WO2019045550A1 - Offshore structure for tidal power generation, method for constructing same, and tidal power generation system using same - Google Patents

Offshore structure for tidal power generation, method for constructing same, and tidal power generation system using same Download PDF

Info

Publication number
WO2019045550A1
WO2019045550A1 PCT/KR2018/010297 KR2018010297W WO2019045550A1 WO 2019045550 A1 WO2019045550 A1 WO 2019045550A1 KR 2018010297 W KR2018010297 W KR 2018010297W WO 2019045550 A1 WO2019045550 A1 WO 2019045550A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
power generation
main structure
offshore structure
column pipe
Prior art date
Application number
PCT/KR2018/010297
Other languages
French (fr)
Korean (ko)
Inventor
김유신
김정호
김유준
송석규
김영환
Original Assignee
김유신
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180022937A external-priority patent/KR102176003B1/en
Application filed by 김유신 filed Critical 김유신
Publication of WO2019045550A1 publication Critical patent/WO2019045550A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • E02B9/08Tide or wave power plants
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D15/00Handling building or like materials for hydraulic engineering or foundations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/52Submerged foundations, i.e. submerged in open water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention relates to an offshore structure for algae power generation, a construction method thereof, and a tidal power generation system using the same. More particularly, the present invention relates to an algae power generation system using a rock bolt anchor on an undersea rock layer having a high- And a power generation unit which is height-changed according to the height of the water surface, thereby improving power generation efficiency. The present invention also relates to a method for constructing an offshore structure for algae power generation and a tidal power generation system using the same.
  • tidal power generation is a power generation system that converts the potential energy from the tidal level to the electric energy from the kinetic energy.
  • Such an algae generator can be implemented in various forms, and in particular, the installation of an offshore structure such as a caisson for positioning the algae generator on the sea floor is difficult due to the influence of the algae having a high flow velocity and the unevenness of the installation area, And it is difficult to maintain the installed offshore structures and tidal generators.
  • an offshore structure such as a caisson for positioning the algae generator on the sea floor is difficult due to the influence of the algae having a high flow velocity and the unevenness of the installation area, And it is difficult to maintain the installed offshore structures and tidal generators.
  • maintenance of an algae generator installed in an offshore structure such as a caisson can be accomplished by moving the algae generator on the ground using a marine crane or the like, positioning it on the undersurface again when the process is completed, (ROV), and the like, and the maintenance period is prolonged.
  • ROV process is completed
  • Korean Patent Application No. 10-1999-0043658, Korean Patent Application No. 10-2003-0062926, and Korean Patent Application No. 10-2008-0033494 are disclosed as a related invention.
  • the present invention has been made to solve the problems of the prior art described above and it is an object of the present invention to provide an ophthalmic generator for facilitating the construction of an offshore structure in response to a tide of a fast flow rate, And an object of the present invention is to provide an offshore structure, a construction method thereof, and a tidal power generation system using the same.
  • an offshore structure for algae power generation according to the present invention, a construction method thereof, and a tidal power generation system using the same, is characterized in that an offshore structure that forms a passage area through which algae pass between a main structure on the left side and a main structure on the right side and; And a power generator unit installed in the channel area with the support of the offshore structure and having a turbine for rotating the hinge by buoyancy to adjust the position of the turbine to generate electric power.
  • the offshore structure includes: a column pipe supported by a foundation base having an integral width at the lower end and contacting and contacting the submarine rock layer; and a column pipe having a length protruding upward from the water surface, And a plurality of posts having bolt-type anchors.
  • the foundation base forms a base hole communicating integrally with the lower end of the column pipe and having an inclined surface from above to below.
  • the rock bolt-type anchor is fixed to the base base by a fastening nut tightened on an inclined surface along the lower thread portion of the anchor shaft rod, having an anchor head constituting the front end and an anchor axial rod extending from the anchor head, And an expanding wing which is extended from the anchor head and spreads to the submarine bedrock.
  • the column portion further includes an extension pipe extending to the upper portion of the column pipe so as to adjust the height thereof to the adjacent column portion equally.
  • the offshore structure includes a first support beam connecting the left main structure and one of the pillars constituting the main structure on the right side and supporting the power generator unit, and a first support beam spaced upward from the first support beam, And a support beam constituting a second support beam for supporting an upper structure that covers the left main structure and the right main structure.
  • the offshore structure further includes a flow path plate for covering the side of the column portion constituting the main structure on the left side and the main structure on the right side to guide the flow of the current into the flow path region and prevent foreign matter from flowing.
  • the power generating unit includes a support frame coupled to the left main structure and the right main structure of the offshore structure so as to be hinged by the hinge shaft and having a downward length and a hinge shaft And a turbine having a buoyancy tube filled with air therein.
  • the method of constructing an offshore structure for algae power generation comprises a basic construction step and an offshore structure construction step.
  • a plurality of pillars provided at predetermined intervals are connected to constitute a main structure on the left side and a main structure on the right side, and a marine structure having a passage area through which algae pass It is a step for facilities.
  • the base construction step includes a location search and a topography identification process for identifying a bottom landform including a position and a height of a submarine rock layer to be laid on the foundation base;
  • a base base shape and a column pipe length adjusting process for adjusting the shape of the base base according to the bottom of the sea bed floor at the location to be installed and adjusting the length of the column pipe so as to have a predetermined height and protrude to the water surface;
  • a column pipe installation process in which a column pipe is positioned and lowered by using a barge to a predetermined position of a submarine rock layer;
  • a rock bolt anchor installation process in which a rock bolt anchor is installed in the interior of a perforated submarine rock layer penetrating through a column pipe after drilling the submarine rock layer using a drilling rig into the column pipe.
  • the step of constructing an offshore structure includes a step of adjusting and extending a column to adjust the height of the column portion adjacent to the column portion to an upper portion of the column pipe so as to have an equal height;
  • a support beam connection and a main structure installation process that form a space for the power generator unit to be installed and coupled using the support beams connecting the plurality of columns and constitute the main structure on the left side and the main structure on the left side so as to have the flow path area.
  • the step of constructing the offshore structure further includes a step of installing an upper structure constituting an upper structure covering the left main structure and the upper right main structure.
  • an offshore structure for algae power generation according to the present invention is capable of easily constructing an offshore structure by forming a column by using a rock bolt anchor on an undersea rock layer of a high- .
  • the power generation device coupled to the offshore structure has a hinge rotation according to the height of the water surface, and the height of the power generation device is increased, thereby improving the power generation efficiency.
  • FIG. 1 is a view showing a tidal power generation system using an offshore structure for tidal power generation according to the present invention.
  • FIG. 2 and FIG. 3 are views showing a pillar of a tidal power generation system using an offshore structure for tidal power generation according to the present invention.
  • FIG. 4 is a view showing a power generating unit of a tidal power generation system using an offshore structure for tidal power generation according to the present invention.
  • 5 (a) and 5 (b) are views showing the operation of the power generator unit according to FIG.
  • FIG. 6 is a flowchart illustrating a method of constructing an offshore structure for algae generation according to the present invention.
  • the present invention relates to a marine structure (10) having a channel section (2) through which algae pass between a left main structure (10a) and a right main structure (10b);
  • a turbine 22 provided in the flow passage section 2 with the support of the offshore structure 10 and having a turbine 22 for rotating the hinge by the buoyancy to adjust the position of the turbine 22, 20);
  • the marine structure 10 includes a column pipe 11a supported by a base base 12 integrally wider at its lower end in contact with the sea bed layer F and having an upper portion projecting upward from the water surface, And a plurality of pillar portions (11) having rock bolt type anchors (13) penetrating through the column pipe (11a) and embedded in the sea bed layer (F) Power generation system.
  • the present invention is also characterized in that the rock bottom bolt type anchor 13 penetrating through the base bottom 12 of the lower integral type and the inside of the sea floor layer F through the inside thereof receives the support of the sea floor layer F, (S1) of installing a plurality of column portions (11) by providing column pipes (11a) partially protruded upward at predetermined intervals and positions;
  • the main structure 10a and the main structure 10b on the left side are connected by connecting a plurality of pillars 11 provided at intervals set at a predetermined position by the basic construction step S1,
  • the shape of the foundation base 12 is adjusted according to the bottom of the sea floor layer F at the position to be installed and the shape of the base base and the shape of the column base 11 are adjusted so as to adjust the length of the column pipe 11a,
  • the rock bolt anchor 13 is installed even though the rock bolt F is pierced into the column pipe 11a using the excavator and then penetrated into the drilled rock layer F penetrating through the column pipe 11a
  • the upper portion or the upper portion indicates a portion having a height on the bottom surface or a direction thereof
  • the lower portion or the lower portion indicates a portion or a direction opposite thereto.
  • an offshore structure for algae power generation according to the present invention, a construction method thereof, and a tidal power generation system using the same, comprises a rock bolt anchor (13) on a submarine rock layer (F)
  • the structure of the offshore structure 10 using the pipe 11a is formed by supporting the pipe 11a so that the power generating device part 20 supported by the offshore structure 10 can be easily lifted by the buoyancy It is made possible to increase the power generation capacity using algae by actively coping with the change.
  • the offshore structure for algae power generation 10 has the left and right main structure 10a and the right main structure 10b by using a plurality of pillar portions 11 having positions and intervals set in the sea bed layer F, Respectively. And the flow passage section 2 through which the alga passes is formed between the right side main structures 10a and 10b.
  • the column 11 is formed by using the column pipe 11a, which is not a weight having a weight, and the offshore structure 10 is installed using the column pipe 11a, thereby making it possible to stably install the structure 10 by avoiding algae at a high flow rate.
  • the installation of the column pipe 11a can be stably installed by using the SEP barge to lower the water pipe from outside to outside under the influence of algae.
  • the generator unit 20 installed with the support of the offshore structure 10 is hinged by the buoyancy to adjust its position according to the change of the height of the water surface, so that the power generation is facilitated and the power generation efficiency is increased.
  • the marine structure 10 applied to the present invention is a marine structure 10 supported by a foundation base 12 integrally wider at its lower end in contact with the marine rock layer F and having an upper portion protruding upward from the water surface, And a plurality of column portions 11 having a rock bolt type anchor 13 inserted into the underside rock layer F while penetrating the column pipe 11a.
  • FIGS. 1 to 5 (a) and 5 (b) illustrate an offshore structure for alga power generation, a construction method thereof and a tidal power generation system 1 using the same.
  • the tidal power generation system 1 includes an offshore structure 10 for tidal current generation and a power generation unit 20 for power generation.
  • the offshore structure 10 for aviation power generation forms a flow passage section 2 through which alga is passed between the left main structure 10a and the right main structure 10b.
  • the offshore structure 10 is supported on the lower end in contact with the underside rock layer F by the base base 12 having an integral width, and the upper end of the column pipe 11a having a length protruding upward from the water surface Thereby constituting the columnar portion 11.
  • the column pipe 11a is provided at a position where the submarine rock layer F is to be installed to constitute the column portion 11.
  • the rock bolt type anchor (not shown) which penetrates the column pipe 11a and is caught in the submarine rock layer F 13).
  • the above-mentioned column pipe 11a has a predetermined length according to a search for a point to be installed and is installed on the sea bed rock layer F by using the SEP barge line, which will be described later in detail.
  • the column pipe 11a is a tubular pipe having a predetermined length, and if necessary, has a circular or polygonal pipe shape.
  • the foundation base 12 is integrally formed in the lower part of the column pipe 11a and the column base 11 is brought into contact with the seabed base layer F while the foundation base 12 is tilted And it is prevented from being detached or damaged.
  • the foundation base 12 has a base hole 12a which communicates integrally with the lower end of the column pipe 11a and has an inclined surface 12a-1 from the upper side to the lower side inward.
  • the submarine rock layer F is pierced and the column pipe 11a is supported on the submarine rock layer F by using the rock bolt type anchor 13.
  • the above-mentioned rock bolt anchor 13 is a technology in which the applicant of the present invention has already started and registered and has a right.
  • Korean Patent Registration No. 10-1133431 Korean Patent Registration No. 10- 1156501, and Korean Patent Registration No. 10-1376534, the detailed description of the constitution will be omitted in order to avoid obscuring the gist of the present invention.
  • a rock bolt-type anchor 13 penetrating the upper portion of the foundation pipe 11a through the base hole 12a of the foundation base 12 and penetrating into the submarine rock layer F
  • An anchor head 13a constituting the front end and an anchor shaft rod 13c extending from the anchor head 13a and the anchor head 13a includes an extension vane 13b for digging the rock layer by manipulation.
  • the tightening nut 15 is coupled to the lower thread portion 13c-1 formed at the lower portion of the anchor shaft rod 13c.
  • the tightening nut 15 is engaged with the lower thread portion 13c-1, And the expanding blade 13b expands and spreads according to the structure of the anchor 13.
  • the tightening nut 15 presses the inclined surface 12a-1 formed in the base hole 12a of the base base 12 downward from above and presses the rock bolt type anchor 13 against the column pipe 11a, And the base base 12 so that the column pipe 11a and the foundation base 12 are supported on the sea bed layer.
  • the column pipe 11a is seated and the rock bolt type anchor 13 is installed so that the foundation base 12 is positioned on the upper surface of the sea bed layer F at the set position point. 1 of the foundation base 12 and the rock bolt type anchor 13 is fixedly inserted and fixed in the pierced underwater rock layer as the expansion vane 13b is opened.
  • the column pipe 11a thus installed is provided with a predetermined position and a predetermined interval to constitute the column portion 11 of the offshore structure 10.
  • the column portion 11 is formed in a column portion 11a adjacent to the upper portion of the column pipe 11a, (11b) so as to adjust the height of the pipe (11).
  • the columnar section 11 can have the same height as the columnar section 11 adjacent thereto.
  • the column 11 constituting the offshore structure 10 has a column pipe 11a supported by the sea bed layer F and an extension pipe 11b extending to the upper portion of the column pipe 11a I have.
  • the extension pipe 11b is integrally connected to the upper portion of the column pipe 11a by forming a connection portion 11b-1 through welding or the like,
  • the connecting portion 11b-1 can be formed and extended.
  • each of the extension pipes 11b may vary depending on the length of the respective column pipes 11a, and it is of course possible to cut the height of the extension pipe 11b to meet the height.
  • a rock bolt-type anchor 13 penetrating the column pipe 11a is fixed to a fixing nut (not shown) which tightens the upper screw portion 13c-2 formed on the upper portion of the anchor shaft rod 13c 16 and the fixing bracket 17 so as to be firmly and integrally fixed to the column pipe 11a.
  • the column portion 11 of the offshore structure 10 can be formed only by the structure in which the rock bolt type anchor 13 is provided without the need to place concrete or the like on the column pipe 11a, And it has the effect of significantly lowering the construction cost.
  • the offshore structure 10 is constructed such that the left main structure 10a and the right main structure 10b are erected by using the plurality of pillars 11, (2).
  • the offshore structure 10 has a support beam 14 including a first support beam and a second support beam for connecting and supporting the structure.
  • the offshore structure 10 includes a first support beam 10a connecting one side of the columnar section 11 constituting the left main structural body 10a and the right main structural body 10b, (14a).
  • the upper support structure 10c is installed to connect the column portions 11 with a space above the first support beams 14a and supports the upper structure 10c covering the left main structure 10a and the right main structure 10b And a second support beam 14b.
  • the marine structure 10 covers the side of the pillars 11 constituting the left main structure 10a and the right main structure 10b, And a flow path plate for guiding the flow and preventing foreign matter from entering.
  • the flow path plate may have a plate-like shape or a mesh-like shape.
  • the power generator 20 includes a support frame 21 having a hinge shaft 21a and a support frame 21 having a hinge shaft 21a. And a turbine 22 having a buoyancy tube 22a.
  • the support frame 21 is coupled to the left main structure 10a and the right main structure 10b of the offshore structure 10 by a hinge shaft 21a so as to be hinged, It has a downward length to use this bird.
  • the turbine 22 is rotatably supported by hinge shafts 21b at both lower sides of the support frame 21 and includes a buoyancy tube 22a filled with air.
  • the buoyancy tube 22a may be integrally formed with the turbine 22 as shown, and may optionally detachably connect the buoyancy tube 22a to the outside of the turbine 22 Of course.
  • the generator unit 20 floats on the water surface due to buoyancy of the buoyancy tank 22a, 22 can produce power by rotating the wings.
  • the power generator unit 20 correspondingly moves the turbine 22 against the flow of the algae, Its position is adjusted while turning the hinge.
  • the flow of the algae flows from the left to the right, and the turbine 22 is pushed from the left to the right according to the change of the water surface height from A to B to C to center the hinge axis 21a
  • the hinge is rotated to adjust the position.
  • the tidal power generation system 1 using the offshore structure for tidal power generation according to the present invention has an effect of improving the power generation efficiency by constantly generating power according to the tidal difference.
  • the power generator unit 20 may be configured to be mounted on the first support beam 14a, or to have a separate coupling portion 14a for supporting the hinge shaft 21a (FIG. 4) And the first support beam 14a including the first support beam 30 is provided.
  • the offshore structure 10 for an algae power generation system for constructing the alga power generation system 1 according to the present invention is constructed such that the submarine base layer F is formed through the basic construction step S1 and the offshore structure construction step S2, .
  • the foundation construction step S1 is carried out by receiving the support of the submarine rock layer F by the rocking bolt-type anchor 13 penetrating the bottom base type base 12 of the lower integral type and penetrating the inside of the sea floor layer F, And a step of installing a plurality of columnar portions 11 by installing some protruding columnar pipes 11a at predetermined intervals and positions.
  • a plurality of pillars 11 provided at predetermined intervals are connected to each other at a predetermined interval set by the basic construction step S1 to connect the left main structure 10a and the right main structure 10b ), And is a step for installing an offshore structure (10) having a passage section (2) through which alga is passed.
  • the basic construction step S1 includes a position search and topographical identification process S11, a base base shape and column pipe length adjustment process S12, a column pipe installation process S13, And an installation process S14.
  • the position search and topographical grasp process S11 is a process for confirming a bottom terrain including a position and a height at which the foundation base 12 will be placed on the underwater sea bed F.
  • a marine work crane barge line specifically, an SEP barge line is used.
  • the base base shape and the column pipe length adjusting process S12 are performed by adjusting the shape of the base base 12 in accordance with the bottom topography of the submarine rock layer F to be installed, Thereby enabling stable support.
  • the foundation base 12 is bent or formed to conform to the topography shape of the submarine rock layer F to be located.
  • the length of the column pipe 11a having the base base 12 integrally formed is adjusted to have a predetermined height and protrude upward from the water surface.
  • This base base shape and column pipe length adjustment process (S12) is performed on the sea barge.
  • the column pipe installation process S13 is a process of installing the column pipe 11a at a predetermined position of the submarine rock layer F by using a barge and lowering it.
  • SEP Self Elevating Platform barge
  • Leg fixing device
  • the column pipe 11a is positioned using a device such as a crane provided on the barge so as to be at a height set above the barge line free from the influence of water.
  • a rock bolt anchor installation process (S14) is performed. This is performed by drilling the submarine rock layer F into the column pipe 11a using a drilling apparatus, and then drilling the submarine rock layer F through the column pipe 11a, A rock bolt anchor 13 is installed even if the lock bolt anchor 13 is embedded in the inside of the lock bolt anchor 13.
  • the rock bolt anchor 13 is a technique in which the applicant of the present invention has already been initiated and registered and has a right, so that a detailed description of the construction will be omitted so as not to obscure the gist of the present invention.
  • the column pipe 11a is seated and the rock bolt type anchor 13 is installed so that the foundation base 12 is positioned on the upper surface of the sea bed layer F at the set position, 1 of the foundation base 12 while the rock bolt type anchor 13 is inserted and fixed in the seabed rock layer F which is drilled with the expansion wings 13b spreading.
  • the offshore structure construction step S2 includes a column part adjustment and extension installation step S21, a support beam connection and a main structure installation step S22.
  • the height of the column portion 11 adjacent to the column portion 11 using the column pipe 11a is increased to the upper portion of the column pipe 11a by the extension pipe 11b, And a height of the same line.
  • the installation process is performed on the surface of the water, the installation is stable without being influenced by algae.
  • the support beam connection and the main structure installation process S22 form a space in which the power generator unit 20 is to be installed and coupled using the support beams 14 connecting the plurality of column portions 11,
  • the left main structural body 10a and the right main structural body 10b are formed.
  • the support beam 14 is connected to one side of the columnar part 11 constituting the left main structural body 10a and the right main structural body 10b, and a first support beam And an upper structure 10c which is spaced upward from the first support beam 14a and is connected to the column 11 so as to cover the left main structure 10a and the right main structure 10b, And a second support beam 14b supporting the second support beam 14b.
  • the flow of the algae into the flow passage section 2 is guided by covering the sides of the pillars 11 constituting the left main structure 10a and the right main structure 10b, And a flow path plate for preventing the flow path.
  • the step of installing the offshore structure S2 further includes a step S23 of installing an upper structure.
  • the step of installing the upper structure includes an upper structure 10a covering the left main structure 10a and an upper structure covering the upper right structure 10b 10c.
  • the upper structure 10c is installed such that the column portion 11 of the offshore structure 10 protrudes at a predetermined height from the upper part of the water surface so that a leg or a flower bed having a length can be constructed if necessary. It is of course possible to install a separate building depending on the size of the building.
  • the algae power generation system 1 is installed by constructing the power generator unit 20 under the support of the offshore structure 10 installed on the sea floor F.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Mechanical Engineering (AREA)
  • Foundations (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Wind Motors (AREA)

Abstract

The present invention relates to an offshore structure for tidal power generation, a method for constructing same, and a tidal power generation system using same and, more specifically, to an offshore structure for tidal power generation, a method for constructing same, and a tidal power generation system using same, wherein: a lock bolt anchor is used to form columns on an underwater rock layer in a region in which water flow is fast due to the tidal current, thereby facilitating the construction of the offshore structure; and a power generator unit having a height that varies according to the sea level is used to enable an increase in power generation efficiency. To this end, the tidal power generation system is configured to be supported by the offshore structure and include the power generator unit, and the offshore structure for the tidal power generation is constructed by performing at least a foundation construction step and an offshore structure construction step.

Description

조류발전용 해양구조물, 그 시공방법 및 이를 이용한 조류발전시스템Offshore structure for tidal power generation, method of construction thereof, and tidal power generation system using the same
본 발명은 조류발전용 해양구조물, 그 시공방법 및 이를 이용한 조류발전시스템에 관한 것으로, 더욱 상세하게는 조류가 흘러 유속이 빠른 구간의 해저암반층에 락볼트 앵커를 이용해 기둥을 형성하여 해양구조물 시공이 용이하도록 하고, 수면의 높이에 따라 높이 변화되는 발전장치부를 이용하여 발전 효율을 높일 수 있도록 이루어진 조류발전용 해양구조물, 그 시공방법 및 이를 이용한 조류발전시스템에 관한 것이다.The present invention relates to an offshore structure for algae power generation, a construction method thereof, and a tidal power generation system using the same. More particularly, the present invention relates to an algae power generation system using a rock bolt anchor on an undersea rock layer having a high- And a power generation unit which is height-changed according to the height of the water surface, thereby improving power generation efficiency. The present invention also relates to a method for constructing an offshore structure for algae power generation and a tidal power generation system using the same.
일반적으로 조류발전은 조수 간만의 수위차에 의한 위치에너지와 그에 따른 운동에너지로부터 전기에너지로 전환하는 발전방식이다.Generally, tidal power generation is a power generation system that converts the potential energy from the tidal level to the electric energy from the kinetic energy.
우리나라는 조수 간만의 차가 많은 지역을 보유해 이를 이용한 조류발전은 앞으로의 활용도가 무궁무진한 시장이다. In Korea, there are many areas where there is a lot of difference between tides.
이러한 조류발전 장치는 다양한 형태로 구현될 수 있으며, 특히 조류발전기를 해저면에 위치시키기 위한 케이슨과 같은 해양구조물의 설치는 유속이 빠른 조류의 영향과 설치 영역의 불균일에 의해 작업의 어려움과 정밀한 시공이 곤란하며, 설치한 해양구조물과 조류발전기는 유지보수가 어려운 문제가 있다.Such an algae generator can be implemented in various forms, and in particular, the installation of an offshore structure such as a caisson for positioning the algae generator on the sea floor is difficult due to the influence of the algae having a high flow velocity and the unevenness of the installation area, And it is difficult to maintain the installed offshore structures and tidal generators.
예를 들어, 케이슨 등의 해양구조물에 설치된 조류발전 장치의 유지보수는, 해상크레인 등을 이용하여 조류발전 장치를 육상으로 이동시킨 뒤 공정이 완료되면 다시 해저면 상으로 위치시키거나, 무인 해중 작업 장치(Remote Operating Vessel,ROV) 등을 이용하여 수행되는 등 과다한 비용이 소요되며 보수기간이 길어지는 문제점이 있다.For example, maintenance of an algae generator installed in an offshore structure such as a caisson can be accomplished by moving the algae generator on the ground using a marine crane or the like, positioning it on the undersurface again when the process is completed, (ROV), and the like, and the maintenance period is prolonged.
또한, 종래에는 지상에서 만든 중량체를 바지선 등을 이용하여 해저면에 안착시키는 방법 및 이들 해양구조물에 부력체를 갖는 조류발전기를 와이어 등으로 연결토록 한 구조물 등이 있다.Conventionally, there are a method of placing a weight made on the ground on a seabed surface using a barge or the like, and a structure in which an algae generator having a buoyancy body is connected to these marine structures by wires or the like.
그러나, 이러한 종래의 해양구조물은 빠른 유속의 조류로 인하여 정밀한 시공과 안정적인 설치 및 지지가 어려운 문제가 있다.However, such a conventional offshore structure has a problem that it is difficult to perform precise construction and stable installation and support due to the algae at a high flow velocity.
이러한 문제점을 해결하기 위한 일 예의 종래 기술을 살펴보면, 먼저 사석 기초의 강도를 증대시키기 위하여 다지기 공정 및 고르기 공정을 수행한다. 이와 관련된 발명으로는 대한민국 특허출원 제10-1999-0043658호와, 대한민국 특허출원 제10-2003-0062926호 및 대한민국 특허출원 제10-2008-0033494호 등 다수 개가 개시되어 있다.In order to solve such a problem, one conventional technique will be described. First, a chopping process and a chopping process are performed in order to increase the strength of the rough base. Korean Patent Application No. 10-1999-0043658, Korean Patent Application No. 10-2003-0062926, and Korean Patent Application No. 10-2008-0033494 are disclosed as a related invention.
이들 선행기술들은 해저면 사석 기초 고르기와 지지기반을 다지는 등의 작업을 위한 것이나, 사석의 침하 문제와 빠른 유속과 파랑에 의해 정밀 시공이 어렵고 시공 기간 및 시공 비용이 증가하는 문제가 있다.These prior arts are for the work such as picking the foundation of the sea floor slab and strengthening the support base, but there is a problem that it is difficult to precise construction due to settlement problem of sandstone and high velocity and wave, and construction period and construction cost increase.
이에 따라 미래의 중요한 대안 에너지의 하나로서 지목되는 조류발전에 있어, 조류발전을 하는 경우 해양구조물과 발전장치의 유지보수 및 발전장치가 설치되는 기초부의 형성은 매우 중요하면서 해결해야 하는 문제점으로 도래하고 있으며, 이에 대한 대안이 필요한 실정이다.Therefore, in the development of algae, which is considered as one of the important alternative energy of the future, the formation of the foundation where the maintenance and the power generation equipment of the offshore structure and the power generation equipment are installed in the case of algae development is very important, There is a need for an alternative.
또한, 종래에는 중량을 가지는 해양구조물의 설치로 설치될 장소의 해양암반층 면적이 컸으며, 해양구조물이 안정적인 지지를 받지 못해 조류발전을 수행하기 매우 어려웠던 바, 양구조물 시공이 용이하도록 하고 발전 효율을 높일 수 있도록 이루어진 조류발전용 해양구조물, 그 시공방법 및 이를 이용한 조류발전시스템에 대한 연구가 필요한 실정이다. Also, conventionally, the area of the marine rock layer to be installed by installing the marine structure with heavy weight was large, and since the marine structure was not stably supported, it was very difficult to carry out the algae power generation. The construction method of the offshore structure for the tidal power generation, and the tidal power generation system using the offshore structure.
본 발명은 상술한 종래 기술의 문제점들을 해결하기 위한 것으로서, 빠른 유속의 조류에 대응하여 해양구조물의 시공이 용이하도록 하고, 해양구조물의 견고한 고정과 그에 대한 발전장치부의 설치가 용이하도록 이루어진 조류발전용 해양구조물, 그 시공방법 및 이를 이용한 조류발전시스템을 제공하는 것을 그 목적으로 한다. SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the prior art described above and it is an object of the present invention to provide an ophthalmic generator for facilitating the construction of an offshore structure in response to a tide of a fast flow rate, And an object of the present invention is to provide an offshore structure, a construction method thereof, and a tidal power generation system using the same.
상기와 같은 목적을 달성하기 위해 본 발명에 따른 조류발전용 해양구조물, 그 시공방법 및 이를 이용한 조류발전시스템은, 좌측의 주 구조물과 우측의 주 구조물 사이로 조류가 통과하는 유로구역을 형성한 해양구조물과; 해양구조물의 지지를 받아 유로구역 내에 설치되고, 수면 높이의 변화에 따라 부력에 의해 힌지회동하여 위치가 조정되면서 전력을 생산하는 터빈을 구비한 발전장치부를 포함한다. In order to achieve the above object, an offshore structure for algae power generation according to the present invention, a construction method thereof, and a tidal power generation system using the same, is characterized in that an offshore structure that forms a passage area through which algae pass between a main structure on the left side and a main structure on the right side and; And a power generator unit installed in the channel area with the support of the offshore structure and having a turbine for rotating the hinge by buoyancy to adjust the position of the turbine to generate electric power.
이때, 해양구조물은, 하단에 일체형으로 너비를 가지는 기초베이스에 의해 해저암반층에 접하면서 지지되고 상부가 수면 상부로 돌출된 길이를 갖는 기둥파이프와, 기둥파이프를 관통하면서 해저암반층의 내부에 박힌 락볼트형 앵커를 구비한 다수개의 기둥부를 포함한다. In this case, the offshore structure includes: a column pipe supported by a foundation base having an integral width at the lower end and contacting and contacting the submarine rock layer; and a column pipe having a length protruding upward from the water surface, And a plurality of posts having bolt-type anchors.
한편, 기초베이스는, 기둥파이프의 하단과 일체형으로 연통되되 상방에서 하방 내측으로 경사면을 가지며 관통한 베이스공을 형성한다. On the other hand, the foundation base forms a base hole communicating integrally with the lower end of the column pipe and having an inclined surface from above to below.
그리고, 락볼트형 앵커는, 선단을 구성하는 앵커헤드와, 앵커헤드에서 연장된 앵커축봉을 가지되, 앵커축봉의 하부 나사부를 따라 경사면에 조여지는 조임너트에 의해 기초베이스에 고정되고, 조임너트의 조임에 따라 앵커헤드에서 확장되면서 벌어져 해저암반층에 박히는 확장날개를 포함한다. The rock bolt-type anchor is fixed to the base base by a fastening nut tightened on an inclined surface along the lower thread portion of the anchor shaft rod, having an anchor head constituting the front end and an anchor axial rod extending from the anchor head, And an expanding wing which is extended from the anchor head and spreads to the submarine bedrock.
한편, 기둥부는, 기둥파이프의 상부로 이웃하는 기둥부와의 높이를 동일하게 조절하도록 연장 연결된 연장파이프를 더 포함한다. The column portion, on the other hand, further includes an extension pipe extending to the upper portion of the column pipe so as to adjust the height thereof to the adjacent column portion equally.
한편, 해양구조물은, 좌측의 주 구조물과 우측의 주 구조물을 구성하는 기둥부 일측을 연결하고 발전장치부를 지지하는 제1 지지보와, 제1 지지보의 상방으로 간격을 가지며 기둥부를 연결하도록 설치되고 좌측의 주 구조물과 우측의 주 구조물을 덮는 상부구조물을 지지하는 제2 지지보를 구성한 지지보를 포함한다. On the other hand, the offshore structure includes a first support beam connecting the left main structure and one of the pillars constituting the main structure on the right side and supporting the power generator unit, and a first support beam spaced upward from the first support beam, And a support beam constituting a second support beam for supporting an upper structure that covers the left main structure and the right main structure.
필요에 따라, 해양구조물은, 좌측의 주 구조물과 우측의 주 구조물을 구성하는 기둥부 측방을 덮어 유로구역 내로의 조류 흐름을 유도하고 이물질 유입을 방지하는 유로판을 더 포함한다. If necessary, the offshore structure further includes a flow path plate for covering the side of the column portion constituting the main structure on the left side and the main structure on the right side to guide the flow of the current into the flow path region and prevent foreign matter from flowing.
한편, 발전장치부는, 해양구조물의 좌측 주 구조물과 우측 주 구조물에 힌지축에 의해 힌지회동 가능하도록 결합되고 하방으로 길이를 가지는 지지프레임과, 지지프레임의 양측 하부에 힌지축에 의해 회전하도록 구비되고 내부에 공기가 채워진 부력통을 가지는 터빈을 포함하여 구성한다. The power generating unit includes a support frame coupled to the left main structure and the right main structure of the offshore structure so as to be hinged by the hinge shaft and having a downward length and a hinge shaft And a turbine having a buoyancy tube filled with air therein.
한편, 본 발명에 따른 조류발전용 해양구조물의 시공방법은 크게 기초 시공 단계와, 해양구조물 시공 단계를 포함하여 이루어진다. Meanwhile, the method of constructing an offshore structure for algae power generation according to the present invention comprises a basic construction step and an offshore structure construction step.
기초 시공 단계는, 하부 일체형의 기초베이스와 내부를 관통하여 해저암반층에 박히는 락볼트형 앵커에 의해 해저암반층의 지지를 받고 수면 상부로 일부 돌출된 기둥파이프를 설정된 간격과 위치로 설치하여 다수개의 기둥부를 시설하는 단계이다. In the foundation construction step, the rock bolt type anchors penetrating the foundation base of the lower integral type and the inside and rock bolt type anchors penetrating the inside are supported, and the column pipe partially protruded to the upper part of the water level is installed at the set intervals and positions, It is a step to establish wealth.
그리고, 해양구조물 시공 단계는, 기초 시공 단계에 의해 설정된 위치에 설정된 간격으로 설치된 다수개의 기둥부를 연결하여 좌측의 주 구조물과 우측의 주 구조물을 구성하고, 조류가 통과하는 유로구역을 가지는 해양구조물을 시설하기 위한 단계이다. In the step of constructing an offshore structure, a plurality of pillars provided at predetermined intervals are connected to constitute a main structure on the left side and a main structure on the right side, and a marine structure having a passage area through which algae pass It is a step for facilities.
구체적으로, 기초 시공 단계는, 기초베이스가 놓일 해저암반층의 위치와 높낮이를 포함한 바닥 지형을 확인하는 위치 탐색 및 지형 파악 과정과; 설치될 위치의 해저암반층 바닥 지형에 따라 기초베이스의 형상을 조절하고, 설정된 높이를 가지며 수면 상부로 돌출되도록 기둥파이프의 길이를 조절하는 기초베이스 형상 및 기둥파이프 길이 조절 과정와; 기둥파이프를 바지선을 이용해 해저암반층의 설정된 위치로 위치시키고 하강시켜 설치하는 기둥파이프 설치 과정과; 기둥파이프 내로 굴착장치를 이용해 해저암반층을 천공한 다음, 기둥파이프를 관통하면서 천공된 해저암반층의 내부에 박히도록 락볼트 앵커를 설치하는 락볼트 앵커 설치 과정을 포함한다. Specifically, the base construction step includes a location search and a topography identification process for identifying a bottom landform including a position and a height of a submarine rock layer to be laid on the foundation base; A base base shape and a column pipe length adjusting process for adjusting the shape of the base base according to the bottom of the sea bed floor at the location to be installed and adjusting the length of the column pipe so as to have a predetermined height and protrude to the water surface; A column pipe installation process in which a column pipe is positioned and lowered by using a barge to a predetermined position of a submarine rock layer; And a rock bolt anchor installation process in which a rock bolt anchor is installed in the interior of a perforated submarine rock layer penetrating through a column pipe after drilling the submarine rock layer using a drilling rig into the column pipe.
이어서 구체적으로 해양 구조물 시공 단계는, 기둥부와 이웃하는 기둥부의 높이를 기둥파이프의 상부로 연장파이프를 연결하여 동일 선상의 높이를 가지도록 조절하는 기둥부 조절 및 연장 설치 과정과; 다수개의 기둥부를 연결하는 지지보를 이용해 발전장치부가 설치 결합될 공간을 형성하고, 유로구역을 가지도록 좌측의 주 구조물과 우측의 주 구조물을 구성하는 지지보 연결 및 주 구조물 설치 과정을 포함하여 이루어진다. In particular, the step of constructing an offshore structure includes a step of adjusting and extending a column to adjust the height of the column portion adjacent to the column portion to an upper portion of the column pipe so as to have an equal height; A support beam connection and a main structure installation process that form a space for the power generator unit to be installed and coupled using the support beams connecting the plurality of columns and constitute the main structure on the left side and the main structure on the left side so as to have the flow path area.
그리고, 필요에 따라 해양 구조물 시공 단계는, 좌측의 주 구조물과 우측의 주 구조물 상부를 덮는 상부 구조물을 구성하는 상부 구조물 설치 과정을 더 포함하여 이루어진다. If necessary, the step of constructing the offshore structure further includes a step of installing an upper structure constituting an upper structure covering the left main structure and the upper right main structure.
이와 같이 본 발명에 따른 조류발전용 해양구조물, 그 시공방법 및 이를 이용한 조류발전시스템은, 조류가 흘러 유속이 빠른 구간의 해저암반층에 락볼트 앵커를 이용해 기둥을 형성하여 해양구조물 시공이 용이한 효과를 가진다. As described above, an offshore structure for algae power generation according to the present invention, a construction method thereof, and an algae power generation system using the same, are capable of easily constructing an offshore structure by forming a column by using a rock bolt anchor on an undersea rock layer of a high- .
또한, 해양구조물에 결합된 발전장치부가 수면의 높이에 따라 힌지회동하여 높이 변화됨에 따라 발전 효율을 높일 수 있는 효과를 가진다. Further, the power generation device coupled to the offshore structure has a hinge rotation according to the height of the water surface, and the height of the power generation device is increased, thereby improving the power generation efficiency.
도 1은 본 발명에 따른 조류발전용 해양구조물을 이용한 조류발전시스템을 보여주는 도면이다. 1 is a view showing a tidal power generation system using an offshore structure for tidal power generation according to the present invention.
도 2와 도 3은 본 발명에 따른 조류발전용 해양구조물을 이용한 조류발전시스템의 기둥부를 보여주는 도면이다. FIG. 2 and FIG. 3 are views showing a pillar of a tidal power generation system using an offshore structure for tidal power generation according to the present invention.
도 4는 본 발명에 따른 조류발전용 해양구조물을 이용한 조류발전시스템의 발전장치부를 보여주는 도면이다. 4 is a view showing a power generating unit of a tidal power generation system using an offshore structure for tidal power generation according to the present invention.
도 5(a)(b)는 도 4에 따른 발전장치부의 동작을 보여주는 도면이다. 5 (a) and 5 (b) are views showing the operation of the power generator unit according to FIG.
도 6은 본 발명에 따른 조류발전용 해양구조물 시공방법을 보여주는 흐름도이다. 6 is a flowchart illustrating a method of constructing an offshore structure for algae generation according to the present invention.
본 발명은 최선의 형태로, 좌측의 주 구조물(10a)과 우측의 주 구조물(10b) 사이로 조류가 통과하는 유로구역(2)을 형성한 해양구조물(10)과; 상기 해양구조물(10)의 지지를 받아 유로구역(2) 내에 설치되고, 수면 높이의 변화에 따라 부력에 의해 힌지회동하여 위치가 조정되면서 전력을 생산하는 터빈(22)을 구비한 발전장치부(20)를 포함하되; The present invention relates to a marine structure (10) having a channel section (2) through which algae pass between a left main structure (10a) and a right main structure (10b); A turbine 22 provided in the flow passage section 2 with the support of the offshore structure 10 and having a turbine 22 for rotating the hinge by the buoyancy to adjust the position of the turbine 22, 20);
상기 해양구조물(10)은, 하단에 일체형으로 너비를 가지는 기초베이스(12)에 의해 해저암반층(F)에 접하면서 지지되고 상부가 수면 상부로 돌출된 길이를 갖는 기둥파이프(11a)와, 상기 기둥파이프(11a)를 관통하면서 상기 해저암반층(F)의 내부에 박힌 락볼트형 앵커(13)를 구비한 다수개의 기둥부(11)를 포함하는 것을 특징으로 하는 조류발전용 해양구조물을 이용한 조류발전시스템을 제시한다. The marine structure 10 includes a column pipe 11a supported by a base base 12 integrally wider at its lower end in contact with the sea bed layer F and having an upper portion projecting upward from the water surface, And a plurality of pillar portions (11) having rock bolt type anchors (13) penetrating through the column pipe (11a) and embedded in the sea bed layer (F) Power generation system.
또한, 본 발명은 최선의 형태로, 하부 일체형의 기초베이스(12)와 내부를 관통하여 해저암반층(F)에 박히는 락볼트형 앵커(13)에 의해 상기 해저암반층(F)의 지지를 받고 수면 상부로 일부 돌출된 기둥파이프(11a)를 설정된 간격과 위치로 설치하여 다수개의 기둥부(11)를 시설하는 기초 시공 단계(S1)와; 상기 기초 시공 단계(S1)에 의해 설정된 위치에 설정된 간격으로 설치된 다수개의 기둥부(11)를 연결하여 좌측의 주 구조물(10a)과 우측의 주 구조물(10b)을 구성하고, 조류가 통과하는 유로구역(2)을 가지는 해양구조물(10)을 시설하기 위한 해양구조물 시공 단계(S2)를 포함하되;The present invention is also characterized in that the rock bottom bolt type anchor 13 penetrating through the base bottom 12 of the lower integral type and the inside of the sea floor layer F through the inside thereof receives the support of the sea floor layer F, (S1) of installing a plurality of column portions (11) by providing column pipes (11a) partially protruded upward at predetermined intervals and positions; The main structure 10a and the main structure 10b on the left side are connected by connecting a plurality of pillars 11 provided at intervals set at a predetermined position by the basic construction step S1, An offshore structure construction step (S2) for installing an offshore structure (10) having a zone (2);
상기 기초 시공 단계(S1)는, The basic construction step (S1)
상기 기초베이스(12)가 놓일 상기 해저암반층(F)의 위치와 높낮이를 포함한 바닥 지형을 확인하는 위치 탐색 및 지형 파악 과정(S11)과; 설치될 위치의 해저암반층(F) 바닥 지형에 따라 상기 기초베이스(12)의 형상을 조절하고, 설정된 높이를 가지며 수면 상부로 돌출되도록 상기 기둥파이프(11a)의 길이를 조절하는 기초베이스 형상 및 기둥파이프 길이 조절 과정(S12)와; 상기 기둥파이프(11a)를 바지선을 이용해 상기 해저암반층(F)의 설정된 위치로 위치시키고 하강시켜 설치하는 기둥파이프 설치 과정(S13)과; 상기 기둥파이프(11a) 내로 굴착장치를 이용해 해저암반층(F)을 천공한 다음, 상기 기둥파이프(11a)를 관통하면서 천공된 해저암반층(F)의 내부에 박히도록 락볼트 앵커(13)를 설치하는 락볼트 앵커 설치 과정(S14);을 포함하여 이루어지는 것을 특징으로 하는 해양구조물을 설치하기 위한 조류발전용 해양구조물 시공방법을 제시한다. A location searching and landform grasping process (S11) for confirming a bottom landform including a position and a height of the submarine rock layer (F) to which the foundation base (12) is to be placed; The shape of the foundation base 12 is adjusted according to the bottom of the sea floor layer F at the position to be installed and the shape of the base base and the shape of the column base 11 are adjusted so as to adjust the length of the column pipe 11a, A pipe length adjustment process (S12); A column pipe installation step (S13) of placing the column pipe (11a) at a predetermined position of the sea bed layer (F) by using a barge and lowering it; The rock bolt anchor 13 is installed even though the rock bolt F is pierced into the column pipe 11a using the excavator and then penetrated into the drilled rock layer F penetrating through the column pipe 11a And a rock bolt anchor installation step (S14) of installing a rock bolt anchor for installation of an offshore structure.
이하에는 첨부한 도면을 참조하여 본 발명에 따른 조류발전용 해양구조물, 그 시공방법 및 이를 이용한 조류발전시스템의 바람직한 실시예에 대해 상세하게 설명한다. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of an offshore structure for alga power generation according to the present invention, a construction method thereof, and a tidal power generation system using the same will be described in detail with reference to the accompanying drawings.
그리고, 본 발명을 설명함에 있어서, 상부 또는 상방은 바닥면에서 높이를 가지는 부분 또는 그 방향을 가리키는 것으로 하며, 하부 또는 하방은 이와 반대되는 부분 또는 그 방향을 가리키는 것으로 하여 설명하기로 한다. In describing the present invention, it is assumed that the upper portion or the upper portion indicates a portion having a height on the bottom surface or a direction thereof, and the lower portion or the lower portion indicates a portion or a direction opposite thereto.
또한, 본 발명을 설명함에 있어, 관련된 공지기능 혹은 구성에 대한 구체적인 설명은 본 발명의 요지를 모호하지 않게 하기 위하여 생략하기로 한다. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted so as to avoid obscuring the subject matter of the present invention.
도시한 바와 같이, 본 발명에 따른 조류발전용 해양구조물, 그 시공방법 및 이를 이용한 조류발전시스템은, 조류가 흘러 유속이 빠른 구간의 해저암반층(F)에 락볼트 앵커(13)를 이용하여 기둥 파이프(11a)를 지지하여 기둥부(11)를 형성함으로 이를 이용한 해양구조물(10)의 시설이 용이하고, 해양구조물(10)의 지지를 받는 발전장치부(20)는 부력에 의해 수면의 높이 변화에 능동적으로 대처함에 따라 조류를 이용한 발전 생산 능력을 높일 수 있도록 이루어진다. As shown in the drawings, an offshore structure for algae power generation according to the present invention, a construction method thereof, and a tidal power generation system using the same, comprises a rock bolt anchor (13) on a submarine rock layer (F) The structure of the offshore structure 10 using the pipe 11a is formed by supporting the pipe 11a so that the power generating device part 20 supported by the offshore structure 10 can be easily lifted by the buoyancy It is made possible to increase the power generation capacity using algae by actively coping with the change.
다시 말해, 조류발전용 해양구조물(10)은, 해저암반층(F)에 설정된 위치와 간격을 가지며 다수개 설치된 기둥부(11)를 이용해 좌측의 주 구조물(10a)과 우측의 주 구조물(10b)을 구성하고, 좌. 우측의 주 구조물(10a, 10b) 사이로 조류가 통과하는 유로구역(2)을 형성한다. In other words, the offshore structure for algae power generation 10 has the left and right main structure 10a and the right main structure 10b by using a plurality of pillar portions 11 having positions and intervals set in the sea bed layer F, Respectively. And the flow passage section 2 through which the alga passes is formed between the right side main structures 10a and 10b.
이와 같이, 중량을 가지는 중량체가 아닌 기둥파이프(11a)를 이용해 기둥부(11)를 형성하고 이를 이용해 해양구조물(10)을 시설함으로 빠른 유속의 조류를 피해 안정적인 설치가 가능하다. In this manner, the column 11 is formed by using the column pipe 11a, which is not a weight having a weight, and the offshore structure 10 is installed using the column pipe 11a, thereby making it possible to stably install the structure 10 by avoiding algae at a high flow rate.
또한, 기둥파이프(11a)의 설치를 SEP 바지선을 이용해 조류의 영향을 받지 않는 바깥에서 수중 하부로 하강시켜 위치시킴으로 안정적인 설치가 가능하다. In addition, the installation of the column pipe 11a can be stably installed by using the SEP barge to lower the water pipe from outside to outside under the influence of algae.
한편, 이러한 해양구조물(10)의 지지를 받아 설치되는 발전장치부(20)는 수면 높이의 변화에 따라 부력에 의해 힌지회동하여 위치가 조정됨으로 전력 생산이 용이하고 발전효율을 상승시킨다. Meanwhile, the generator unit 20 installed with the support of the offshore structure 10 is hinged by the buoyancy to adjust its position according to the change of the height of the water surface, so that the power generation is facilitated and the power generation efficiency is increased.
그리고, 본 발명에 적용된 해양구조물(10)은 하단에 일체형으로 너비를 가지는 기초베이스(12)에 의해 해저암반층(F)에 접하면서 지지되고 상부가 수면 상부로 돌출된 길이를 갖는 기둥파이프(11a)와, 기둥파이프(11a)를 관통하면서 해저암반층(F)의 내부에 박힌 락볼트형 앵커(13)를 구비한 다수개의 기둥부(11)를 포함하는 것을 특징으로 한다. The marine structure 10 applied to the present invention is a marine structure 10 supported by a foundation base 12 integrally wider at its lower end in contact with the marine rock layer F and having an upper portion protruding upward from the water surface, And a plurality of column portions 11 having a rock bolt type anchor 13 inserted into the underside rock layer F while penetrating the column pipe 11a.
이러한 본 발명에 따른 조류발전용 해양구조물, 그 시공방법 및 이를 이용한 조류발전시스템(1)을 도 1 내지 도 5(a)(b)를 참조하여 구체적으로 살펴보면 하기와 같다. Hereinafter, the present invention will be described in detail with reference to FIGS. 1 to 5 (a) and 5 (b), which illustrate an offshore structure for alga power generation, a construction method thereof and a tidal power generation system 1 using the same.
도시한 바와 같이, 본 발명에 따른 조류발전시스템(1)은, 크게 조류발전용 해양구조물(10)과, 전력 생산을 위한 발전장치부(20)를 포함한다. As shown, the tidal power generation system 1 according to the present invention includes an offshore structure 10 for tidal current generation and a power generation unit 20 for power generation.
먼저, 조류발전용 해양구조물(10)은, 좌측의 주 구조물(10a)과 우측의 주 구조물(10b) 사이로 조류가 통과하는 유로구역(2)을 형성한다. First, the offshore structure 10 for aviation power generation forms a flow passage section 2 through which alga is passed between the left main structure 10a and the right main structure 10b.
이를 위해, 해양구조물(10)은 하단에 일체형으로 너비를 가지는 기초베이스(12)에 의해 해저암반층(F)에 접하면서 지지되고 상부 일측은 수면 상부로 돌출되는 길이를 가지는 기둥파이프(11a)를 이용해 기둥부(11)를 구성한다. To this end, the offshore structure 10 is supported on the lower end in contact with the underside rock layer F by the base base 12 having an integral width, and the upper end of the column pipe 11a having a length protruding upward from the water surface Thereby constituting the columnar portion 11.
이러한 기둥파이프(11a)를 해저암반층(F)의 설치될 지점에 설치하여 기둥부(11)를 구성하는데, 기둥파이프(11a)를 관통하면서 해저암반층(F)의 내부에 박히는 락볼트형 앵커(13)를 이용해 고정시킨다. The column pipe 11a is provided at a position where the submarine rock layer F is to be installed to constitute the column portion 11. The rock bolt type anchor (not shown) which penetrates the column pipe 11a and is caught in the submarine rock layer F 13).
상술의 기둥파이프(11a)는 설치될 지점에 대한 탐색에 따라 이미 설정된 길이를 가지며 SEP 바지선을 이용해 해저암반층(F) 상에 설치되는데 이는 후술에서 상세히 설명하기로 한다. The above-mentioned column pipe 11a has a predetermined length according to a search for a point to be installed and is installed on the sea bed rock layer F by using the SEP barge line, which will be described later in detail.
보다 구체적으로, 도 2와 도 3을 참조하면, 기둥파이프(11a)는 설정된 길이를 가지는 관 상의 파이프이며 필요에 따라 원형 또는 다각의 파이프 형상을 가진다. 2 and 3, the column pipe 11a is a tubular pipe having a predetermined length, and if necessary, has a circular or polygonal pipe shape.
그리고, 기둥파이프(11a)의 하부에는 기초베이스(12)가 일체형으로 구성되어 있으며, 기초베이스(12)는 해저암반층(F)에 접하면서 기둥파이프(11a)가 조류 흐름에 의한 흔들림에 의해 좌.우로 이탈되거나 파손됨을 방지하는 역할을 수행한다. The foundation base 12 is integrally formed in the lower part of the column pipe 11a and the column base 11 is brought into contact with the seabed base layer F while the foundation base 12 is tilted And it is prevented from being detached or damaged.
한편, 기초베이스(12)는 기둥파이프(11a)의 하단과 일체형으로 연통되되 상방에서 하방 내측으로 경사면(12a-1)을 가지며 관통한 베이스공(12a)을 가진다. On the other hand, the foundation base 12 has a base hole 12a which communicates integrally with the lower end of the column pipe 11a and has an inclined surface 12a-1 from the upper side to the lower side inward.
그리고, 이러한 베이스공(12a)을 관통하여 해저암반층(F)을 천공하고 락볼트형 앵커(13)를 이용하여 기둥파이프(11a)가 해저암반층(F)에 지지되게 한다. Through the base hole 12a, the submarine rock layer F is pierced and the column pipe 11a is supported on the submarine rock layer F by using the rock bolt type anchor 13.
상술의 락볼트 앵커(13)는 본 발명의 출원인이 이미 개시하여 등록을 받아 권리를 가지는 기술로, 이에 대한 구체적 기술의 설명은 대한민국 등록특허공보 제 10-1133431호, 대한민국 등록특허공보 제10-1156501호, 대한민국 등록특허공보 제10-1376534호에 기재되어 있는 바, 구성에 대한 구체적인 설명은 본 발명의 요지를 모호하지 않게 하기 위하여 생략하기로 한다. The above-mentioned rock bolt anchor 13 is a technology in which the applicant of the present invention has already started and registered and has a right. For a description of the specific technique, refer to Korean Patent Registration No. 10-1133431, Korean Patent Registration No. 10- 1156501, and Korean Patent Registration No. 10-1376534, the detailed description of the constitution will be omitted in order to avoid obscuring the gist of the present invention.
다만, 기초파이프(11a)의 상부에서 내부를 관통하면서 기초베이스(12)의 베이스공(12a)을 통과하여 해저암반층(F)에 박히는 락볼트형 앵커(13)는, 도 2를 참조하면, 선단을 구성하는 앵커헤드(13a)와, 앵커헤드(13a)에서 연장된 앵커축봉(13c)을 가지고, 앵커헤드(13a)에는 조작에 따라 암반층을 파고들어 박히는 확장날개(13b)를 포함한다. 2, a rock bolt-type anchor 13 penetrating the upper portion of the foundation pipe 11a through the base hole 12a of the foundation base 12 and penetrating into the submarine rock layer F, An anchor head 13a constituting the front end and an anchor shaft rod 13c extending from the anchor head 13a and the anchor head 13a includes an extension vane 13b for digging the rock layer by manipulation.
이때, 앵커축봉(13c)의 하부에 형성된 하부 나사부(13c-1)를 따라 조임너트(15)가 결합되게 구비되는데, 조임너트(15)는 하부 나사부(13c-1)와 결합되면서 락볼트형 앵커(13)의 구조에 따라 확장날개(13b)가 확장되어 벌려지게 하는 역할을 수행한다.The tightening nut 15 is coupled to the lower thread portion 13c-1 formed at the lower portion of the anchor shaft rod 13c. The tightening nut 15 is engaged with the lower thread portion 13c-1, And the expanding blade 13b expands and spreads according to the structure of the anchor 13.
이와 더불어, 조임너트(15)는 기초베이스(12)의 베이스공(12a)에 형성된 경사면(12a-1)을 상방에서 하방으로 가압해 조으면서 락볼트형 앵커(13)가 기둥파이프(11a) 및 기초베이스(12)와 일체형이 되게 하고 기둥파이프(11a) 및 기초베이스(12)를 해저암반층에 지지하게 한다. In addition, the tightening nut 15 presses the inclined surface 12a-1 formed in the base hole 12a of the base base 12 downward from above and presses the rock bolt type anchor 13 against the column pipe 11a, And the base base 12 so that the column pipe 11a and the foundation base 12 are supported on the sea bed layer.
다시 말해, 설정된 위치 지점에 기초베이스(12)가 해저암반층(F)의 상면에 위치되도록 기둥파이프(11a)를 안착시키고, 락볼트형 앵커(13)를 설치하는데, 조임너트(15)는 조이면서 기초베이스(12)의 경사면(12a-1)을 가압하고 락볼트형 앵커(13)는 확장날개(13b)가 벌어지면서 천공된 해저암반층 내부에 박혀 고정된다. In other words, the column pipe 11a is seated and the rock bolt type anchor 13 is installed so that the foundation base 12 is positioned on the upper surface of the sea bed layer F at the set position point. 1 of the foundation base 12 and the rock bolt type anchor 13 is fixedly inserted and fixed in the pierced underwater rock layer as the expansion vane 13b is opened.
이와 같이 설치된 기둥파이프(11a)는 설정된 위치와 간격을 가지며 설치되어 해양구조물(10)의 기둥부(11)를 구성하는데, 기둥부(11)는 기둥파이프(11a)의 상부로 이웃하는 기둥부(11)와의 높이를 동일하게 조절하도록 연장파이프(11b)를 더 포함하여 구성한다. The column pipe 11a thus installed is provided with a predetermined position and a predetermined interval to constitute the column portion 11 of the offshore structure 10. The column portion 11 is formed in a column portion 11a adjacent to the upper portion of the column pipe 11a, (11b) so as to adjust the height of the pipe (11).
이에 따라 기둥부(11)는 이웃하는 기둥부(11)와 동일 선상의 높이를 가질 수 있다. Accordingly, the columnar section 11 can have the same height as the columnar section 11 adjacent thereto.
이와 같은 구조에 따라 해양구조물(10)을 이루는 기둥부(11)는 해저암반층(F)에 지지를 받는 기둥파이프(11a)와, 기둥파이프(11a)의 상부로 연장된 연장파이프(11b)를 가진다. The column 11 constituting the offshore structure 10 has a column pipe 11a supported by the sea bed layer F and an extension pipe 11b extending to the upper portion of the column pipe 11a I have.
한편, 재차 도 2를 참조하면, 이러한 연장파이프(11b)는 기둥파이프(11a)의 상부에 용접 등의 방법을 통해 연결부(11b-1)를 형성하면서 일체형으로 연결되거나, 클램프 등 별도의 고정부재를 이용해 연결부(11b-1)를 구성하여 연장할 수 있다. 2, the extension pipe 11b is integrally connected to the upper portion of the column pipe 11a by forming a connection portion 11b-1 through welding or the like, The connecting portion 11b-1 can be formed and extended.
각각의 연장파이프(11b) 길이는 각각의 기둥파이프(11a)의 길이에 따라 달라질 수 있으며, 필요에 따라 절단하여 높이를 맞출 수 있음은 물론이다. The length of each of the extension pipes 11b may vary depending on the length of the respective column pipes 11a, and it is of course possible to cut the height of the extension pipe 11b to meet the height.
한편, 재차 도 1과 도 3을 참조하면, 기둥파이프(11a)를 관통하는 락볼트형 앵커(13)는, 앵커축봉(13c)의 상부에 형성된 상부 나사부(13c-2)를 조이는 고정너트(16)와 고정브라켓(17)을 이용해 기둥파이프(11a)에 단단히 일체형으로 고정된다. 1 and 3, a rock bolt-type anchor 13 penetrating the column pipe 11a is fixed to a fixing nut (not shown) which tightens the upper screw portion 13c-2 formed on the upper portion of the anchor shaft rod 13c 16 and the fixing bracket 17 so as to be firmly and integrally fixed to the column pipe 11a.
이에 따라 기둥파이프(11a)에는 콘크리트 등을 타설할 필요없이 락볼트형 앵커(13)를 설치한 구조만으로, 해양구조물(10)의 기둥부(11)를 구성할 수 있으며 시공 기간 및 인력을 단축하고 공사 단가를 현저히 낮출 수 있는 효과 또한 가진다. Accordingly, the column portion 11 of the offshore structure 10 can be formed only by the structure in which the rock bolt type anchor 13 is provided without the need to place concrete or the like on the column pipe 11a, And it has the effect of significantly lowering the construction cost.
한편, 본 발명에 적용되는 해양구조물(10)은 상술한 바와 같이, 다수개의 기둥부(11)를 이용해 좌측의 주 구조물(10a)과 우측의 주 구조물(10b)을 세우고 사이 간격에 조류가 흐르는 유로구역(2)을 가지도록 시설된다. As described above, the offshore structure 10 according to the present invention is constructed such that the left main structure 10a and the right main structure 10b are erected by using the plurality of pillars 11, (2).
이때, 해양구조물(10)은 구조물을 연결하고 지지하는 제1 지지보 및 제2 지지보를 포함하는 지지보(14)를 가진다. At this time, the offshore structure 10 has a support beam 14 including a first support beam and a second support beam for connecting and supporting the structure.
구체적으로 해양구조물(10)은, 좌측의 주 구조물(10a)과 우측의 주 구조물(10b)을 구성하는 기둥부(11) 일측을 연결하고 설치된 발전장치부(20)를 지지하는 제1 지지보(14a)를 가진다. Specifically, the offshore structure 10 includes a first support beam 10a connecting one side of the columnar section 11 constituting the left main structural body 10a and the right main structural body 10b, (14a).
그리고, 제1 지지보(14a)의 상방으로 간격을 가지며 기둥부(11)를 연결하도록 설치되고 좌측의 주 구조물(10a)과 우측의 주 구조물(10b)을 덮는 상부구조물(10c)을 지지하는 제2 지지보(14b)를 가진다. The upper support structure 10c is installed to connect the column portions 11 with a space above the first support beams 14a and supports the upper structure 10c covering the left main structure 10a and the right main structure 10b And a second support beam 14b.
한편, 본 발명에 따른 해양구조물(10)은 도시되진 않았지만, 좌측의 주 구조물(10a)과 우측의 주 구조물(10b)을 구성하는 기둥부(11) 측방을 덮어 유로구역(2) 내로의 조류 흐름을 유도하고 이물질 유입을 방지하는 유로판을 더 포함하여 구성한다. Although the marine structure 10 according to the present invention is not shown, the marine structure 10 covers the side of the pillars 11 constituting the left main structure 10a and the right main structure 10b, And a flow path plate for guiding the flow and preventing foreign matter from entering.
이때, 유로판은 판 상의 형태이거나 메쉬망 형태일 수 있다. At this time, the flow path plate may have a plate-like shape or a mesh-like shape.
또한, 유로판이 구비된 해양구조물(10)을 구성하는 기둥부(11)를 설정된 위치에 따라 설치할 때 유로구역(2)을 형성하는 좌측의 주 구조물의 기둥부(11)와 우측의 주 구조물 기둥부(11) 사이를 넓게 또는 좁게 설치해 조류의 흐름을 유도하면서 유속을 증가시킬 수 있게 한다. When the column portion 11 constituting the offshore structure 10 having the flow path plate is installed according to the set position, the column portion 11 of the left main structure forming the flow path region 2 and the column portion 11 of the right main structure column So that the flow velocity can be increased while inducing the flow of the algae.
한편, 본 발명에 따른 조류발전용 해양구조물을 이용한 조류발전시스템(1)에 적용된 발전장치부(20)는, 구체적으로 도 4를 참조하면, 힌지축(21a)을 가지는 지지프레임(21)과, 부력통(22a)을 가지는 터빈(22)으로 구성한다.  Referring to FIG. 4, the power generator 20 includes a support frame 21 having a hinge shaft 21a and a support frame 21 having a hinge shaft 21a. And a turbine 22 having a buoyancy tube 22a.
구체적으로, 지지프레임(21)은 해양구조물(10)의 좌측 주 구조물(10a)과 우측 주 구조물(10b)에 힌지축(21a)에 의해 힌지회동 가능하도록 결합되고 하부에 구비된 터빈(22)이 조류를 이용할 수 있도록 하방으로 길이를 가진다. Specifically, the support frame 21 is coupled to the left main structure 10a and the right main structure 10b of the offshore structure 10 by a hinge shaft 21a so as to be hinged, It has a downward length to use this bird.
그리고, 터빈(22)은 지지프레임(21)의 양측 하부에 힌지축(21b)에 의해 회전하도록 구비되는데, 내부에 공기가 채워진 부력통(22a)을 포함한다. The turbine 22 is rotatably supported by hinge shafts 21b at both lower sides of the support frame 21 and includes a buoyancy tube 22a filled with air.
바람직하게 이러한 부력통(22a)은 도시한 바와 같이, 터빈(22)과 일체형으로 구비될 수 있으며, 필요에 따라 부력통(22a)을 터빈(22)의 외측에 탈착가능하게 결합시킬 수 있음은 물론이다. Preferably, the buoyancy tube 22a may be integrally formed with the turbine 22 as shown, and may optionally detachably connect the buoyancy tube 22a to the outside of the turbine 22 Of course.
이와 같은 구조에 따라, 도 5(a)(b)를 참조하면, 발전장치부(20)는 부력통(22a)의 부력에 의해 수면에 떠있는 상태로 조류의 흐름에 따라 유속에 의해 터빈(22)의 날개가 회전하면서 전력을 생산할 수 있다. 5 (a) and 5 (b), the generator unit 20 floats on the water surface due to buoyancy of the buoyancy tank 22a, 22 can produce power by rotating the wings.
이때, 조수 간만의 차에 의해 수면의 높이가 A -> B -> C 변화됨에 따라 발전장치부(20)는 이에 대응하여 터빈(22)이 조류의 흐름에 밀려 상부 힌지축(21a)에 의해 힌지회동하면서 그 위치가 조정된다. At this time, as the height of the water surface changes from A -> B -> C due to the difference in the tide distance, the power generator unit 20 correspondingly moves the turbine 22 against the flow of the algae, Its position is adjusted while turning the hinge.
도 5(a)를 참조하면, 조류의 흐름은 좌측에서 우측으로 흐르고, A -> B -> C 로의 수면 높이 변화에 따라 터빈(22)은 좌측에서 우측으로 밀려 힌지축(21a)을 중심으로 힌지회동하여 위치 조정된다.5A, the flow of the algae flows from the left to the right, and the turbine 22 is pushed from the left to the right according to the change of the water surface height from A to B to C to center the hinge axis 21a The hinge is rotated to adjust the position.
도 5(b)를 참조하면, 조류의 흐름은 우측에서 좌측으로 흐르고, A -> B -> C 로의 수면 높이 변화에 따라 터빈(22)은 우측에서 좌측으로 밀려 힌지축(21a)을 중심으로 힌지회동하여 위치 조정된다.5B, the flow of the algae flows from right to left, and the turbine 22 is pushed from the right side to the left side according to the change of the water surface height from A to B to C, The hinge is rotated to adjust the position.
이와 같은 발전장치부(20)의 구조에 따라 본 발명에 따른 조류발전용 해양구조물을 이용한 조류발전시스템(1)은 조수 간만의 차에 따라 항상 발전이 이루어져 발전효율을 높이는 효과를 가진다. According to the structure of the power generator unit 20, the tidal power generation system 1 using the offshore structure for tidal power generation according to the present invention has an effect of improving the power generation efficiency by constantly generating power according to the tidal difference.
한편, 재차 도 1을 참조하면, 본 발명에 적용되는 발전장치부(20)는 제1 지지보(14a)에 안착되도록 구성되거나 힌지축(21a, 도4)을 지지할 수 있도록 별도의 결합부(30)를 포함하여 제1 지지보(14a)에 구비된다. Referring to FIG. 1 again, the power generator unit 20 according to the present invention may be configured to be mounted on the first support beam 14a, or to have a separate coupling portion 14a for supporting the hinge shaft 21a (FIG. 4) And the first support beam 14a including the first support beam 30 is provided.
이에 따라 해양구조물(10)에 발전장치부(20)의 설치가 매우 용이할 뿐만 아니라 발전장치부(20)의 유지 및 보수가 용이한 효과를 가진다. Accordingly, it is very easy to install the power generator unit 20 on the offshore structure 10, and the power generator unit 20 can be easily maintained and repaired.
이어서, 도 6을 참조하여 본 발명에 따른 조류발전용 해양구조물의 시공방법을 보다 구체적으로 살펴보면 하기와 같다. 6, a method of constructing an offshore structure for algae power generation according to the present invention will be described in detail.
본 발명에 따른 조류발전시스템(1)을 구성하기 위한 조류발전용 해양구조물(10)은 도시한 바와 같이, 기초 시공 단계(S1)와, 해양구조물 시공 단계(S2)를 거쳐 해저암반층(F)에 시설된다. The offshore structure 10 for an algae power generation system for constructing the alga power generation system 1 according to the present invention is constructed such that the submarine base layer F is formed through the basic construction step S1 and the offshore structure construction step S2, .
이때, 기초 시공 단계(S1)는 하부 일체형의 기초베이스(12)와 내부를 관통하여 해저암반층(F)에 박히는 락볼트형 앵커(13)에 의해 해저암반층(F)의 지지를 받고 수면 상부로 일부 돌출된 기둥파이프(11a)를 설정된 간격과 위치로 설치하여 다수개의 기둥부(11)를 시설하는 단계이다. At this time, the foundation construction step S1 is carried out by receiving the support of the submarine rock layer F by the rocking bolt-type anchor 13 penetrating the bottom base type base 12 of the lower integral type and penetrating the inside of the sea floor layer F, And a step of installing a plurality of columnar portions 11 by installing some protruding columnar pipes 11a at predetermined intervals and positions.
또한, 해양구조물 시공 단계(S2)는, 기초 시공 단계(S1)에 의해 설정된 위치에 설정된 간격으로 설치된 다수개의 기둥부(11)를 연결하여 좌측의 주 구조물(10a)과 우측의 주 구조물(10b)을 구성하고, 조류가 통과하는 유로구역(2)을 가지는 해양구조물(10)을 시설하기 위한 단계이다. In the marine structure construction step S2, a plurality of pillars 11 provided at predetermined intervals are connected to each other at a predetermined interval set by the basic construction step S1 to connect the left main structure 10a and the right main structure 10b ), And is a step for installing an offshore structure (10) having a passage section (2) through which alga is passed.
먼저, 기초 시공 단계(S1)를 보다 구체적으로 살펴보면 하기와 같다. First, the basic construction step (S1) will be described in more detail as follows.
도시한 바와 같이, 기초 시공 단계(S1)는, 위치 탐색 및 지형 파악 과정(S11)과, 기초베이스 형상 및 기둥파이프 길이 조절 과정(S12)와, 기둥파이프 설치 과정(S13)과, 락볼트 앵커 설치 과정(S14)를 포함하여 이루어진다. As shown in the figure, the basic construction step S1 includes a position search and topographical identification process S11, a base base shape and column pipe length adjustment process S12, a column pipe installation process S13, And an installation process S14.
위치 탐색 및 지형 파악 과정(S11)은 수중 해저암반층(F) 상에 기초베이스(12)가 놓일 위치와 높낮이를 포함한 바닥 지형을 확인하는 과정이다. The position search and topographical grasp process S11 is a process for confirming a bottom terrain including a position and a height at which the foundation base 12 will be placed on the underwater sea bed F.
본 발명에 따른 조류발전용 해양구조물을 시공하기 위해, 해상작업용 크레인 바지선 구체적으로 SEP 바지선이 이용된다. In order to construct an offshore structure for algae power generation according to the present invention, a marine work crane barge line, specifically, an SEP barge line is used.
이러한 바지선에서 탐색 장치를 이용하여 해양구조물(10)이 설치될 해저암반층(10)의 위치와 형상을 파악한다. In this barge line, the position and shape of the submarine rock layer 10 to be installed with the marine structure 10 are grasped by using a search device.
그리고, 기초베이스 형상 및 기둥파이프 길이 조절 과정(S12)는, 설치될 위치의 해저암반층(F) 바닥 지형에 따라 기초베이스(12)의 형상을 조절하여 해저암반층에 기초베이스(12)의 안착시 안정적인 지지가 가능하게 한다. The base base shape and the column pipe length adjusting process S12 are performed by adjusting the shape of the base base 12 in accordance with the bottom topography of the submarine rock layer F to be installed, Thereby enabling stable support.
다시 말해, 기초베이스(12)는 위치될 해저암반층(F)의 지형 형상에 맞게 절곡되거나 성형된다. In other words, the foundation base 12 is bent or formed to conform to the topography shape of the submarine rock layer F to be located.
그리고, 기초베이스(12)를 일체형으로 구비한 기둥파이프(11a)를 설정된 높이를 가지며 수면 상부로 돌출되도록 길이를 조절한다. The length of the column pipe 11a having the base base 12 integrally formed is adjusted to have a predetermined height and protrude upward from the water surface.
이러한 기초베이스 형상 및 기둥파이프 길이 조절 과정(S12)은 해상 바지선 상에서 이루어진다. This base base shape and column pipe length adjustment process (S12) is performed on the sea barge.
이어서, 기둥파이프 설치 과정(S13)은 기둥파이프(11a)를 바지선을 이용해 해저암반층(F)의 설정된 위치로 위치시키고 하강시켜 설치하는 과정이다. Subsequently, the column pipe installation process S13 is a process of installing the column pipe 11a at a predetermined position of the submarine rock layer F by using a barge and lowering it.
수상 바지선의 일종인 SEP(Self Elevating Platform) 바지선이 이용되는데, SEP 바지선은 바지선에 고정용 장치(Leg)를 부착하여 수중의 견고한 지반에 고정할 수 있는 바지선으로 수면에 떠 있는 선체를 물 위로 일정 간격 들어올려 고정시킨 다음 작업을 수행한다. SEP (Self Elevating Platform) barge, which is a kind of water barge, is used as a barge that can be fixed to a solid ground in the water by attaching a fixing device (Leg) to the barge. The interval is lifted and fixed, and then the operation is performed.
이에 따라 기둥파이프(11a)는 수중의 영향이 없는 바지선 위에서 설정한 높이에 있도록 바지선에 구비된 크레인 등의 장치를 이용해 위치된다. Accordingly, the column pipe 11a is positioned using a device such as a crane provided on the barge so as to be at a height set above the barge line free from the influence of water.
이어서, 락볼트 앵커 설치 과정(S14)이 수행되는데, 이는 기둥파이프(11a) 내로 굴착장치를 이용해 해저암반층(F)을 천공한 다음, 기둥파이프(11a)를 관통하면서 천공된 해저암반층(F)의 내부에 박히도록 락볼트 앵커(13)를 설치하는 과정이다. Subsequently, a rock bolt anchor installation process (S14) is performed. This is performed by drilling the submarine rock layer F into the column pipe 11a using a drilling apparatus, and then drilling the submarine rock layer F through the column pipe 11a, A rock bolt anchor 13 is installed even if the lock bolt anchor 13 is embedded in the inside of the lock bolt anchor 13.
이러한 락볼트 앵커(13)는 상술한 바와 같이, 본 발명의 출원인이 이미 개시하여 등록을 받아 권리를 가지는 기술로 구성에 대한 구체적인 설명은 본 발명의 요지를 모호하지 않게 하기 위하여 생략하기로 한다. As described above, the rock bolt anchor 13 is a technique in which the applicant of the present invention has already been initiated and registered and has a right, so that a detailed description of the construction will be omitted so as not to obscure the gist of the present invention.
상술한 바와 같이, 설정된 위치 지점에 기초베이스(12)가 해저암반층(F)의 상면에 위치되도록 기둥파이프(11a)를 안착시키고, 락볼트형 앵커(13)를 설치하는데, 조임너트(15)를 조이면서 기초베이스(12)의 경사면(12a-1)을 가압하고 락볼트형 앵커(13)는 확장날개(13b)가 벌어지면서 천공된 해저암반층(F) 내부에 박혀 고정된다. As described above, the column pipe 11a is seated and the rock bolt type anchor 13 is installed so that the foundation base 12 is positioned on the upper surface of the sea bed layer F at the set position, 1 of the foundation base 12 while the rock bolt type anchor 13 is inserted and fixed in the seabed rock layer F which is drilled with the expansion wings 13b spreading.
이어서, 재차 도 6을 참조하여 해양구조물 시공 단계(S2)를 살펴보면 하기와 같다. Next, referring to FIG. 6, the construction step S2 of the offshore structure will be described as follows.
해양구조물 시공 단계(S2)는, 기둥부 조절 및 연장 설치 과정(S21)과, 지지보 연결 및 주 구조물 설치 과정(S22)을 포함하여 이루어진다. The offshore structure construction step S2 includes a column part adjustment and extension installation step S21, a support beam connection and a main structure installation step S22.
먼저, 기둥부 조절 및 연장 설치 과정(S21)은, 기둥파이프(11a)를 이용한 기둥부(11)와 이웃하는 기둥부(11)의 높이를 기둥파이프(11a)의 상부로 연장파이프(11b)를 연결하여 동일 선상의 높이를 가지도록 조절하는 과정이다. The height of the column portion 11 adjacent to the column portion 11 using the column pipe 11a is increased to the upper portion of the column pipe 11a by the extension pipe 11b, And a height of the same line.
이러한 설치과정은 수면 위에서 이루어지기 때문에 조류의 영향을 받지 않으며 안정적인 설치가 이루어진다. Since the installation process is performed on the surface of the water, the installation is stable without being influenced by algae.
한편, 지지보 연결 및 주 구조물 설치 과정(S22)은 다수개의 기둥부(11)를 연결하는 지지보(14)를 이용해 발전장치부(20)가 설치 결합될 공간을 형성하고, 유로구역(2)을 가지도록 좌측의 주 구조물(10a)과 우측의 주 구조물(10b)을 구성하는 과정이다. The support beam connection and the main structure installation process S22 form a space in which the power generator unit 20 is to be installed and coupled using the support beams 14 connecting the plurality of column portions 11, The left main structural body 10a and the right main structural body 10b are formed.
이때, 지지보(14)는 좌측의 주 구조물(10a)과 우측의 주 구조물(10b)을 구성하는 기둥부(11) 일측을 연결하고 설치된 발전장치부(20)를 지지하는 제1 지지보(14a)와, 제1 지지보(14a)의 상방으로 간격을 가지며 기둥부(11)를 연결하도록 설치되고 좌측의 주 구조물(10a)과 우측의 주 구조물(10b)을 덮는 상부구조물(10c)을 지지하는 제2 지지보(14b)를 포함한다. At this time, the support beam 14 is connected to one side of the columnar part 11 constituting the left main structural body 10a and the right main structural body 10b, and a first support beam And an upper structure 10c which is spaced upward from the first support beam 14a and is connected to the column 11 so as to cover the left main structure 10a and the right main structure 10b, And a second support beam 14b supporting the second support beam 14b.
한편, 상술한 바와 같이, 필요에 따라 좌측의 주 구조물(10a)과 우측의 주 구조물(10b)을 구성하는 기둥부(11) 측방을 덮어 유로구역(2) 내로의 조류 흐름을 유도하고 이물질 유입을 방지하는 유로판을 더 포함하여 설치한다. On the other hand, as described above, if necessary, the flow of the algae into the flow passage section 2 is guided by covering the sides of the pillars 11 constituting the left main structure 10a and the right main structure 10b, And a flow path plate for preventing the flow path.
그리고, 해양 구조물 시공 단계(S2)는 상부 구조물 설치 과정(S23)을 더 포함하는데, 이러한 상부 구조물 설치 과정은, 좌측의 주 구조물(10a)과 우측의 주 구조물(10b) 상부를 덮는 상부 구조물(10c)을 설치하는 과정이다. The step of installing the offshore structure S2 further includes a step S23 of installing an upper structure. The step of installing the upper structure includes an upper structure 10a covering the left main structure 10a and an upper structure covering the upper right structure 10b 10c.
이러한 상부 구조물(10c)은 해양 구조물(10)의 기둥부(11)가 수면의 상부로 일정 높이 돌출되게 설치되는 바, 필요에 따라 길이를 갖는 다리 또는 화단을 구축할 수 있으며, 해양 구조물(10)의 크기에 따라 별도의 건물을 설치할 수 있음은 물론이다. The upper structure 10c is installed such that the column portion 11 of the offshore structure 10 protrudes at a predetermined height from the upper part of the water surface so that a leg or a flower bed having a length can be constructed if necessary. It is of course possible to install a separate building depending on the size of the building.
이와 같은 조류발전용 해양구조물 시공방법에 따라 해저면(F) 상에 설치된 해양구조물(10)의 지지를 받아 발전장치부(20)를 구성하여 조류발전시스템(1)을 시설한다. In accordance with the method for constructing an offshore structure for algae generation, the algae power generation system 1 is installed by constructing the power generator unit 20 under the support of the offshore structure 10 installed on the sea floor F.
이상에서 설명한 본 발명은 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 한정되는 것은 아니다. It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. It is not.

Claims (9)

  1. 좌측의 주 구조물(10a)과 우측의 주 구조물(10b) 사이로 조류가 통과하는 유로구역(2)을 형성한 해양구조물(10)과;An offshore structure 10 having a flow passage section 2 through which algae pass between a left main structure 10a and a right main structure 10b;
    상기 해양구조물(10)의 지지를 받아 유로구역(2) 내에 설치되고, 수면 높이의 변화에 따라 부력에 의해 힌지회동하여 위치가 조정되면서 전력을 생산하는 터빈(22)을 구비한 발전장치부(20)를 포함하되;A turbine 22 provided in the flow passage section 2 with the support of the offshore structure 10 and having a turbine 22 for rotating the hinge by the buoyancy to adjust the position of the turbine 22, 20);
    상기 해양구조물(10)은, The offshore structure (10)
    하단에 일체형으로 너비를 가지는 기초베이스(12)에 의해 해저암반층(F)에 접하면서 지지되고 상부가 수면 상부로 돌출된 길이를 갖는 기둥파이프(11a)와, 상기 기둥파이프(11a)를 관통하면서 상기 해저암반층(F)의 내부에 박힌 락볼트형 앵커(13)를 구비한 다수개의 기둥부(11)를 포함하는 것을 특징으로 하는 조류발전용 해양구조물을 이용한 조류발전시스템. A column pipe 11a supported by the foundation base 12 having an integral width at the lower end in contact with the sea bed layer F and protruding upward from the water surface, And a plurality of pillars (11) having a rock bolt type anchor (13) embedded in the sea bed layer (F).
  2. 제 1항에 있어서, The method according to claim 1,
    상기 기초베이스(12)는,The foundation base (12)
    상기 기둥파이프(11a)의 하단과 일체형으로 연통되되 상방에서 하방 내측으로 경사면(12a-1)을 가지며 관통한 베이스공(12a)을 형성하고, A base hole 12a which communicates integrally with the lower end of the column pipe 11a and has an inclined surface 12a-1 from the upper side to the lower side and penetrates therethrough is formed,
    상기 락볼트형 앵커(13)는,The rock bolt type anchor (13)
    선단을 구성하는 앵커헤드(13a)와, 상기 앵커헤드(13a)에서 연장된 앵커축봉(13c)을 가지되, 상기 앵커축봉(13c)의 하부 나사부(13c-1)를 따라 상기 경사면(12a-1)에 조여지는 조임너트(15)에 의해 상기 기초베이스(12)에 고정되고, 상기 조임너트(15)의 조임에 따라 상기 앵커헤드(13a)에서 확장되면서 벌어져 상기 해저암반층(F)에 박히는 확장날개(13b)를 포함하는 것을 특징으로 하는 조류발전용 해양구조물을 이용한 조류발전시스템. The anchor head 13a constituting the leading end and the anchor shaft rod 13c extending from the anchor head 13a and the inclined surfaces 12a-12c along the lower thread portion 13c-1 of the anchor shaft rod 13c, 1 is fixed to the foundation base 12 by means of a tightening nut 15 and is extended in the anchor head 13a in accordance with the tightening of the tightening nut 15 to be caught in the sea bed layer F And an expanding blade (13b). ≪ RTI ID = 0.0 > [10] < / RTI >
  3. 제 1항에 있어서, The method according to claim 1,
    상기 기둥부(11)는, The columnar section (11)
    상기 기둥파이프(11a)의 상부로 이웃하는 기둥부(11)와의 높이를 동일하게 조절하도록 연장 연결된 연장파이프(11b)를 더 포함하여 구성한 것을 특징으로 하는 조류발전용 해양구조물을 이용한 조류발전시스템. Further comprising an extension pipe (11b) connected to the upper portion of the column pipe (11a) so as to adjust the height of the column pipe (11) adjacent to the upper portion of the column pipe (11a).
  4. 제 1항에 있어서, The method according to claim 1,
    상기 해양구조물(10)은, The offshore structure (10)
    좌측의 주 구조물(10a)과 우측의 주 구조물(10b)을 구성하는 기둥부(11) 일측을 연결하고 상기 발전장치부(20)를 지지하는 제1 지지보(14a)와, 상기 제1 지지보(14a)의 상방으로 간격을 가지며 기둥부(11)를 연결하도록 설치되고 좌측의 주 구조물(10a)과 우측의 주 구조물(10b)을 덮는 상부구조물(10c)을 지지하는 제2 지지보(14b)를 구성한 지지보(14)를 포함하여 구성한 것을 특징으로 하는 조류발전용 해양구조물을 이용한 조류발전시스템. A first support beam 14a connecting one side of the column 11 constituting the left main structure 10a and the right main structure 10b and supporting the power generator unit 20, A second supporting beam (not shown) for supporting the upper structure 10c covering the left main structure 10a and the right main structure 10b and spaced upward from the beam 14a and connected to the column 11, And a support beam (14) constituting the tidal plate (14a, 14b).
  5. 제 4항에 있어서, 5. The method of claim 4,
    상기 해양구조물(10)은, The offshore structure (10)
    좌측의 주 구조물(10a)과 우측의 주 구조물(10b)을 구성하는 기둥부(11) 측방을 덮어 상기 유로구역(2) 내로의 조류 흐름을 유도하고 이물질 유입을 방지하는 유로판을 더 포함하여 구성한 것을 특징으로 하는 조류발전용 해양구조물을 이용한 조류발전시스템. And a flow path plate for covering the side of the column portion 11 constituting the left side main structure 10a and the right side main structure 10b to guide the flow of the algae into the flow path region 2 and prevent foreign matter from flowing into the flow path region 2 Wherein the at least one of the at least two of the at least two of the at least two of the at least two of the plurality of the at least one of the plurality of the at least one of the at least two of the plurality of
  6. 제 1항에 있어서, The method according to claim 1,
    상기 발전장치부(20)는, The power generator unit (20)
    상기 해양구조물(10)의 좌측 주 구조물(10a)과 우측 주 구조물(10b)에 힌지축(21a)에 의해 힌지회동 가능하도록 결합되고 하방으로 길이를 가지는 지지프레임(21)과, A support frame 21 coupled to the left main structure 10a and the right main structure 10b of the offshore structure 10 so as to be hinged by a hinge shaft 21a and having a downward length,
    상기 지지프레임(21)의 양측 하부에 힌지축(21b)에 의해 회전하도록 구비되고, 내부에 공기가 채워진 부력통(22a)을 가지는 터빈(22)을 포함하여 구성한 것을 특징으로 하는 조류발전용 해양구조물을 이용한 조류발전시스템. And a turbine (22) provided at both lower sides of the support frame (21) to rotate by a hinge shaft (21b) and having a buoyancy tube (22a) filled with air. A tidal power generation system using structures.
  7. 하부 일체형의 기초베이스(12)와 내부를 관통하여 해저암반층(F)에 박히는 락볼트형 앵커(13)에 의해 상기 해저암반층(F)의 지지를 받고 수면 상부로 일부 돌출된 기둥파이프(11a)를 설정된 간격과 위치로 설치하여 다수개의 기둥부(11)를 시설하는 기초 시공 단계(S1)와;A column pipe 11a partially supported on the underside rock layer F and supported by the rock bottom layer type anchor 13 penetrating through the inside of the lower integral type base block 12 and penetrating through the inside of the rock bottom layer type F, (S1) for installing a plurality of pillars (11) at predetermined intervals and positions;
    상기 기초 시공 단계(S1)에 의해 설정된 위치에 설정된 간격으로 설치된 다수개의 기둥부(11)를 연결하여 좌측의 주 구조물(10a)과 우측의 주 구조물(10b)을 구성하고, 조류가 통과하는 유로구역(2)을 가지는 해양구조물(10)을 시설하기 위한 해양구조물 시공 단계(S2)를 포함하되;The main structure 10a and the main structure 10b on the left side are connected by connecting a plurality of pillars 11 provided at intervals set at a predetermined position by the basic construction step S1, An offshore structure construction step (S2) for installing an offshore structure (10) having a zone (2);
    상기 기초 시공 단계(S1)는, The basic construction step (S1)
    상기 기초베이스(12)가 놓일 상기 해저암반층(F)의 위치와 높낮이를 포함한 바닥 지형을 확인하는 위치 탐색 및 지형 파악 과정(S11)과; A location searching and landform grasping process (S11) for confirming a bottom landform including a position and a height of the submarine rock layer (F) to which the foundation base (12) is to be placed;
    설치될 위치의 해저암반층(F) 바닥 지형에 따라 상기 기초베이스(12)의 형상을 조절하고, 설정된 높이를 가지며 수면 상부로 돌출되도록 상기 기둥파이프(11a)의 길이를 조절하는 기초베이스 형상 및 기둥파이프 길이 조절 과정(S12)와;The shape of the foundation base 12 is adjusted according to the bottom of the sea floor layer F at the position to be installed and the shape of the base base and the shape of the column base 11 are adjusted so as to adjust the length of the column pipe 11a, A pipe length adjustment process (S12);
    상기 기둥파이프(11a)를 바지선을 이용해 상기 해저암반층(F)의 설정된 위치로 위치시키고 하강시켜 설치하는 기둥파이프 설치 과정(S13)과;A column pipe installation step (S13) of placing the column pipe (11a) at a predetermined position of the sea bed layer (F) by using a barge and lowering it;
    상기 기둥파이프(11a) 내로 굴착장치를 이용해 해저암반층(F)을 천공한 다음, 상기 기둥파이프(11a)를 관통하면서 천공된 해저암반층(F)의 내부에 박히도록 락볼트 앵커(13)를 설치하는 락볼트 앵커 설치 과정(S14);을 포함하여 이루어지는 것을 특징으로 하는 청구항 1항 내지 청구항 6항 중 어느 한 항의 해양구조물을 설치하기 위한 조류발전용 해양구조물 시공방법. The rock bolt anchor 13 is installed even though the rock bolt F is pierced into the column pipe 11a using the excavator and then penetrated into the drilled rock layer F penetrating through the column pipe 11a And a rock bolt anchor installation step (S14) of installing the rock bolt anchor. The method for constructing an offshore structure for algae power generation according to any one of claims 1 to 6,
  8. 제 7항에 있어서, 8. The method of claim 7,
    상기 해양 구조물 시공 단계(S2)는, In the marine structure construction step S2,
    상기 기둥부(11)와 이웃하는 기둥부(11)의 높이를 기둥파이프(11a)의 상부로 연장파이프(11b)를 연결하여 동일 선상의 높이를 가지도록 조절하는 기둥부 조절 및 연장 설치 과정(S21)과;A column portion adjusting and extending process for adjusting the height of the column portion 11 adjacent to the column portion 11 to an upper portion of the column pipe 11a by connecting the extension pipe 11b so as to have the same height S21);
    상기 다수개의 기둥부(11)를 연결하는 지지보(14)를 이용해 발전장치부(20)가 설치 결합될 공간을 형성하고, 유로구역(2)을 가지도록 좌측의 주 구조물(10a)과 우측의 주 구조물(10b)을 구성하는 지지보 연결 및 주 구조물 설치 과정(S22)을; 포함하여 이루어지는 것을 특징으로 하는 조류발전용 해양구조물 시공방법. A space is formed in which the power generator unit 20 is to be installed by using the support beams 14 connecting the plurality of columns 11 and the left main structure 10a and the right side A supporting beam connection and a main structure installation process S22 constituting the main structure 10b of the main body 10b; Wherein the method for constructing an offshore structure for algae power generation comprises the steps of:
  9. 제 8항에 있어서, 9. The method of claim 8,
    상기 해양 구조물 시공 단계(S2)는, In the marine structure construction step S2,
    상기 좌측의 주 구조물(10a)과 우측의 주 구조물(10b) 상부를 덮는 상부 구조물(10c)을 구성하는 상부 구조물 설치 과정(S23)을 더 포함하여 이루어지는 것을 특징으로 하는 조류발전용 해양구조물 시공방법. Further comprising an upper structure installing step (S23) of constructing an upper structure (10c) covering the upper left main structure (10a) and the right upper main structure (10b) .
PCT/KR2018/010297 2017-09-04 2018-09-04 Offshore structure for tidal power generation, method for constructing same, and tidal power generation system using same WO2019045550A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0112379 2017-09-04
KR20170112379 2017-09-04
KR10-2018-0022937 2018-02-26
KR1020180022937A KR102176003B1 (en) 2017-09-04 2018-02-26 Offshore construction for tidal stream power generation and construction method therefor and tidal stream power generation system using the same

Publications (1)

Publication Number Publication Date
WO2019045550A1 true WO2019045550A1 (en) 2019-03-07

Family

ID=65525831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010297 WO2019045550A1 (en) 2017-09-04 2018-09-04 Offshore structure for tidal power generation, method for constructing same, and tidal power generation system using same

Country Status (1)

Country Link
WO (1) WO2019045550A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210237A (en) * 1994-10-18 1996-08-20 Michael L Haining Submarine hydraulic power plant
JP2006132494A (en) * 2004-11-09 2006-05-25 Yoshikazu Nonoguchi Hydroelectric generator
KR101022045B1 (en) * 2010-06-08 2011-03-16 주식회사 지앤지테크놀러지 A tidal current generator
JP5433733B2 (en) * 2012-02-23 2014-03-05 豊治 津島 Foundation pile
KR101433559B1 (en) * 2014-03-04 2014-08-27 엄명섭 Hydroelectric power plant
CN106560558A (en) * 2016-11-07 2017-04-12 浙江海洋大学 Reclamation structure for mudflat seeweed cultivation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210237A (en) * 1994-10-18 1996-08-20 Michael L Haining Submarine hydraulic power plant
JP2006132494A (en) * 2004-11-09 2006-05-25 Yoshikazu Nonoguchi Hydroelectric generator
KR101022045B1 (en) * 2010-06-08 2011-03-16 주식회사 지앤지테크놀러지 A tidal current generator
JP5433733B2 (en) * 2012-02-23 2014-03-05 豊治 津島 Foundation pile
KR101433559B1 (en) * 2014-03-04 2014-08-27 엄명섭 Hydroelectric power plant
CN106560558A (en) * 2016-11-07 2017-04-12 浙江海洋大学 Reclamation structure for mudflat seeweed cultivation

Similar Documents

Publication Publication Date Title
WO2020060212A1 (en) Foundation anchor apparatus providing both easy fixing and increased fixing force for post
EP2683876B1 (en) System and method for installation of off shore foundations
CN103741657B (en) The construction method of large-sized multifunction waterborne traffic accident
WO2022059847A1 (en) Method for installing offshore floating body for wind power generation
CA2835143C (en) Deployment apparatus and method of deploying an underwater power generator
WO2020162665A1 (en) Apparatus for installation and disassembly of wind turbine and construction method using same
WO2016064022A1 (en) Cable frame-type solar power generator
WO2014193170A1 (en) Ship for installing offshore wind turbine
WO2013120264A1 (en) Buoyant supporting and fixing platform for supporting seaborne wind turbines, bridges, and marine structures
CN110030162A (en) Foundation building system for offshore wind turbine and method for installing offshore wind turbine
US20160312760A1 (en) A method of managing a hydroelectric turbine array
KR20140007773A (en) Offshore power generation plant and installation method
WO2014193023A1 (en) Housing bracket for constructing foundation of underwater bridge support and method for constructing foundation of underwater bridge support using same
WO2019045550A1 (en) Offshore structure for tidal power generation, method for constructing same, and tidal power generation system using same
WO2022225213A1 (en) Method for constructing underwater base structure
KR20190026545A (en) Offshore construction for tidal stream power generation and construction method therefor and tidal stream power generation system using the same
JP2003206852A (en) Supporting device for ocean wind power generation
RU2312187C1 (en) Method for underground passage and tunnel forming and underground passage or tunnel section
US5498107A (en) Apparatus and method for installing cabled guyed caissons
CN114701949A (en) Method for installing main girder of bridge crane of main power house of pump station
KR101192265B1 (en) Phc long pile construction machine and method thereof
RU2622975C1 (en) Method of installing a container power plant with relevant equipment in the field of its use and devices for realisation of the method
CN114341490A (en) Method for offshore installation of a wind turbine
WO2022139404A1 (en) Offshore wind turbine foundation having double steel pipe
KR20090051388A (en) A marine bridge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851660

Country of ref document: EP

Kind code of ref document: A1