JP5872266B2 - Power generator - Google Patents

Power generator Download PDF

Info

Publication number
JP5872266B2
JP5872266B2 JP2011261057A JP2011261057A JP5872266B2 JP 5872266 B2 JP5872266 B2 JP 5872266B2 JP 2011261057 A JP2011261057 A JP 2011261057A JP 2011261057 A JP2011261057 A JP 2011261057A JP 5872266 B2 JP5872266 B2 JP 5872266B2
Authority
JP
Japan
Prior art keywords
blade
shaft
gear
rotating
rotor blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011261057A
Other languages
Japanese (ja)
Other versions
JP2013113231A (en
Inventor
曙 山▲崎▼
曙 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNO ENVIRONMENT EQUIPMENT INC.
Tech Corp Co Ltd
Original Assignee
TECHNO ENVIRONMENT EQUIPMENT INC.
Tech Corp Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNO ENVIRONMENT EQUIPMENT INC., Tech Corp Co Ltd filed Critical TECHNO ENVIRONMENT EQUIPMENT INC.
Priority to JP2011261057A priority Critical patent/JP5872266B2/en
Priority to MYPI2014701366A priority patent/MY167121A/en
Priority to PCT/JP2012/080530 priority patent/WO2013080933A1/en
Publication of JP2013113231A publication Critical patent/JP2013113231A/en
Application granted granted Critical
Publication of JP5872266B2 publication Critical patent/JP5872266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/062Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
    • F03B17/065Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction the flow engaging parts having a cyclic movement relative to the rotor during its rotation
    • F03B17/067Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction the flow engaging parts having a cyclic movement relative to the rotor during its rotation the cyclic relative movement being positively coupled to the movement of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/16Air or water being indistinctly used as working fluid, i.e. the machine can work equally with air or water without any modification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/14Casings, housings, nacelles, gondels or the like, protecting or supporting assemblies there within
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/403Transmission of power through the shape of the drive components
    • F05B2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05B2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclic, planetary or differential type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Retarders (AREA)

Description

この発明は、発電装置に関する。   The present invention relates to a power generator.

これまでの発電装置は化石燃料等を用い、電気エネルギーに変換する手法が主であった。しかし、化石燃料等の資源は有限であり、また、地球温暖化の原因となる二酸化炭素、或いは光化学スモッグや酸性雨の原因となる窒素酸化物が生じ、地球環境の悪化を招くことになる。   Conventional power generation devices have mainly used fossil fuels or the like to convert them into electrical energy. However, resources such as fossil fuels are limited, and carbon dioxide, which causes global warming, or nitrogen oxides, which causes photochemical smog and acid rain, is generated, leading to deterioration of the global environment.

このような状況の中、地球環境の保護の観点から自然エネルギー、例えば、水力や風力などの流体のエネルギーから電気エネルギーを得る手法が種々開発されている。   Under such circumstances, various methods for obtaining electric energy from natural energy, for example, fluid energy such as hydraulic power and wind power, have been developed from the viewpoint of protecting the global environment.

特許文献1及び特許文献2には、複数の回転翼が回転軸の周囲に設置された風水力発電装置が開示されている。風水力を複数の回転翼が受けて、回転翼が回転軸の周りを公転する。回転翼と回転軸とは接続部材を介して接続しているため、回転軸が自転する。この回転軸の回転エネルギーを電気エネルギーに変換して取り出している。   Patent Literature 1 and Patent Literature 2 disclose a wind-hydraulic power generation apparatus in which a plurality of rotor blades are installed around a rotating shaft. A plurality of rotor blades receive wind and hydraulic power, and the rotor blades revolve around the rotation axis. Since the rotary blade and the rotary shaft are connected via a connecting member, the rotary shaft rotates. The rotational energy of the rotating shaft is converted into electric energy and taken out.

特開2008−42976号公報JP 2008-42976 A 特開2002−242815号公報JP 2002-242815 A

特許文献1及び特許文献2では、回転軸が中心に存在するため、各回転翼の面積が小さいものになっている。装置における風や水の流れを受ける受圧面積が小さくなってしまい、回転効率に問題があるとともに、受圧面積に対して装置が大型化してしまうという問題があった。   In patent document 1 and patent document 2, since the rotating shaft exists in the center, the area of each rotary blade is small. There is a problem that the pressure receiving area that receives the flow of wind and water in the apparatus becomes small, and there is a problem in rotational efficiency, and that the apparatus becomes larger than the pressure receiving area.

本発明は上記事項に鑑みてなされたものであり、その目的は、回転効率が高い発電装置を提供することにある。   This invention is made | formed in view of the said matter, The objective is to provide a power generator with high rotational efficiency.

本発明に係る発電装置は、
周面に固定軸歯車を有する固定軸と、
それぞれ遊び歯車を介して前記固定軸歯車と接続し、前記固定軸の周りを旋回する第1の遊星歯車及び第2の遊星歯車と、
前記第1の遊星歯車に固定された第1の半回転翼回転軸と、
前記第2の遊星歯車に固定された第2の半回転翼回転軸と、
前記第1の半回転翼回転軸及び前記第2の半回転翼回転軸にそれぞれ固定された第1の半回転翼及び第2の半回転翼と、
前記第1の半回転翼回転軸及び前記第2の半回転翼回転軸がそれぞれ摺動可能に接続されるとともに、前記固定軸を軸にして回転する翼旋回用歯車と、
前記翼旋回用歯車と直接或いは間接的に噛み合って回転可能な出力歯車と、
前記出力歯車の回転で発電するエネルギー変換装置と、を備え、
前記第1の半回転翼及び前記第2の半回転翼はそれぞれ前記第1の半回転翼回転軸及び前記第2の半回転翼回転軸から前記第1の半回転翼回転軸及び前記第2の半回転翼回転軸に垂直な方向の端部までの長さが前記第1の半回転翼回転軸及び前記第2の半回転翼回転軸から前記固定軸までの長さよりも長く形成され、
前記第1の半回転翼及び前記第2の半回転翼が受ける流体の力で前記第1の半回転翼及び前記第2の半回転翼が自転することにより前記第1の遊星歯車及び前記第2の遊星歯車を旋回させるとともに翼旋回用歯車を回転させ、
前記翼旋回用歯車の回転により前記出力歯車を回転させて前記エネルギー変換装置により発電させる、
ことを特徴とする。
The power generator according to the present invention is
A fixed shaft having a fixed shaft gear on the peripheral surface;
A first planetary gear and a second planetary gear, each connected to the fixed shaft gear via an idler gear and swiveling around the fixed shaft;
A first semi-rotary blade rotating shaft fixed to the first planetary gear;
A second semi-rotary blade rotating shaft fixed to the second planetary gear;
A first half rotor and a second half rotor fixed respectively to the first half rotor blade and the second half rotor blade;
A blade turning gear that is slidably connected to each of the first half-rotating blade rotating shaft and the second half-rotating blade rotating shaft, and rotates about the fixed shaft;
An output gear capable of rotating by directly or indirectly meshing with the wing turning gear;
An energy conversion device that generates electric power by rotation of the output gear,
The first half rotor blade and the second half rotor blade are respectively connected to the first half rotor blade shaft and the second half rotor blade shaft from the first half rotor blade shaft and the second half rotor blade shaft. The length to the end in the direction perpendicular to the semi-rotary blade rotation axis is longer than the length from the first semi-rotary blade rotation shaft and the second semi-rotary blade rotation axis to the fixed shaft,
The first planetary gear and the second half-rotating blade are rotated by the rotation of the first half-rotating blade and the second half-rotating blade by the force of the fluid received by the first half-rotating blade and the second half-rotating blade. Rotate the planetary gear of 2 and rotate the wing swivel gear,
The output gear is rotated by the rotation of the blade turning gear and the energy conversion device generates power;
It is characterized by that.

また、前記第1の遊星歯車及び前記第2の遊星歯車のそれぞれ歯数が前記固定軸歯車の歯数の2倍であり、
前記第1の遊星歯車及び前記第2の遊星歯車がそれぞれ前記固定軸の周りを1周旋回したとき、前記第1の半回転翼及び前記第2の半回転翼はそれぞれ半回転自転することが好ましい。
The number of teeth of each of the first planetary gear and the second planetary gear is twice the number of teeth of the fixed shaft gear,
When the first planetary gear and the second planetary gear each make one round turn around the fixed shaft, the first half-rotating blade and the second half-rotating blade may each rotate by half rotation. preferable.

また、前記第1の半回転翼回転軸、前記第2の半回転翼回転軸、前記固定軸が同一平面上に配置されていることが好ましい。   Moreover, it is preferable that the first semi-rotary blade rotating shaft, the second semi-rotating blade rotating shaft, and the fixed shaft are arranged on the same plane.

また、前記第1の半回転翼と前記第2の半回転翼のなす角度が直角であることが好ましい。   Moreover, it is preferable that the angle which the said 1st half rotary blade and the said 2nd half rotary blade make is a right angle.

また、前記第1の半回転翼及び前記第2の半回転翼は、それぞれ前記第1の半回転翼回転軸及び第2の半回転翼回転軸の軸方向の端部に、流体を導く翼端板を備えることが好ましい。   In addition, the first half-rotating blade and the second half-rotating blade are blades for guiding fluid to axial ends of the first half-rotating blade rotating shaft and the second half-rotating blade rotating shaft, respectively. It is preferable to provide an end plate.

また、流体の流れを変え前記第1の半回転翼及び前記第2の半回転翼へと導く導入部材を備えることが好ましい。   In addition, it is preferable to include an introduction member that changes the flow of the fluid and guides the fluid to the first half rotor and the second half rotor.

本発明に係る発電装置は、半回転翼の端部から半回転翼回転軸までの垂直方向の長さが半回転翼回転軸から固定軸までの長さよりも長く形成されている。発電装置の流体の受圧面積における半回転翼が占める面積の割合が高いので回転効率が高い。   In the power generation device according to the present invention, the length in the vertical direction from the end of the half rotor blade to the half rotor blade rotation axis is longer than the length from the half rotor blade rotation axis to the fixed shaft. Since the ratio of the area occupied by the semi-rotary blade in the pressure receiving area of the fluid of the power generation device is high, the rotation efficiency is high.

本発明の実施の形態に係る発電装置の斜視図である。It is a perspective view of the power generator concerning an embodiment of the invention. 図1のA−A’線でケースを切断して発電装置の内部構造を示した内部構造図である。FIG. 2 is an internal structure diagram showing an internal structure of the power generator by cutting the case along the line A-A ′ of FIG. 1. 図1のA−A’断面図である。It is A-A 'sectional drawing of FIG. 図2のB−B’方向を見た場合の半回転翼、半回転翼回転軸、遊星歯車、遊び歯車及び固定軸の配置関係を示す状態図である。FIG. 3 is a state diagram showing an arrangement relationship among a half rotary blade, a half rotary blade rotary shaft, a planetary gear, an idle gear, and a fixed shaft when viewed in the B-B ′ direction in FIG. 2. (A)及び(B)は流体の作用を受けた際の半回転翼、半回転翼回転軸、遊星歯車、遊び歯車の動きを示す状態図である。(A) And (B) is a state figure which shows the motion of a half rotary blade, a half rotary blade rotating shaft, a planetary gear, and an idle gear when it receives the effect | action of a fluid. (A)及び(B)は流体の作用を受けた際の半回転翼、半回転翼回転軸、遊星歯車、遊び歯車の動きを示す状態図である。(A) And (B) is a state figure which shows the motion of a half rotary blade, a half rotary blade rotating shaft, a planetary gear, and an idle gear when it receives the effect | action of a fluid. 流体の作用を受けた際の半回転翼、半回転翼回転軸、遊星歯車、遊び歯車の動きを示す状態図である。It is a state figure which shows the motion of a half rotary blade, a half rotary blade rotating shaft, a planetary gear, and an idle gear when receiving the action of fluid. 半回転翼の外周軌跡及び半回転翼回転軸の軌跡を示す模式図である。It is a schematic diagram which shows the outer periphery locus | trajectory of a half rotary blade, and the locus | trajectory of a half rotary blade rotating shaft. 他の実施の形態に係る発電装置の斜視図である。It is a perspective view of the electric power generating apparatus which concerns on other embodiment. 図9のC−C’断面図であり、流体の流れを説明する図である。FIG. 10 is a cross-sectional view taken along the line C-C ′ of FIG. 9, illustrating a flow of fluid. 他の実施の形態に係る発電装置の半回転翼、半回転翼回転軸、遊星歯車、遊び歯車及び固定軸の配置関係を示す状態図である。It is a state figure which shows the arrangement | positioning relationship of the half rotary blade of the electric power generating apparatus which concerns on other embodiment, a half rotary blade rotary shaft, a planetary gear, an idle gear, and a fixed shaft.

本実施の形態に係る発電装置について、図を参照しつつ説明する。図1〜図3に示すように、発電装置1は、ケース10内に設置された、周面に固定軸歯車21を有する固定軸20と、半回転翼30a、30bがそれぞれ固定されるとともに遊星歯車31a、31bがそれぞれ固定された半回転翼回転軸32a、32bと、翼旋回用歯車40と、固定軸歯車21と遊星歯車31a、31bとをそれぞれ接続する遊び歯車50a、50bと、出力歯車60が固定された出力軸61と、エネルギー変換装置70とから構成される。発電装置1は、河川の水の流れによるエネルギー等を回収し、電気エネルギーに変換する装置である。   The power generation apparatus according to the present embodiment will be described with reference to the drawings. As shown in FIGS. 1 to 3, the power generation device 1 includes a fixed shaft 20 having a fixed shaft gear 21 on the circumferential surface, and half-rotating blades 30 a and 30 b, which are installed in a case 10. Half-rotary blade rotating shafts 32a and 32b to which gears 31a and 31b are respectively fixed, blade rotating gear 40, idle gears 50a and 50b connecting fixed shaft gear 21 and planetary gears 31a and 31b, respectively, and output gear An output shaft 61 to which 60 is fixed and an energy conversion device 70 are included. The power generation device 1 is a device that recovers energy or the like due to the flow of water in a river and converts it into electrical energy.

ケース10は、後述の各要素が設置されるベースであり、排水路や橋脚等、流体が流れる種々の箇所に取り付けられ得る。   The case 10 is a base on which each element described below is installed, and can be attached to various places where fluid flows, such as a drainage channel and a pier.

ケース10は断面視で略コの字型をしており、一部に固定軸20が固定されている。ケース10の側板からケース10内方に突出した固定軸20は、ケース10の側板側に固定軸歯車21が配置され、ケース10の内側が凹凸のない摺動面である。   The case 10 is substantially U-shaped in cross-sectional view, and a fixed shaft 20 is fixed to a part thereof. The fixed shaft 20 protruding inward of the case 10 from the side plate of the case 10 has a fixed shaft gear 21 disposed on the side plate side of the case 10, and the inside of the case 10 is a sliding surface having no irregularities.

半回転翼30a、30bは矩形の平板であり、その寸法はいずれも同じである。半回転翼30a、30bの中央部に、それぞれ円柱状の半回転翼回転軸32a、32bが固定されている。なお、半回転翼30a、30bの形状は矩形の平板に限定されない。   The half rotor blades 30a and 30b are rectangular flat plates, and the dimensions thereof are the same. Cylindrical half-rotating blade rotating shafts 32a and 32b are fixed to the central portions of the half-rotating blades 30a and 30b, respectively. The shape of the half rotor blades 30a and 30b is not limited to a rectangular flat plate.

半回転翼30aから突出した半回転翼回転軸32aの端部には、端部側から順に遊星歯車31a、翼旋回用歯車40が配置されている。半回転翼回転軸32aと遊星歯車31aとは、不図示の固定部材等で固定されている。したがって、半回転翼30a、遊星歯車31a及び半回転翼回転軸32aは一体化している。また、半回転翼回転軸32aと翼旋回用歯車40とは、翼旋回用歯車40に設けられた滑り軸受け42aを介して接続されており、半回転翼回転軸32aは翼旋回用歯車40に摺動可能に軸支されている。   A planetary gear 31a and a blade turning gear 40 are arranged in this order from the end side at the end of the half-rotating blade rotating shaft 32a protruding from the half-rotating blade 30a. The half rotary blade rotating shaft 32a and the planetary gear 31a are fixed by a fixing member (not shown) or the like. Therefore, the half rotor blade 30a, the planetary gear 31a, and the half rotor blade rotation shaft 32a are integrated. Further, the half-rotating blade rotating shaft 32 a and the blade turning gear 40 are connected via a sliding bearing 42 a provided on the blade turning gear 40, and the half-rotating blade rotating shaft 32 a is connected to the blade turning gear 40. The shaft is slidably supported.

半回転翼回転軸32bも半回転翼回転軸32aと同様に、端部側から順に遊星歯車31b、翼旋回用歯車40bが配置されている。半回転翼回転軸32bと遊星歯車31bとは、不図示の固定部材等で固定されている。したがって、半回転翼30b、遊星歯車31b及び半回転翼回転軸32bは一体化している。また、半回転翼回転軸32bと翼旋回用歯車40とは、翼旋回用歯車40に設けられた滑り軸受け42bを介して接続されており、半回転翼回転軸32bは翼旋回用歯車40に摺動可能に軸支されている。   Similarly to the half rotary blade rotary shaft 32a, the half rotary blade rotary shaft 32b is also provided with a planetary gear 31b and a blade turning gear 40b in this order from the end side. The half rotary blade rotating shaft 32b and the planetary gear 31b are fixed by a fixing member (not shown) or the like. Therefore, the half rotor blade 30b, the planetary gear 31b, and the half rotor blade rotating shaft 32b are integrated. The half-rotating blade rotating shaft 32b and the blade-turning gear 40 are connected to each other via a sliding bearing 42b provided on the blade-turning gear 40. The half-rotating blade rotating shaft 32b is connected to the blade-turning gear 40. The shaft is slidably supported.

2つの遊星歯車31a、31bは同じ構造である。遊星歯車31a、31bの歯数は固定軸20に形成された固定軸歯車21の歯数の2倍である。   The two planetary gears 31a and 31b have the same structure. The number of teeth of the planetary gears 31 a and 31 b is twice the number of teeth of the fixed shaft gear 21 formed on the fixed shaft 20.

翼旋回用歯車40は、中心に円形の穴が形成された円盤状の歯車であり、その穴に固定軸20の摺動面が挿入されて配置されている。そして、翼旋回用歯車40と固定軸20とはベアリング41を介して摺動可能に配置されており、翼旋回用歯車40は、固定軸20を軸にして回転可能である。   The blade turning gear 40 is a disc-like gear having a circular hole formed at the center, and the sliding surface of the fixed shaft 20 is inserted into the hole. The blade turning gear 40 and the fixed shaft 20 are slidably disposed via a bearing 41, and the blade turning gear 40 is rotatable about the fixed shaft 20.

翼旋回用歯車40には、遊び歯車回転軸51a、51bが配置されており、遊び歯車回転軸51a、51bにはそれぞれ遊び歯車50a、50bが摺動可能に設置されている。遊び歯車50a、50bはいずれも同様の構造であり、それぞれ固定軸歯車21と遊星歯車31a、31bとを接続する。遊び歯車回転軸51a、51bと翼旋回用歯車40とは連結されその位置関係が変わらないことから、遊び歯車回転軸51a、51bは、翼旋回用歯車40の回転に同調してそれぞれ固定軸20の周りを旋回する。遊び歯車50a、50bは、アイドルギアとも呼ばれ、遊星歯車31a、31bの回転量(自転角度)を調節する機能を有する。即ち、遊星歯車31a、31bの歯数が固定軸歯車21の歯数の2倍に設定されているので、後述するように、遊星歯車31a、31bが固定軸20のまわり一周(360°)旋回した際、遊星歯車31a、31bが半回転(180°)自転するように調節する機能を有する。   The blade turning gear 40 is provided with idle gear rotation shafts 51a and 51b, and idle gear gears 50a and 50b are slidably installed on the idle gear rotation shafts 51a and 51b, respectively. The idle gears 50a and 50b have the same structure, and connect the fixed shaft gear 21 and the planetary gears 31a and 31b, respectively. Since the idle gear rotating shafts 51a and 51b and the blade turning gear 40 are connected and the positional relationship thereof does not change, the idle gear rotating shafts 51a and 51b are respectively fixed to the fixed shaft 20 in synchronization with the rotation of the blade turning gear 40. Turn around. The idle gears 50a and 50b are also called idle gears and have a function of adjusting the amount of rotation (rotation angle) of the planetary gears 31a and 31b. That is, since the number of teeth of the planetary gears 31a and 31b is set to be twice the number of teeth of the fixed shaft gear 21, the planetary gears 31a and 31b rotate around the fixed shaft 20 (360 °) as described later. In this case, the planetary gears 31a and 31b have a function of adjusting so as to rotate by half rotation (180 °).

また、出力歯車60が翼旋回用歯車40と噛み合うように配置されている。出力歯車60の中心には、出力軸61が固定されている。   Further, the output gear 60 is arranged so as to mesh with the blade turning gear 40. An output shaft 61 is fixed at the center of the output gear 60.

そして出力軸61の端部はケース10の側板から突出し、エネルギー変換装置70に接続している。エネルギー変換装置70は、磁石、コイル等が組み合わせられて、磁力の作用により発電させる装置等である。   The end of the output shaft 61 protrudes from the side plate of the case 10 and is connected to the energy conversion device 70. The energy conversion device 70 is a device that combines a magnet, a coil, and the like to generate power by the action of magnetic force.

図4に、図2のB−B’方向に見た半回転翼30a、30b、半回転翼回転軸32a、32b、遊星歯車31a、31b、固定軸20、固定軸歯車21、及び、遊び歯車50a、50bの配置関係を示している。このように各軸の方向から見て、半回転翼回転軸32a、32bは固定軸20を中心にして対向配置されている。言い換えれば、半回転翼回転軸32aと固定軸20と半回転翼回転軸32bは同一直線上に配置されている。このため、半回転翼30aと半回転翼30bも固定軸20を中心にして同一直線上に配置されている。更に言えば、半回転翼回転軸32aと固定軸20と半回転翼回転軸32bは同一平面上に位置している。そして、半回転翼30aと半回転翼30bのなす角度が略直角である。そして、この角度は、後述するように、動作時においても維持される。   FIG. 4 shows half-rotating blades 30a and 30b, half-rotating blade rotating shafts 32a and 32b, planetary gears 31a and 31b, fixed shaft 20, fixed shaft gear 21, and idle gear as seen in the BB ′ direction in FIG. The arrangement | positioning relationship of 50a, 50b is shown. Thus, when viewed from the direction of each axis, the semi-rotary blade rotation shafts 32 a and 32 b are arranged to face each other with the fixed shaft 20 as the center. In other words, the half rotor blade rotation shaft 32a, the fixed shaft 20, and the half rotor blade rotation shaft 32b are arranged on the same straight line. For this reason, the half rotary blade 30 a and the half rotary blade 30 b are also arranged on the same straight line with the fixed shaft 20 as the center. More specifically, the half rotary blade rotating shaft 32a, the fixed shaft 20 and the half rotary blade rotating shaft 32b are located on the same plane. The angle formed by the half rotary blade 30a and the half rotary blade 30b is substantially a right angle. This angle is maintained even during operation, as will be described later.

そして、半回転翼30a、30bは、半回転翼回転軸32a、32bから端部までの長さ(それぞれの半回転翼回転軸32a、32bから垂直な方向への半回転翼30a、30b端部までの長さ)L1が半回転翼回転軸32a、32bから固定軸20までの長さ(それぞれの半回転翼回転軸32a、32bから垂直な方向への固定軸20の中心軸までの軸間長さ)L2よりも長い。   The semi-rotary blades 30a and 30b have lengths from the semi-rotary blade rotation shafts 32a and 32b to the end portions (end portions of the semi-rotary blades 30a and 30b in a direction perpendicular to the respective semi-rotary blade rotation shafts 32a and 32b L1 is the length from the semi-rotary blade rotation shafts 32a, 32b to the fixed shaft 20 (the distance between the shafts from the respective semi-rotary blade rotation shafts 32a, 32b to the central axis of the fixed shaft 20 in the vertical direction) Length) longer than L2.

続いて、図5〜図7を参照して、発電装置1の作用について説明する。なお、図5〜図7では、各歯車等の公転を実線矢印で、自転を破線矢印で示している。   Then, with reference to FIGS. 5-7, the effect | action of the electric power generating apparatus 1 is demonstrated. 5 to 7, revolutions of the respective gears and the like are indicated by solid line arrows and rotations are indicated by broken line arrows.

まず、図5(A)の状態において、紙面上左方向へ流体の流れを受けると、主として半回転翼30aに流れの力Fが作用する。この流れの力Fを受けて半回転翼30aが図面上左方向へ押される。   First, in the state of FIG. 5A, when a fluid flow is received in the left direction on the paper surface, a flow force F mainly acts on the semi-rotary blade 30a. In response to this flow force F, the semi-rotary blade 30a is pushed leftward in the drawing.

すると、図5(B)に示すように、半回転翼30aが固定されている半回転翼回転軸32aには、遊星歯車31aが固定され、また、翼旋回用歯車40が摺動可能に接続されているため、半回転翼30aは図面上時計回りに自転する。また、遊星歯車31aは遊び歯車50aを介して固定軸歯車21に接続しているため、図面上時計回りに自転しながら固定軸20の周りを旋回(公転)する。更には、翼旋回歯車40も固定軸20を支点に図面上時計回りに自転する。   Then, as shown in FIG. 5 (B), the planetary gear 31a is fixed to the half rotary blade rotating shaft 32a to which the half rotary blade 30a is fixed, and the blade turning gear 40 is slidably connected. Therefore, the half rotor blade 30a rotates clockwise in the drawing. Further, since the planetary gear 31a is connected to the fixed shaft gear 21 via the idle gear 50a, it rotates (revolves) around the fixed shaft 20 while rotating clockwise in the drawing. Further, the blade swivel gear 40 also rotates in the clockwise direction in the drawing with the fixed shaft 20 as a fulcrum.

半回転翼回転軸32bも翼旋回用歯車40に同様に接続されているため、翼旋回用歯車40の自転にともなって、半回転翼30b、遊星歯車31bも上記と同様の動きをする。   Since the half-rotating blade rotating shaft 32b is also connected to the blade turning gear 40 in the same manner, the half-rotating blade 30b and the planetary gear 31b move in the same manner as described above as the blade turning gear 40 rotates.

上記の回転が進むと、図6(A)、(B)に示すように、半回転翼30bが流れの上流側に位置する。そして、主として半回転翼30bに流れの力Fが作用する。そして、継続して上記と同様に回転が進行する。   When the above rotation proceeds, as shown in FIGS. 6A and 6B, the semi-rotary blade 30b is positioned on the upstream side of the flow. Then, the flow force F mainly acts on the half rotor blade 30b. Then, rotation continues in the same manner as described above.

そして、図7に示すように、翼旋回用歯車40がそれぞれ半回転(180°)自転すると、図5(A)に示す状態から、二つの半回転翼30a、30bが丁度入れ替わった状態となる。半回転翼30a、30bはいずれも90°自転している。遊星歯車31a、31bの歯数が固定軸歯車21の歯数の2倍に設定されていること、そして、遊び歯車50a、50bによる遊星歯車31a、31bの自転角度が規制されることにより、上述のように半回転翼30a、30bが固定軸20を軸に半回転(180°)旋回すると、半回転翼30a、30bが90°自転する仕組みである。   Then, as shown in FIG. 7, when the blade turning gear 40 rotates by half rotation (180 °), the two half-rotating blades 30a and 30b are just switched from the state shown in FIG. 5A. . The half rotor blades 30a and 30b are each rotated 90 °. The number of teeth of the planetary gears 31a and 31b is set to be twice the number of teeth of the fixed shaft gear 21, and the rotation angle of the planetary gears 31a and 31b by the idle gears 50a and 50b is restricted, so that As described above, when the half-rotating blades 30a and 30b are rotated half-turn (180 °) about the fixed shaft 20, the half-rotating blades 30a and 30b rotate 90 °.

したがって、翼旋回用歯車40が一回転(360°)自転すると、半回転翼30a、30bはそれぞれ図5(A)に示した配置に戻る。このように、翼旋回用歯車40が一回転(360°)自転した場合、半回転翼30a、30bは半回転(180°)自転することになる。   Therefore, when the blade turning gear 40 rotates once (360 °), the half-rotating blades 30a and 30b return to the arrangement shown in FIG. As described above, when the blade turning gear 40 rotates once (360 °), the half-rotating blades 30a and 30b rotate half-turn (180 °).

このようにして、半回転翼30a、30b、半回転翼回転軸32a、32b、遊星歯車31a、31b、翼旋回用歯車40は、流体の流れを受け続けている際は継続してそれぞれ動き続ける。   In this way, the half-rotating blades 30a and 30b, the half-rotating blade rotating shafts 32a and 32b, the planetary gears 31a and 31b, and the blade turning gear 40 continue to move while receiving the flow of fluid. .

以上のように、翼旋回用歯車40が回転するので、これらに噛み合っている出力歯車60も回転する。そして出力歯車60の回転に伴って出力軸61も回転する。   As described above, since the blade turning gear 40 rotates, the output gear 60 engaged therewith also rotates. As the output gear 60 rotates, the output shaft 61 also rotates.

出力軸61に接続されたエネルギー変換装置70は、出力軸61の回転エネルギーを電気エネルギーに変換し、発電する。   The energy conversion device 70 connected to the output shaft 61 converts the rotational energy of the output shaft 61 into electric energy and generates electric power.

図8に半回転翼30a、30bの外周軌跡及び半回転翼回転軸32a、32bの軌跡を模式的に示している。遊星歯車31a、31bの歯数が固定軸歯車21の歯数の2倍であるため、二つの半回転翼30a、30bは、それぞれ固定軸20の周りを一周旋回すると半回転自転すること、また、二つの半回転翼30a、30bは相互の面のなす角度が直角を維持しつつ回転することから、半回転翼回転軸32a、32bの移動に要する占有空間が小さい。また、発電装置1の三方の寸法は、いずれも半回転翼30a、30bの幅及び長さの1.5倍程度に設計することができるので、流体の受圧面積に対して小型の発電装置1を実現できる。   FIG. 8 schematically shows the outer locus of the half rotor blades 30a and 30b and the locus of the semi rotor blades 32a and 32b. Since the number of teeth of the planetary gears 31a and 31b is twice the number of teeth of the fixed shaft gear 21, the two half-rotating blades 30a and 30b each rotate around the fixed shaft 20 by half rotation and rotate. Since the two half-rotating blades 30a and 30b rotate while maintaining the angle formed between the two surfaces at right angles, the occupied space required for the movement of the half-rotating blade rotating shafts 32a and 32b is small. In addition, since the three dimensions of the power generator 1 can be designed to be about 1.5 times the width and length of the half rotor blades 30a and 30b, the power generator 1 is smaller than the fluid pressure receiving area. Can be realized.

また、図4に示したように、半回転翼30a、30bの端部から半回転翼回転軸32a、32bまでの垂直方向の長さL1が半回転翼回転軸32a、32bから固定軸20までの長さL2よりも長く形成されているので、発電装置1に作用する流体の受圧面積中、半回転翼30a、30bが占める面積の割合が高く、また、旋回する半回転翼回転軸32a、32bの旋回中心は理論上、半回転翼30a、30bの回転芯であるので回転効率が高い。このため、良好な発電能力を発揮する発電装置1を実現している。   Further, as shown in FIG. 4, the vertical length L1 from the end of the half rotor blades 30a, 30b to the half rotor blade rotation shafts 32a, 32b is from the half rotor blade rotation shafts 32a, 32b to the fixed shaft 20. Therefore, the ratio of the area occupied by the half rotor blades 30a, 30b is high in the pressure receiving area of the fluid acting on the power generation device 1, and the rotating half rotor blade rotating shaft 32a, The rotational center of 32b is theoretically the rotational core of the semi-rotary blades 30a and 30b, so that the rotational efficiency is high. For this reason, the electric power generating apparatus 1 which exhibits favorable electric power generation capability is implement | achieved.

このように、発電装置1は小型で回転効率の高い特性を有するため、様々な流体の流れがある場所に設置して発電することができる。例えば、工場排水が流れる流路に設置して発電すること、暗渠や用水路などに設置して自家発電を行うこと、河川の橋脚や岸壁等に設置して発電させ、近辺に設置されている街路灯に電力を供給することが可能である。   As described above, since the power generation device 1 is small and has a high rotational efficiency, the power generation device 1 can be installed in a place where various fluid flows exist to generate power. For example, it is installed in a channel where factory drainage flows, generates electricity, installs in a culvert or irrigation channel, etc., generates electricity by installing on a river pier or quay, etc. It is possible to supply power to the street light.

また、水等の液体の流れがある箇所への設置のほか、気体等の流れがある箇所に発電装置1を設置してもよい。例えば、工場の排気ダクトや廃蒸気が噴出している箇所等が挙げられる。   Moreover, you may install the electric power generating apparatus 1 in the location with the flow of gas etc. other than the installation to the location with the flow of liquids, such as water. For example, the exhaust duct of a factory, the location where waste steam is spouting, etc. are mentioned.

また、発電装置1は小型に設定できるため、設置の態様についても自由度が高いという利点がある。このため、発電装置1を流体の流れがある箇所に複数設置することも容易である。複数の発電装置1を流体の流れのある幅の細い流路等に設置する場合では、多数の発電装置1を流体の流れ方向に直列に設置することができる。また、幅の広い流路等に設置する場合では、流れを横切るように設置してもよい。   Moreover, since the electric power generating apparatus 1 can be set small, there exists an advantage that a freedom degree is also high about the aspect of installation. For this reason, it is also easy to install a plurality of power generators 1 at locations where fluid flows. In the case where a plurality of power generation devices 1 are installed in narrow flow paths with fluid flow, a large number of power generation devices 1 can be installed in series in the fluid flow direction. Moreover, when installing in a wide flow path etc., you may install so that a flow may be crossed.

更には、半回転翼回転軸32a、32bが水平になるように発電装置1を設置してもよく、或いは、半回転翼回転軸32a、32bが垂直になるよう設置して用いてもよい。   Further, the power generator 1 may be installed so that the half-rotating blade rotating shafts 32a, 32b are horizontal, or may be used by installing the semi-rotating blade rotating shafts 32a, 32b vertically.

特に、河川等では、各歯車等が上方を向くように発電装置1を設置することで、各歯車等を河川の水に浸漬させずに設置することもできる。したがって、各歯車への注油等、発電装置1のメンテナンスを容易に行い得る。   In particular, in a river or the like, by installing the power generation device 1 so that each gear or the like faces upward, the gear or the like can be installed without being immersed in river water. Therefore, maintenance of the power generator 1 such as lubrication of each gear can be easily performed.

また、図9に示すように、半回転翼30a、30bは、半回転翼回転軸32a、32bに直交する端部が湾曲した形状であってもよい。半回転翼30a、30bが水等の流体の力を受けやすくなり、回転効率の向上を為し得る。   Further, as shown in FIG. 9, the half rotor blades 30a and 30b may have a shape in which ends perpendicular to the half rotor blade rotation axes 32a and 32b are curved. The semi-rotary blades 30a and 30b can easily receive the force of a fluid such as water, and the rotation efficiency can be improved.

さらに、図9に示すように、半回転翼30a、30bは、翼端板33a、33bを有していてもよい。翼端板33a、33bは、半回転翼回転軸32a、32b方向の端部に配置される。各歯車等を上方にして、発電装置1を河川に設置され、ケース10の下部が配置されない場合、水等の流体が半回転翼30a、30bの下方をすり抜けて、半回転翼30a、30bに流体の力がかかりにくくなるが、上記のように翼端板33a、33bを備えることで、半回転翼30a、30bへ流体が導かれやすくなり、回転効率の向上を為し得る。   Furthermore, as shown in FIG. 9, the semi-rotary blades 30a and 30b may have blade end plates 33a and 33b. The blade end plates 33a and 33b are disposed at the end portions in the direction of the semi-rotary blade rotation shafts 32a and 32b. When the power generation apparatus 1 is installed in a river with the gears and the like facing upward and the lower portion of the case 10 is not disposed, fluid such as water passes under the half-rotating blades 30a and 30b and enters the half-rotating blades 30a and 30b. Although it is difficult to apply the force of the fluid, by providing the blade end plates 33a and 33b as described above, the fluid is easily guided to the half-rotating blades 30a and 30b, and the rotation efficiency can be improved.

さらに、図9に示すように、発電装置1は、流体導入部材11を備えていてもよい。本実施の形態では、流体導入部材11がケース10の外方へと張り出して設置されている。図10に示すように、水等の流体が半回転翼30a、30bへ向かいやすくなり、より多くの流体のエネルギーを得られることになる。   Furthermore, as illustrated in FIG. 9, the power generation device 1 may include a fluid introduction member 11. In the present embodiment, the fluid introduction member 11 is installed so as to project outward from the case 10. As shown in FIG. 10, a fluid such as water is likely to go to the semi-rotary blades 30 a and 30 b, and more fluid energy can be obtained.

また、固定軸歯車21と翼旋回用歯車31a、31bとを接続する遊び歯車50a、50bは、歯車の大きさや歯数の数に制限はない。たとえば、図11に示すように、大きな径の遊び歯車50aであってもよく、固定軸歯車21、遊び歯車50a及び遊星歯車31aが直線状に並ばず、折れ線状に配置されていてもよい。また、奇数個の遊び歯車、例えば、3つの遊び歯車50b、50c、50dが直列に配置されていてもよい。   Further, the idle gears 50a and 50b connecting the fixed shaft gear 21 and the blade turning gears 31a and 31b are not limited in the size of the gear and the number of teeth. For example, as shown in FIG. 11, it may be an idle gear 50a having a large diameter, and the fixed shaft gear 21, the idle gear 50a and the planetary gear 31a may be arranged in a polygonal line instead of being arranged in a straight line. Further, an odd number of idle gears, for example, three idle gears 50b, 50c, 50d may be arranged in series.

1 発電装置
10 ケース
11 流体導入部材
20 固定軸
21 固定軸歯車
30a,30b 半回転翼
31a,31b 遊星歯車
32a,32b 半回転翼回転軸
33a,33b 翼端板
40a,40b 翼旋回用歯車
41 ベアリング
42a,42b 滑り軸受け
50a〜50d 遊び歯車
51a、51b 遊び歯車回転軸
60 出力歯車
61 出力軸
70 エネルギー変換装置
DESCRIPTION OF SYMBOLS 1 Power generator 10 Case 11 Fluid introduction member 20 Fixed shaft 21 Fixed shaft gear 30a, 30b Half rotary blade 31a, 31b Planetary gear 32a, 32b Half rotary blade rotating shaft 33a, 33b Blade end plate 40a, 40b Blade turning gear 41 Bearing 42a, 42b Sliding bearings 50a-50d idle gears 51a, 51b idle gear rotating shaft 60 output gear 61 output shaft 70 energy conversion device

Claims (5)

周面に固定軸歯車を有する固定軸と、
それぞれ遊び歯車を介して前記固定軸歯車と接続し、前記固定軸の周りを旋回する第1の遊星歯車及び第2の遊星歯車と、
前記第1の遊星歯車に固定された第1の半回転翼回転軸と、
前記第2の遊星歯車に固定された第2の半回転翼回転軸と、
前記第1の半回転翼回転軸及び前記第2の半回転翼回転軸にそれぞれ固定された第1の半回転翼及び第2の半回転翼と、
前記第1の半回転翼回転軸及び前記第2の半回転翼回転軸がそれぞれ摺動可能に接続されるとともに、前記固定軸を軸にして回転する翼旋回用歯車と、
前記翼旋回用歯車と直接或いは間接的に噛み合って回転可能な出力歯車と、
前記出力歯車の回転で発電するエネルギー変換装置と、を備え、
前記第1の遊星歯車及び前記第2の遊星歯車のそれぞれ歯数は前記固定軸歯車の歯数の2倍であり、
前記第1の遊星歯車及び前記第2の遊星歯車がそれぞれ前記固定軸の周りを1周旋回したとき、前記第1の半回転翼及び前記第2の半回転翼はそれぞれ半回転自転し、
前記第1の半回転翼及び前記第2の半回転翼はそれぞれ前記第1の半回転翼回転軸及び前記第2の半回転翼回転軸から前記第1の半回転翼回転軸及び前記第2の半回転翼回転軸に垂直な方向の端部までの長さが前記第1の半回転翼回転軸及び前記第2の半回転翼回転軸から前記固定軸までの長さよりも長く形成され、
前記第1の半回転翼及び前記第2の半回転翼が受ける流体の力で前記第1の半回転翼及び前記第2の半回転翼が自転することにより前記第1の遊星歯車及び前記第2の遊星歯車を旋回させるとともに翼旋回用歯車を回転させ、
前記翼旋回用歯車の回転により前記出力歯車を回転させて前記エネルギー変換装置により発電させる、
ことを特徴とする発電装置。
A fixed shaft having a fixed shaft gear on the peripheral surface;
A first planetary gear and a second planetary gear, each connected to the fixed shaft gear via an idler gear and swiveling around the fixed shaft;
A first semi-rotary blade rotating shaft fixed to the first planetary gear;
A second semi-rotary blade rotating shaft fixed to the second planetary gear;
A first half rotor and a second half rotor fixed respectively to the first half rotor blade and the second half rotor blade;
A blade turning gear that is slidably connected to each of the first half-rotating blade rotating shaft and the second half-rotating blade rotating shaft, and rotates about the fixed shaft;
An output gear capable of rotating by directly or indirectly meshing with the wing turning gear;
An energy conversion device that generates electric power by rotation of the output gear,
The number of teeth of each of the first planetary gear and the second planetary gear is twice the number of teeth of the fixed shaft gear;
When the first planetary gear and the second planetary gear each make one turn around the fixed shaft, the first half-rotating blade and the second half-rotating blade each rotate half-rotation,
The first half rotor blade and the second half rotor blade are respectively connected to the first half rotor blade shaft and the second half rotor blade shaft from the first half rotor blade shaft and the second half rotor blade shaft. The length to the end in the direction perpendicular to the semi-rotary blade rotation axis is longer than the length from the first semi-rotary blade rotation shaft and the second semi-rotary blade rotation axis to the fixed shaft,
The first planetary gear and the second half-rotating blade are rotated by the rotation of the first half-rotating blade and the second half-rotating blade by the force of the fluid received by the first half-rotating blade and the second half-rotating blade. Rotate the planetary gear of 2 and rotate the wing swivel gear,
The output gear is rotated by the rotation of the blade turning gear and the energy conversion device generates power;
A power generator characterized by that.
前記第1の半回転翼回転軸、前記第2の半回転翼回転軸、前記固定軸が同一平面上に配置されている、
ことを特徴とする請求項1に記載の発電装置。
The first half rotor blade rotation shaft, the second half rotor blade rotation shaft, and the fixed shaft are arranged on the same plane;
The power generator according to claim 1.
前記第1の半回転翼と前記第2の半回転翼のなす角度が直角である、
ことを特徴とする請求項1又は2に記載の発電装置。
An angle formed by the first half rotor blade and the second half rotor blade is a right angle;
Generator according to claim 1 or 2, characterized in that.
前記第1の半回転翼及び前記第2の半回転翼は、それぞれ前記第1の半回転翼回転軸及び第2の半回転翼回転軸の軸方向の端部に、流体を導く翼端板を備える、
ことを特徴とする請求項1乃至のいずれか一項に記載の発電装置。
The first half rotor blade and the second half rotor blade are blade end plates for guiding fluid to axial ends of the first half rotor blade shaft and the second half rotor blade shaft, respectively. Comprising
Power generator according to any one of claims 1 to 3, characterized in that.
流体の流れを変え前記第1の半回転翼及び前記第2の半回転翼へと導く導入部材を備える、
ことを特徴とする請求項1乃至のいずれか一項に記載の発電装置。
An introduction member that changes the flow of fluid and leads to the first half rotor and the second half rotor;
The power generator according to any one of claims 1 to 4 , wherein the power generator is provided.
JP2011261057A 2011-11-29 2011-11-29 Power generator Active JP5872266B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011261057A JP5872266B2 (en) 2011-11-29 2011-11-29 Power generator
MYPI2014701366A MY167121A (en) 2011-11-29 2012-11-27 Power generation device
PCT/JP2012/080530 WO2013080933A1 (en) 2011-11-29 2012-11-27 Power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011261057A JP5872266B2 (en) 2011-11-29 2011-11-29 Power generator

Publications (2)

Publication Number Publication Date
JP2013113231A JP2013113231A (en) 2013-06-10
JP5872266B2 true JP5872266B2 (en) 2016-03-01

Family

ID=48535388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011261057A Active JP5872266B2 (en) 2011-11-29 2011-11-29 Power generator

Country Status (3)

Country Link
JP (1) JP5872266B2 (en)
MY (1) MY167121A (en)
WO (1) WO2013080933A1 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1844796A (en) * 1928-07-16 1932-02-09 Royak Louis Wind motor
US3902072A (en) * 1974-02-19 1975-08-26 Paul J Quinn Wind turbine
GB2129881B (en) * 1982-11-12 1987-03-11 John Watson Taylor Wind motor
DE3606549A1 (en) * 1986-02-28 1987-09-03 Klaus David Method and device for producing (generating) a movement and for energy conversion
JPS63239379A (en) * 1987-03-26 1988-10-05 Taiyo Energ Kenkyusho:Kk Vertical shaft type windmill
JP2004144021A (en) * 2002-10-24 2004-05-20 Takeshi Sato High-efficiency semi-drag type cage type water wheel system
GB2396190A (en) * 2002-12-13 2004-06-16 Roger Green Controlled pitch turbine
JP2006077684A (en) * 2004-09-10 2006-03-23 Koichiro Omori Wind mill or water turbine where each blade revolves
JP5135681B2 (en) * 2005-12-19 2013-02-06 ソニー株式会社 Fluid flow generator
NL1032250C2 (en) * 2006-07-28 2008-01-29 Paul William Henry Van Markus Energy generator.
JP2008202588A (en) * 2007-02-22 2008-09-04 Yutaka Abe Wind/hydraulic power impeller using lift-drag force by double-acting rotations
GB2454525B (en) * 2007-11-10 2012-12-19 Neil Andrew Blackett Caldwell Prime mover
TWM406578U (en) * 2010-02-26 2011-07-01 Champion Engineering Technology Co Ltd Planetary-type windsurfing mechanism and its device thereof

Also Published As

Publication number Publication date
JP2013113231A (en) 2013-06-10
MY167121A (en) 2018-08-10
WO2013080933A1 (en) 2013-06-06

Similar Documents

Publication Publication Date Title
KR101180832B1 (en) Tilting blade for vertical wind power generation
JP2012002220A (en) Water wheel impeller blade type electric power generating apparatus
TW201716687A (en) Multi-layered blade type wind power generation device capable of enhancing operation smoothness and being not easily damaged and deformed
JP2012233458A (en) Wind power generator
KR101584184B1 (en) Wave power generating apparatus using breakwater
JP5872266B2 (en) Power generator
JP2009085090A (en) Wind turbine device
JP2007247516A (en) Wind power generating device
JP5425854B2 (en) Natural energy-based power generator
JP2002310054A (en) Tidal current power generator
US20210190032A1 (en) Hydroelectric energy systems and methods
KR101097771B1 (en) Hydro-power generator
KR20110063994A (en) Current energy power generation apparatus having simple structure
JP2006118405A (en) Power generating device
KR102421509B1 (en) Bidirectional variable aberration for tidal power generation
JP2011250674A (en) Power generator and pump
KR101062246B1 (en) Turbine for Hydroelectric Power Plant
KR101273648B1 (en) Tidal power generator
JP6028244B2 (en) Water turbine device and hydroelectric power generation device
KR20120131333A (en) Wind Powered Generator
KR100995714B1 (en) Impeller and a hydraulic power generator using the same
JP3120021U (en) Underwater water turbine for power generation using water flow
JP2020084863A (en) Tidal power generation device
KR20090045747A (en) Wind power generator
KR100812136B1 (en) Turbine for generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160113

R150 Certificate of patent or registration of utility model

Ref document number: 5872266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250