JP2006132494A - Hydroelectric generator - Google Patents

Hydroelectric generator Download PDF

Info

Publication number
JP2006132494A
JP2006132494A JP2004324989A JP2004324989A JP2006132494A JP 2006132494 A JP2006132494 A JP 2006132494A JP 2004324989 A JP2004324989 A JP 2004324989A JP 2004324989 A JP2004324989 A JP 2004324989A JP 2006132494 A JP2006132494 A JP 2006132494A
Authority
JP
Japan
Prior art keywords
water
turbines
hydroelectric generator
power generation
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004324989A
Other languages
Japanese (ja)
Inventor
Yoshikazu Nonoguchi
吉和 野々口
Yasuko Nonoguchi
康子 野々口
Makoto Nonoguchi
真 野々口
Hajime Nonoguchi
肇 野々口
Yoshiya Nonoguchi
義也 野々口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004324989A priority Critical patent/JP2006132494A/en
Publication of JP2006132494A publication Critical patent/JP2006132494A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydroelectric generator capable of stably generating electric power even when stream is heavy and fluctuation of a water level is large and of effectively performing electric power generation. <P>SOLUTION: Two water turbines 11, 12 are provided in upstream and downstream sides of flowing water, respectively, and are connected with one of a power generator in a power generator chamber 21. Main bodies of the respective water turbines 11, 12 have a hollow drum shape of which main shaft is approximately vertical to the water flow. Blades provided around the water turbines 11, 12 have a large number of partitions in the width direction (vertical to the water flow). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、川等の流水に設置して発電を行う水力発電機に関する。   The present invention relates to a hydroelectric generator that is installed in flowing water such as a river to generate electric power.

環境に対する負荷が問題となっている石油等の化石燃料や原子力を用いた発電に替わる、自然の力を利用した再生可能エネルギー発電の実用化が急がれている。   There is an urgent need for practical use of renewable energy power generation that uses natural power to replace fossil fuels such as petroleum and power generation that uses nuclear power, which are problematic for the environment.

そのような発電の一つに水力発電があるが、水力発電には、ダム等による大きな水頭差(落差)を利用する落差型のものと、流水を利用する流水型のものがある。落差型はエネルギー密度が高いという利点があるが、大規模な設備が必要であったり、設置場所が限られるという欠点がある。それに対し、流水型はエネルギー密度は低いものの、設置場所を比較的自由に選ぶことができることから、消費地近傍で行う小規模発電に適している。   One type of such power generation is hydropower generation. There are two types of hydropower generation: a drop type that uses a large head difference (head) due to a dam or the like, and a flowing water type that uses running water. The head type has the advantage of high energy density, but has the disadvantage that large-scale equipment is required and the installation location is limited. On the other hand, the flowing water type is suitable for small-scale power generation near the consumption area because the installation location can be relatively freely selected although the energy density is low.

流水型には、用水路や河川に水車の下方の一部を浸漬する表面型と、水中に羽根車を浸漬する浸漬型とがあるが、浸漬型は相当の水深が必要であることと、装置のメンテナンスが容易ではないことから、簡易な小規模発電には表面型が適している。   There are two types of running water types: a surface type that immerses a part of the lower part of a water wheel in a water channel or a river, and an immersion type that immerses an impeller in water. Therefore, the surface type is suitable for simple small-scale power generation.

流水・表面型の水力発電機で問題となるのは、水流の水面の高さが変化した場合である。水車(の回転軸)を一定の位置(高さ)に固定しておくと、水面が低くなった場合には流水が水車に全く触らず、発電が行われないこともあり得る。一方、水面が高くなった場合にも、水車が適切に回転しないという問題や、水車全体に大きな力がかかるため強固な固定設備が必要となるという問題がある。   The problem with running water / surface type hydroelectric generators is when the water level of the water flow changes. If the water wheel (rotary shaft) is fixed at a certain position (height), when the water surface becomes low, the water does not touch the water wheel at all and power generation may not be performed. On the other hand, even when the water surface becomes high, there is a problem that the water turbine does not rotate properly and a problem that a strong fixing facility is required because a large force is applied to the entire water wheel.

そこで、水車を水面の変動に合わせて上下させる装置が種々考案されている(特許文献1、2等)。
特開2002-364512号公報 特開2004-052736号公報
Therefore, various devices for moving the water wheel up and down according to the fluctuation of the water surface have been devised (Patent Documents 1, 2, etc.).
JP 2002-364512 A JP 2004-052736 A

特許文献1に記載の水力発電機では、水車に浮力装置を設け、水車の回転軸を、揺動可能なフレームや連結棒で保持することにより、水位の変化に対応している。
特許文献2に記載の水力発電機では、水車(ロータ)を発泡樹脂で作製することで水面上に浮くようにし、さらに、その回転軸を上下に長いスリットに収めることで水位変動による水車の上下動を吸収するようにしている。
In the hydroelectric generator described in Patent Document 1, a buoyancy device is provided in a water turbine, and the rotation shaft of the water turbine is held by a swingable frame or a connecting rod to cope with changes in the water level.
In the hydroelectric generator described in Patent Document 2, the turbine (rotor) is made of foamed resin so that it floats on the surface of the water, and the rotating shaft is placed in a vertically long slit to move the turbine up and down due to fluctuations in the water level. I try to absorb the movement.

しかし、これらの水力発電機はいずれも、水位の変動が激しい場合、それに対する追従性が充分ではなく、発電量の変動が激しいという問題点がある。また、発電効率の点からも改善すべき余地がある。
本発明が解決しようとする課題は、水流が激しく水位の変動が大きい場合にも安定した電力を発生するとともに、効率よく発電を行うことのできる水力発電機を提供することである。
However, all of these hydroelectric generators have a problem that, when the fluctuation of the water level is severe, the followability to the fluctuation is not sufficient, and the fluctuation of the power generation amount is severe. There is also room for improvement in terms of power generation efficiency.
The problem to be solved by the present invention is to provide a hydroelectric generator that can generate stable power even when the water flow is strong and the fluctuation of the water level is large, and that can generate power efficiently.

上記課題を解決するために成された本発明は、浮力装置により水車の下方の一部のみが流水に浸漬するようにし、その流水による水車の回転力を電力に変換する水力発電機において、流水の上流側の水車と下流側の水車の少なくとも2個の水車を備え、それらが一つの発電機に接続されていることを特徴とするものである。   In order to solve the above-mentioned problems, the present invention is directed to a hydroelectric generator in which only a part of a lower part of a water turbine is immersed in flowing water by a buoyancy device, and the rotational force of the water wheel generated by the flowing water is converted into electric power. It has at least two water turbines, that is, an upstream water turbine and a downstream water turbine, and these are connected to one generator.

ここで浮力装置は水車とは別に設けてもよいが、水車自体を浮力装置とすることも可能である。例えば、引用文献2のように水車を発泡樹脂で作製したり、或いは水車本体を内部が空洞のドラム形とする(この場合、主軸を水流に略垂直な方向にする)ことにより、水車は自らが浮力装置としても働く。   Here, the buoyancy device may be provided separately from the water wheel, but the water wheel itself may be a buoyancy device. For example, as shown in the cited document 2, the water wheel is made of foamed resin, or the water wheel body is made into a drum shape with a hollow inside (in this case, the main shaft is in a direction substantially perpendicular to the water flow), so that the water wheel itself Works as a buoyancy device.

水車は、その幅(水流に垂直な方向の長さ)をできるだけ大きくしておく(できれば、その直径よりも長くしておく)ことが望ましい。これにより、水流のエネルギーをより多く電気エネルギーとして取り出すことができるようになる。   It is desirable that the width of the water wheel (the length in the direction perpendicular to the water flow) be as large as possible (preferably longer than its diameter). Thereby, more energy of the water flow can be extracted as electric energy.

また、水車の周囲に設ける羽根は、幅方向(水流に垂直な方向)に複数に区分しておくことが望ましい。これは、水車の幅を広くした場合に特に有効である。こうすることにより、羽根に当たった水流を横に逃がすことなく、より効率の良い発電を行うことができるようになる。   In addition, it is desirable that the blades provided around the water wheel be divided into a plurality of sections in the width direction (direction perpendicular to the water flow). This is particularly effective when the width of the water wheel is widened. By doing so, more efficient power generation can be performed without causing the water flow hit the blades to escape sideways.

2個(或いはそれ以上)の水車は互いに連結されることなく独立に設けられていてもよいが、2個の水車の回転軸を連結棒により連結しておくことが望ましい。もちろん、各回転軸は連結棒に対しては回転可能としておく。いずれの場合でも、水車の個数分だけ流水から取り出すエネルギーの量が増加するという効果とともに、水位の変動や水流の動きが激しい場合でも、少なくともいずれか一方が発電を継続する確率が高くなるため、総体としての発電量が安定するという効果が得られるが、特に後者のような構成とした場合、上流側の水車と下流側の水車を合わせたユニット全体の水面に対する位置が安定するため、水力発電機全体の発電量が更に安定するという効果が得られる。   Two (or more) turbines may be provided independently without being connected to each other, but it is desirable to connect the rotating shafts of the two turbines with a connecting rod. Of course, each rotating shaft is rotatable with respect to the connecting rod. In any case, the amount of energy extracted from the running water is increased by the number of turbines, and even if the water level fluctuates or the water flow is intense, the probability that at least one of them continues power generation is high. Although the effect of stabilizing the overall power generation amount can be obtained, especially in the latter configuration, the position of the entire unit including the upstream water turbine and the downstream water turbine relative to the water surface is stable. The effect is that the power generation amount of the entire machine is further stabilized.

本発明に係る水力発電機では、2個以上の水車が一つの発電機に接続されているため、流水のエネルギーを効率よく電力に変換することができるとともに、総発電量を安定させることができる。また、それらの水車を水流の上流側と下流側に配置するものであるため、幅の狭い小川や流水路等にも設置することができる。そして、水車の幅を大きくしておくことにより、発電効率を更に上げることができる。   In the hydroelectric generator according to the present invention, since two or more turbines are connected to one generator, the energy of running water can be efficiently converted into electric power, and the total power generation amount can be stabilized. . Moreover, since these water turbines are arranged on the upstream side and the downstream side of the water flow, they can also be installed in narrow creeks and water channels. And the power generation efficiency can be further increased by increasing the width of the water wheel.

水車本体を中空ドラム形とすることで、別途浮力装置を設けることなく水車を水面上の安定した位置に置くことができるようになる。また、2個の水車を連結棒で連結することで、水車の水面に対する位置がより安定するようになり、発電機からより安定した電気が出力されるようになる。   By making the turbine body into a hollow drum shape, the turbine can be placed at a stable position on the water surface without providing a separate buoyancy device. Further, by connecting the two water wheels with the connecting rod, the position of the water wheel relative to the water surface becomes more stable, and more stable electricity is output from the generator.

水車の周囲に設けた羽根に、水流に垂直な方向に適宜間隔で仕切りを設けることにより、特に水車の幅が広い場合に、水を横に逃がすことなく、流水のエネルギーをより確実に捉えて発電に使うことができるようになる。これによっても発電効率の向上を図ることができる。   By providing partitions at appropriate intervals in the direction perpendicular to the water flow on the blades provided around the water wheel, it is possible to capture the energy of the flowing water more reliably without causing water to escape sideways, especially when the width of the water wheel is wide. It can be used for power generation. This can also improve the power generation efficiency.

本発明の一実施例である水力発電機を図1〜図4により説明する。図1は本実施例の水力発電機全体の側面図、図2は水車と発電室の部分の正面図、図3は水車部分の斜視図である。
図1に示すように、本実施例の水力発電機は、流水の上流側(図1において左側)と下流側に配置される2個の水車11,12を備えている。以下、上流側を前方、下流側を後方と呼ぶこともある。図3(a)、(b)に示すように両水車11,12はいずれもドラム形となっており、内部は空洞である。各ドラム形水車11,12の左右両端面からは回転軸が突出し、その回転軸の根元(水車11,12の端面)には動力伝達用の歯車(駆動歯車)13,14が固定されている。左右の端面それぞれにおいて、前後の水車11,12の回転軸は略「ト」字形の連結棒15により連結され、左右の連結棒15は中央において後述の発電室21に揺動可能に取り付けられている。また、左右の端面それぞれにおいて、前後水車11,12の端面の駆動歯車13,14と発電室21の両端に設けられた歯車(従動歯車)22の3個の歯車は歯付ベルト23により掛け渡されている。
A hydroelectric generator according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a side view of the entire hydroelectric generator of the present embodiment, FIG. 2 is a front view of a portion of a turbine and a power generation chamber, and FIG. 3 is a perspective view of the portion of the turbine.
As shown in FIG. 1, the hydroelectric generator of the present embodiment includes two water turbines 11 and 12 arranged on the upstream side (left side in FIG. 1) and the downstream side of running water. Hereinafter, the upstream side may be referred to as the front and the downstream side may be referred to as the rear. As shown in FIGS. 3 (a) and 3 (b), both water turbines 11 and 12 are drum-shaped, and the inside is hollow. Rotating shafts protrude from the left and right end surfaces of the drum-type water turbines 11 and 12, and power transmission gears (driving gears) 13 and 14 are fixed to the bases of the rotating shafts (end surfaces of the water turbines 11 and 12). . On the left and right end surfaces, the rotating shafts of the front and rear water turbines 11 and 12 are connected by a substantially “G” -shaped connecting rod 15, and the left and right connecting rods 15 are swingably attached to a power generation chamber 21 described later at the center. Yes. In addition, on each of the left and right end surfaces, three gears of the drive gears 13 and 14 on the end surfaces of the front and rear water turbines 11 and 12 and the gears (driven gears) 22 provided at both ends of the power generation chamber 21 are bridged by a toothed belt 23. Has been.

各水車11,12の周囲には、水車11,12の全幅に亘る長さを有する羽根16が多数取り付けられている。羽根16は水中にあるときに流水の上流側に向かって凹となるような断面形状を有するとともに、図3(a)に示すように、その幅方向に等間隔に(不等間隔であってもよい)設けられた仕切り17により複数の区画に区切られている。また、両端には全周に亘る水止め18が設けられている。図3(b)に示すように、仕切り17を、水車11、12の全周を巡る円盤状としてもよい。   A large number of blades 16 having a length over the entire width of the water turbines 11 and 12 are attached around the water turbines 11 and 12. The blades 16 have a cross-sectional shape that becomes concave toward the upstream side of running water when they are in the water, and, as shown in FIG. It may be divided into a plurality of sections by a partition 17 provided. Further, water stoppers 18 are provided at both ends over the entire circumference. As shown in FIG. 3 (b), the partition 17 may have a disk shape that goes around the entire circumference of the water turbines 11 and 12.

前後の水車11,12の中間の上部には、水車11,12と同じ幅(水流に垂直な方向の長さ)を持つ発電室21が設けられており、その内部には、水車11,12の回転力を電力に変換するダイナモ(発電機)24が収納されている。本実施例では、ダイナモ24は左右両側に各1個設けられているが、前記同様の歯車と歯付ベルト等の適当な動力伝達手段を設けることにより、いずれか一方の端のみ、又は中央のみに1個のダイナモを設けるという機構を採用することも可能である。   A power generation chamber 21 having the same width (length in a direction perpendicular to the water flow) as that of the water turbines 11 and 12 is provided in the upper middle portion between the front and rear water turbines 11 and 12. A dynamo (generator) 24 for converting the rotational force of the motor into electric power is housed. In this embodiment, one dynamo 24 is provided on each of the left and right sides. However, by providing appropriate power transmission means such as a gear and a toothed belt, only one end or only the center is provided. It is also possible to employ a mechanism in which a single dynamo is provided in each.

発電室21の両端からは前記ダイナモ24の回転軸25が外部に突出しており、そこに前述の従動歯車22が固定され、歯付ベルト23が掛け渡されている。また、その回転軸25には更に、両水車を連結する連結棒15の中心が揺動可能に取り付けられている。   A rotating shaft 25 of the dynamo 24 protrudes from both ends of the power generation chamber 21, and the driven gear 22 is fixed to the rotating shaft 25, and a toothed belt 23 is wound around the rotating shaft 25. Further, a center of a connecting rod 15 that connects both water turbines is attached to the rotating shaft 25 so as to be swingable.

流水の上流側には、これら2個の水車11,12及び発電室21から成るユニットを全体として上下に移動可能に保持するための固定柱31が立設されている。固定柱31は、本水力発電機を設置する流路の幅が広い場合には水中に設けるが、流路の幅が狭い場合には両岸にまたがって設置してもよい。固定柱31の上部に、前記水車・発電機ユニットの発電室21をリンク機構32で連結する。このリンク機構32はパラレルリンク(平行四辺形リンク)を利用したもので、発電室21を常に水平を保ちつつ固定柱31に対して揺動可能となっており、これにより、水車11,12の高さを水位に追随して変化させる。   On the upstream side of the running water, a fixed column 31 is erected to hold the unit composed of the two water turbines 11 and 12 and the power generation chamber 21 movably up and down as a whole. The fixed column 31 is provided in the water when the width of the flow path where the hydroelectric generator is installed is wide, but may be installed across both banks when the width of the flow path is narrow. The power generation chamber 21 of the water turbine / generator unit is connected to the upper portion of the fixed column 31 by a link mechanism 32. The link mechanism 32 uses a parallel link (parallelogram link), and can swing with respect to the fixed column 31 while keeping the power generation chamber 21 always horizontal. Change the height following the water level.

以上のような構成を有する本実施例の水力発電機は、次のように動作する。図1に示すように、通常は、ドラム形水車11,12自体の浮力により両水車11,12の下方の一部だけが水中に沈み、水中に沈んだ羽根16に流水が当たることにより水車11,12に回転力が与えられる。このとき、各羽根16は幅方向に仕切られているため、流水が横方向(幅方向)に逃げることなく、そのエネルギは効率よく水車11,12に伝えられる。各水車11,12の回転力は歯付ベルト23によりダイナモ24に伝えられ、ダイナモ24はその回転力を電気に変換する。生成された電気は、リンク機構32に沿って配線された電線33を通じて外部に取り出される。   The hydraulic power generator of the present embodiment having the above configuration operates as follows. As shown in FIG. 1, normally, only a part of the lower part of the two water turbines 11 and 12 sinks in the water due to the buoyancy of the drum-type water turbines 11 and 12, and the running water hits the blades 16 submerged in the water, thereby causing the turbine 11 , 12 is given a rotational force. At this time, since each blade 16 is partitioned in the width direction, the flowing water does not escape in the lateral direction (width direction), and the energy is efficiently transmitted to the water turbines 11 and 12. The rotational force of each of the water turbines 11 and 12 is transmitted to the dynamo 24 by the toothed belt 23, and the dynamo 24 converts the rotational force into electricity. The generated electricity is taken out through an electric wire 33 wired along the link mechanism 32.

水位が上昇したときは、図4(a)に示すように、リンク機構32により水車・発電室ユニットが全体として平行に上昇し、その水位に対する位置を保つ。
また、水面が激しく変動したときは、図4(b)に示すように、両水車11,12が発電室21に対して揺動し、水面に対する位置を保持する。
When the water level rises, as shown in FIG. 4 (a), the water turbine / power generation chamber unit rises in parallel as a whole by the link mechanism 32, and the position relative to the water level is maintained.
Further, when the water surface fluctuates violently, as shown in FIG. 4 (b), the two water turbines 11 and 12 swing with respect to the power generation chamber 21, and maintain the position with respect to the water surface.

これらの機構により、ダイナモ24の発電量は水位の変化や水面の変動に影響を受けることなく、常に安定したものとなる。   With these mechanisms, the power generation amount of the dynamo 24 is always stable without being affected by changes in the water level or fluctuations in the water surface.

上記実施例は、以下に述べるように各種変形を行うことができる。まず、図5に示すように、固定柱31に昇降機構34を設けてリンク機構32を上下に昇降自在とし、設置個所の水位の大幅な変動にも対応させることができる。この場合、同図に示すように、下流側に固定柱31を支えるための補強用支柱35を設けておくことが望ましい。なお、図1の設備に同様の補強用支柱を設けてもよい。   The above embodiment can be variously modified as described below. First, as shown in FIG. 5, an elevating mechanism 34 is provided on the fixed column 31 so that the link mechanism 32 can be moved up and down to cope with a large fluctuation in the water level of the installation location. In this case, as shown in the figure, it is desirable to provide a reinforcing column 35 for supporting the fixed column 31 on the downstream side. In addition, you may provide the similar support | pillar for the installation of FIG.

また、図6に示すように、水車・発電室ユニットが2本の固定柱31a、31b、リンク機構の2本のアーム32a、32bの間に来るようにし、リンク機構の両アーム32a、32bが互いに干渉しないように設定することにより、水車・発電室ユニットは固定柱31a、31bの上端以上の高さに上がることができるようになる。これにより、更に水位の変動が激しい場合でも発電を行うことができるようになる。   In addition, as shown in FIG. 6, the turbine / power generation chamber unit is located between the two fixed columns 31a and 31b and the two arms 32a and 32b of the link mechanism, and both arms 32a and 32b of the link mechanism are By setting so as not to interfere with each other, the turbine / power generation chamber unit can be raised to a height higher than the upper ends of the fixed columns 31a and 31b. This makes it possible to generate power even when the water level fluctuates further.

更に、図7に示すように、2本の水車11,12を固定する連結棒(図7では三角形の連結板となっている)41の回転中心42を、両水車11,12の中心を結ぶ線(一点鎖線)と同等またはそれよりも下に来るようにしてもよい。このようにすることにより、水流が激しくなって図8に示すように両水車が傾いたときでも、その動きが安定し、両水車11,12があばれることが少ない。なお、この場合、発電機室21と上記回転中心42を連結するための垂下連結棒43を設け、連結板41の三角形の上側の頂点に設けた従動歯車44と発電機室21内のダイナモの軸に取り付けられた歯車22とを別途の歯付ベルト45で連結する必要がある。また、図8に示すように、両水車11,12が傾いたときに連結板41の上側の頂点の従動歯車44が左右に移動するため、ダイナモの軸の歯車22との距離が変化する。それを吸収するためのテンションプーリ46も設ける必要がある。   Furthermore, as shown in FIG. 7, the rotation center 42 of a connecting rod 41 (which is a triangular connecting plate in FIG. 7) 41 that fixes the two water turbines 11, 12 is connected to the centers of both turbines 11, 12. It may be arranged to be equal to or below the line (dashed line). By doing so, even when the water flow becomes intense and the two water turbines are inclined as shown in FIG. 8, the movement is stable and the two water turbines 11 and 12 are less likely to be exposed. In this case, a hanging connecting rod 43 for connecting the generator chamber 21 and the rotation center 42 is provided, and the driven gear 44 provided at the upper apex of the triangle of the connecting plate 41 and the dynamo in the generator chamber 21 are provided. It is necessary to connect the gear 22 attached to the shaft with a separate toothed belt 45. Further, as shown in FIG. 8, when the two turbines 11 and 12 are inclined, the driven gear 44 at the top of the connecting plate 41 moves to the left and right, so that the distance from the dynamo shaft gear 22 changes. It is also necessary to provide a tension pulley 46 for absorbing it.

図示しないが、固定柱31の上流側には、上流から流れてくるゴミ等が水車11,12のところに来ないように、ゴミ除けの網を設けておくことが望ましい。   Although not shown, it is desirable to provide a dust screen on the upstream side of the fixed column 31 so that dust flowing from the upstream does not reach the water turbines 11 and 12.

上記実施例では、説明の便宜のために水車11,12のみにより発電する構成としたが、図9に示すように、太陽電池51又は/及び風車52を設け、これらによる発電を付加的に行うようにしてもよい。これら太陽電池51や風車52は発電室21に設けてもよいし、固定柱31に設けてもよい。もちろん、双方に設けてもよい。   In the above embodiment, for the convenience of explanation, the power generation is performed only by the water turbines 11 and 12, but as shown in FIG. 9, the solar cell 51 and / or the windmill 52 are provided and the power generation by these is additionally performed. You may do it. These solar cells 51 and windmills 52 may be provided in the power generation chamber 21 or may be provided in the fixed column 31. Of course, you may provide in both.

本発明の一実施例である水力発電機の側面図。The side view of the hydroelectric power generator which is one Example of this invention. 実施例の水力発電機の水車と発電室の部分の正面図。The front view of the part of the water turbine and power generation chamber of the hydroelectric generator of an Example. 実施例の水力発電機の水車の2つの態様のものの斜視図。The perspective view of the thing of the two aspects of the water turbine of the hydroelectric generator of an Example. 水位が上昇した場合の実施例の水力発電機の動きを示す説明図(a)、及び水面が激しく変動した場合の実施例の水力発電機の動きを示す説明図(b)。An explanatory view (a) showing the movement of the hydroelectric generator of the embodiment when the water level rises, and an explanatory view (b) showing the movement of the hydroelectric generator of the embodiment when the water surface fluctuates drastically. 固定柱を上下に昇降可能とした水力発電機の側面図。The side view of the hydroelectric generator which made it possible to raise / lower a fixed pillar up and down. 水車・発電室ユニットが2本の固定柱の間に来るようにしたリンク機構の側面図。The side view of the link mechanism which made the waterwheel / power generation room unit come between two fixed pillars. 両水車の連結棒の回転中心を、両水車の中心を結ぶ線よりも下にした実施例の水力発電機の側面図。The side view of the hydroelectric generator of the Example which made the rotation center of the connecting rod of both turbines lower than the line which connects the center of both turbines. 図7の実施例の水力発電機の、両水車が傾いた場合の側面図。The side view in case the both water turbines incline of the hydroelectric generator of the Example of FIG. 太陽電池及び風車を付加的に設けた水力発電機の実施例の側面図。The side view of the Example of the hydroelectric generator which additionally provided the solar cell and the windmill.

符号の説明Explanation of symbols

11、12…水車
13、14…歯車
15…連結棒
16…羽根
17…仕切り
18…水止め
21…発電室
22…従動歯車
23…歯付ベルト
24…ダイナモ(発電機)
25…揺動軸
31、31a、31b…固定柱
32…リンク機構
32a、32b…リンク機構のアーム
33…電線
34…昇降機構
35…補強用支柱
41…連結板
42…連結板の回転中心
43…垂下連結棒
44…従動歯車
45…歯付ベルト
46…テンションプーリ
51…太陽電池
52…風車

DESCRIPTION OF SYMBOLS 11, 12 ... Water wheel 13, 14 ... Gear 15 ... Connecting rod 16 ... Blade 17 ... Partition 18 ... Water stop 21 ... Power generation chamber 22 ... Driven gear 23 ... Toothed belt 24 ... Dynamo (generator)
25 ... oscillating shafts 31, 31a, 31b ... fixed column 32 ... link mechanism 32a, 32b ... arm 33 of link mechanism ... electric wire 34 ... lifting mechanism 35 ... reinforcing column 41 ... connecting plate 42 ... center of rotation 43 of connecting plate ... Drooping connecting rod 44 ... driven gear 45 ... toothed belt 46 ... tension pulley 51 ... solar cell 52 ... windmill

Claims (5)

浮力装置により水車の下方の一部のみが流水に浸漬するようにし、その流水による水車の回転力を電力に変換する水力発電機において、
流水の上流側の水車と下流側の水車の少なくとも2個の水車を備え、それらが一つの発電機に接続されていることを特徴とする水力発電機。
In the hydroelectric generator that causes only a part of the lower part of the water wheel to be immersed in the flowing water by the buoyancy device and converts the rotational force of the water wheel by the flowing water into electric power,
A hydroelectric generator comprising at least two turbines, an upstream turbine and a downstream turbine, which are connected to one generator.
流水の上流側の水車と下流側の水車の少なくとも2個の水車を備え、それらが一つの発電機に接続されているとともに、各水車の本体が、主軸が水流に略垂直な中空ドラム形となっていることを特徴とする水力発電機。   At least two turbines, one upstream and one downstream, are connected to one generator, and the main body of each turbine has a hollow drum shape whose main shaft is substantially perpendicular to the water flow. A hydroelectric generator characterized by 水車の水流に垂直な方向の長さ(幅)がその直径よりも大きいことを特徴とする請求項1又は2に記載の水力発電機。   The hydroelectric generator according to claim 1 or 2, wherein a length (width) in a direction perpendicular to the water flow of the water turbine is larger than a diameter thereof. 水車の周囲に設けられた羽根が、水流に垂直な方向に区分されていることを特徴とする請求項1〜3のいずれかに記載の水力発電機。   The hydroelectric generator according to any one of claims 1 to 3, wherein blades provided around the water wheel are sectioned in a direction perpendicular to the water flow. 2個の水車が連結棒により連結されていることを特徴とする請求項1〜4のいずれかに記載の水力発電機。

The hydroelectric generator according to any one of claims 1 to 4, wherein two water turbines are connected by a connecting rod.

JP2004324989A 2004-11-09 2004-11-09 Hydroelectric generator Pending JP2006132494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004324989A JP2006132494A (en) 2004-11-09 2004-11-09 Hydroelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004324989A JP2006132494A (en) 2004-11-09 2004-11-09 Hydroelectric generator

Publications (1)

Publication Number Publication Date
JP2006132494A true JP2006132494A (en) 2006-05-25

Family

ID=36726257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004324989A Pending JP2006132494A (en) 2004-11-09 2004-11-09 Hydroelectric generator

Country Status (1)

Country Link
JP (1) JP2006132494A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114974A (en) * 2007-11-06 2009-05-28 Onwave Corp Method for mounting hydraulic turbine blade in use of flowing water
DE112008000755T5 (en) 2007-03-29 2010-01-14 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Catalyst temperature increasing means for a hybrid vehicle
WO2010114177A1 (en) * 2009-04-04 2010-10-07 Miyake Masaharu Composite waterwheel motion transmission device
JP2011137439A (en) * 2010-01-04 2011-07-14 Tadashi Ito Device and method for water turbine power generation
KR101109557B1 (en) * 2011-03-24 2012-01-31 방규열 Floating type waterpower generator
WO2019045550A1 (en) * 2017-09-04 2019-03-07 김유신 Offshore structure for tidal power generation, method for constructing same, and tidal power generation system using same
JP2022171532A (en) * 2021-04-29 2022-11-11 クン シャン ユニバーシティー Water turbine power generation apparatus automatically adjusting draft utilizing water flow guidance and automatic adjustment to enhance power generation efficiency

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008000755T5 (en) 2007-03-29 2010-01-14 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Catalyst temperature increasing means for a hybrid vehicle
JP2009114974A (en) * 2007-11-06 2009-05-28 Onwave Corp Method for mounting hydraulic turbine blade in use of flowing water
WO2010114177A1 (en) * 2009-04-04 2010-10-07 Miyake Masaharu Composite waterwheel motion transmission device
JP2011137439A (en) * 2010-01-04 2011-07-14 Tadashi Ito Device and method for water turbine power generation
KR101109557B1 (en) * 2011-03-24 2012-01-31 방규열 Floating type waterpower generator
WO2019045550A1 (en) * 2017-09-04 2019-03-07 김유신 Offshore structure for tidal power generation, method for constructing same, and tidal power generation system using same
JP2022171532A (en) * 2021-04-29 2022-11-11 クン シャン ユニバーシティー Water turbine power generation apparatus automatically adjusting draft utilizing water flow guidance and automatic adjustment to enhance power generation efficiency
JP7256934B2 (en) 2021-04-29 2023-04-13 クン シャン ユニバーシティー A water turbine generator that automatically adjusts the draft using water flow guidance and automatic adjustment to increase power generation efficiency

Similar Documents

Publication Publication Date Title
JP6328175B2 (en) Modular ocean energy generator and built-in module for ocean energy generator
KR101127565B1 (en) Tidal current power generating apparatus
KR102107839B1 (en) Floating generation system
JP3187842U (en) Kinetic energy production equipment
KR101213565B1 (en) Small hydraulic turbine having screw shape
JP6020988B2 (en) Hydroelectric generator
KR20110010479A (en) A power generation machine structure using water wheel
KR101057035B1 (en) aberration
KR100931499B1 (en) Electric generator using tidal power
JP2003106247A (en) Savonius water turbine and power plant comprising the same
JP2006132494A (en) Hydroelectric generator
JP2017207046A (en) Bridge-installed water power generator
KR200445087Y1 (en) Wave activied power device
CN203230525U (en) Ocean energy power generation device and frame thereof
KR20120108751A (en) Power generator having auxiliary blade
KR101318480B1 (en) Multi-stage tidal current power plant with high efficiency
CN105736221A (en) Modularized ocean energy power generation device
KR101049421B1 (en) Tidal power systems
JP2016040465A (en) Water flow power generator and tidal current power generation method using the same
JP2005214142A (en) Power generating device
KR101611857B1 (en) Underwater installation type small hydroelectric power generator
KR102028668B1 (en) Non-resistance wind or hydraulic power unit
KR101316146B1 (en) On water mill type where the sleep support is possible the efficient possibility type generator
KR101634637B1 (en) Hydroelectric generating apparatus using guide vane and hybrid generator
KR101261863B1 (en) Power generator and power generator assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060913

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20071227

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080610