JP2006077684A - Wind mill or water turbine where each blade revolves - Google Patents

Wind mill or water turbine where each blade revolves Download PDF

Info

Publication number
JP2006077684A
JP2006077684A JP2004263221A JP2004263221A JP2006077684A JP 2006077684 A JP2006077684 A JP 2006077684A JP 2004263221 A JP2004263221 A JP 2004263221A JP 2004263221 A JP2004263221 A JP 2004263221A JP 2006077684 A JP2006077684 A JP 2006077684A
Authority
JP
Japan
Prior art keywords
wind
water
flow
blade
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004263221A
Other languages
Japanese (ja)
Inventor
Koichiro Omori
弘一郎 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004263221A priority Critical patent/JP2006077684A/en
Publication of JP2006077684A publication Critical patent/JP2006077684A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Hydraulic Turbines (AREA)
  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simply provide a wind mill or a water turbine which is highly efficient in obtaining energy. <P>SOLUTION: In the wind mill or the water turbine which is rotated in a horizontal direction, an individual blade can be revolved and gears are integrally fixed, the rotation of the gears of the blades is intercoupled through gears around an output shaft and usually fixed and intermediate gears, and gearing contact between the gears is effected in two spots to reduce a resistance loss. The number of gears is set such that the blade effects half rotation as against one revolution of an output shaft. All the blades are set to rotate in the same direction in a fixed position. The blade in a position crossing orthogonally with a flow of wind or water is crossed orthogonally with a flow of wind of the output shaft and the blade on the 180 degree opposite to the output shaft is positioned in parallel to a flow of wind and water. Further, against strong wind, the angle is shifted to lower rotation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数枚の羽根を持ち、主に水平方向に回転する風車又は水車に関するものであって、その個々の羽根を水平方向に回転させることで、風又は水の流れの方向と回転方向が一致する側では羽根が風を受ける方向になり、回転方向が風向と逆になる側では、風の抵抗が小さくする方向になり、なおその動きがスムースで確実な回転となり、また構造が単純である技術に関するものである。   The present invention relates to a wind turbine or a water turbine that has a plurality of blades and rotates mainly in the horizontal direction, and by rotating the individual blades in the horizontal direction, the direction of the wind or water and the direction of rotation. On the side where the blades match, the blade is in the direction to receive the wind, and on the side where the rotation direction is opposite to the wind direction, the wind resistance is reduced, and the movement is smooth and reliable, and the structure is simple. It is related to the technology.

発電を目的とする風車において、現在最も使用されているのは、飛行機と同じプロペラ方式であり、そのほかサボニュウス式と称する、水平方向に回転する受風側と抵抗側を持ったもの、また羽根の形状が翼の断面形状であり風が通過することで吸引力を発生させてこれを回転力にするダリュース式或いはジャイロミル式などがある。   Currently, the most commonly used wind turbines for power generation use the same propeller method as that of airplanes, in addition to the Savonius method, which has a wind receiving side that rotates horizontally and a resistance side, and blades There is a Darius type or a gyromill type which has a cross-sectional shape of the wing and generates a suction force by the passage of wind to make it a rotational force.

水力の場合の主力はタービンであるが、これもスクリューの延長にある。また水中で水の抵抗を受けて流れの方向に回転し、抵抗の少ない空中で水の流れの逆方向に回転するのが水車の主流としてある。   The main force in the case of hydropower is the turbine, which is also an extension of the screw. The mainstream of a water turbine is that it rotates in the direction of flow in response to the resistance of water in the water and rotates in the opposite direction of the flow of water in the air with little resistance.

これらは何れも優れた特徴を持つ。すなわちプロペラ方式は飛行機で培われた技術による風速に合わせた羽根の角度の変換技術。タービンはエンジンの製造技術が生かされ。サボニウス式やダリウス式やジャイロミル式においては、出力の回転軸以外に可動部が不要であること、などがそれである。   All of these have excellent characteristics. In other words, the propeller method is a blade angle conversion technology that matches the wind speed using technology cultivated in airplanes. Turbine uses engine manufacturing technology. In the Savonius type, Darrieus type, and gyromill type, there are no movable parts other than the output rotation shaft.

しかし欠点もあった。プロペラ式においては設置面積が大きい必要があることであり、広さ当たりのエネルギー変換量が小さいことである。プロペラの回転は一つの面であるが、風向に合わせて方向を回転させねばならないため、地上の占有面積は最低でもプロペラの長さを直径とする円になるのである。またそれが上方に回転するため結果的に空中の占有面積は大きくなる、   But there were also drawbacks. In the propeller type, the installation area needs to be large, and the amount of energy conversion per area is small. Propeller rotation is a single plane, but since the direction must be rotated according to the wind direction, the area occupied on the ground is at least a circle whose diameter is the length of the propeller. Moreover, since it rotates upward, the occupied area in the air becomes large as a result.

上下方向に羽根を伸ばして水平方向に回転するダリウス式やジャイロミル式においては、プロペラ方式の地上占有面積よりも小さい占有面積でエネルギー獲得ができるが、回転中に抵抗部が生じ、渦巻き状のサボニウス式においても、受風側と、抵抗側が発生し、その差が変換されるエネルギーとなる。このように風車においてもエネルギー獲得に更なる改善が求められていた。   In Darius type and gyromill type, which expands the blades in the vertical direction and rotates in the horizontal direction, energy can be obtained with an occupied area smaller than the ground occupied area of the propeller system, but a resistance part is generated during rotation, and a spiral shape is generated. Even in the Savonius equation, the wind receiving side and the resistance side are generated, and the difference is converted energy. Thus, further improvements in energy acquisition have been demanded for wind turbines.

水流において、水車方式では、上部の反転空間が必要であり、上下の狭い水路では使用不能であり、またタービン方式は優れているが大きい水流を必要とし、また高価であった。   In the water flow, the water turbine method requires an inversion space at the top and cannot be used in the narrow upper and lower water channels, and the turbine method is excellent, but requires a large water flow and is expensive.

これらの問題に着眼し、各種の発明がなされている、その主なものを以下の通りであるが、理由不明で何れも実用化されていない。恐らく何らかの欠点が隠されていたものと考えられる。
特開平11−22626号公報 特開2000−54947号公報 特開2000−337244号公報 特開2001−65446号公報 特開2001−227451号公報 特開2002−339854号公報 特開2003−278637号公報 特開2003−343415号公報 特開2004−27845号公報
While focusing on these problems, various inventions have been made and the main ones are as follows. However, none of them has been put into practical use for unknown reasons. Perhaps some drawbacks were hidden.
Japanese Patent Laid-Open No. 11-22626 JP 2000-54947 A JP 2000-337244 A JP 2001-65446 A JP 2001-227451 A JP 2002-339854 A JP 2003-278737 A JP 2003-343415 A Japanese Patent Laid-Open No. 2004-27845

本発明は、これらの問題を克服して実用化したものであり、流れの受け側を風又は水流と直交した方向或いはエネルギー獲得に有利な方向にし、流れとの抵抗側を風又は水の流れと平行に近づけて抵抗を少なくすることで全体のエネルギー獲得効率を高くし、なお羽根の回転の伝達機構を単純な歯車機構にして抵抗ロスを少なくし、さらに風速を有効に回転に変えるために、回転軸に接近させて羽根を配置したものである。   The present invention has been put into practical use by overcoming these problems. The flow receiving side is set in a direction orthogonal to the wind or water flow or in a direction advantageous for energy acquisition, and the resistance side of the flow is set in the flow of wind or water. In order to increase the overall energy acquisition efficiency by reducing the resistance close to the parallel to the blade, to reduce the loss of resistance by making the blade rotation transmission mechanism a simple gear mechanism, and to effectively change the wind speed to rotation The blades are arranged close to the rotation axis.

今日二酸化炭素公害が地球規模で問題となっている。その中での最大の問題はエネルギー獲得を化石燃料又は原子力に頼る量が大きいことで、地球環境へのその弊害の大きさから、太陽光発電、小水力発電、風力発電が脚光を浴び、その普及に力が注がれだしている。   Today, carbon dioxide pollution is a global problem. The biggest problem among them is that the amount of energy that depends on fossil fuels or nuclear energy is large. Solar power generation, small hydroelectric power generation, and wind power generation are in the limelight because of their adverse effects on the global environment. Power is being poured into dissemination.

風又は水の流れからエネルギー獲得をしようとする方法、特に回転エネルギーとして取る方法はいろいろ有り、既に一部は実用化されている。最も普及しているのは縦方向に回転するプロペラ方式であり、横方向に回転するダリウス式やサボニウス式が普及され、その外実用化にいたっていない各種の方法がある。   There are various methods for obtaining energy from the wind or water flow, particularly as rotational energy, and some have already been put into practical use. The most popular is the propeller type that rotates in the vertical direction, and the Darrieus type and Savonius type that rotate in the horizontal direction are widespread, and there are various methods that have not been put into practical use.

これらは何れも優れたものであるが。設置面積当たりエネルギー獲得の効率、価格当たりのエネルギー獲得効率においてさらに優れたものを求められていた。
エネルギー獲得効率は、風又は水の流れを受ける面積と抵抗になる面積の差をいかに小さくするかの問題であり、これを回転方向のエネルギーに効率よく変換する機構が鍵をもっている。
These are all excellent. There was a need for more efficient energy acquisition efficiency per installation area and energy acquisition efficiency per price.
Energy acquisition efficiency is a problem of how to reduce the difference between the area that receives the flow of wind or water and the area that becomes resistance, and a mechanism that efficiently converts this to energy in the direction of rotation is key.

この鍵は、いかに羽根を大きくして、なお風又は水の流れに逆抗するときの抵抗を小さくするかであり、さらにまた得られたエネルギーを伝達する抵抗をいかに小さくする簡便な機構とするかにあった。   The key is how to make the blades larger and still reduce the resistance when resisting the flow of wind or water, and also a simple mechanism to reduce the resistance to transfer the energy obtained. It was crab.

それに着眼した発明が過去にあるが、その一つの羽根を回転させて空気抵抗を減らそうというものは、その回転にタイミングベルトを使用しているため、エネルギーロスが大きいためか、実現にいたっていない。また羽根の回転に歯車とクランクを使う発明もこれと似た目的を持っているが、その機構の複雑さゆえか、これも実用化していない。   There has been an invention that has focused on it in the past, but the one that rotates one of its blades to reduce the air resistance is because it uses a timing belt for its rotation, so it has a large energy loss. Absent. The invention using a gear and a crank for rotating blades has a similar purpose, but this is not put into practical use because of the complexity of the mechanism.

本発明は、これらの問題解決の手段として、風車又は水車を水平方向の回転として縦方向に伸びる出力軸の近くよりエネルギー獲得をする方式とし、水平方向に回転する羽根を持ち、さらにその羽根を個々に回転させることとし、この羽根に歯車を固定し、出力軸の回りには通常は回転せずに固定している歯車を置き、この歯車の歯数の比を回転羽根の歯車を2、通常は固定している回転しない歯車を1として、その中間に任意の歯数の歯車を一カ所のみに置いて、本体の1回転に対して羽根が1/2回転する抵抗の少ない簡便な機構として問題を解決した。   As a means for solving these problems, the present invention adopts a method of acquiring energy from the vicinity of the output shaft extending in the vertical direction by rotating the windmill or water turbine in the horizontal direction, and has a blade rotating in the horizontal direction, and further including the blade. The gears are fixed to the blades, and the gears that are normally fixed without rotating are placed around the output shaft, and the gear ratio of the rotary blades is set to 2, A simple mechanism with little resistance that the blade rotates 1/2 with respect to one rotation of the main body, with a fixed non-rotating gear set to 1 and a gear with an arbitrary number of teeth in the middle of it. As solved the problem.

一方、この歯数の選択は、風車又は水車が1回転するのに対して、羽根が1/2回転することを目的とするもので、中間歯車を2枚として2段に一体化させて、回転羽根の歯車の歯数を小さくしてもよいものである。   On the other hand, the selection of the number of teeth is for the purpose of making the blades rotate 1/2 while the windmill or the waterwheel makes one rotation, and the intermediate gear is integrated into two stages as two pieces, The number of teeth of the gear of the rotary blade may be reduced.

以上により、3枚以上の複数の羽根は出力軸の回転に伴って、図の下からの風により図3、図4において時計回りに回転する。図4は出力軸の回転に伴って、1枚の羽根がどのような方向に変化するかを示したものであり、大きく実線の矢印で示した風又は水の流れの方向に対して、このように羽根が回転しながら風車又は水車を回転させ、この力を回転方向のエネルギーに転換してエネルギー獲得を行うのである。   As described above, the plurality of three or more blades rotate clockwise in FIGS. 3 and 4 by the wind from the bottom of the figure as the output shaft rotates. FIG. 4 shows the direction in which one blade changes as the output shaft rotates, and this direction is largely different from the direction of wind or water flow indicated by solid arrows. In this way, the wind turbine or the water wheel is rotated while the blades rotate, and this force is converted into energy in the rotational direction to acquire energy.

この図4の如く、この風車又は水車の羽根は機構全体の連続の回転により、裏表を交互に風又は水の流れに当てることになり、このことにより風又は水の流れを受ける、図4の左側を中心とするAからBの間は、エネルギーを受けて時計回りの回転方向にエネルギーを転換し、CからDの間は風又は水の流れの抵抗を受けず、BからC、及びDからAの間でわずかに抵抗を受ける。この抵抗は風又は水の流れの早さにより変わり、流れが遅いときは抵抗部分は狭くなり、早いと広くなる。B及びAの位置に巾が有るのはこのためである。
このエネルギー転換を行う部分の角度AからBが大きいことにより、エネルギー獲得の効率を大きくできるものである。
As shown in FIG. 4, the blades of the wind turbine or the water turbine are subjected to the flow of wind or water alternately by the continuous rotation of the entire mechanism. Between A and B centering on the left side, energy is received and the energy is changed in the clockwise rotation direction. Between C and D, there is no resistance to wind or water flow, and B to C, and D To A is slightly resisted. This resistance varies depending on the speed of the wind or water flow. When the flow is slow, the resistance portion is narrowed, and when it is fast, the resistance is widened. This is the reason why the positions of B and A have a width.
The energy acquisition efficiency can be increased by increasing the angle A to B of the portion that performs this energy conversion.

また強い風又は水の流れの場合は風又は水の流れの方向に対して図3及び図4のごとき関係位置より回転させることでエネルギー獲得を減らすことができる。このために、風車又は水車の本体を回転させてもよく、また通常は固定していて回転しない固定歯車(e)を回転させてもよい。   In the case of a strong wind or water flow, energy acquisition can be reduced by rotating from the relevant position as shown in FIGS. 3 and 4 with respect to the direction of the wind or water flow. For this purpose, the main body of the windmill or watermill may be rotated, or the stationary gear (e) that is normally fixed and does not rotate may be rotated.

この通常は固定していて回転しない固定歯車(e)は風車又は水車の方向を風に最も好ましい角度に変える場合に使うのに有効で、風向計のデーターから回転させてもよく、風向計と直接つないでもよいものである。 This normally fixed, non-rotating fixed gear (e) is useful for changing the direction of the windmill or turbine to the most favorable angle for the wind, and may be rotated from the anemometer data. It can be connected directly.

本発明による、回転羽根を持った風車又は水車は、羽根が表と裏となりながら、出力軸の1/2の回転をすることで、回転する本体の全周の中でのエネルギー獲得の角度が大きく、また抵抗を受ける角度が小さい。このことにより風又は水の流れに対するエネルギー獲得の効率が高く、地球環境に貢献するエネルギー取得の貢献に適する。   According to the present invention, a wind turbine or a water turbine having rotating blades rotates the output shaft by 1/2 while the blades are front and back, so that the angle of energy acquisition in the entire circumference of the rotating main body is increased. Large and the angle to receive resistance is small. As a result, the efficiency of energy acquisition with respect to wind or water flow is high, and it is suitable for contribution to energy acquisition that contributes to the global environment.

4枚の羽根を持ち、歯車比を通常は固定している回転しない歯車を30、回転羽根の歯車を60、中間歯車を30として製作した。このものは風速3m/秒の微風より回転を開始し、風速30m/秒においても順調な高速回転を行った。   A non-rotating gear having four blades and a gear ratio normally fixed is 30, a rotating blade gear is 60, and an intermediate gear is 30. This one started to rotate from a light breeze with a wind speed of 3 m / sec, and smoothly rotated at a wind speed of 30 m / sec.

図1、図2及び図3は本発明の小型の実施例を示したものである。風車の直径を160mm、羽根の寸法を90mm×60mmとして製作したものは10mm/秒の風速で回転を開始したが、風車の直径を260mm羽根の寸法を90mm×110mmとして製作したものは3mm/秒の風速で回転を開始した。大型の風車を作るにいたっていないが、この事実より、大型の風車の場合の性能が急激に大きくなることが予測される。   1, 2 and 3 show a small embodiment of the present invention. The one manufactured with a windmill diameter of 160 mm and blade dimensions of 90 mm x 60 mm started rotating at a wind speed of 10 mm / second, but the one manufactured with a windmill diameter of 260 mm and blade dimensions of 90 mm x 110 mm was 3 mm / second. Rotation started at the wind speed. Although it has not been made to make a large windmill, it is predicted from this fact that the performance in the case of a large windmill will rapidly increase.

後者の出力は、軸に小型発電機をつけて発光させて測った、その結果5m/秒において発光ダイオードが明るく点灯し、それ以上の測定は現機器では行えなかった。   The latter output was measured by attaching a small generator to the shaft and emitting light. As a result, the light-emitting diode lit brightly at 5 m / sec, and further measurements could not be performed with the current equipment.

後者の風車を流水にいれて水車として使用した所、そのエネルギー獲得量は大きく測定不能であった。   When the latter wind turbine was put into running water and used as a turbine, its energy gain was too large to be measured.

後者を水車が水平になり、羽根の方向が水の流れ方向と一致するように筏に固定して、巾の広い川に浮かべて固定紐で水の流れに逆らうように自由に流した所、よい回転の状況を示した。   The latter was fixed to the ridge so that the water wheel was horizontal, the direction of the blades matched with the direction of water flow, floated on a wide river, and freely flowed against the water flow with a fixed string, The situation of good rotation was shown.

比較のため、ほぼ同寸法の他の方式で10mm/秒の風速で発電を行ったがこの試作品からは、電気を取り出すことが出来なかった、このことよりも、本発明の実効は十分予測通りであり、大型機での実施での有効性の確信を持った。   For comparison, power generation was performed at a wind speed of 10 mm / second in another method of almost the same size, but electricity could not be extracted from this prototype. From this, the effectiveness of the present invention was sufficiently predicted. I was convinced of the effectiveness of implementing it on a large machine.

図面により本実施例の説明を行う。本実施例は風を対象に製作したものだが、流水でのテストにも十分耐えて効果を発揮したものである。図1は風又は水の流れが左手前からの場合の斜視図である、太い矢印方向から送られている状態に羽根の方向が描かれている。図2はこれの側面図であり、図3は歯車と羽根の関係を表した俯瞰図である。記号は全ての図に共通しているので、図1と図2、一部図3を使って解説する。   The present embodiment will be described with reference to the drawings. Although this embodiment was made for wind, it was able to withstand the test under running water and exert its effect. FIG. 1 is a perspective view when the flow of wind or water is from the left front, in which the direction of the blades is drawn in a state where it is sent from the direction of the thick arrow. FIG. 2 is a side view of this, and FIG. 3 is an overhead view showing the relationship between gears and blades. Since the symbols are common to all the drawings, they will be explained with reference to FIGS. 1 and 2 and partially FIG.

羽根(a)は羽根の軸(b)に一体化されていて、この軸に歯車(h)がピン(p)で取り付けられている。歯車(h)は自由回転の中間歯車(g)により固定歯車(e)と噛み合っている。この羽根(a)は、上下の羽根取り付け台(c)に回転自在に取り付けられている。羽根取り付け台(c)は出力軸(d)にピン(p)で取り付けられ、これにより、羽根(a)により生まれた回転の力がピン(p)を介して出力歯車(l)から発電機の入力歯車(n)を通して発電機(m)に伝えられる。風又は水の流れの方向により羽根(a)の回転位置を変えるために、ステッピングモーター(j)の出力歯車(i)と固定歯車(e)と一体の歯車(f)により固定歯車(e)を微量回転させる方法も取れる。本体は台(o)から支柱(k)により支えられている。   The blade (a) is integrated with the shaft (b) of the blade, and a gear (h) is attached to this shaft with a pin (p). The gear (h) is meshed with the fixed gear (e) by a freely rotating intermediate gear (g). The blade (a) is rotatably mounted on the upper and lower blade mounting bases (c). The blade mount (c) is attached to the output shaft (d) with a pin (p), whereby the rotational force generated by the blade (a) is generated from the output gear (l) via the pin (p) to the generator. Is transmitted to the generator (m) through the input gear (n). In order to change the rotational position of the blade (a) according to the direction of flow of wind or water, the fixed gear (e) is formed by the gear (f) integrated with the output gear (i) and the fixed gear (e) of the stepping motor (j). A method of rotating a small amount of can also be taken. The main body is supported by the support (k) from the base (o).

出力軸の1/2の速度で回転する羽根を持つ風車又は水車は、そのエネルギー獲得の効率がよく、また必要とする設置面積も大きい必要がない、故に風車の場合は簡便に各地、建物の上などに設置でき、小発電に有効である、特に太陽光発電が出来ない夜間や曇天の中で有効である。
また水車に使用の場合、狭い流路の中に置くことで使用出来、また河川の流れに筏で浮かべることで使用出来、簡便に電気のエネルギー獲得を行うことが出来る。
A windmill or water turbine with blades that rotate at half the speed of the output shaft has good energy acquisition efficiency and does not require a large installation area. It can be installed on the top, etc., and is effective for small power generation. It is particularly effective at night and in cloudy weather where solar power generation is not possible.
In addition, when used in a water turbine, it can be used by placing it in a narrow flow path, or it can be used by floating on a river, making it easy to acquire electrical energy.

斜視図Perspective view 側面図Side view 俯瞰図Overhead view 羽根の方向変化を示した図Figure showing the direction change of the blade

符号の説明Explanation of symbols

a 羽根
b 羽根の軸
c 羽根取り付け台
d 出力軸
e 固定歯車
f 固定歯車への入力歯車
g 中間歯車
h 羽根軸の歯車
i ステッピングモーターに出力歯車
j ステッピングモーター
k 支柱
l 出力歯車
m 発電機
n 入力歯車
o 台
p 取り付けピン

a blade b blade shaft c blade mount d output shaft e fixed gear f input gear to the fixed gear g intermediate gear h blade shaft gear i output gear to the stepping motor j stepping motor k strut l output gear m generator n input Gear o stand p Mounting pin

Claims (6)

水平方向に回転する風車又は水車において、その複数枚の羽根を個別に回転可能としてこの軸と一体になった歯車を持ち、風車又は水車の出力軸の回りに歯車を置き、通常はこれを固定し、1枚の歯車を介して、これと羽根の軸と一体になった歯車を噛み合わせ、その出力軸の回りの歯車と、羽根の軸と一体の歯車と、中間歯車の歯数により、出力軸の回転が1回転に対して羽根の回転が1/2回転するごとき歯車組み合わせとしたことを特徴とする風車又は水車。   In a wind turbine or water turbine that rotates in the horizontal direction, a plurality of blades can be rotated individually and have a gear integrated with this shaft, and a gear is placed around the output shaft of the wind turbine or water turbine, usually fixed. Then, through a single gear, the gear integrated with the shaft of the blade is meshed, and the gear around the output shaft, the gear integrated with the shaft of the blade, and the number of teeth of the intermediate gear, A windmill or water turbine characterized by a combination of gears such that the rotation of the output shaft is one rotation of the blade and the rotation of the blade is one half. 風車又は水車の複数枚の羽根の全てが、同一の位置にくると同一の方向に向くようにし、その羽根の方向を、一つの位置の羽根が風又は水の流れに直交し、その出力軸を中心にした反対の位置の羽根が、風又は水の流れに平行する如く90度移動回転する如くしたことを特徴とする請求項1の風車又は水車。   When all the blades of a wind turbine or water turbine are in the same position, they face in the same direction, and the direction of that blade is perpendicular to the wind or water flow, and its output shaft 2. A wind turbine or a water turbine according to claim 1, wherein the blades at the opposite positions centering on the wind turbine are moved and rotated by 90 degrees so as to be parallel to the flow of the wind or water. 風車又は水車の羽根の方向を、一つの位置の羽根が風又は水の流れに直交し、その出力軸を中心にした反対の位置の羽根が、風又は水の流れに平行する如く90度移動回転する如くし、なお風又は水の流速に伴って風又は水の流れとの方向関係を変えることを特徴とする請求項1の風車又は水車。   The direction of the blade of a windmill or water turbine is moved 90 degrees so that the blade at one position is orthogonal to the flow of wind or water and the blade at the opposite position around its output axis is parallel to the flow of wind or water. The wind turbine or water turbine according to claim 1, wherein the wind turbine or the water turbine is rotated and the directional relationship with the flow of the wind or water is changed according to the flow velocity of the wind or water. 出力軸の回りの歯車を、風又は水の流れの方向と速度の変化に伴って回転させて歯の位置を変えることで、風又は水の流速が遅いときは常に一つの位置の羽根が風又は水の流れに直交し、その回転方向に180度反対の位置の羽根が風又は水の流れに平行する如くしたことを特徴とする請求項1の風車又は水車。   By rotating the gears around the output shaft as the wind or water flow direction and speed change, the tooth position is changed so that the blade at one position is always winded when the flow velocity of the wind or water is slow. The wind turbine or turbine according to claim 1, wherein the blades at a position orthogonal to the water flow and opposite to the rotation direction by 180 degrees are parallel to the wind or water flow. 出力軸の回りの歯車を、風又は水の流れの方向と速度の変化に伴って回転させて歯の位置を変えることで、風又は水の流速が遅いときは常に一つの位置の羽根が風又は水の流れに直交し、その回転方向に180度の反対の位置の羽根が風又は水の流れに平行する如くし、流れの速度が大きいときはさらに羽根の方向を変えることを特徴とする請求項1の風車又は水車。   By rotating the gears around the output shaft as the wind or water flow direction and speed change, the tooth position is changed so that the blade at one position is always winded when the flow velocity of the wind or water is slow. Or, it is perpendicular to the flow of water and the blades at 180 degrees opposite to the direction of rotation are parallel to the flow of wind or water, and the direction of the blades is further changed when the flow velocity is high. The windmill or water turbine according to claim 1. 本体の方向を周囲物と固定して、風又は水の流れと直交する位置の羽根の一方が流れに直交し180度反対の側の羽根が流れに平行するごとくしたことを特徴とする請求項2の風車又は水車。

The direction of the main body is fixed to the surrounding object, and one of the blades at a position orthogonal to the flow of wind or water is orthogonal to the flow and the blade on the opposite side by 180 degrees is parallel to the flow. 2 windmills or watermills.

JP2004263221A 2004-09-10 2004-09-10 Wind mill or water turbine where each blade revolves Pending JP2006077684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004263221A JP2006077684A (en) 2004-09-10 2004-09-10 Wind mill or water turbine where each blade revolves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004263221A JP2006077684A (en) 2004-09-10 2004-09-10 Wind mill or water turbine where each blade revolves

Publications (1)

Publication Number Publication Date
JP2006077684A true JP2006077684A (en) 2006-03-23

Family

ID=36157340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004263221A Pending JP2006077684A (en) 2004-09-10 2004-09-10 Wind mill or water turbine where each blade revolves

Country Status (1)

Country Link
JP (1) JP2006077684A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101001397B1 (en) * 2009-05-13 2010-12-14 이동학 Generator using wind power, water power, tidal power or tidal current
CN102080632A (en) * 2010-12-31 2011-06-01 刘瑞琦 Wind power generating system
CN102261298A (en) * 2011-07-26 2011-11-30 浙江风神海洋工程技术有限公司 Straight wing water flow power generation device
KR101169419B1 (en) * 2009-05-13 2012-07-30 이동학 Device for generating thrust and ship having the same
WO2012141469A2 (en) * 2011-04-13 2012-10-18 Lee Dong-Hak Tidal current generator
CN102865193A (en) * 2012-09-27 2013-01-09 北京石光龙腾风力科技发展有限公司 Fan blade steering control system and rotary-sail type fan
CN102889180A (en) * 2012-09-26 2013-01-23 东华理工大学 Vertical-axis multi-impeller wind power generator unit
WO2013080933A1 (en) * 2011-11-29 2013-06-06 株式会社テックコーポレーション Power generation device
KR101327145B1 (en) 2010-02-26 2013-11-12 챔피언 엔지니어링 테크놀러지 캄파니 리미티드 A planet wind sail mechanism
US8933575B2 (en) 2013-02-06 2015-01-13 Harold Lipman Water turbine with pivotable blades
CN105370496A (en) * 2014-08-26 2016-03-02 王鹤飞 Vertical axis wind turbine
KR101922839B1 (en) * 2018-04-18 2018-11-27 곽태숙 Vertical type hydraulic power generators
CN111456900A (en) * 2020-05-21 2020-07-28 安徽康迪纳电力科技有限责任公司 Adjusting device for follow-up angle of vertical windmill blade plate

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101169419B1 (en) * 2009-05-13 2012-07-30 이동학 Device for generating thrust and ship having the same
KR101001397B1 (en) * 2009-05-13 2010-12-14 이동학 Generator using wind power, water power, tidal power or tidal current
KR101327145B1 (en) 2010-02-26 2013-11-12 챔피언 엔지니어링 테크놀러지 캄파니 리미티드 A planet wind sail mechanism
CN102080632A (en) * 2010-12-31 2011-06-01 刘瑞琦 Wind power generating system
CN102080632B (en) * 2010-12-31 2014-01-08 刘瑞琦 Wind power generating system
WO2012141469A2 (en) * 2011-04-13 2012-10-18 Lee Dong-Hak Tidal current generator
WO2012141469A3 (en) * 2011-04-13 2013-01-10 Lee Dong-Hak Tidal current generator
KR101273648B1 (en) * 2011-04-13 2013-06-11 이동학 Tidal power generator
CN102261298A (en) * 2011-07-26 2011-11-30 浙江风神海洋工程技术有限公司 Straight wing water flow power generation device
WO2013080933A1 (en) * 2011-11-29 2013-06-06 株式会社テックコーポレーション Power generation device
JP2013113231A (en) * 2011-11-29 2013-06-10 Techno Kankyo Kiki Kk Power generation device
CN102889180A (en) * 2012-09-26 2013-01-23 东华理工大学 Vertical-axis multi-impeller wind power generator unit
CN102865193A (en) * 2012-09-27 2013-01-09 北京石光龙腾风力科技发展有限公司 Fan blade steering control system and rotary-sail type fan
US8933575B2 (en) 2013-02-06 2015-01-13 Harold Lipman Water turbine with pivotable blades
CN105370496A (en) * 2014-08-26 2016-03-02 王鹤飞 Vertical axis wind turbine
KR101922839B1 (en) * 2018-04-18 2018-11-27 곽태숙 Vertical type hydraulic power generators
WO2019203477A1 (en) * 2018-04-18 2019-10-24 곽태숙 Perpendicular hydroelectric power generation apparatus
CN111456900A (en) * 2020-05-21 2020-07-28 安徽康迪纳电力科技有限责任公司 Adjusting device for follow-up angle of vertical windmill blade plate

Similar Documents

Publication Publication Date Title
US8596956B2 (en) Bidirectional water turbine
JP5455092B1 (en) Wind power generator
JP2006077684A (en) Wind mill or water turbine where each blade revolves
CN103573557A (en) Tidal and wind power integrated generator
Alam et al. A low cut-in speed marine current turbine
CN203230525U (en) Ocean energy power generation device and frame thereof
JP2013217361A (en) Variable blade waterwheel power-generation device
JP2003106247A (en) Savonius water turbine and power plant comprising the same
JP2002310054A (en) Tidal current power generator
RU2642706C2 (en) The wind-generating tower
Mahale et al. Vertical axis wind turbine: A lucid solution for global small scale energy crisis
JP2007120451A (en) Windmill with rotary blade shaft orthogonal to output shaft
KR20140142500A (en) Turbine and power generating apparatus having the same
Dumitrescu et al. TORNADO concept and realisation of a rotor for small VAWTs
JPWO2018235220A1 (en) Sail device
GB2392713A (en) Multi-direction flow turbine
KR101105648B1 (en) High efficient current generator
JP2006132494A (en) Hydroelectric generator
CN202971042U (en) Tide and wind-force integration power generator
KR101756108B1 (en) A underwater power generation apparatus using the wing folding waterwheel structure
JPH10331756A (en) Liquid energy converting device
CN217080682U (en) Variable-diameter spiral curved surface impeller bidirectional rotation vertical axis wind driven generator
KR101642259B1 (en) High Efficiency Water Turbine with Variable Dual Blades
KR101287007B1 (en) rotator of hydraulic generator or aerogenerator
Mustaffa et al. Comparative study of a drag force for flat plate frame and a combined straight bladed darrieus-flat plate frame