JP5875649B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5875649B2
JP5875649B2 JP2014179374A JP2014179374A JP5875649B2 JP 5875649 B2 JP5875649 B2 JP 5875649B2 JP 2014179374 A JP2014179374 A JP 2014179374A JP 2014179374 A JP2014179374 A JP 2014179374A JP 5875649 B2 JP5875649 B2 JP 5875649B2
Authority
JP
Japan
Prior art keywords
expansion valve
temperature
indoor
condition
opening degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014179374A
Other languages
Japanese (ja)
Other versions
JP2014222145A (en
Inventor
亮志 阿部
亮志 阿部
青木 正則
正則 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014179374A priority Critical patent/JP5875649B2/en
Publication of JP2014222145A publication Critical patent/JP2014222145A/en
Application granted granted Critical
Publication of JP5875649B2 publication Critical patent/JP5875649B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、圧縮機の起動時における膨張弁の開度を制御する空気調和機に関するものである。   The present invention relates to an air conditioner that controls the opening of an expansion valve when a compressor is started.

従来の空気調和機として、外気温度に応じて圧縮機の起動時における膨張弁の初期開度を制御するものがある。例えば、外気温度が高い場合には圧縮機の起動時における膨張弁の初期開度を大きくし、外気温度が低い場合には圧縮機の起動時における膨張弁の初期開度を小さくするように制御している(例えば、特許文献1参照)。   As a conventional air conditioner, there is one that controls an initial opening degree of an expansion valve when a compressor is started according to an outside air temperature. For example, when the outside air temperature is high, the initial opening of the expansion valve at the start of the compressor is increased, and when the outside air temperature is low, the initial opening of the expansion valve at the start of the compressor is reduced. (For example, refer to Patent Document 1).

特開平4−222341号公報(第4−5頁、図5)JP-A-4-222341 (page 4-5, FIG. 5)

前述した従来の空気調和機は、外気温度のみで圧縮機の起動時における膨張弁の初期開度を制御しているため、例えば冷房運転の場合においては、外気温度が高外気温度条件と判定される範囲内で低めにあり、室内吸込み温度が非常に高めにある条件の場合には、圧縮機の起動時における膨張弁の初期開度を大きく設定する。この場合、吸入圧力が高く吸入ガス密度の高い状態、つまり冷媒循環量の多い状態となる。また、膨張弁の初期開度が大きいことにより、吸入過熱度(吸入スーパーヒート)が付くのが遅くなるため、冷媒が液状態で圧縮機に戻り、液圧縮などの要因で圧縮機の故障などに至る可能性のある、いわゆる液バック状態に陥る可能性がある。   In the conventional air conditioner described above, the initial opening degree of the expansion valve at the time of starting the compressor is controlled only by the outside air temperature. For example, in the case of cooling operation, the outside air temperature is determined as the high outside air temperature condition. The initial opening of the expansion valve at the time of starting the compressor is set to a large value under the condition that the room intake temperature is very high and the indoor suction temperature is very high. In this case, the suction pressure is high and the suction gas density is high, that is, the refrigerant circulation amount is large. In addition, since the initial opening degree of the expansion valve is large, it becomes slower to apply the suction superheat (suction superheat), so that the refrigerant returns to the compressor in the liquid state, and the compressor malfunctions due to factors such as liquid compression. May result in a so-called liquid back state.

また、例えば冷房運転の場合においては、外気温度が低外気温度条件と判定される範囲内で高めにあり、室内吸込み温度が非常に低めにある条件の場合には、圧縮機の起動時における膨張弁の初期開度を小さく設定する。この場合、蒸発圧力が下がりすぎることによる蒸発器の凍結が起こったり、この蒸発器の凍結を予防するために運転を停止する断続運転状態に陥ったりする。また、吸入圧力が低く吸入ガス密度の低い状態、つまり冷媒循環量の少ない状態となるので、圧縮機の冷却が不十分となり、圧縮機の吐出温度が上がりすぎるという現象がおき、これを防止するために運転停止に至る可能性があるなどの課題があった。   Also, for example, in the case of cooling operation, when the outside air temperature is high within the range determined as the low outside air temperature condition and the indoor suction temperature is very low, the expansion at the time of starting the compressor is performed. Set the initial opening of the valve small. In this case, the evaporator may be frozen due to an excessive decrease in the evaporation pressure, or the operation may be stopped intermittently to prevent the evaporator from freezing. Further, since the suction pressure is low and the suction gas density is low, that is, the refrigerant circulation amount is low, the cooling of the compressor is insufficient and the discharge temperature of the compressor is excessively raised, thereby preventing this. For this reason, there was a problem that the operation could be stopped.

本発明は、前記のような課題を解決するためになされたもので、冷房運転開始時あるいは暖房運転開始に外気温度と室内吸込み温度を用いて適正な運転状態を起動時から確保し、室内熱交換器の凍結防止、圧縮機の吐出温度の過昇防止や液圧縮などからの回避を図ると共に、連続運転可能範囲の拡大と圧縮機などの信頼性の向上を図ることができる空気調和機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and ensures an appropriate operation state from the start-up by using the outside air temperature and the indoor suction temperature at the start of the cooling operation or the start of the heating operation. An air conditioner that can prevent freezing of the exchanger, prevent the compressor discharge temperature from rising excessively, avoid liquid compression, etc., and expand the continuous operation range and improve the reliability of the compressor, etc. The purpose is to provide.

本発明に係る空気調和機は、少なくとも、圧縮機、四方弁、室外熱交換器、膨張弁および室内熱交換器が冷媒配管により順次に接続されて構成される冷媒回路を有する空気調和機において、室外熱交換器側に設けられ、外気温度を検出する外気温度センサーと、室内熱交換器側に設けられ、室内吸込み温度を検出する室内温度センサーと、暖房運転開始時の圧縮機起動時における膨張弁の初期開度を決定するための条件が少なくとも条件4および条件5として設定され、外気温度センサーにより検出された外気温度が第4の所定値より低いとき、あるいは当該外気温度が第4の所定値より高く、かつ外気温度が室内温度センサーにより検出された室内吸込み温度と第5の所定値との差分より低いときには、条件5を満たしているとして、当該条件5に設定された初期開度となるように膨張弁の開度を制御し、外気温度が第4の所定値より高く、かつ外気温度が室内温度センサーにより検出された室内吸込み温度と第5の所定値との差分より高いときには、条件4を満たしているとして、条件5のときの初期開度より大きい初期開度となるように膨張弁の開度を制御する制御装置とを備えたものである。 The air conditioner according to the present invention is at least an air conditioner having a refrigerant circuit configured by sequentially connecting a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger by a refrigerant pipe. An outdoor temperature sensor that is provided on the outdoor heat exchanger side and detects the outdoor air temperature, an indoor temperature sensor that is provided on the indoor heat exchanger side and detects the indoor suction temperature, and expansion when the compressor is started at the start of heating operation Conditions for determining the initial opening of the valve are set as at least conditions 4 and 5, and when the outside air temperature detected by the outside air temperature sensor is lower than a fourth predetermined value or when the outside air temperature is a fourth predetermined temperature. If the outside air temperature is lower than the difference between the indoor intake temperature detected by the indoor temperature sensor and the fifth predetermined value, the condition 5 is satisfied, And controlling the opening of the expansion valve so as to set initial opening degree matter 5, the outside air temperature is higher than a fourth predetermined value, and the temperature and the fifth suction chamber outside air temperature is detected by the indoor temperature sensor And a control device that controls the opening of the expansion valve so that the initial opening is larger than the initial opening in the condition 5, assuming that the condition 4 is satisfied. It is.

本発明によれば、外気温度が第4の所定値より低いとき、あるいは外気温度が第4の所定値より高く、かつ外気温度が室内吸込み温度と第5の所定値との差分より低いときには、条件5を満たしているとして、その条件5に設定された初期開度となるように膨張弁の開度を制御し、外気温度が前記差分より高いときには、条件4を満たしているとして、条件5のときの初期開度より大きい初期開度となるように膨張弁の開度を制御するようにしている。これにより、圧縮機起動時に適正な循環冷媒量を確保することができる。また、条件5に設定された初期開度となるように膨張弁を制御した場合には、冷媒の過冷却度(サブクール)が付くことで必要な暖房性能を得ることができ、立ち上がりの室内機吹出し温度を十分に高くすることが可能となる。さらに、条件4に設定された初期開度となるように膨張弁を制御した場合には、冷媒による圧縮機の冷却効果で吐出温度の過度の上昇を抑えることができる。   According to the present invention, when the outside air temperature is lower than the fourth predetermined value, or when the outside air temperature is higher than the fourth predetermined value and the outside air temperature is lower than the difference between the indoor suction temperature and the fifth predetermined value, Assuming that condition 5 is satisfied, the opening degree of the expansion valve is controlled so that the initial opening degree set in condition 5 is obtained, and when the outside air temperature is higher than the difference, it is assumed that condition 4 is satisfied, and condition 5 The opening of the expansion valve is controlled so that the initial opening is larger than the initial opening. Thereby, it is possible to secure an appropriate amount of circulating refrigerant when the compressor is started. In addition, when the expansion valve is controlled so that the initial opening degree set in the condition 5 is obtained, the required heating performance can be obtained by adding the degree of subcooling of the refrigerant, and the rising indoor unit The blowing temperature can be made sufficiently high. Furthermore, when the expansion valve is controlled so that the initial opening degree set in the condition 4 is reached, an excessive increase in the discharge temperature can be suppressed by the cooling effect of the compressor by the refrigerant.

実施の形態に係る空気調和機の構成を示す冷媒回路図である。It is a refrigerant circuit figure which shows the structure of the air conditioner which concerns on embodiment. 実施の形態に係る空気調和機の冷房運転開始時の動作を示すフローチャートである。It is a flowchart which shows the operation | movement at the time of the cooling operation start of the air conditioner which concerns on embodiment. 横軸を外気温度および縦軸を室内吸込み温度として、図2の条件1、条件2および条件3を区画化して示すマップ図である。FIG. 3 is a map diagram in which Condition 1, Condition 2, and Condition 3 in FIG. 横軸を外気温度および縦軸を室内吸込み温度として、条件1および条件2を区画化して示す変形例のマップ図である。It is a map figure of the modification which shows Condition 1 and Condition 2 by making a horizontal axis | shaft outside temperature and a vertical axis | shaft indoor indoor temperature. 実施の形態に係る空気調和機の暖房運転開始時の動作を示すフローチャートである。It is a flowchart which shows the operation | movement at the time of the heating operation start of the air conditioner which concerns on embodiment. 横軸を外気温度および縦軸を室内吸込み温度として、図5の条件4および条件5を区画化して示すマップ図である。FIG. 6 is a map diagram showing the condition 4 and the condition 5 in FIG. 5 in a partitioned manner with the horizontal axis as the outside air temperature and the vertical axis as the indoor suction temperature. 実施の形態の変形例を示す空気調和機の冷媒回路図である。It is a refrigerant circuit figure of the air conditioner which shows the modification of embodiment.

図1は実施の形態に係る空気調和機の構成を示す冷媒回路図である。
本実施の形態の空気調和機は、圧縮機1、四方弁7、室外熱交換器2、電子リニア膨張弁4、室内熱交換器5、アキュームレータ11等が冷媒配管15により順次に接続されて構成される冷媒回路16を備えている。また、空気調和機は、後述する複数のセンサーからの温度情報に基づいて、圧縮機1や電子リニア膨張弁4、室外用送風機3、室内用送風機6等のアクチュエータ類の制御を司る制御装置10を備えている。なお、制御装置10は、空気調和機の運転停止のときでも電源が入っている間、一定間隔で外気温度センサー8、室外配管温度センサー13a、13b、室内温度センサー9、室内配管温度センサー14a、14bによりそれぞれ検出される各部の温度を読み込んでいる。
FIG. 1 is a refrigerant circuit diagram illustrating a configuration of an air conditioner according to an embodiment.
The air conditioner of the present embodiment is configured by sequentially connecting a compressor 1, a four-way valve 7, an outdoor heat exchanger 2, an electronic linear expansion valve 4, an indoor heat exchanger 5, an accumulator 11 and the like through a refrigerant pipe 15. The refrigerant circuit 16 is provided. In addition, the air conditioner controls the actuators 10 such as the compressor 1, the electronic linear expansion valve 4, the outdoor blower 3, and the indoor blower 6 based on temperature information from a plurality of sensors described later. It has. Note that the control device 10 is configured so that the air temperature sensor 8, the outdoor pipe temperature sensors 13a and 13b, the indoor temperature sensor 9, the indoor pipe temperature sensor 14a, The temperature of each part detected by 14b is read.

前述の四方弁7は、冷房と暖房のサイクルを切り替えるための弁で、冷房運転に切り替えられたときには、室外熱交換器2が凝縮器として、室内熱交換器5が蒸発器として作用し、暖房運転に切り替えられたときには、室外熱交換器2が蒸発器として、室内熱交換器5が凝縮器として作用する。アキュームレータ11は、圧縮機1への吸入冷媒から液相を分離し冷媒回路16内の余剰冷媒を貯留する。   The above-mentioned four-way valve 7 is a valve for switching between a cooling cycle and a heating cycle. When switched to the cooling operation, the outdoor heat exchanger 2 functions as a condenser and the indoor heat exchanger 5 functions as an evaporator. When switched to operation, the outdoor heat exchanger 2 acts as an evaporator and the indoor heat exchanger 5 acts as a condenser. The accumulator 11 separates the liquid phase from the refrigerant sucked into the compressor 1 and stores excess refrigerant in the refrigerant circuit 16.

室外熱交換器2側には、室外用送風機3、外気の温度を検出する外気温度センサー8、熱交換器や配管における二相流部および液相部の温度を検出する室外配管温度センサー13a、13b等が設けられている。室内熱交換器5側には、室内用送風機6、室内吸込み温度を検出する室内温度センサー9、熱交換器や配管における二相流部および液相部の温度を検出する室内配管温度センサー14a、14b等が設けられている。前述の各温度センサーとして、例えばセンサーが使用されている。   On the outdoor heat exchanger 2 side, an outdoor fan 3, an outdoor temperature sensor 8 for detecting the temperature of the outside air, an outdoor pipe temperature sensor 13a for detecting the temperatures of the two-phase flow part and the liquid phase part in the heat exchanger and the pipe, 13b etc. are provided. On the indoor heat exchanger 5 side, an indoor fan 6, an indoor temperature sensor 9 for detecting the indoor suction temperature, an indoor pipe temperature sensor 14a for detecting the temperature of the two-phase flow part and the liquid phase part in the heat exchanger and the pipe, 14b etc. are provided. As each temperature sensor described above, for example, a sensor is used.

前記のように構成された空気調和機において、冷房運転時の冷媒の流れは図1に示す実線の矢印のように流れる。冷媒は、圧縮機1により圧縮されて高温高圧のガス冷媒となり、四方弁7を介して室外熱交換器2へと流れ込む。そして、そのガス冷媒は、室外熱交換器2で室外用送風機3にて送り込まれる室外空気と熱交換(放熱)され高圧の液冷媒となる。その後、その液冷媒は、電子リニア膨張弁4により所定の圧力まで膨張されて低圧の気液二相の冷媒となり、室内熱交換器5に流入する。室内熱交換器5に流入した気液二相の冷媒は、室内用送風機6により送り込まれる室内空気と熱交換(吸熱)され低温低圧のガス冷媒となり、四方弁7およびアキュームレータ11を介して圧縮機1へと戻る。   In the air conditioner configured as described above, the flow of the refrigerant during the cooling operation flows as indicated by the solid arrow shown in FIG. The refrigerant is compressed by the compressor 1 to become a high-temperature and high-pressure gas refrigerant, and flows into the outdoor heat exchanger 2 through the four-way valve 7. The gas refrigerant exchanges heat with the outdoor air sent by the outdoor fan 3 in the outdoor heat exchanger 2 (dissipates heat) to become a high-pressure liquid refrigerant. Thereafter, the liquid refrigerant is expanded to a predetermined pressure by the electronic linear expansion valve 4 to become a low-pressure gas-liquid two-phase refrigerant and flows into the indoor heat exchanger 5. The gas-liquid two-phase refrigerant flowing into the indoor heat exchanger 5 exchanges heat (absorbs heat) with the indoor air sent by the indoor blower 6 to become a low-temperature and low-pressure gas refrigerant, and the compressor passes through the four-way valve 7 and the accumulator 11. Return to 1.

また、暖房運転時の冷媒の流れは図1に示す波線の矢印のように流れる。冷媒は、前記と同様に圧縮機1により圧縮されて高温高圧のガス冷媒となり、四方弁7を介して室内熱交換器5へと流れ込む。そのガス冷媒は、室内熱交換器5で室内用送風機6にて送り込まれる室内空気と熱交換(放熱)され高圧の液冷媒となる。その後、その液冷媒は、電子リニア膨張弁4により所定の圧力まで膨張されて低圧の気液二相の冷媒となり、室外熱交換器2に流入する。室外熱交換器2に流入した気液二相の冷媒は、室外用送風機3により送り込まれる室外空気と熱交換(吸熱)され低温低圧のガス冷媒となり、四方弁7およびアキュームレータ11を介して圧縮機1へと戻る。   Further, the flow of the refrigerant during the heating operation flows as indicated by the wavy arrow in FIG. The refrigerant is compressed by the compressor 1 as described above to become a high-temperature and high-pressure gas refrigerant, and flows into the indoor heat exchanger 5 via the four-way valve 7. The gas refrigerant exchanges heat (radiates heat) with the indoor air sent by the indoor fan 6 in the indoor heat exchanger 5 to become a high-pressure liquid refrigerant. Thereafter, the liquid refrigerant is expanded to a predetermined pressure by the electronic linear expansion valve 4 to become a low-pressure gas-liquid two-phase refrigerant and flows into the outdoor heat exchanger 2. The gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 2 exchanges heat with the outdoor air sent by the outdoor fan 3 (heat absorption) to become a low-temperature and low-pressure gas refrigerant, and the compressor passes through the four-way valve 7 and the accumulator 11. Return to 1.

次に、冷房運転開始時の動作を図2および図3を用いて説明する。
図2は実施の形態に係る空気調和機の冷房運転開始時の動作を示すフローチャート、図3は横軸を外気温度および縦軸を室内吸込み温度として、図2の条件1、条件2および条件3を区画化して示すマップ図である。なお、図3に示す条件1及び条件2は、T1(第1の所定値)とTea=Tca−T2(第2の所定値)を閾値として分けられ、条件2及び条件3は、T1とTea=Tca−T3(第3の所定値)を閾値として分けられている。
Next, the operation at the start of the cooling operation will be described with reference to FIGS.
FIG. 2 is a flowchart showing the operation at the start of cooling operation of the air conditioner according to the embodiment. FIG. 3 is a condition 1, condition 2 and condition 3 in FIG. It is a map figure which divides and shows. Note that Condition 1 and Condition 2 shown in FIG. 3 are divided using T1 (first predetermined value) and Tea = Tca−T2 (second predetermined value) as thresholds, and Condition 2 and Condition 3 are T1 and Teaa. = Tca−T3 (third predetermined value) is used as a threshold value.

ユーザーのリモコン操作により冷房運転開始の信号が制御装置10に受信されると、制御装置10は、冷房運転を開始し、次いで、室内温度センサー9により検出された室内吸込み温度Teaを読み込む。そして、制御装置10は、読み込んだ室内吸込み温度Teaが第1の所定値T1より低いかどうかを判定する(S1)。   When the control device 10 receives a cooling operation start signal by the user's remote control operation, the control device 10 starts the cooling operation, and then reads the indoor suction temperature Tea detected by the indoor temperature sensor 9. Then, the control device 10 determines whether or not the read indoor suction temperature Tea is lower than the first predetermined value T1 (S1).

制御装置10は、室内吸込み温度Teaが第1の所定値T1より低いとき、例えば図3に示すように点Aの場合、条件1が成立しているとして(S2)、その条件1に設定された下記の式(1)を選択し、その式(1)に従って圧縮機1の起動時における電子リニア膨張弁4の初期開度を決定するパルスを算出する。
Sj=220+C1×(Fj−C2) ・・・(1)
なお、ここで、Sjは電子リニア膨張弁4の起動開度のパルス、Fjは圧縮機1の起動周波数、C1およびC2は定数を表す。
When the indoor suction temperature Tea is lower than the first predetermined value T1, for example, at the point A as shown in FIG. 3, the control device 10 sets the condition 1 as the condition 1 is satisfied (S2). The following equation (1) is selected, and a pulse for determining the initial opening degree of the electronic linear expansion valve 4 when the compressor 1 is started is calculated according to the equation (1).
Sj = 220 + C1 × (Fj−C2) (1)
Here, Sj represents the pulse of the opening degree of the electronic linear expansion valve 4, Fj represents the starting frequency of the compressor 1, and C1 and C2 represent constants.

その後、制御装置10は、算出したパルスSjにより電子リニア膨張弁4のアクチュエータを起動し、パルスSjに応じた開度となるように電子リニア膨張弁4を開放する(S3)。なお、この場合の電子リニア膨張弁4の開度(初期開度)は、条件2、3に設定された電子リニア膨張弁4の初期開度よりも大きい。   Thereafter, the control device 10 activates the actuator of the electronic linear expansion valve 4 with the calculated pulse Sj, and opens the electronic linear expansion valve 4 so that the opening degree corresponds to the pulse Sj (S3). In this case, the opening degree (initial opening degree) of the electronic linear expansion valve 4 is larger than the initial opening degree of the electronic linear expansion valve 4 set in the conditions 2 and 3.

制御装置10は、電子リニア膨張弁4を開放した際、圧縮機1を予め設定された起動周波数にて起動させる(S4)。その後、制御装置10は、通常の冷房運転に入って、リモコンにより設定された室内温度となるように、圧縮機1や電子リニア膨張弁4、室外用送風機3、室内用送風機6を制御する(S5)。   When the electronic linear expansion valve 4 is opened, the control device 10 starts the compressor 1 at a preset starting frequency (S4). Thereafter, the control device 10 enters a normal cooling operation and controls the compressor 1, the electronic linear expansion valve 4, the outdoor blower 3, and the indoor blower 6 so that the room temperature is set by the remote controller ( S5).

制御装置10は、S1において、室内吸込み温度Teaが第1の所定値T1より高いと判定したきには、外気温度センサー8により検出された外気温度Tcaを読み込んで、外気温度Tcaから第2の所定値T2を減算して差分を求め、かつ先に読み込んだ室内吸込み温度Teaがその差分より低いかどうかを判定する(S6)。制御装置10は、室内吸込み温度Teaが差分(Tca−T2)より低いとき、例えば図3に示すように点Bの場合、条件1が成立しているとして(S2)、前述した動作を実行する(S3〜S5)。   When it is determined in S1 that the indoor suction temperature Tea is higher than the first predetermined value T1, the control device 10 reads the outside air temperature Tca detected by the outside air temperature sensor 8, and the second outside temperature Tca is read from the outside air temperature Tca. The difference is obtained by subtracting the predetermined value T2, and it is determined whether or not the previously read indoor suction temperature Tea is lower than the difference (S6). When the indoor suction temperature Tea is lower than the difference (Tca−T2), for example, at the point B as shown in FIG. 3, the control device 10 performs the above-described operation assuming that the condition 1 is satisfied (S2). (S3-S5).

また、制御装置10は、S6において、室内吸込み温度Teaが差分より高いと判定したときには、先に読み込んだ外気温度Tcaから第3の所定値T3を減算して差分(Tca−T3)を求め、かつS1で読み込んだ室内吸込み温度Teaがその差分(Tca−T3)以上かどうかを判定する(S7)。制御装置10は、室内吸込み温度Teaが差分より低いとき、例えば図3に示すように点Cの場合、条件2が成立しているとして(S8)、その条件2に設定された下記の式(2)を選択し、その式(2)に従って圧縮機1の起動時における電子リニア膨張弁4の初期開度を決定するパルスを算出する。
Sj=120+C1×(Fj−C2) ・・・(2)
Further, when it is determined in S6 that the indoor suction temperature Tea is higher than the difference, the control device 10 subtracts the third predetermined value T3 from the previously read outside air temperature Tca to obtain a difference (Tca−T3). And it is determined whether the indoor suction temperature Tea read in S1 is more than the difference (Tca-T3) (S7). When the indoor suction temperature Tea is lower than the difference, for example, in the case of the point C as shown in FIG. 3, the control device 10 assumes that the condition 2 is satisfied (S8), and the following equation ( 2) is selected, and a pulse for determining the initial opening degree of the electronic linear expansion valve 4 when the compressor 1 is started is calculated according to the equation (2).
Sj = 120 + C1 × (Fj−C2) (2)

その後、制御装置10は、算出したパルスSjにより電子リニア膨張弁4のアクチュエータを起動し、パルスSjに応じた開度となるように電子リニア膨張弁4を開放する(S9)。なお、この場合の電子リニア膨張弁4の開度(初期開度)は、条件1、3に設定された電子リニア膨張弁4の初期開度よりも小さい。   Thereafter, the control device 10 activates the actuator of the electronic linear expansion valve 4 with the calculated pulse Sj, and opens the electronic linear expansion valve 4 so that the opening degree corresponds to the pulse Sj (S9). In this case, the opening degree (initial opening degree) of the electronic linear expansion valve 4 is smaller than the initial opening degree of the electronic linear expansion valve 4 set in the conditions 1 and 3.

制御装置10は、電子リニア膨張弁4を開放した際、圧縮機1を予め設定された起動周波数にて起動させる(S4)。その後、制御装置10は、前記と同様に通常の冷房運転に入って、リモコンにより設定された室内温度となるように、圧縮機1や電子リニア膨張弁4、室外用送風機3、室内用送風機6を制御する(S5)。なお、圧縮機1の起動周波数は、条件1の成立により電子リニア膨張弁4の開度(初期開度)を設定した際の圧縮機1の起動周波数と同じである。   When the electronic linear expansion valve 4 is opened, the control device 10 starts the compressor 1 at a preset starting frequency (S4). Thereafter, the control device 10 enters a normal cooling operation in the same manner as described above, and the compressor 1, the electronic linear expansion valve 4, the outdoor blower 3, and the indoor blower 6 so that the room temperature is set by the remote controller. Is controlled (S5). The start-up frequency of the compressor 1 is the same as the start-up frequency of the compressor 1 when the opening degree (initial opening degree) of the electronic linear expansion valve 4 is set by satisfying the condition 1.

また、制御装置10は、S7において、室内吸込み温度Teaが差分(Tca−T3)以上と判定したとき、例えば図3に示すように点Dの場合、条件3が成立しているとして(S10)、その条件3に設定された下記の式(3)を選択し、その式(3)に従って圧縮機1の起動時における電子リニア膨張弁4の初期開度を決定するパルスを算出する。
Sj=140+C1×(Fj−C2) ・・・(3)
Further, when the control device 10 determines in S7 that the indoor suction temperature Tea is equal to or higher than the difference (Tca−T3), for example, in the case of the point D as shown in FIG. 3, the condition 3 is satisfied (S10). Then, the following equation (3) set in the condition 3 is selected, and a pulse for determining the initial opening degree of the electronic linear expansion valve 4 when the compressor 1 is started is calculated according to the equation (3).
Sj = 140 + C1 × (Fj−C2) (3)

その後、制御装置10は、算出したパルスSjにより電子リニア膨張弁4のアクチュエータを起動し、パルスSjに応じた開度となるように電子リニア膨張弁4を開放する(S11)。なお、この場合の電子リニア膨張弁4の開度(初期開度)は、条件1に設定された電子リニア膨張弁4の初期開度よりも小さく、条件2に設定された電子リニア膨張弁4の初期開度より若干大きい。   Thereafter, the control device 10 activates the actuator of the electronic linear expansion valve 4 with the calculated pulse Sj, and opens the electronic linear expansion valve 4 so that the opening degree corresponds to the pulse Sj (S11). In this case, the opening degree (initial opening degree) of the electronic linear expansion valve 4 is smaller than the initial opening degree of the electronic linear expansion valve 4 set in the condition 1, and the electronic linear expansion valve 4 set in the condition 2 is used. Is slightly larger than the initial opening.

制御装置10は、電子リニア膨張弁4を開放した際、圧縮機1を予め設定された起動周波数にて起動させる(S4)。その後、制御装置10は、前記と同様に通常の冷房運転に入って、リモコンにより設定された室内温度となるように、圧縮機1や電子リニア膨張弁4、室外用送風機3、室内用送風機6を制御する(S5)。なお、圧縮機1の起動周波数は、前述したように、条件1の成立により電子リニア膨張弁4の開度(初期開度)を設定した際の圧縮機1の起動周波数と同じである。   When the electronic linear expansion valve 4 is opened, the control device 10 starts the compressor 1 at a preset starting frequency (S4). Thereafter, the control device 10 enters a normal cooling operation in the same manner as described above, and the compressor 1, the electronic linear expansion valve 4, the outdoor blower 3, and the indoor blower 6 so that the room temperature is set by the remote controller. Is controlled (S5). Note that, as described above, the starting frequency of the compressor 1 is the same as the starting frequency of the compressor 1 when the opening degree (initial opening degree) of the electronic linear expansion valve 4 is set by satisfying the condition 1.

以上のように冷房運転開始時、室内吸込み温度Teaが第1の所定値Tより低いとき、あるいは室内吸込み温度Teaが第1の所定値Tより高く、かつ室内吸込み温度Teaが外気温度Tcaと第2の所定値T2との差分より低いときには、条件1を満たしているとして、圧縮機1の起動時における電子リニア膨張弁4の初期開度を大きく設定するようにしている。
前述した従来技術のように外気温度だけで判定した場合、電子リニア膨張弁4の初期開度を小さく設定するので、適正な循環冷媒量を確保できないが、本実施の形態では、適正な循環冷媒量を確保できる。これにより、蒸発圧力の過度の低下を防止することが可能になり、室内熱交換器5の凍結を防止したり、室内熱交換器5の凍結を予防するために運転と停止を繰り返す断続運転状態を回避することが可能になり、圧縮機1の吐出温度の過度の上昇を防止することができる。
As described above, at the start of the cooling operation, when the indoor suction temperature Tea is lower than the first predetermined value T, or the indoor suction temperature Tea is higher than the first predetermined value T, and the indoor suction temperature Tea is equal to the outdoor air temperature Tca. When the difference is smaller than the predetermined value T2 of 2, it is assumed that the condition 1 is satisfied, and the initial opening degree of the electronic linear expansion valve 4 when the compressor 1 is started is set large.
When the determination is made only with the outside air temperature as in the above-described prior art, since the initial opening degree of the electronic linear expansion valve 4 is set small, an appropriate amount of circulating refrigerant cannot be ensured, but in this embodiment, an appropriate circulating refrigerant is used. The amount can be secured. As a result, it is possible to prevent an excessive decrease in the evaporation pressure, and an intermittent operation state in which operation and stop are repeated to prevent freezing of the indoor heat exchanger 5 and to prevent freezing of the indoor heat exchanger 5. Can be avoided, and an excessive increase in the discharge temperature of the compressor 1 can be prevented.

また、冷房運転開始時、室内吸込み温度Teaが前記差分より高く、かつ室内吸込み温度Teaが外気温度Tcaと第3の所定値T3との差分より低いときには、条件2を満たしているとして、圧縮機1の起動時における電子リニア膨張弁4の初期開度を小さく設定するようにしている。
前述した従来技術のように外気温度だけで判定した場合、電子リニア膨張弁4の初期開度を大きく設定するので、液バック状態に陥る可能性があるが、本実施の形態では、吸入圧力が高く吸入ガス密度の高い状態、つまり循環冷媒量の多い状態でも、吸入過熱度(吸入スーパーヒート)を十分に付けることができるようになり、そのため、冷媒が液状態で圧縮機1に戻り液圧縮などの要因で圧縮機1の故障に至る可能性のある、いわゆる液バック状態に陥る可能性を抑えることができる。
Further, at the start of the cooling operation, when the indoor suction temperature Tea is higher than the difference and the indoor suction temperature Tea is lower than the difference between the outside air temperature Tca and the third predetermined value T3, it is assumed that the condition 2 is satisfied, and the compressor The initial opening degree of the electronic linear expansion valve 4 at the time of starting 1 is set small.
When the determination is made only with the outside air temperature as in the prior art described above, since the initial opening degree of the electronic linear expansion valve 4 is set to be large, there is a possibility of falling into the liquid back state. Even in a high intake gas density state, that is, in a state where the amount of circulating refrigerant is large, it is possible to sufficiently apply the degree of suction superheat (suction superheat), so that the refrigerant returns to the compressor 1 in a liquid state and is compressed by liquid. It is possible to suppress the possibility of falling into a so-called liquid back state that may lead to a failure of the compressor 1 due to factors such as the above.

さらに、冷房運転開始時、室内吸込み温度Teaが外気温度Tcaと第3の所定値T3との差分以上のときには、条件3を満たしているとして、条件1に設定された電子リニア膨張弁4の初期開度よりも小さく、条件2に設定された電子リニア膨張弁4の初期開度より若干大きく設定するようにしている。
前述した従来技術のように外気温度だけで判定した場合、電子リニア膨張弁4の初期開度を小さく設定するので、適正な循環冷媒量を確保できないが、本実施の形態では、適正な循環冷媒量を確保できる。これにより、冬期にサーバールーム内で冷房運転を行っても、前述のような室内熱交換器5の凍結予防のための断続運転を防止することができる。
Further, at the start of the cooling operation, when the indoor suction temperature Tea is equal to or greater than the difference between the outside air temperature Tca and the third predetermined value T3, it is determined that the condition 3 is satisfied, and the initial state of the electronic linear expansion valve 4 set in the condition 1 is satisfied. The opening degree is set to be slightly larger than the initial opening degree of the electronic linear expansion valve 4 set in the condition 2, which is smaller than the opening degree.
When the determination is made only with the outside air temperature as in the above-described prior art, since the initial opening degree of the electronic linear expansion valve 4 is set small, an appropriate amount of circulating refrigerant cannot be ensured, but in this embodiment, an appropriate circulating refrigerant is used. The amount can be secured. Thereby, even if the cooling operation is performed in the server room in winter, the intermittent operation for preventing freezing of the indoor heat exchanger 5 as described above can be prevented.

なお、実施の形態では、前述したように、条件1を満たしているときに、圧縮機1の起動時における電子リニア膨張弁4の初期開度を大きく設定し、条件2を満たしているときに、圧縮機1の起動時における電子リニア膨張弁4の初期開度を小さく設定し、条件3を満たしているときに、条件1に設定された電子リニア膨張弁4の初期開度よりも小さく、条件2に設定された電子リニア膨張弁4の初期開度より若干大きく設定するようにしたが、これに限定されるものではない。例えば、図4に示すように、条件1を満たしているときに、前述の電子リニア膨張弁4の初期開度を大きく設定し、条件2を満たしているときには、その電子リニア膨張弁4の初期開度を小さく設定する空気調和機であっても良い。   In the embodiment, as described above, when the condition 1 is satisfied, the initial opening degree of the electronic linear expansion valve 4 when the compressor 1 is started is set large, and the condition 2 is satisfied. The initial opening degree of the electronic linear expansion valve 4 at the time of starting the compressor 1 is set small, and when the condition 3 is satisfied, it is smaller than the initial opening degree of the electronic linear expansion valve 4 set in the condition 1, Although it is set to be slightly larger than the initial opening degree of the electronic linear expansion valve 4 set in the condition 2, it is not limited to this. For example, as shown in FIG. 4, when the condition 1 is satisfied, the initial opening degree of the electronic linear expansion valve 4 is set large, and when the condition 2 is satisfied, the initial state of the electronic linear expansion valve 4 is set. An air conditioner that sets the opening degree small may be used.

次に、暖房運転開始の動作を図5および図6を用いて説明する。
図5は実施の形態に係る空気調和機の暖房運転開始時の動作を示すフローチャート、図6は横軸を外気温度および縦軸を室内吸込み温度として、図5の条件4および条件5を区画化して示すマップ図である。なお、図6に示す条件4及び条件5は、T4(第4の所定値)とTea=Tca−T5(第5の所定値)を閾値として分けられている。
Next, the operation for starting the heating operation will be described with reference to FIGS. 5 and 6.
FIG. 5 is a flowchart showing an operation at the start of heating operation of the air conditioner according to the embodiment, and FIG. 6 is a partition of condition 4 and condition 5 in FIG. 5 where the horizontal axis is the outside air temperature and the vertical axis is the indoor intake temperature. FIG. Note that Condition 4 and Condition 5 shown in FIG. 6 are divided using T4 (fourth predetermined value) and Tea = Tca−T5 (fifth predetermined value) as threshold values.

ユーザーのリモコン操作により暖房運転開始の信号が制御装置10に受信されると、制御装置10は、暖房運転を開始し、次いで、外気温度センサー8により検出された外気温度Teaを読み込む。そして、制御装置10は、読み込んだ外気温度Teaが第4の所定値T4より低いかどうかを判定する(S21)。   When the control device 10 receives the heating operation start signal by the user's remote control operation, the control device 10 starts the heating operation, and then reads the outside air temperature Tea detected by the outside air temperature sensor 8. Then, the control device 10 determines whether or not the read outside temperature Tea is lower than a fourth predetermined value T4 (S21).

制御装置10は、外気温度Teaが第4の所定値T4より低いとき、例えば図6に示すように点Eの場合、条件5が成立しているとして(S22)、その条件5に設定された下記の式(4)を選択し、その式(4)に従って圧縮機1の起動時における電子リニア膨張弁4の初期開度を決定するパルスを算出する。
Sj=157+C3×(Fj−C4) ・・・(4)
なお、ここで、C3およびC4は定数を表す。
When the outside air temperature Tea is lower than the fourth predetermined value T4, for example, at the point E as shown in FIG. 6, the control device 10 sets the condition 5 as the condition 5 being satisfied (S22). The following equation (4) is selected, and a pulse for determining the initial opening degree of the electronic linear expansion valve 4 when the compressor 1 is started is calculated according to the equation (4).
Sj = 157 + C3 × (Fj−C4) (4)
Here, C3 and C4 represent constants.

その後、制御装置10は、算出したパルスSjにより電子リニア膨張弁4のアクチュエータを起動して、パルスSjに応じた開度となるように電子リニア膨張弁4を開放する(S23)。なお、この場合の電子リニア膨張弁4の開度(初期開度)は、条件4に設定された電子リニア膨張弁4の初期開度より若干小さい。   Thereafter, the control device 10 activates the actuator of the electronic linear expansion valve 4 with the calculated pulse Sj, and opens the electronic linear expansion valve 4 so that the opening degree corresponds to the pulse Sj (S23). In this case, the opening degree (initial opening degree) of the electronic linear expansion valve 4 is slightly smaller than the initial opening degree of the electronic linear expansion valve 4 set in the condition 4.

制御装置10は、電子リニア膨張弁4を開放した際、圧縮機1を起動周波数にて起動させる(S24)。その後、制御装置10は、通常の暖房運転に入って、リモコンにより設定された室内温度となるように、圧縮機1や電子リニア膨張弁4、室外用送風機3、室内用送風機6を制御する(S25)。   When the electronic linear expansion valve 4 is opened, the control device 10 activates the compressor 1 at the activation frequency (S24). Thereafter, the control device 10 enters a normal heating operation and controls the compressor 1, the electronic linear expansion valve 4, the outdoor blower 3, and the indoor blower 6 so that the room temperature set by the remote controller is reached ( S25).

制御装置10は、S21において、外気温度Teaが第4の所定値T4より高いと判定したときには、室内温度センサー9により検出された室内吸込み温度Tcaを読み込んで、室内吸込み温度Tcaから第5の所定値T5を減算して差分を求め、かつ先に読み込んだ外気温度Teaがその差分より低いかどうかを判定する(S26)。制御装置10は、外気温度Teaが差分(Tca−T5)より低いとき、条件5が成立しているとして(S22)、前述した動作を実行する(S23〜S25)。   When it is determined in S21 that the outside air temperature Tea is higher than the fourth predetermined value T4, the control device 10 reads the indoor suction temperature Tca detected by the indoor temperature sensor 9 and calculates the fifth predetermined temperature from the indoor suction temperature Tca. A difference is obtained by subtracting the value T5, and it is determined whether or not the previously read outside air temperature Tea is lower than the difference (S26). When the outside air temperature Tea is lower than the difference (Tca−T5), the control device 10 performs the above-described operation (S23 to S25) assuming that the condition 5 is satisfied (S22).

また、制御装置10は、S26において、外気温度Teaが差分(Tca−T5)より高いと判定したとき、例えば図6に示すように点Fの場合、条件4が成立しているとして(S27)、その条件4に設定された下記の式(5)を選択し、その式(5)に従って圧縮機1の起動時における電子リニア膨張弁4の初期開度を決定するパルスを算出する。
Sj=167+C3×(Fj−C4) ・・・(5)
Further, when the controller 10 determines in S26 that the outside air temperature Tea is higher than the difference (Tca−T5), for example, in the case of the point F as shown in FIG. 6, the condition 4 is satisfied (S27). Then, the following equation (5) set in the condition 4 is selected, and a pulse for determining the initial opening degree of the electronic linear expansion valve 4 when the compressor 1 is started is calculated according to the equation (5).
Sj = 167 + C3 × (Fj−C4) (5)

その後、制御装置10は、算出したパルスSjにより電子リニア膨張弁4のアクチュエータを起動して、パルスSjに応じた開度となるように電子リニア膨張弁4を開放する(S28)。なお、この場合の電子リニア膨張弁4の開度(初期開度)は、条件5に設定された電子リニア膨張弁4の初期開度より若干大きい。   Thereafter, the control device 10 activates the actuator of the electronic linear expansion valve 4 with the calculated pulse Sj, and opens the electronic linear expansion valve 4 so that the opening degree corresponds to the pulse Sj (S28). In this case, the opening degree (initial opening degree) of the electronic linear expansion valve 4 is slightly larger than the initial opening degree of the electronic linear expansion valve 4 set in the condition 5.

制御装置10は、電子リニア膨張弁4を開放した際、圧縮機1を起動周波数にて起動させる(S24)。その後、制御装置10は、通常の暖房運転に入って、リモコンにより設定された室内温度となるように、圧縮機1や電子リニア膨張弁4、室外用送風機3、室内用送風機6を制御する(S25)。なお、圧縮機1の起動周波数は、条件5の成立により電子リニア膨張弁4の開度(初期開度)を設定した際の圧縮機1の起動周波数と同じである。   When the electronic linear expansion valve 4 is opened, the control device 10 activates the compressor 1 at the activation frequency (S24). Thereafter, the control device 10 enters a normal heating operation and controls the compressor 1, the electronic linear expansion valve 4, the outdoor blower 3, and the indoor blower 6 so that the room temperature set by the remote controller is reached ( S25). The starting frequency of the compressor 1 is the same as the starting frequency of the compressor 1 when the opening degree (initial opening degree) of the electronic linear expansion valve 4 is set by satisfying the condition 5.

以上のように暖房運転開始時、外気温度Teaが第4の所定値T4より低く、あるいは外気温度Teaが第4の所定値T4より高く、かつ外気温度Teaが室内吸込み温度Tcaと第5の所定値T5との差分より低いときには、条件5を満たしているとして、圧縮機1の起動時における電子リニア膨張弁4の初期開度を小さく設定するようにしている。つまり、図6の点Gのように外気温度Teaが高く、室内吸込み温度Tcaが非常に高い場合、前述の電子リニア膨張弁4の初期開度を小さく設定するので、冷媒の過冷却度(サブクール)が付くことで必要な暖房性能を得ることができ、立ち上がりの室内熱交換器5側の吹き出し温度を十分に高くすることが可能になる。   As described above, when the heating operation is started, the outside air temperature Tea is lower than the fourth predetermined value T4, or the outside air temperature Tea is higher than the fourth predetermined value T4, and the outside air temperature Tea is equal to the indoor suction temperature Tca and the fifth predetermined value. When the difference from the value T5 is lower, it is assumed that the condition 5 is satisfied, and the initial opening of the electronic linear expansion valve 4 when the compressor 1 is started is set small. That is, when the outside air temperature Tea is high and the indoor suction temperature Tca is very high as indicated by a point G in FIG. 6, the initial opening degree of the electronic linear expansion valve 4 is set to be small. ), The required heating performance can be obtained, and the blowout temperature on the rising indoor heat exchanger 5 side can be sufficiently increased.

また、外気温度が差分(Tca−T5)より高いときには、条件4を満たしているとして、条件5のときよりも電子リニア膨張弁4の初期開度を大きく設定するようにしている。これにより、循環冷媒量を十分に確保することができ、冷媒による圧縮機1の冷却効果で吐出温度の過度の上昇を抑えることができる。   When the outside air temperature is higher than the difference (Tca−T5), the condition 4 is satisfied and the initial opening degree of the electronic linear expansion valve 4 is set larger than that in the condition 5. As a result, a sufficient amount of circulating refrigerant can be secured, and an excessive increase in the discharge temperature can be suppressed by the cooling effect of the compressor 1 by the refrigerant.

以上の実施の形態は、冷媒回路16上に電子リニア膨張弁4を1つだけ設けた場合について説明したが、例えば、図7のように冷媒回路16上に2つの電子リニア膨張弁4a、4bを設ける場合がある。このような場合には、上流側の電子リニア膨張弁(冷房運転時には4a、暖房運転時には4b)では、冷媒の過冷却度(サブクール)をパラメータとして制御し、下流側の電子リニア膨張弁(冷房運転時には4b、暖房運転時には4a)では圧縮機1の吐出温度または吸入過熱度(吸入スーパーヒート)をパラメータとして制御するケースがあるが、本発明においては圧縮機1の吐出温度または吸入過熱度(吸入スーパーヒート)をパラメータとして制御する下流側の電子リニア膨張弁(冷房運転時には4b、暖房運転時には4a)の初期開度を決定する。   Although the above embodiment demonstrated the case where only one electronic linear expansion valve 4 was provided on the refrigerant circuit 16, for example, two electronic linear expansion valves 4a and 4b are provided on the refrigerant circuit 16 as shown in FIG. May be provided. In such a case, the upstream electronic linear expansion valve (4a during cooling operation, 4b during heating operation) controls the degree of subcooling of the refrigerant as a parameter, and the downstream electronic linear expansion valve (cooling operation). In the case of 4b at the time of operation and 4a) at the time of heating operation, there are cases where the discharge temperature or suction superheat degree (suction superheat) of the compressor 1 is controlled as a parameter. The initial opening degree of the downstream electronic linear expansion valve (4b during cooling operation and 4a during heating operation), which is controlled using suction superheat) as a parameter, is determined.

1 圧縮機、2 室外熱交換器、3 室外用送風機、4、4a、4b 電子リニア膨張弁、5 室内熱交換器、6 室内用送風機、7 四方弁、8 外気温度センサー、9 室内温度センサー、10 制御装置、11 アキュームレータ、12 パワーレシーバ、13a、13b 室外配管温度センサー、14a、14b 室内配管温度センサー、15 冷媒配管、16 冷媒回路。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Outdoor heat exchanger, 3 Outdoor blower, 4, 4a, 4b Electronic linear expansion valve, 5 Indoor heat exchanger, 6 Indoor blower, 7 Four way valve, 8 Outdoor temperature sensor, 9 Indoor temperature sensor, DESCRIPTION OF SYMBOLS 10 Control apparatus, 11 Accumulator, 12 Power receiver, 13a, 13b Outdoor piping temperature sensor, 14a, 14b Indoor piping temperature sensor, 15 Refrigerant piping, 16 Refrigerant circuit.

Claims (1)

少なくとも、圧縮機、四方弁、室外熱交換器、膨張弁および室内熱交換器が冷媒配管により順次に接続されて構成される冷媒回路を有する空気調和機において、
前記室外熱交換器側に設けられ、外気温度を検出する外気温度センサーと、
前記室内熱交換器側に設けられ、室内吸込み温度を検出する室内温度センサーと、
暖房運転開始時の圧縮機起動時における前記膨張弁の初期開度を決定するための条件が少なくとも条件4および条件5として設定され、前記外気温度センサーにより検出された外気温度が第4の所定値より低いとき、あるいは当該外気温度が第4の所定値より高く、かつ前記外気温度が前記室内温度センサーにより検出された室内吸込み温度と第5の所定値との差分より低いときには、前記条件5を満たしているとして、当該条件5に設定された初期開度となるように前記膨張弁の開度を制御し、外気温度が第4の所定値より高く、かつ前記外気温度が前記室内温度センサーにより検出された室内吸込み温度と第5の所定値との差分より高いときには、前記条件4を満たしているとして、前記条件5のときの初期開度より大きい初期開度となるように前記膨張弁の開度を制御する制御装置と
を備えたことを特徴とする空気調和機。
At least in an air conditioner having a refrigerant circuit in which a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are sequentially connected by a refrigerant pipe,
An outside air temperature sensor that is provided on the outdoor heat exchanger side and detects an outside air temperature;
An indoor temperature sensor provided on the indoor heat exchanger side for detecting an indoor suction temperature;
Conditions for determining the initial opening of the expansion valve at the start of the compressor at the start of heating operation are set as at least conditions 4 and 5, and the outside temperature detected by the outside temperature sensor is a fourth predetermined value. When the temperature is lower, or when the outside air temperature is higher than the fourth predetermined value and the outside air temperature is lower than the difference between the indoor suction temperature detected by the indoor temperature sensor and the fifth predetermined value, the condition 5 is satisfied. As a result, the opening degree of the expansion valve is controlled so as to be the initial opening degree set in the condition 5, the outside air temperature is higher than a fourth predetermined value, and the outside air temperature is controlled by the indoor temperature sensor. when the detected indoor suction temperature and higher than the difference between the predetermined value of the fifth, as satisfies the condition 4, it is larger initial opening than the initial opening degree when the condition 5 Air conditioner, characterized in that said a control device for controlling the opening degree of the expansion valve so.
JP2014179374A 2014-09-03 2014-09-03 Air conditioner Active JP5875649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014179374A JP5875649B2 (en) 2014-09-03 2014-09-03 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014179374A JP5875649B2 (en) 2014-09-03 2014-09-03 Air conditioner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011266156A Division JP5611928B2 (en) 2011-12-05 2011-12-05 Air conditioner

Publications (2)

Publication Number Publication Date
JP2014222145A JP2014222145A (en) 2014-11-27
JP5875649B2 true JP5875649B2 (en) 2016-03-02

Family

ID=52121744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014179374A Active JP5875649B2 (en) 2014-09-03 2014-09-03 Air conditioner

Country Status (1)

Country Link
JP (1) JP5875649B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106524361A (en) * 2016-12-09 2017-03-22 广东美的制冷设备有限公司 Air-conditioner and starting method thereof
CN111189181A (en) * 2018-11-14 2020-05-22 青岛海尔空调器有限总公司 Air conditioner and anti-freezing control method thereof
CN111189196A (en) * 2018-11-14 2020-05-22 青岛海尔空调器有限总公司 Air conditioner and anti-freezing control method thereof
CN111189198A (en) * 2018-11-14 2020-05-22 青岛海尔空调器有限总公司 Air conditioner and anti-freezing control method thereof
CN111189193A (en) * 2018-11-14 2020-05-22 青岛海尔空调器有限总公司 Air conditioner and anti-freezing control method thereof
CN111189180A (en) * 2018-11-14 2020-05-22 青岛海尔空调器有限总公司 Air conditioner and anti-freezing control method thereof
CN111189177A (en) * 2018-11-14 2020-05-22 青岛海尔空调器有限总公司 Air conditioner and anti-freezing control method thereof
CN111189197A (en) * 2018-11-14 2020-05-22 青岛海尔空调器有限总公司 Air conditioner and anti-freezing control method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6437120B2 (en) * 2015-08-05 2018-12-12 三菱電機株式会社 Chilling unit
JP6149912B2 (en) * 2015-10-16 2017-06-21 ダイキン工業株式会社 Heat pump type heating device
CN105627524B (en) * 2016-03-14 2018-06-01 广东美的制冷设备有限公司 Air conditioner anti-freeze control method and air conditioner
CN106369771A (en) * 2016-10-31 2017-02-01 芜湖美智空调设备有限公司 Control method and control device for air conditioner freezing prevention as well as air conditioner
CN108518892B (en) * 2018-05-03 2023-11-07 中国科学院理化技术研究所 Air source heat pump system-based air supply control device and control method thereof
CN110617206B (en) * 2019-09-16 2020-10-23 珠海格力电器股份有限公司 Exhaust control method and device for two-stage compressor, controller and air conditioner
CN112762579B (en) * 2020-12-31 2023-04-25 青岛海尔空调电子有限公司 Control method of air conditioning system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733930B2 (en) * 1987-04-08 1995-04-12 ダイキン工業株式会社 Air conditioner
JP2551238B2 (en) * 1990-12-25 1996-11-06 ダイキン工業株式会社 Operation control device for air conditioner
JP3546544B2 (en) * 1995-07-06 2004-07-28 ダイキン工業株式会社 Start-up operation control device for air conditioner
JPH1183205A (en) * 1997-09-16 1999-03-26 Daikin Ind Ltd Operaton controller for refrigerator
JP2002089998A (en) * 2000-09-18 2002-03-27 Matsushita Electric Ind Co Ltd Control method for operation of air conditioner
JP3742858B2 (en) * 2002-01-30 2006-02-08 ダイキン工業株式会社 Heat pump water heater

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106524361A (en) * 2016-12-09 2017-03-22 广东美的制冷设备有限公司 Air-conditioner and starting method thereof
CN111189181A (en) * 2018-11-14 2020-05-22 青岛海尔空调器有限总公司 Air conditioner and anti-freezing control method thereof
CN111189196A (en) * 2018-11-14 2020-05-22 青岛海尔空调器有限总公司 Air conditioner and anti-freezing control method thereof
CN111189198A (en) * 2018-11-14 2020-05-22 青岛海尔空调器有限总公司 Air conditioner and anti-freezing control method thereof
CN111189193A (en) * 2018-11-14 2020-05-22 青岛海尔空调器有限总公司 Air conditioner and anti-freezing control method thereof
CN111189180A (en) * 2018-11-14 2020-05-22 青岛海尔空调器有限总公司 Air conditioner and anti-freezing control method thereof
CN111189177A (en) * 2018-11-14 2020-05-22 青岛海尔空调器有限总公司 Air conditioner and anti-freezing control method thereof
CN111189197A (en) * 2018-11-14 2020-05-22 青岛海尔空调器有限总公司 Air conditioner and anti-freezing control method thereof
CN111189177B (en) * 2018-11-14 2021-08-24 重庆海尔空调器有限公司 Air conditioner and anti-freezing control method thereof
CN111189193B (en) * 2018-11-14 2021-09-21 重庆海尔空调器有限公司 Air conditioner and anti-freezing control method thereof
CN111189180B (en) * 2018-11-14 2021-09-21 重庆海尔空调器有限公司 Air conditioner and anti-freezing control method thereof
CN111189196B (en) * 2018-11-14 2021-10-29 青岛海尔空调器有限总公司 Air conditioner and anti-freezing control method thereof
CN111189181B (en) * 2018-11-14 2021-10-29 青岛海尔空调器有限总公司 Air conditioner and anti-freezing control method thereof
CN111189198B (en) * 2018-11-14 2021-10-29 青岛海尔空调器有限总公司 Air conditioner and anti-freezing control method thereof

Also Published As

Publication number Publication date
JP2014222145A (en) 2014-11-27

Similar Documents

Publication Publication Date Title
JP5875649B2 (en) Air conditioner
JP5611928B2 (en) Air conditioner
US10527330B2 (en) Refrigeration cycle device
JP6091399B2 (en) Air conditioner
JP6463491B2 (en) Refrigeration cycle equipment
CN103196250B (en) Refrigerating apparatus and refrigerating unit
EP3301380B1 (en) Refrigeration cycle device and refrigeration cycle device control method
JP6138711B2 (en) Air conditioner
JP4462435B2 (en) Refrigeration equipment
JP5976576B2 (en) Air conditioner
JP2013178046A (en) Air conditioner
JP2017053598A (en) Refrigeration device
WO2016016918A1 (en) Air conditioning device
JP2006329567A (en) Heat pump device
JP2007010220A (en) Refrigerating unit and refrigerator comprising the same
JP2008241065A (en) Refrigerating device and oil returning method of refrigerating device
JP2018132224A (en) Binary refrigeration system
JP6548890B2 (en) Control device of refrigeration cycle, refrigeration cycle, and control method of refrigeration cycle
JP2010230233A (en) Air conditioner
JP2006250480A (en) Refrigeration device
JP2016133257A (en) Air-conditioner
KR20140093846A (en) An air conditioner and a control method the same
JP6926460B2 (en) Refrigerator
JP6518467B2 (en) Refrigeration system
JP2015087020A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160119

R150 Certificate of patent or registration of utility model

Ref document number: 5875649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250