置はローラを回転させながらローラ表面に電子線を照射するものであり、図2に示すように、電子線発生部7と照射室8と照射口9とを備えるものである。電子線発生部は、電子線を発生するターミナル10と、ターミナルで発生した電子線を真空空間(加速空間)で加速する加速管11とを有するものである。また電子線発生部の内部は、電子が気体分子と衝突してエネルギーを失うことを防ぐため、真空ポンプ等により10-6〜10-7Torrの真空に保たれている。電源によりフィラメント12に電流を通じて加熱するとフィラメントは熱電子を放出し、この熱電子のうち、ターミナルを通過したものだけが電子線として有効に取り出される。そして、電子線の加速電圧により加速管内の加速空間で加速された後、照射口箔13を突き抜け、照射口の下方の照射室内を搬送されるローラに照射される。ローラに電子線を照射する場合、照射室の内部雰囲気は特に限定しないが、一般的には窒素雰囲気又は空気雰囲気である。また、ローラはローラ回転用部材14で回転させて照射室内を搬送手段により、図2において左側から右側に移動する。ローラの搬送方法としては、順送りでもピッチ送りでもよいが、連続的に電子線を照射させることを考慮すると順送りの方が好ましい。ローラの回転数としては、電子線の照射時間にもよるが、照射時間が短いことを考慮すると100〜3000rpmが好ましい。尚、電子線発生部及び照射室の周囲は電子線照射時に二次的に発生するX線が外部へ漏出しないような材料で遮蔽されている。一般的には鉛で遮蔽されている。照射口箔は金属箔からなり、電子線発生部内の真空雰囲気と照射室内の空気雰囲気とを仕切るものであり、また照射口箔を介して照射室内に電子線を取り出すものである。ローラの照射に電子線を用いる場合には、ローラが電子線を照射される照射室の内部は窒素雰囲気又は空気雰囲気である。そのため、電子線発生部と照射室との境界に設ける照射口箔には、ピンホールがなく、電子線発生部内の真空雰囲気を十分維持できる機械的強度があり、しかも、電子線が透過しやすいように比重が小さく肉厚の薄い金属が望ましい。例えば、照射口箔に使用される金属として厚さ約5〜15μm程度のチタンがよく使用される。 The electron beam irradiation apparatus used in the present invention irradiates the surface of a roller with an electron beam while rotating the roller, and includes an electron beam generator 7, an irradiation chamber 8, and an irradiation port 9 as shown in FIG. Is. The electron beam generator includes a terminal 10 that generates an electron beam, and an acceleration tube 11 that accelerates the electron beam generated at the terminal in a vacuum space (acceleration space). Further, the inside of the electron beam generating portion is kept at a vacuum of 10 −6 to 10 −7 Torr by a vacuum pump or the like in order to prevent electrons from colliding with gas molecules and losing energy. When the filament 12 is heated by a power source through current, the filament emits thermoelectrons, and only those thermoelectrons that have passed through the terminal are effectively taken out as electron beams. Then, after being accelerated in an accelerating space in the accelerating tube by an accelerating voltage of an electron beam, it penetrates the irradiation port foil 13 and is irradiated to a roller conveyed in an irradiation chamber below the irradiation port. When irradiating an electron beam to a roller, the internal atmosphere of the irradiation chamber is not particularly limited, but is generally a nitrogen atmosphere or an air atmosphere. Further, the roller is rotated by the roller rotating member 14 and moved from the left side to the right side in FIG. As a method for conveying the rollers, either forward feed or pitch feed may be used, but forward feed is preferable in consideration of continuous electron beam irradiation. The number of rotations of the roller is preferably 100 to 3000 rpm in consideration of the short irradiation time, although it depends on the irradiation time of the electron beam. Note that the periphery of the electron beam generator and the irradiation chamber is shielded by a material that does not leak X-rays that are secondarily generated during electron beam irradiation. Generally it is shielded with lead. The irradiation port foil is made of a metal foil, and partitions the vacuum atmosphere in the electron beam generator and the air atmosphere in the irradiation chamber, and takes out the electron beam into the irradiation chamber through the irradiation port foil. When an electron beam is used for irradiation of the roller, the inside of the irradiation chamber in which the roller is irradiated with the electron beam is a nitrogen atmosphere or an air atmosphere. Therefore, the irradiation port foil provided at the boundary between the electron beam generating part and the irradiation chamber has no pinhole, has a mechanical strength that can sufficiently maintain the vacuum atmosphere in the electron beam generating part, and easily transmits the electron beam. Thus, a metal having a small specific gravity and a small thickness is desirable. For example, titanium having a thickness of about 5 to 15 μm is often used as a metal used for the irradiation port foil.

本実施例では、最大加速電圧150kV・最大電子電流40mAの電子線照射装置(岩崎電気株式会社製)を用いて行った。又、照射時には窒素雰囲気又は空気雰囲気で行う。   In this example, an electron beam irradiation apparatus (manufactured by Iwasaki Electric Co., Ltd.) having a maximum acceleration voltage of 150 kV and a maximum electron current of 40 mA was used. Further, the irradiation is performed in a nitrogen atmosphere or an air atmosphere.

ここで、電子線の透過深さについて説明する。電子線の透過深さは、加速電圧と照射される物質の密度から算出され、下記で定義される。   Here, the transmission depth of the electron beam will be described. The penetration depth of the electron beam is calculated from the acceleration voltage and the density of the irradiated material, and is defined below.

透過深さ(μm)=0.0667×{加速電圧(kV)}5/3/物質の密度(g/cm)
電子線の透過深さは、電子線による改質の指標の一つになる。算出された透過深さまで電子線が到達して改質が行われる。
Permeation depth (μm) = 0.0667 × {acceleration voltage (kV)} 5/3 / material density (g / cm 3 )
The penetration depth of the electron beam is one of the indexes of modification by the electron beam. The electron beam reaches the calculated penetration depth and the modification is performed.

また、電子線の線量は下記で定義される。   The electron beam dose is defined below.

線量(kGy)=[装置定数K×電子電流(mA)]/処理スピード(m/min)
ここで、装置定数Kは、装置個々の効率を表す定数であって、装置の性能の指標となる。例えば本来、電子線照射装置では、K=18以上とする必要がある。したがって、一定の電子電流と処理スピードに対して、加速電圧を変えて線量を測定し、これから得られる装置定数Kが所定の値以上になるような加速電圧を求めることより、加速電圧についての制限が得られる。電子線の線量については、表面処理の効果に応じて適宜選択すれば良い。その調節は、電子電流、処理スピードのいずれでも行う事が可能であり、所望の線量が得られるように決めればよい。今回、あらかじめ線量フィルムを用いてある電子電流・処理スピードでの線量を測定し装置定数Kを算出して、それを基に電子線の線量を算出した。また、ゴムローラの表面に直接、電子線を照射する場合には線量としては、100〜3000kGyが好ましい。電子線照射方法について更に詳細に説明する。導電性加硫ゴム層の材料としては、上記に示しているが電子線の照射によるゴムローラ表面の改質・硬化を考慮すると、ニトリルゴム、スチレン−ブタジエンゴム、ブタジエンゴム、エチレン−プロピレンゴム、ヒドリンゴムが好ましい。電子線の加速電圧は50〜300kVが好ましい。加速電圧をこの範囲内とすることで、導電性加硫ゴムを適度に硬化させることができる。そのためゴムローラ表面の硬度が大きくなりすぎること、及びゴム弾性が小さくなることが抑制できる。そのため、ゴムローラの表面とトナー及びトナーに付着している外添剤等との圧力が大きくなり押し潰され、ゴムローラが汚れることを抑えられる。また、導電性加硫ゴム層の導電性加硫ゴム層からの低分子量化合物等の染み出しによる帯電ゴムローラ表面及び感光体ドラム表面の汚染を抑制できる。
Dose (kGy) = [equipment constant K x electron current (mA)] / processing speed (m / min)
Here, the device constant K is a constant representing the efficiency of each device, and serves as an index of device performance. For example, in an electron beam irradiation apparatus, it is originally necessary to set K = 18 or more. Therefore, for a certain electron current and processing speed, the acceleration voltage is changed, the dose is measured, and the acceleration voltage is determined by obtaining the acceleration voltage so that the device constant K obtained from this is a predetermined value or more. Is obtained. What is necessary is just to select suitably about the dose of an electron beam according to the effect of surface treatment. The adjustment can be performed using either an electronic current or a processing speed, and it is sufficient to determine that a desired dose can be obtained. This time, the dose at an electron current and processing speed using a dose film was measured in advance, and the device constant K was calculated. Based on this, the dose of the electron beam was calculated. Further, when the electron beam is directly irradiated on the surface of the rubber roller, the dose is preferably 100 to 3000 kGy. The electron beam irradiation method will be described in more detail. As the material of the conductive vulcanized rubber layer, nitrile rubber, styrene-butadiene rubber, butadiene rubber, ethylene-propylene rubber, hydrin rubber are shown above, considering the modification / curing of the rubber roller surface by electron beam irradiation. Is preferred. The acceleration voltage of the electron beam is preferably 50 to 300 kV. By setting the acceleration voltage within this range, the conductive vulcanized rubber can be appropriately cured. Therefore, it is possible to suppress the hardness of the rubber roller surface from becoming too large and the rubber elasticity from becoming small. Therefore, the pressure on the surface of the rubber roller and the toner and the external additive or the like adhering to the toner is increased and crushed, and the rubber roller can be prevented from becoming dirty. In addition, contamination of the surface of the charged rubber roller and the surface of the photosensitive drum due to seepage of a low molecular weight compound or the like from the conductive vulcanized rubber layer of the conductive vulcanized rubber layer can be suppressed.

本発明に係る表面改質工程は、該加硫ゴム層に第1の電子線を照射し、次いで該2の電子線を照射する工程を含み、該第2の電子線の該加硫ゴム層への透過深さを、該第1の電子線の該加硫ゴム層への透過深さよりも浅くする。本発明者らが鋭意検討した結果、加硫ゴム層のより深い領域にまで電子線を透過させた後に、それよりも浅い領域に電子線を透過させることが、加硫ゴム層の表面改質の際の硬さ分布の制御性がよいことがわかった。逆に、透過深さの小さい電子線を照射した後にそれよりも透過深さの大きい電子線を照射した場合には、後に照射した透過深さの大きい電子線による透過深さと硬さ分布の制御性が落ちる。透過深さの大きい電子線は、ゴムローラ表面からの透過深さは約100〜1000μm程度が好ましく、加速電圧としては100〜300kVが好ましい。それよりも透過深さの小さい電子線は、ゴムローラ表面からの透過深さは約20〜500μm程度が好ましく、加速電圧としては50〜200kVが好ましい。これにより、ゴムローラの表面近傍の硬度を制御して、トナー及びトナーに付着している外添剤等のゴムローラ表面の汚れ防止及びゴムローラからの低分子量化合物等の染み出し防止の両立が可能になる。   The surface modification step according to the present invention includes a step of irradiating the vulcanized rubber layer with a first electron beam and then irradiating the second electron beam, and the vulcanized rubber layer of the second electron beam. The penetration depth of the first electron beam is made shallower than the penetration depth of the first electron beam into the vulcanized rubber layer. As a result of intensive studies by the present inventors, it is possible to transmit the electron beam to a deeper region of the vulcanized rubber layer and then to transmit the electron beam to a shallower region, thereby modifying the surface of the vulcanized rubber layer. It was found that the controllability of the hardness distribution during the process was good. Conversely, when an electron beam with a deeper transmission depth is irradiated after irradiating an electron beam with a smaller transmission depth, the transmission depth and hardness distribution are controlled by the electron beam with a larger transmission depth. Sex falls. An electron beam having a large penetration depth preferably has a penetration depth from the surface of the rubber roller of about 100 to 1000 μm, and an acceleration voltage of 100 to 300 kV is preferred. For an electron beam having a smaller transmission depth, the transmission depth from the rubber roller surface is preferably about 20 to 500 μm, and the acceleration voltage is preferably 50 to 200 kV. As a result, the hardness near the surface of the rubber roller can be controlled to prevent both the toner and the surface of the rubber roller such as an external additive adhering to the toner from being soiled and preventing the low molecular weight compound from exuding from the rubber roller. .

また、第2の電子線として、電子線が放出させる照射口とゴムローラの間の一部に配置した電子線透過部材に第1の電子線を通過させて、該加硫ゴム層への透過深さを浅くしたものを用いることもできる。電子線透過部材の配置位置は、電子線の拡散等を考慮すると電子線が照射される照射口に近い方が好ましい。ここで、本発明に用いた電子線透過部材及び電子線照射装置の概略構成図を図3に示す。電子線透過部材15の材質としては、電子線に対して耐久強度があり、電子線透過方向の厚みの加工精度が出しやすいもので、チタン、ステンレス、アルミニウム、銀、セラミック、ガラス、ポリスチレン等が好ましく、特に耐久強度を考慮するとチタンが好ましい。電子線透過部材の形状としてはクサビ状や階段状などでもよく、電子線透過方向の厚みを調整して透過深さの大きい電子線を照射した後に、それよりも透過深さの小さい電子線を照射する。電子線透過部材の厚さとしては、10〜200μmの範囲内で表面処理の効果に応じて適宜選択すれば良い。本発明の実施の形態である導電性ローラの製造方法により得られたゴムローラは、Laser Beam Printer、複写機及びファクシミリ等の画像形成装置の電子写真用部材として用いられる。ここでは、帯電ゴムローラとして用いた場合の使用形態を図4に示した。画像形成装置は、回転ドラム型・転写方式の電子写真装置であって、16は像担持体としての電子写真感光体(感光ドラム)であり、時計方向に所定の周速度(プロセススピード)をもって回転駆動される。感光ドラムは、その回転過程で帯電手段としての電源E1から帯電バイアスを印加した帯電ゴムローラ17により周面が所定の極性・電位(本実施例では−500V)に一様帯電処理される。次いで露光系18により目的の画像情報に対応したネガ画像露光(原稿像のアナログ露光、デジタル走査露光)を受けて周面に目的画像情報の静電潜像が形成される。次いで、その静電潜像がマイナストナーによる反転現像方式のトナー現像ローラ19によりトナー画像として現像される。そしてそのトナー画像が感光ドラムと転写手段としての転写ローラ20との間の転写部に不図示の給紙手段から所定のタイミングで転写材が給送される。そして転写ローラに対して電源E2から約+2〜3KVの転写バイアスが印加され感光ドラム面の反転現像されたトナー像が転写材に対して順次転写されていく。トナー画像の転写を受けた転写材は、感光ドラム面から分離されて不図示の定着手段へ導入されて像定着処理を受ける。トナー画像転写後の感光ドラム面は、クリーニング手段21で転写残りトナー等の付着汚染物の除去処理を受けて清浄面化されて繰り返して作像に供される。本発明の実施の形態で述べた帯電ゴムローラは、芯金と、芯金上に形成した導電性加硫ゴム層を有する導電性ローラである。芯金上の導電性加硫ゴム層の表面に電子線を、加速電圧50〜300kVの範囲内で加速電圧を変化させて透過深さの大きい電子線を照射した後に、それよりも透過深さの小さい電子線を2段階以上で照射する。その結果、帯電ゴムローラの表面近傍の硬度を制御して、トナー及びトナーに付着している外添剤等のローラ表面の汚れを防ぎ、且つローラからの低分子量化合物等の染み出しを防止して感光体ドラムに対しても汚染しない帯電ゴムローラを提供する事ができる。また、本発明は芯金上の導電性加硫ゴム層の表面に電子線を照射するだけで帯電ゴムローラを提供できるので量産性にも優れ、高品質な導電性ローラを安定して低コストで製造することが可能である。   Further, as the second electron beam, the first electron beam is passed through an electron beam transmitting member disposed in a part between the irradiation port from which the electron beam is emitted and the rubber roller, and the penetration depth to the vulcanized rubber layer is increased. A shallower one can also be used. The arrangement position of the electron beam transmitting member is preferably close to the irradiation port irradiated with the electron beam in consideration of electron beam diffusion and the like. Here, FIG. 3 shows a schematic configuration diagram of the electron beam transmitting member and the electron beam irradiation apparatus used in the present invention. The material of the electron beam transmitting member 15 has durability against the electron beam and is easy to obtain the processing accuracy of the thickness in the electron beam transmitting direction, such as titanium, stainless steel, aluminum, silver, ceramic, glass, polystyrene, etc. Titanium is preferable, particularly considering the durability. The shape of the electron beam transmitting member may be wedge-shaped or stepped, etc. After adjusting the thickness in the electron beam transmission direction and irradiating an electron beam with a large transmission depth, an electron beam with a smaller transmission depth is used. Irradiate. What is necessary is just to select suitably as thickness of an electron beam transmissive member in the range of 10-200 micrometers according to the effect of surface treatment. The rubber roller obtained by the conductive roller manufacturing method according to the embodiment of the present invention is used as an electrophotographic member of an image forming apparatus such as a laser beam printer, a copying machine, or a facsimile. Here, FIG. 4 shows a usage pattern when used as a charging rubber roller. The image forming apparatus is a rotary drum type transfer type electrophotographic apparatus, and 16 is an electrophotographic photosensitive member (photosensitive drum) as an image carrier, which rotates clockwise at a predetermined peripheral speed (process speed). Driven. The photosensitive drum is uniformly charged to a predetermined polarity and potential (-500 V in this embodiment) by a charging rubber roller 17 to which a charging bias is applied from a power source E1 as a charging means during the rotation process. Next, the exposure system 18 receives negative image exposure (analog exposure of the original image, digital scanning exposure) corresponding to the target image information, and an electrostatic latent image of the target image information is formed on the peripheral surface. Next, the electrostatic latent image is developed as a toner image by a toner developing roller 19 of a reversal developing method using minus toner. The toner image is fed at a predetermined timing from a sheet feeding means (not shown) to a transfer portion between the photosensitive drum and a transfer roller 20 as a transfer means. Then, a transfer bias of about +2 to 3 KV is applied from the power source E2 to the transfer roller, and the toner images that have been reversely developed on the surface of the photosensitive drum are sequentially transferred to the transfer material. The transfer material that has received the transfer of the toner image is separated from the surface of the photosensitive drum and introduced into fixing means (not shown) to undergo image fixing processing. The surface of the photosensitive drum after the transfer of the toner image is subjected to a removal process of adhering contaminants such as transfer residual toner by the cleaning unit 21 to be cleaned and repeatedly used for image formation. The charging rubber roller described in the embodiment of the present invention is a conductive roller having a cored bar and a conductive vulcanized rubber layer formed on the cored bar. After irradiating an electron beam on the surface of the conductive vulcanized rubber layer on the core metal with an accelerating voltage varied within an acceleration voltage range of 50 to 300 kV and irradiating an electron beam having a large penetration depth, the transmission depth is higher than that. Are irradiated in two or more stages. As a result, the hardness near the surface of the charged rubber roller is controlled to prevent the toner and the surface of the roller such as an external additive adhering to the toner from being stained, and the low molecular weight compound from exuding from the roller. It is possible to provide a charged rubber roller that does not contaminate the photosensitive drum. In addition, the present invention can provide a charged rubber roller simply by irradiating the surface of the conductive vulcanized rubber layer on the core metal with an electron beam, so that it is excellent in mass production and can stably produce a high-quality conductive roller at low cost. It is possible to manufacture.

ここで、図5に本発明で得られた帯電ゴムローラ断面の一例を示す。4は芯金、22は導電性加硫ゴム層、23は1段電子線照射による硬化層、24は2段電子線照射による硬化層である。また、図6に本発明で得られた帯電ゴムローラ表面からの深さ方向の硬さ分布の一例を示す。ここで、ゴムローラ表面からの深さ方向の硬さ分布については、フィッシャー・インストルメンツ社製の微小硬さ試験機WIN−HCU、フィッシャースコープH100Cを用いて測定した。圧子は四角錘型ダイヤモンドであり、250mN/minの速度で荷重を増加させて、ゴムローラ表面からの押し込み深さ(μm)と深さ方向の硬さ(N/mm)分布の測定を行った。また、測定は23.5℃/60%の環境において行った。 Here, FIG. 5 shows an example of a cross section of the charged rubber roller obtained in the present invention. 4 is a metal core, 22 is a conductive vulcanized rubber layer, 23 is a cured layer by irradiation with one-stage electron beam, and 24 is a cured layer by irradiation with two-stage electron beam. FIG. 6 shows an example of the hardness distribution in the depth direction from the surface of the charged rubber roller obtained in the present invention. Here, the hardness distribution in the depth direction from the surface of the rubber roller was measured using a micro hardness tester WIN-HCU, Fisherscope H100C manufactured by Fischer Instruments. The indenter is a square pyramidal diamond, and the load was increased at a speed of 250 mN / min to measure the indentation depth (μm) from the rubber roller surface and the hardness (N / mm 2 ) distribution in the depth direction. . The measurement was performed in an environment of 23.5 ° C./60%.

以下、本発明を実施例により更に具体的に説明するが、本発明はこれらに限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to these.

〈ゴムローラの作製〉
以下の原料を加圧式ニーダーで15分間混練した。
<Production of rubber roller>
The following raw materials were kneaded with a pressure kneader for 15 minutes.

・NBR 100質量部
(商品名「Nipol DN219」:日本ゼオン社製)(「NIPOL」は登録商標)
・カーボンブラック1 14質量部
(商品名「旭HS−500」:旭カーボン社製)
・カーボンブラック2 4質量部
(商品名「ケッチェンブラックEC600JD」:ライオン社製)
(KETJENBLACK\ケッチェンブラック)は登録商標)
・ステアリン酸亜鉛 1質量部
・酸化亜鉛 5質量部
・炭酸カルシウム 30質量部
(商品名「ナノックス#30」:丸尾カルシウム社製)
更に、加硫促進剤(DM:ジ-2-ベンゾチアゾリルジスルフィド)1質量部、加硫促進剤(TBzTD:テトラベンジルチウラムジスルフィド)3質量部及び加硫剤としてイオウ1.2質量部を加えた。次いで、15分間オープンロールで混練して未加硫ゴム組成物を作製した。次いで、外径φ6mm、長さ252mmのステンレス棒の芯金を用意した。ここで、クロスヘッド押出機を用いて上記芯金と未加硫ゴム組成物とを一体に押出してゴムローラを成形した。その後160℃、1時間の加熱加硫を行い、更に回転砥石を用いた乾式研磨、端部の切断・除去処理により、厚み1.25mm、長さ232mmのゴムローラを得た(ゴムローラ外径φ8.5mm)。
〈電子線照射方法〉
得られた加硫ゴムローラの表面に電子線を照射して帯電ゴムローラを得た。電子線の照射には、最大加速電圧150kV・最大電子電流40mAの電子線照射装置(岩崎電気株式会社製)を用い、照射時には窒素ガスパージを行った。電子線照射条件は、1段電子線照射条件:加速電圧150kV、電子電流20mA、照射時間1sec、2段電子線照射条件:加速電圧80kV、電子電流20mA、照射時間1secであり、連続的に電子線の照射を行った。この時の酸素濃度は約200ppmであった。また、ゴムローラを500rpmで回転させながら上記照射時間になるように搬送して電子線を照射した。
〈耐久画像汚れ評価〉
得られた帯電ゴムローラを図4に示す電子写真方式の電子写真用カートリッジに組み込んだ。そして、感光体ドラムの両端に500gづつの荷重を負荷した状態で圧接し、23.5℃/60%の環境でハーフトーン画像による連続6000枚(6Kと表すことがある)の通紙をして耐久画像汚れ評価を行った。この耐久画像汚れ評価において、下記事項を評価した。得られた結果を表1に示した。連続通紙6000枚間を耐久画像とした。帯電ゴムローラに固着したトナーや外添剤による、点状もしくは線状の画像不良、或いは帯電ムラによる黒または白の横スジ状の画像不良の有無を目視で観察して検査した。得られた検査結果に基づき、下記基準で画像評価を行った。
・ NBR 100 parts by mass (trade name “Nipol DN219”: manufactured by Nippon Zeon Co., Ltd.) (“NIPOL” is a registered trademark)
-14 parts by mass of carbon black 1 (trade name “Asahi HS-500”: manufactured by Asahi Carbon Co.
・ Carbon black 2 4 parts by mass (trade name “Ketjen Black EC600JD” manufactured by Lion)
(KETJENBLACK \ Ketjen Black) is a registered trademark)
・ Zinc stearate 1 part by mass ・ Zinc oxide 5 parts by mass ・ Calcium carbonate 30 parts by mass (trade name “Nanox # 30” manufactured by Maruo Calcium Co., Ltd.)
Further, 1 part by mass of a vulcanization accelerator (DM: di-2-benzothiazolyl disulfide), 3 parts by mass of a vulcanization accelerator (TBzTD: tetrabenzylthiuram disulfide) and 1.2 parts by mass of sulfur as a vulcanizing agent were added. added. Subsequently, it knead | mixed with the open roll for 15 minutes, and produced the unvulcanized rubber composition. Subsequently, a stainless bar core bar having an outer diameter of 6 mm and a length of 252 mm was prepared. Here, the core metal and the unvulcanized rubber composition were integrally extruded using a crosshead extruder to form a rubber roller. Thereafter, heat vulcanization was performed at 160 ° C. for 1 hour, and further, dry polishing using a rotating grindstone and cutting / removal processing of an end portion were performed to obtain a rubber roller having a thickness of 1.25 mm and a length of 232 mm (rubber roller outer diameter φ8. 5 mm).
<Electron beam irradiation method>
The surface of the obtained vulcanized rubber roller was irradiated with an electron beam to obtain a charged rubber roller. For the electron beam irradiation, an electron beam irradiation apparatus (manufactured by Iwasaki Electric Co., Ltd.) having a maximum acceleration voltage of 150 kV and a maximum electron current of 40 mA was used, and nitrogen gas purge was performed during irradiation. The electron beam irradiation conditions are: one-stage electron beam irradiation condition: acceleration voltage 150 kV, electron current 20 mA, irradiation time 1 sec, two-stage electron beam irradiation condition: acceleration voltage 80 kV, electron current 20 mA, irradiation time 1 sec. Line irradiation was performed. The oxygen concentration at this time was about 200 ppm. Moreover, it conveyed so that it might become said irradiation time, rotating a rubber roller at 500 rpm, and irradiated the electron beam.
<Durable image dirt evaluation>
The obtained charged rubber roller was assembled in an electrophotographic cartridge of the electrophotographic system shown in FIG. Then, the two ends of the photosensitive drum are pressed in a state where a load of 500 g is applied, and continuous 6000 sheets (sometimes referred to as 6K) are passed through a halftone image in an environment of 23.5 ° C./60%. Durability image contamination was evaluated. In this durable image stain evaluation, the following items were evaluated. The obtained results are shown in Table 1. A continuous image of 6000 sheets was used as a durable image. The presence or absence of dot-like or line-like image defects due to toner or external additives fixed to the charged rubber roller, or black or white horizontal stripe-like image defects due to charging unevenness was visually observed and inspected. Based on the obtained inspection results, image evaluation was performed according to the following criteria.

A:帯電ゴムローラにトナーや外添剤の付着が起因の画像不良が全く出ていないもの
B:上記の画像不良が極わずかに発生したもの
C:上記の画像不良がわずかに発生したもの
D:上記の画像不良がはっきりと発生したもの
画像評価の結果は、ランクAであった。
〈Cset画像評価〉
また、上記とは別の帯電ゴムローラを図4に示す電子写真方式の電子写真用カートリッジに組込み、感光体ドラムの両端に500gづつの荷重を負荷した状態で圧接し、40℃/95%の環境で30日間放置した。放置後、23.5℃/60%の環境でハーフトーン画像による通紙1〜10枚間を初期画像としてCset画像評価を行った。このCset画像評価において、下記事項を評価した。得られた結果を表1に示した。帯電ゴムローラの導電性加硫ゴム層からの低分子量化合物等の染み出しによる、帯電ゴムローラピッチ及び感光体ドラムピッチの帯電ムラによる黒または白のピッチスジ画像不良の有無を目視で観察して検査した。得られた検査結果に基づき、下記基準で画像評価を行った。
A: No image defect due to adhesion of toner or external additive to the charged rubber roller B: Very little image defect described above C: Some image defect described above D: The above-mentioned image defect clearly occurred. The result of the image evaluation was rank A.
<Cset image evaluation>
In addition, a charging rubber roller different from the above is incorporated in the electrophotographic cartridge shown in FIG. 4 and is pressed against each end of the photosensitive drum with a load of 500 g, and the environment is 40 ° C./95%. Left for 30 days. After standing, Cset image evaluation was performed using 1 to 10 sheets of halftone images as an initial image in an environment of 23.5 ° C./60%. In this Cset image evaluation, the following items were evaluated. The obtained results are shown in Table 1. The presence or absence of black or white pitch streak image defects due to charging unevenness of the charging rubber roller pitch and the photosensitive drum pitch due to the seepage of a low molecular weight compound or the like from the conductive vulcanized rubber layer of the charging rubber roller was visually observed and inspected. Based on the obtained inspection results, image evaluation was performed according to the following criteria.

A:帯電ゴムローラからの染み出しが起因の画像不良が全く出ていないもの
B:上記の画像不良が極わずかに発生したもの
C:上記の画像不良がわずかに発生したもの
D:上記の画像不良がはっきりと発生したもの
画像評価の結果は、ランクAであった。
A: No image defect due to seepage from the charged rubber roller B: Very little image defect described above C: Some image defect described above D: Image defect described above The image evaluation result was rank A.

〈ゴムローラの作製〉
以下の原料を加圧式ニーダーで15分間混練した。
<Production of rubber roller>
The following raw materials were kneaded with a pressure kneader for 15 minutes.

・NBR 100質量部
(商品名「JSR N230SV」:JSR社製)
・カーボンブラック 48質量部
(商品名「トーカブラック#7360SB」:東海カーボン社製)
(「ト−カブラック\TOKABLACK」は登録商標)
・ステアリン酸亜鉛 1質量部
・酸化亜鉛 5質量部
・炭酸カルシウム 20質量部
(商品名「ナノックス#30」:丸尾カルシウム社製)
更に、加硫促進剤(TBzTD:テトラベンジルチウラムジスルフィド)4.5質量部及び加硫剤としてイオウ1.2質量部を加えて、15分間オープンロールで混練して未加硫ゴム組成物を作製した。次いで、外径φ6mm、長さ252mmのステンレス棒の芯金を用意した。ここで、クロスヘッド押出機を用いて上記芯金と未加硫ゴム組成物とを一体に押出してゴムローラを成形した。その後160℃、1時間の加熱加硫を行い、更に回転砥石を用いた乾式研磨、端部の切断・除去処理により、厚み1.25mm、長さ232mmのゴムローラを得た(ゴムローラ外径φ8.5mm)。
〈電子線照射方法〉〈耐久画像汚れ評価〉〈Cset画像評価〉
電子線照射条件を、1段電子線照射条件:加速電圧150kV、電子電流35mA、照射時間1sec、2段電子線照射条件:加速電圧100kV、電子電流20mA、照射時間1secにした以外は、実施例1と同様に電子線を照射して帯電ゴムローラを得た。また、上記の帯電ゴムローラを使用して実施例1と同様に耐久画像汚れ評価とCset画像評価を行った。その結果を表1に示す。
・ NBR 100 parts by mass (trade name “JSR N230SV”: manufactured by JSR Corporation)
・ 48 parts by mass of carbon black (trade name “Toka Black # 7360SB” manufactured by Tokai Carbon Co., Ltd.)
("Toka Black \ TOKABLACK" is a registered trademark)
・ Zinc stearate 1 part by mass ・ Zinc oxide 5 parts by mass ・ Calcium carbonate 20 parts by mass (trade name “Nanox # 30” manufactured by Maruo Calcium Co., Ltd.)
Further, 4.5 parts by mass of a vulcanization accelerator (TBzTD: tetrabenzylthiuram disulfide) and 1.2 parts by mass of sulfur as a vulcanizing agent were added and kneaded with an open roll for 15 minutes to produce an unvulcanized rubber composition. did. Subsequently, a stainless bar core bar having an outer diameter of 6 mm and a length of 252 mm was prepared. Here, the core metal and the unvulcanized rubber composition were integrally extruded using a crosshead extruder to form a rubber roller. Thereafter, heat vulcanization was performed at 160 ° C. for 1 hour, and further, dry polishing using a rotating grindstone and cutting / removal processing of an end portion were performed to obtain a rubber roller having a thickness of 1.25 mm and a length of 232 mm (rubber roller outer diameter φ8. 5 mm).
<Electron beam irradiation method><Durable image stain evaluation><Cset image evaluation>
Except that the electron beam irradiation conditions were set to the first stage electron beam irradiation conditions: acceleration voltage 150 kV, electron current 35 mA, irradiation time 1 sec, and second stage electron beam irradiation conditions: acceleration voltage 100 kV, electron current 20 mA, irradiation time 1 sec. In the same manner as in No. 1, a charged rubber roller was obtained by irradiation with an electron beam. Further, using the above-described charging rubber roller, durability image stain evaluation and Cset image evaluation were performed in the same manner as in Example 1. The results are shown in Table 1.

〈ゴムローラの作製〉〈電子線照射方法〉〈耐久画像汚れ評価〉〈Cset画像評価〉
電子線照射条件を、1段電子線照射条件:加速電圧150kV、電子電流30mA、照射時間1sec、2段電子線照射条件:加速電圧120kV、電子電流30mA、照射時間1secにした以外は、実施例2と同様に電子線を照射して帯電ゴムローラを得た。また、上記の帯電ゴムローラを使用して実施例1と同様に耐久画像汚れ評価とCset画像評価を行った。その結果を表1に示す。
<Production of rubber roller><Electron beam irradiation method><Durable image stain evaluation><Cset image evaluation>
Except that the electron beam irradiation conditions were set to the first stage electron beam irradiation condition: acceleration voltage 150 kV, electron current 30 mA, irradiation time 1 sec, and the second stage electron beam irradiation condition: acceleration voltage 120 kV, electron current 30 mA, irradiation time 1 sec. In the same manner as in No. 2, a charged rubber roller was obtained by irradiation with an electron beam. Further, using the above-described charging rubber roller, durability image stain evaluation and Cset image evaluation were performed in the same manner as in Example 1. The results are shown in Table 1.

〈ゴムローラの作製〉〈電子線照射方法〉〈耐久画像汚れ評価〉〈Cset画像評価〉
電子線照射条件を、1段電子線照射条件:加速電圧150kV、電子電流20mA、照射時間1sec、2段電子線照射条件:加速電圧50kV、電子電流30mA、照射時間1secにした以外は、実施例2と同様に電子線を照射して帯電ゴムローラを得た。また、上記の帯電ゴムローラを使用して実施例1と同様に耐久画像汚れ評価とCset画像評価を行った。その結果を表1に示す。
<Production of rubber roller><Electron beam irradiation method><Durable image stain evaluation><Cset image evaluation>
Except that the electron beam irradiation conditions were set to one-stage electron beam irradiation conditions: acceleration voltage 150 kV, electron current 20 mA, irradiation time 1 sec, two-stage electron beam irradiation conditions: acceleration voltage 50 kV, electron current 30 mA, irradiation time 1 sec. In the same manner as in No. 2, a charged rubber roller was obtained by irradiation with an electron beam. Further, using the above-described charging rubber roller, durability image stain evaluation and Cset image evaluation were performed in the same manner as in Example 1. The results are shown in Table 1.

〈ゴムローラの作製〉〈電子線照射方法〉〈耐久画像汚れ評価〉〈Cset画像評価〉
電子線照射条件を、1段電子線照射条件:加速電圧100kV、電子電流40mA、照射時間1sec、2段電子線照射条件:加速電圧80kV、電子電流20mA、照射時間1secにした以外は、実施例2と同様に電子線を照射して帯電ゴムローラを得た。また、上記の帯電ゴムローラを使用して実施例1と同様に耐久画像汚れ評価とCset画像評価を行った。その結果を表1に示す。
<Production of rubber roller><Electron beam irradiation method><Durable image stain evaluation><Cset image evaluation>
Except that the electron beam irradiation conditions were set to the first stage electron beam irradiation conditions: acceleration voltage 100 kV, electron current 40 mA, irradiation time 1 sec, and second stage electron beam irradiation conditions: acceleration voltage 80 kV, electron current 20 mA, irradiation time 1 sec. In the same manner as in No. 2, a charged rubber roller was obtained by irradiation with an electron beam. Further, using the above-described charging rubber roller, durability image stain evaluation and Cset image evaluation were performed in the same manner as in Example 1. The results are shown in Table 1.

〈ゴムローラの作製〉〈電子線照射方法〉〈耐久画像汚れ評価〉〈Cset画像評価〉
電子線照射条件を、1段電子線照射条件:加速電圧100kV、電子電流30mA、照射時間1sec、2段電子線照射条件:加速電圧50kV、電子電流30mA、照射時間1secにした以外は、実施例2と同様に電子線を照射して帯電ゴムローラを得た。また、上記の帯電ゴムローラを使用して実施例1と同様に耐久画像汚れ評価とCset画像評価を行った。その結果、耐久画像汚れ評価はAランク、Cset画像評価もBランクであった。結果を表1に示す。
<Production of rubber roller><Electron beam irradiation method><Durable image stain evaluation><Cset image evaluation>
Example 1 except that the electron beam irradiation conditions were set to one-stage electron beam irradiation conditions: acceleration voltage 100 kV, electron current 30 mA, irradiation time 1 sec, two-stage electron beam irradiation conditions: acceleration voltage 50 kV, electron current 30 mA, irradiation time 1 sec. In the same manner as in No. 2, a charged rubber roller was obtained by irradiation with an electron beam. Further, using the above-described charging rubber roller, durability image stain evaluation and Cset image evaluation were performed in the same manner as in Example 1. As a result, the durability image stain evaluation was A rank and the Cset image evaluation was B rank. The results are shown in Table 1.

〈ゴムローラの作製〉〈電子線照射方法〉〈耐久画像汚れ評価〉〈Cset画像評価〉
電子線照射条件を、1段電子線照射条件:加速電圧300kV、電子電流5mA、照射時間1sec、2段電子線照射条件:加速電圧200kV、電子電流10mA、照射時間1secにした以外は、実施例2と同様に電子線を照射して帯電ゴムローラを得た。また、上記の帯電ゴムローラを使用して実施例1と同様に耐久画像汚れ評価とCset画像評価を行った。その結果を表1に示す。
<Production of rubber roller><Electron beam irradiation method><Durable image stain evaluation><Cset image evaluation>
Except that the electron beam irradiation conditions were set to the first stage electron beam irradiation conditions: acceleration voltage 300 kV, electron current 5 mA, irradiation time 1 sec, and second stage electron beam irradiation conditions: acceleration voltage 200 kV, electron current 10 mA, irradiation time 1 sec. In the same manner as in No. 2, a charged rubber roller was obtained by irradiation with an electron beam. Further, using the above-described charging rubber roller, durability image stain evaluation and Cset image evaluation were performed in the same manner as in Example 1. The results are shown in Table 1.

〈ゴムローラの作製〉〈電子線照射方法〉〈耐久画像汚れ評価〉〈Cset画像評価〉
電子線照射条件を、1段電子線照射条件:加速電圧300kV、電子電流5mA、照射時間1sec、2段電子線照射条件:加速電圧100kV、電子電流20mA、照射時間1secにした以外は、実施例2と同様に電子線を照射して帯電ゴムローラを得た。また、上記の帯電ゴムローラを使用して実施例1と同様に耐久画像汚れ評価とCset画像評価を行った。その結果を表1に示す。
<Production of rubber roller><Electron beam irradiation method><Durable image stain evaluation><Cset image evaluation>
Except that the electron beam irradiation conditions were changed to the one-stage electron beam irradiation conditions: acceleration voltage 300 kV, electron current 5 mA, irradiation time 1 sec, and two-stage electron beam irradiation conditions: acceleration voltage 100 kV, electron current 20 mA, irradiation time 1 sec. In the same manner as in No. 2, a charged rubber roller was obtained by irradiation with an electron beam. Further, using the above-described charging rubber roller, durability image stain evaluation and Cset image evaluation were performed in the same manner as in Example 1. The results are shown in Table 1.

〈ゴムローラの作製〉〈電子線照射方法〉〈耐久画像汚れ評価〉〈Cset画像評価〉
電子線照射条件を、1段電子線照射条件:加速電圧300kV、電子電流10mA、照射時間1sec、2段電子線照射条件:加速電圧50kV、電子電流20mA、照射時間1secにした以外は、実施例2と同様に電子線を照射して帯電ゴムローラを得た。また、上記の帯電ゴムローラを使用して実施例1と同様に耐久画像汚れ評価とCset画像評価を行った。その結果、耐久画像汚れ評価はBランク、Cset画像評価もAランクであった。結果を表1に示す。
<Production of rubber roller><Electron beam irradiation method><Durable image stain evaluation><Cset image evaluation>
Except that the electron beam irradiation conditions were set to one-stage electron beam irradiation conditions: acceleration voltage 300 kV, electron current 10 mA, irradiation time 1 sec, two-stage electron beam irradiation conditions: acceleration voltage 50 kV, electron current 20 mA, irradiation time 1 sec. In the same manner as in No. 2, a charged rubber roller was obtained by irradiation with an electron beam. Further, using the above-described charging rubber roller, durability image stain evaluation and Cset image evaluation were performed in the same manner as in Example 1. As a result, the durability image stain evaluation was B rank, and the Cset image evaluation was also A rank. The results are shown in Table 1.

[比較例1]
〈ゴムローラの作製〉〈電子線照射方法〉〈耐久画像汚れ評価〉〈Cset画像評価〉
電子線照射条件が、1段電子線照射条件:加速電圧150kV、電子電流20mA、照射時間2secのみで電子線を照射した以外は、実施例2と同様にして帯電ゴムローラを得た。また、上記の帯電ゴムローラを使用して実施例1と同様に耐久画像汚れ評価とCset画像評価を行った。その結果を表1に示す。
[Comparative Example 1]
<Production of rubber roller><Electron beam irradiation method><Durable image stain evaluation><Cset image evaluation>
A charged rubber roller was obtained in the same manner as in Example 2 except that the electron beam irradiation conditions were a one-stage electron beam irradiation condition: an acceleration voltage of 150 kV, an electron current of 20 mA, and an irradiation time of only 2 seconds. Further, using the above-described charging rubber roller, durability image stain evaluation and Cset image evaluation were performed in the same manner as in Example 1. The results are shown in Table 1.

[比較例2]
〈ゴムローラの作製〉〈電子線照射方法〉〈耐久画像汚れ評価〉〈Cset画像評価〉
電子線照射条件が、1段電子線照射条件:加速電圧300kV、電子電流5mA、照射時間2secのみで電子線を照射した以外は、実施例2と同様にして帯電ゴムローラを得た。また、上記の帯電ゴムローラを使用して実施例1と同様に耐久画像汚れ評価とCset画像評価を行った。その結果を表1に示す。
[Comparative Example 2]
<Production of rubber roller><Electron beam irradiation method><Durable image stain evaluation><Cset image evaluation>
A charged rubber roller was obtained in the same manner as in Example 2 except that the electron beam irradiation conditions were a one-stage electron beam irradiation condition: an acceleration voltage of 300 kV, an electron current of 5 mA, and an irradiation time of only 2 sec. Further, using the above-described charging rubber roller, durability image stain evaluation and Cset image evaluation were performed in the same manner as in Example 1. The results are shown in Table 1.

[比較例3]
〈ゴムローラの作製〉〈電子線照射方法〉〈耐久画像汚れ評価〉〈Cset画像評価〉
電子線照射条件が、1段電子線照射条件:加速電圧80kV、電子電流25mA、照射時間2secのみで電子線を照射した以外は、実施例2と同様にして帯電ゴムローラを得た。また、上記の帯電ゴムローラを使用して実施例1と同様に耐久画像汚れ評価とCset画像評価を行った。その結果を表1に示す。
[Comparative Example 3]
<Production of rubber roller><Electron beam irradiation method><Durable image stain evaluation><Cset image evaluation>
A charged rubber roller was obtained in the same manner as in Example 2 except that the electron beam irradiation conditions were a one-stage electron beam irradiation condition: an acceleration voltage of 80 kV, an electron current of 25 mA, and an irradiation time of only 2 seconds. Further, using the above-described charging rubber roller, durability image stain evaluation and Cset image evaluation were performed in the same manner as in Example 1. The results are shown in Table 1.

〈ゴムローラの作製〉〈電子線照射方法〉〈耐久画像汚れ評価〉〈Cset画像評価〉
電子線照射条件が、1段電子線照射条件:加速電圧150kV、電子電流20mA、照射時間2secのみで電子線を照射して、図3に示すように、厚さ20μmのシート形状のチタン製電子線透過部材を照射口とゴムローラの間の一部に長手一直線に配置した。また照射口から5mmの位置に電子線透過部材を配置した。ゴムローラを500rpmで回転させながら電子線透過部材の配置されていない部分の照射時間を1sec、電子線透過部材の配置されている部分の照射時間を1secとなるように搬送して電子線を照射した。それ以外は、実施例2と同様にして帯電ゴムローラを得た。また、上記の帯電ゴムローラを使用して実施例1と同様に耐久画像汚れ評価とCset画像評価を行った。その結果、耐久画像汚れ評価はAランク、Cset画像評価もAランクであった。結果を表1に示す。
<Production of rubber roller><Electron beam irradiation method><Durable image stain evaluation><Cset image evaluation>
The electron beam irradiation condition is a one-stage electron beam irradiation condition: an acceleration voltage of 150 kV, an electron current of 20 mA, irradiation of an electron beam with only an irradiation time of 2 sec, and a sheet-shaped titanium electron having a thickness of 20 μm as shown in FIG. The line transmissive member was arranged in a straight line in a part between the irradiation port and the rubber roller. An electron beam transmitting member was disposed at a position 5 mm from the irradiation port. While rotating the rubber roller at 500 rpm, the irradiation time of the portion where the electron beam transmitting member is not arranged is 1 sec, and the irradiation time of the portion where the electron beam transmitting member is arranged is 1 sec. . Otherwise, a charged rubber roller was obtained in the same manner as in Example 2. Further, using the above-described charging rubber roller, durability image stain evaluation and Cset image evaluation were performed in the same manner as in Example 1. As a result, the durability image stain evaluation was A rank, and the Cset image evaluation was also A rank. The results are shown in Table 1.

〈ゴムローラの作製〉〈電子線照射方法〉〈耐久画像汚れ評価〉〈Cset画像評価〉
厚さが10μmから徐々に100μmに傾斜するクサビ形状で、材質がアルミニウムである電子線透過部材を照射口とゴムローラの間の一部に長手一直線に配置した以外は、実施例10と同様にして帯電ゴムローラを得た。また、上記の帯電ゴムローラを使用して実施例1と同様に耐久画像汚れ評価とCset画像評価を行った。その結果、耐久画像汚れ評価はAランク、Cset画像評価もAランクであった。結果を表1に示す。
<Production of rubber roller><Electron beam irradiation method><Durable image stain evaluation><Cset image evaluation>
The same as in Example 10, except that an electron beam transmitting member having a wedge shape that is gradually inclined from 10 μm to 100 μm and made of aluminum is arranged in a straight line in a part between the irradiation port and the rubber roller. A charged rubber roller was obtained. Further, using the above-described charging rubber roller, durability image stain evaluation and Cset image evaluation were performed in the same manner as in Example 1. As a result, the durability image stain evaluation was A rank, and the Cset image evaluation was also A rank. The results are shown in Table 1.

1 押出機
2 押出機のクロスヘッド
3 芯金送りローラ
4 芯金
5 切断・除去処理
6 ゴムローラ
DESCRIPTION OF SYMBOLS 1 Extruder 2 Extruder crosshead 3 Core metal feed roller 4 Core metal 5 Cutting / removal processing 6 Rubber roller

Claims (3)

芯金と、該芯金の周面に設けられたゴム層とを有する表面改質ゴムローラの製造方法であって、
(1)芯金の周面に未加硫ゴムを含むゴム層の材料からなる層を設け、該層を加熱加硫させて芯金の周面に加硫ゴム層を有する加硫ゴムローラを形成する工程と、
(2)該加硫ゴムローラの表面に電子線を照射して表面改質する工程とを有し、
該工程(2)は、該加硫ゴム層に第1の電子線を照射し、次いで該2の電子線を照射する工程を含み、かつ、該第2の電子線の該加硫ゴム層への透過深さを、該第1の電子線の該加硫ゴム層への透過深さよりも浅くすることを特徴とする表面改質ゴムローラの製造方法。
A method for producing a surface-modified rubber roller having a cored bar and a rubber layer provided on the peripheral surface of the cored bar,
(1) A layer made of a rubber layer material containing unvulcanized rubber is provided on the peripheral surface of the core metal, and the layer is heated and vulcanized to form a vulcanized rubber roller having a vulcanized rubber layer on the peripheral surface of the core metal. And a process of
(2) having a step of surface modification by irradiating the surface of the vulcanized rubber roller with an electron beam;
The step (2) includes a step of irradiating the vulcanized rubber layer with a first electron beam and then irradiating the second electron beam, and the second electron beam is applied to the vulcanized rubber layer. A method for producing a surface-modified rubber roller, characterized in that a penetration depth of the first electron beam is shallower than a penetration depth of the first electron beam into the vulcanized rubber layer.
前記第2の電子線の加速電圧が、前記第1の電子線の加速電圧よりも小さい請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein an acceleration voltage of the second electron beam is smaller than an acceleration voltage of the first electron beam. 前記第2の電子線が、前記第1の電子線を電子線透過部材を通過させることによって該加硫ゴム層への透過深さを前記第1の電子線の透過深さよりも浅くしたものである請求項1または2に記載の製造方法。   The second electron beam has a transmission depth to the vulcanized rubber layer made shallower than a transmission depth of the first electron beam by passing the first electron beam through an electron beam transmitting member. The manufacturing method according to claim 1 or 2.
JP2009106446A 2009-04-24 2009-04-24 Method of manufacturing surface modified rubber roller Pending JP2010256617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009106446A JP2010256617A (en) 2009-04-24 2009-04-24 Method of manufacturing surface modified rubber roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009106446A JP2010256617A (en) 2009-04-24 2009-04-24 Method of manufacturing surface modified rubber roller

Publications (1)

Publication Number Publication Date
JP2010256617A true JP2010256617A (en) 2010-11-11

Family

ID=43317600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009106446A Pending JP2010256617A (en) 2009-04-24 2009-04-24 Method of manufacturing surface modified rubber roller

Country Status (1)

Country Link
JP (1) JP2010256617A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001736A1 (en) * 2011-06-30 2013-01-03 キヤノン株式会社 Charged member, charged member manufacturing method, and digital photograph device
WO2013005411A1 (en) * 2011-07-06 2013-01-10 キヤノン株式会社 Charged member, method of manufacturing same, and electronic photograph device
WO2013094089A1 (en) * 2011-12-22 2013-06-27 キヤノン株式会社 Charging member and method for producing same, and electrographic device
JP2015127736A (en) * 2013-12-27 2015-07-09 キヤノン株式会社 Elastic roller manufacturing method and electron beam irradiation apparatus
CN105088443A (en) * 2014-05-23 2015-11-25 村田机械株式会社 Delivery roller, drafting device, and spinning machine
JP2019192777A (en) * 2018-04-25 2019-10-31 株式会社ディスコ Chuck table and manufacturing method of the chuck table

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140040826A (en) * 2011-06-30 2014-04-03 캐논 가부시끼가이샤 Charged member, charged member manufacturing method, and digital photograph device
KR101599647B1 (en) * 2011-06-30 2016-03-03 캐논 가부시끼가이샤 Charged member, charged member manufacturing method, and digital photograph device
JP2013033236A (en) * 2011-06-30 2013-02-14 Canon Inc Charging member, charging member manufacturing method and electrophotographic apparatus
CN103597411B (en) * 2011-06-30 2015-09-23 佳能株式会社 The manufacture method of charging member, charging member and electronic photographing device
WO2013001736A1 (en) * 2011-06-30 2013-01-03 キヤノン株式会社 Charged member, charged member manufacturing method, and digital photograph device
US8532535B2 (en) 2011-06-30 2013-09-10 Canon Kabushiki Kaisha Charging member, manufacturing method for charging member, and electrophotographic apparatus
CN103597411A (en) * 2011-06-30 2014-02-19 佳能株式会社 Charged member, charged member manufacturing method, and digital photograph device
US8923732B2 (en) 2011-07-06 2014-12-30 Canon Kabushiki Kaisha Charging member, manufacturing method therefor, and electrophotographic apparatus
WO2013005411A1 (en) * 2011-07-06 2013-01-10 キヤノン株式会社 Charged member, method of manufacturing same, and electronic photograph device
EP2730977A1 (en) * 2011-07-06 2014-05-14 Canon Kabushiki Kaisha Charged member, method of manufacturing same, and electronic photograph device
CN103649841B (en) * 2011-07-06 2016-08-17 佳能株式会社 Charging member and manufacture method thereof, and electronic photographing device
EP2730977A4 (en) * 2011-07-06 2015-03-11 Canon Kk Charged member, method of manufacturing same, and electronic photograph device
CN103649841A (en) * 2011-07-06 2014-03-19 佳能株式会社 Charged member, method of manufacturing same, and electronic photograph device
KR101569639B1 (en) * 2011-07-06 2015-11-16 캐논 가부시끼가이샤 Charged member, method of manufacturing same, and electronic photograph device
WO2013094089A1 (en) * 2011-12-22 2013-06-27 キヤノン株式会社 Charging member and method for producing same, and electrographic device
US8991053B2 (en) 2011-12-22 2015-03-31 Canon Kabushiki Kaisha Charging member, process for its production, and electrophotographic apparatus
JP2013148876A (en) * 2011-12-22 2013-08-01 Canon Inc Charging member and method for producing the same, and electrographic device
JP2015127736A (en) * 2013-12-27 2015-07-09 キヤノン株式会社 Elastic roller manufacturing method and electron beam irradiation apparatus
CN105088443A (en) * 2014-05-23 2015-11-25 村田机械株式会社 Delivery roller, drafting device, and spinning machine
EP2947188A3 (en) * 2014-05-23 2016-05-11 Murata Machinery, Ltd. Delivery roller, drafting device, and spinning machine
JP2019192777A (en) * 2018-04-25 2019-10-31 株式会社ディスコ Chuck table and manufacturing method of the chuck table

Similar Documents

Publication Publication Date Title
US9372429B2 (en) Charging member, manufacturing method for charging member, electrophotographic apparatus, and process cartridge
JP5220230B1 (en) Charging member, method for manufacturing the same, and electrophotographic apparatus
JP5875264B2 (en) Method for manufacturing charging member
KR101569639B1 (en) Charged member, method of manufacturing same, and electronic photograph device
JP6039268B2 (en) Charging member, method for manufacturing charging member, and electrophotographic apparatus
JP5220231B1 (en) Charging member, electrophotographic apparatus and process cartridge
JP2010256617A (en) Method of manufacturing surface modified rubber roller
JP5414497B2 (en) Manufacturing method of rubber roller
JP2010217521A (en) Conductive rubber roller and transfer roller
JP6188423B2 (en) Method for manufacturing charging member
JP5511408B2 (en) Method for manufacturing charging member
JP2011053536A (en) Method of manufacturing elastic member
JP5876684B2 (en) Method for manufacturing charging roller and conductive roller
US9008552B2 (en) Charging member and electrophotographic apparatus
JP5436163B2 (en) Method for manufacturing charging member
JP2011164176A (en) Conductive sponge rubber roller and transfer roller
JP2010229319A (en) Method for producing charging member
JP2010260256A (en) Method for manufacturing conductive elastic roller