JP5862487B2 - Shearability determination method, steel plate manufacturing method, and steel plate shearing equipment - Google Patents

Shearability determination method, steel plate manufacturing method, and steel plate shearing equipment Download PDF

Info

Publication number
JP5862487B2
JP5862487B2 JP2012149632A JP2012149632A JP5862487B2 JP 5862487 B2 JP5862487 B2 JP 5862487B2 JP 2012149632 A JP2012149632 A JP 2012149632A JP 2012149632 A JP2012149632 A JP 2012149632A JP 5862487 B2 JP5862487 B2 JP 5862487B2
Authority
JP
Japan
Prior art keywords
shearing
shear
steel plate
temperature
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012149632A
Other languages
Japanese (ja)
Other versions
JP2014012299A (en
Inventor
弘樹 永吉
弘樹 永吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012149632A priority Critical patent/JP5862487B2/en
Publication of JP2014012299A publication Critical patent/JP2014012299A/en
Application granted granted Critical
Publication of JP5862487B2 publication Critical patent/JP5862487B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、厚鋼板などの鋼板の剪断に係り、搬送されてくる鋼板を剪断装置で剪断可能か否かを判定する方法及びそのような判定方法を採用した鋼板の剪断設備に関する。   The present invention relates to the shearing of a steel plate such as a thick steel plate, and relates to a method for determining whether or not a conveyed steel plate can be sheared by a shearing device, and a steel sheet shearing equipment employing such a determination method.

厚鋼板の剪断は、例えば特許文献1に記載のように、規格(引張強度)に応じて予め設定した板厚の範囲に基づき、剪断装置で剪断可能か否かを判定する。そして、剪断出来ないと判定すると、その鋼板はオフラインによるガス切断など各種の熱切断工程に廻される。
ここで、剪断装置で剪断可能か否かの判定は、例えば、対象とする鋼板を剪断するのに要する剪断荷重予測値Fを、その鋼板の板厚t、規格毎に決定されている引張強度TS、及び剪断レーキ角θを使用して下記式によって求め、その求めた剪断荷重予測値Fが、剪断装置の設備条件から決定された設備耐荷重の最大値(限界剪断荷重)よりも小さければ、剪断装置で剪断可能と判定する。下記式は、「最新塑性加工要覧 第2版(日本塑性加工学会編)p.229」等に記載されている公知の式である。係数Aは、剪断装置毎に決定される固定値である。
F =A・t・TS/tanθ
For example, as described in Patent Document 1, the thick steel plate is sheared based on a plate thickness range set in advance according to a standard (tensile strength) to determine whether shearing is possible with a shearing device. When it is determined that shearing cannot be performed, the steel sheet is subjected to various thermal cutting processes such as off-line gas cutting.
Here, whether or not shearing is possible is determined by, for example, predicting the shear load F required to shear the target steel sheet, the thickness t of the steel sheet, and the tensile strength determined for each standard. If TS and shear rake angle θ are used to calculate by the following formula, and the obtained shear load predicted value F is smaller than the maximum equipment load resistance (limit shear load) determined from the equipment conditions of the shearing device It is determined that shearing is possible with a shearing device. The following formula is a well-known formula described in “Latest Plastic Working Manual Second Edition (Edited by Japan Society for Technology of Plasticity) p.229” and the like. The coefficient A is a fixed value determined for each shearing device.
F = A · t 2 · TS / tan θ

特開2009−66699号公報JP 2009-66699 A

ガス切断など各種の熱切断工程の処理能力は剪断装置に比べて低く、且つオフラインでの処理となることから、可能であれば剪断装置で剪断する鋼板の量を増やしたい。ある鋼板が剪断装置で剪断可能であるか否かは、通常、鋼板の強度(例えば引張強度)とサイズ(板厚・板幅)などを考慮し、十分な安全係数を見込んで判断されるが、過剰な安全係数の設定は生産能率の低下につながるため、少しでも効率のよい剪断可否判定方法が求められている。
本発明は、上記のような点に着目してなされたもので、剪断装置で剪断可能な鋼板をより適切に判定することを目的としている。
Since the processing capability of various thermal cutting processes such as gas cutting is lower than that of a shearing device and is an off-line processing, it is desirable to increase the amount of steel plate sheared by the shearing device if possible. Whether or not a certain steel plate can be sheared by a shearing device is usually determined by considering a sufficient safety factor in consideration of the strength (for example, tensile strength) and size (plate thickness and width) of the steel plate. Since an excessive safety factor setting leads to a decrease in production efficiency, a method for determining whether or not shearing is as efficient as possible is required.
The present invention has been made paying attention to the above points, and aims to more appropriately determine a steel plate that can be sheared by a shearing device.

上記課題を解決するために、本発明のうち請求項1に記載した発明は、搬送されてくる鋼板に対し、剪断装置で剪断可能か否かを判定する剪断可否判定方法において、
剪断候補の鋼板毎に、対象とする鋼板の剪断時の温度である剪断温度と係数Aとの関係である温度剪断情報を予め求めておき、
剪断候補の鋼板の実際の剪断温度と上記予め求めた温度剪断情報とから求めた係数Aと、下記(1)式とに基づき、剪断可能か否かを判定することを特徴とする。
F =A・t・TS/tanθ ・・・(1)
ここで、
F:剪断荷重予測値
A:剪断に係る係数
t:鋼板の板厚
TS:鋼板の引張強度
θ:剪断レーキ角
である。
In order to solve the above problems, the invention described in claim 1 of the present invention is a shearability determination method for determining whether or not shearing is possible with a shearing device for a steel sheet being conveyed,
For each shear candidate steel plate, temperature shear information that is a relationship between the shear temperature and the coefficient A, which is the temperature at the time of shearing of the target steel plate, is obtained in advance.
Whether or not shearing is possible is determined based on the coefficient A obtained from the actual shearing temperature of the steel plate as a shear candidate and the above-described temperature shearing information and the following equation (1).
F = A · t 2 · TS / tan θ (1)
here,
F: Shear load prediction value A: Coefficient for shearing t: Plate thickness of steel plate TS: Tensile strength of steel plate θ: Shear rake angle

次に、請求項2に記載した発明は、請求項1に記載した構成に対し、対象とする鋼板の実際の剪断温度から、上記予め求めた温度剪断情報に基づき当該剪断温度に対応する係数Aを求め、その求めた係数Aを使用して剪断荷重予測値Fを求め、その求めた剪断荷重予測値Fに基づき、剪断可能か否かを判定することを特徴とする。
次に、請求項3に記載した発明は、請求項1又は請求項2に記載の剪断可否判定方法で剪断可能と判定された鋼板を前記剪断装置で剪断することを特徴とする。
Next, the invention described in claim 2 is the coefficient A corresponding to the shearing temperature based on the temperature shearing information obtained in advance from the actual shearing temperature of the target steel plate. The shear load prediction value F is obtained using the obtained coefficient A, and whether or not shearing is possible is determined based on the obtained shear load prediction value F.
Next, the invention described in claim 3 is characterized in that the steel plate determined to be shearable by the shearability determination method according to claim 1 or 2 is sheared by the shearing device.

次に、請求項4に記載した発明は、搬送されてくる鋼板を剪断装置で剪断する剪断設備であって、請求項1又は請求項2に記載の剪断可否判定方法で剪断可否を判定する剪断判定部を備え、剪断判定部により剪断可能と判定された場合には、前記鋼板を剪断することを特徴とする。
次に、請求項5に記載した発明は、請求項4に記載した構成に対し、前記剪断判定部に加えて、剪断装置の上流に配置されて、剪断時の鋼板の温度を増加可能な加熱装置、を備え、剪断判定部の判定に基づき加熱すると剪断可能な場合には、前記鋼板を剪断可能な温度にまで上記加熱装置で加熱することを特徴とする。
Next, the invention described in claim 4 is a shearing facility for shearing a steel plate being conveyed by a shearing device, and shearing for determining shearability by the shearability determination method according to claim 1 or 2. A determination unit is provided, and when the shear determination unit determines that shearing is possible, the steel plate is sheared.
Next, in the invention described in claim 5, in addition to the shear determination unit, the structure described in claim 4 is arranged upstream of the shearing device to increase the temperature of the steel sheet during shearing. When the steel plate can be sheared when heated based on the determination of the shear determination unit, the steel plate is heated to the temperature at which shearing is possible.

本発明によれば、鋼板が剪断装置で剪断可能であるか否かをより適切に判定することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to determine more appropriately whether a steel plate can be sheared with a shearing device.

本発明に基づく実施形態に係る剪断温度と剪断係数A′との関係を示す図である。It is a figure which shows the relationship between the shear temperature which concerns on embodiment based on this invention, and the shear coefficient A '. 本発明に基づく実施形態に係る剪断設備を含む製造ラインを示す図である。It is a figure which shows the manufacturing line containing the shearing equipment which concerns on embodiment based on this invention. 剪断判定部の処理を示す図である。It is a figure which shows the process of a shear determination part. 本発明に基づく他の実施形態に係る剪断設備を含む製造ラインを示す図である。It is a figure which shows the manufacturing line containing the shearing equipment which concerns on other embodiment based on this invention.

次に、本発明の実施形態について図面を参照しつつ説明する。
(本実施形態で採用する「係数A′−剪断温度」の関係について)
先に、本実施形態で採用する「係数A′−剪断温度」の関係について説明する。
鋼板の剪断荷重予測値Fは、下記(1)式で表すことが出来る。なおこの(1)式は、例えば「最新塑性加工要覧 第2版(日本塑性加工学会編)p.229」等に記載されている式である。
F =A・t・TS/tanθ ・・・(1)
ここで、
A:剪断に係る係数
t:鋼板の板厚
TS:鋼板の引張強度
θ:剪断レーキ角
である。
Next, embodiments of the present invention will be described with reference to the drawings.
(Regarding the relationship of “coefficient A′−shear temperature” employed in the present embodiment)
First, the relationship of “coefficient A′−shear temperature” employed in the present embodiment will be described.
The shear load prediction value F of the steel sheet can be expressed by the following equation (1). The equation (1) is an equation described in, for example, “Latest Plastic Working Manual Second Edition (Edited by the Japan Society for Technology of Plasticity) p.229”.
F = A · t 2 · TS / tan θ (1)
here,
A: Coefficient related to shear t: Plate thickness of steel plate TS: Tensile strength of steel plate θ: Shear rake angle

上記係数Aは、従来では、剪断装置の設備構成の諸元から決まる値、つまり係数Aは剪断装置毎の固定値として予め設定されている。なおこのことから、従来では、目標板厚tが決定された時点で、上記(1)式に基づく剪断装置での剪断可否を判定可能な状態となっている。
これに対し、本実施形態では、係数Aを、剪断温度αをパラメータとした変数値として扱う。剪断温度αとは、剪断時の鋼板の表面の温度を指す。
Conventionally, the coefficient A is a value determined from the specifications of the equipment configuration of the shearing device, that is, the coefficient A is preset as a fixed value for each shearing device. In addition, from this, conventionally, when the target plate thickness t is determined, it is possible to determine whether shearing is possible with the shearing device based on the above equation (1).
On the other hand, in this embodiment, the coefficient A is treated as a variable value with the shear temperature α as a parameter. The shear temperature α refers to the temperature of the surface of the steel sheet during shearing.

次に、本実施形態の係数A及びA′について説明する。
上記(1)式を変形することで、係数Aは、下記(2)式で表すことが出来る。
A =tanθ・{F/(t・TS)} ・・・(2)
A′=F/(t・TS)とおくと、下記(3)式となる。
A′=tanθ・A ・・・(3)
以下、係数Aの代わりに、係数A′を、剪断温度αをパラメータとした値とする。係数Aと係数A′とは、剪断レーキ角θの乗算の有無の違いだけであり、実質同等の係数である。係数A′とすることで、剪断レーキ角θの影響を除外した。
Next, the coefficients A and A ′ of this embodiment will be described.
The coefficient A can be expressed by the following equation (2) by modifying the above equation (1).
A = tan θ · {F / (t 2 · TS)} (2)
If A ′ = F / (t 2 · TS), the following equation (3) is obtained.
A ′ = tan θ · A (3)
Hereinafter, instead of the coefficient A, the coefficient A ′ is a value using the shear temperature α as a parameter. The coefficient A and the coefficient A ′ are substantially the same coefficients only in the presence or absence of multiplication of the shear rake angle θ. By setting the coefficient A ′, the influence of the shear rake angle θ was excluded.

そして、上記(3)式を(1)式に代入すると下記(4)式となる。すなわち、求めたA′に、対象の鋼板の板厚tと引張強度TSとを乗算することで、剪断荷重予測値Fを求めることが出来る。
F =A′・t・TS ・・・(4)
上記係数A′は、対象とする鋼板の板厚t及び引張強度TSについて無次元化した値とした。この無次元化に伴い、本実施形態では、引張強度TSを、従来と同様に常温での引張強度TSの値として使用する。
Then, when the above equation (3) is substituted into the equation (1), the following equation (4) is obtained. That is, the predicted shear load F can be obtained by multiplying the obtained A ′ by the thickness t of the target steel sheet and the tensile strength TS.
F = A ′ · t 2 · TS (4)
The coefficient A ′ is a dimensionless value for the thickness t and the tensile strength TS of the target steel sheet. Along with this non-dimensionalization, in this embodiment, the tensile strength TS is used as the value of the tensile strength TS at room temperature as in the conventional case.

そして、本実施形態では、上記係数A′と剪断温度αとの関係を、予め設定した剪断対象となる鋼板の鋼種毎に実験によって求めておく。但し、引張強度TSは、上述のとおり、常温での引張強度TSとする。
ここで、下記鋼種の板材において、係数A′と剪断温度αとの関係を求めたところ、図1に示すような関係を得た。この図1を求める際に使用した鋼板は、C:0.16質量%、Si:0.26質量%、Mn:0.95質量%、P:0.02質量%、S:0.016質量%、残部はFe及び不可避的成分の鋼種である。
In the present embodiment, the relationship between the coefficient A ′ and the shearing temperature α is obtained by experiment for each steel type of the steel plate to be set in advance. However, the tensile strength TS is the tensile strength TS at room temperature as described above.
Here, when the relationship between the coefficient A ′ and the shearing temperature α was determined for the following steel types, the relationship shown in FIG. 1 was obtained. The steel plate used when obtaining FIG. 1 is C: 0.16% by mass, Si: 0.26% by mass, Mn: 0.95% by mass, P: 0.02% by mass, S: 0.016% by mass. %, The balance is Fe and inevitable component steel types.

図1から分かるように、常温(室温〜70℃前後)でのA′に対して、約200〜300℃の範囲の特定温度領域でのA′が約1/3もの小さな値となっている。このことは、剪断荷重予測値Fが、温度が300℃前後の特定領域では常温の約1/3となることを指す。
そして、本実施形態では、上記のような係数A′と剪断温度αとの関係を、予め、剪断装置で剪断する可能性のある剪断候補の鋼種について、個別の実験などによって求めておく。求めた「係数A′−剪断温度α」の関係は、鋼種毎に関数式やマップなどの形式で記憶しておく。この「係数A′−剪断温度α」の情報を、温度剪断情報とも呼ぶ事にする。
As can be seen from FIG. 1, A ′ in a specific temperature range of about 200 to 300 ° C. is a value as small as about 1/3 of A ′ at room temperature (room temperature to around 70 ° C.). . This indicates that the predicted shear load value F is about 1/3 of room temperature in a specific region where the temperature is around 300 ° C.
In the present embodiment, the relationship between the coefficient A ′ and the shearing temperature α as described above is obtained in advance by individual experiments or the like with respect to a steel candidate that can be sheared by a shearing device. The obtained relationship of “coefficient A′−shear temperature α” is stored in the form of a function formula or a map for each steel type. The information of “coefficient A′−shear temperature α” is also referred to as temperature shear information.

(構成)
次に、本発明を適用する設備の一実施形態の例を示す。本実施形態では、仕上圧延後のクロップシャーに対して本発明を適用した例である。本発明を適用する剪断装置は、サイドシャーや他の設備における切断工程で使用する剪断装置(シャー)であっても問題は無い。
図2は、本実施形態の設備構成例を説明する概要図である。
すなわち、上流側から順番に、加熱炉1、仕上圧延機2、プリレベラー3、ホットレベラー4、クーリングベッド5、温度検出装置13、クロップシャー7、サイドシャー8、エンドシャー9が配置され、クーリングベッド5で目標の鋼板温度まで降下した仕上圧延及び矯正後の鋼板11が、クロップシャー7に向けて搬送される。このとき、コントローラ12は、クロップシャー7で剪断可能な鋼板11か否かの判定を行い、クロップシャー7で剪断可能な鋼板11と判定された場合には、当該鋼板11をクロップシャー7に送ってクロップの切断が剪断で実施される。一方、コントローラ12が、クロップシャー7で剪断出来ないと判定した場合には、その鋼板11を搬送ラインから外して、オフラインでガス切断やレーザー切断などの切断機10にて切断作業を行う、あるいは、コントローラ12が、クロップシャー7で剪断出来ないと判定した場合に、クロップシャー7においては処理をせず素通しして、さらに下流のエンドシャー9で剪断するなど、下流の設備を使用して処理を実施する。
(Constitution)
Next, an example of an embodiment of equipment to which the present invention is applied is shown. In the present embodiment, the present invention is applied to a crop shear after finish rolling. There is no problem even if the shearing device to which the present invention is applied is a shearing device (shear) used in a cutting process in a side shear or other equipment.
FIG. 2 is a schematic diagram illustrating an example of the equipment configuration of the present embodiment.
That is, the heating furnace 1, the finishing mill 2, the pre-leveler 3, the hot leveler 4, the cooling bed 5, the temperature detecting device 13, the crop shear 7, the side shear 8, and the end shear 9 are arranged in order from the upstream side. The steel plate 11 after finish rolling and straightening which has been lowered to the target steel plate temperature in 5 is conveyed toward the crop shear 7. At this time, the controller 12 determines whether or not the steel plate 11 can be sheared by the crop shear 7. If it is determined that the steel plate 11 can be sheared by the crop shear 7, the controller 12 sends the steel plate 11 to the crop shear 7. The crop is cut by shearing. On the other hand, if the controller 12 determines that shearing cannot be performed by the crop shear 7, the steel plate 11 is removed from the transport line and the cutting work such as gas cutting or laser cutting is performed offline, or When the controller 12 determines that shearing cannot be performed by the crop shear 7, processing is performed using downstream equipment, such as passing through the crop shear 7 without performing processing and further shearing by the downstream end shear 9. To implement.

次に、上記コントローラ12の処理について説明する。
コントローラ12は、剪断判定部12Aを備える。その剪断判定部12Aの処理を、図3を参照して説明する。
剪断判定部12Aは、ステップS10にて、上記温度検出装置13が検出した鋼板温度情報を取得する。
次に、ステップS20にて、鋼板温度情報と搬送速度とに基づきクロップシャー7の位置における剪断温度αを求める。すなわち、温度検出位置からクロップシャー7までの温度降下量を求め、検出した鋼板温度から温度降下量を減算して剪断温度αを求める。
Next, the process of the controller 12 will be described.
The controller 12 includes a shear determination unit 12A. The processing of the shear determination unit 12A will be described with reference to FIG.
In step S10, the shear determination unit 12A acquires the steel plate temperature information detected by the temperature detection device 13.
Next, in step S20, the shear temperature α at the position of the crop shear 7 is obtained based on the steel plate temperature information and the conveyance speed. That is, the temperature drop amount from the temperature detection position to the crop shear 7 is obtained, and the shear temperature α is obtained by subtracting the temperature drop amount from the detected steel plate temperature.

次に、ステップS30にて、求めた剪断温度αをパラメータとして、対象の鋼種の温度剪断情報を適用して、当該剪断温度αに対応する剪断係数A′を求める。
次に、ステップS40にて、上記(4)式に基づき、対象とする鋼種の板厚t、及び常温での引張強度TSを使用して、剪断荷重予測値Fを求める。
ここで、常温での引張強度TSは、鋼種毎に予め決定されている値である。板厚tは、実測値でも良いが、予め設定された板厚目標値でも良い。
次に、ステップS50にて、予め設定されているクロップシャー7の限界剪断荷重Fxと、上記ステップS40で求めた剪断荷重予測値Fとを比較し、下記式のように、剪断荷重予測値Fが限界剪断荷重Fx以下である場合には、剪断可能と判定する(ステップS53)。一方、下記式を満足しない場合には剪断不可と判定する(ステップS56)。
F ≦ Fx
Next, in step S30, using the obtained shear temperature α as a parameter, the temperature shear information of the target steel type is applied to obtain the shear coefficient A ′ corresponding to the shear temperature α.
Next, in step S40, based on the above equation (4), a predicted shear load F is obtained using the thickness t of the target steel type and the tensile strength TS at room temperature.
Here, the tensile strength TS at room temperature is a value determined in advance for each steel type. The plate thickness t may be an actual measurement value or a preset plate thickness target value.
Next, in step S50, the limit shear load Fx of the crop shear 7 set in advance is compared with the predicted shear load F obtained in step S40, and the predicted shear load F is expressed by the following equation. Is less than the limit shear load Fx, it is determined that shearing is possible (step S53). On the other hand, when the following formula is not satisfied, it is determined that shearing is impossible (step S56).
F ≤ Fx

次に、ステップS60では、判定結果を出力する。剪断判定部12Aは、以上の処理を、次材が温度検出位置に到達する度に実施する。
そして、上記コントローラ12で、剪断可能と判定された場合には、そのままクロップシャー7まで搬送して剪断処理を行う。一方、コントローラ12が剪断不可と判定された場合には、オフラインでの切断処理を行う。あるいは、コントローラ12で剪断不可と判断された場合に、クロップシャー7においては処理をせずクロップシャー7を素通しして、さらに下流のエンドシャー9で剪断することとしてもよい。
Next, in step S60, the determination result is output. The shear determination unit 12A performs the above processing every time the next material reaches the temperature detection position.
When the controller 12 determines that shearing is possible, the controller 12 directly transports the cropping shear 7 to perform shearing. On the other hand, when the controller 12 determines that shearing is not possible, an offline cutting process is performed. Alternatively, when the controller 12 determines that shearing is not possible, the crop shear 7 may be passed through without passing through the crop shear 7 and further sheared by the downstream end shear 9.

ここで、上記実施形態では、本発明に基づく剪断可否判定をクロップシャー7に適用した場合で説明しているが、エンドシャー9に対して適用しても良い。また、複数のシャーに対して、同時期に上記可否判定を行い、全てのシャーで剪断可とした場合にオンラインでの剪断処理を実行したり、剪断可能なシャーを決定し、剪断可能なシャー位置までは剪断で処理を行い、残りの切断をオフラインで実施するようにしたりしても良い。   Here, in the said embodiment, although the case where the shearing possibility determination based on this invention was applied to the crop shear 7 was demonstrated, you may apply to the end shear 9. FIG. In addition, the above-described availability determination is performed for a plurality of shears at the same time, and when all shears are allowed to be sheared, online shearing processing is performed, shearable shears are determined, and shearable shears are determined. Processing may be performed by shearing up to the position, and the remaining cutting may be performed off-line.

(動作その他)
本実施形態では、剪断温度αに基づき、予め求めた「係数A′−剪断温度α」の情報(温度剪断情報)を参照して、係数A′を求め、その求めた係数A′と対象とする鋼板11の板厚t、常温での引張強度TSとを(3)式に代入して、剪断荷重予測値Fを求める。そして、求めた剪断荷重予測値Fに基づき対象とする剪断装置での剪断可否を判定する。
なお、剪断可否の判定に当たっては、剪断荷重以外に、板幅や板厚など鋼板サイズの観点からの装置制約も考慮すべきであるが、これら鋼板サイズに起因する制約因子については、従来と同様に判定することが可能である。よって、以下、本発明の特徴である、剪断荷重の予測方法やそれに基づく剪断可否判定方法について説明する。
(Operation other)
In the present embodiment, based on the shear temperature α, the coefficient A ′ is obtained by referring to information (temperature shear information) of “coefficient A′−shear temperature α” obtained in advance, and the obtained coefficient A ′ and the target Substituting the thickness t of the steel plate 11 to be performed and the tensile strength TS at room temperature into the equation (3), the predicted shear load F is obtained. Then, based on the obtained shear load prediction value F, whether or not shearing is possible in the target shearing device is determined.
In determining whether shearing is possible, in addition to the shear load, device restrictions from the viewpoint of the steel plate size such as the plate width and thickness should be taken into consideration. Can be determined. Therefore, hereinafter, a shear load prediction method and a shearability determination method based thereon that are features of the present invention will be described.

従来にあっては、常温での引張強度に基づき剪断荷重予測値Fを求めているが、本実施形態では、例えば図1の鋼種において、剪断温度αが200℃の場合には、A′が常温時の半分以下として求められる。
この結果、常温の温度での係数A′では、剪断装置で剪断不可と判定される鋼板11であっても、剪断可能と判定される可能性が高くなる。すなわち、従来であれば、剪断不可と判定された鋼板の中には、本発明を適用することで、剪断可能と判定されて剪断される鋼板が生じるので、オフラインでの切断を減らすことが可能となる。
Conventionally, the shear load predicted value F is obtained based on the tensile strength at normal temperature. In this embodiment, for example, in the steel type of FIG. 1, when the shear temperature α is 200 ° C., A ′ is It is required to be less than half that at normal temperature.
As a result, with the coefficient A ′ at room temperature, there is a high possibility that even if the steel plate 11 is determined to be unshearable by the shearing device, it can be determined that shearing is possible. That is, in the case of conventional steel plates that are determined to be non-shearable, by applying the present invention, a steel plate that is determined to be shearable and is sheared is generated, so it is possible to reduce off-line cutting. It becomes.

また、引張強度TS及び板厚tを無次元化した係数A′を剪断温度αのパラメータとした値とすることで、すなわち、引張強度TSも温度依存性があるが、剪断荷重を予測するに当たって温度依存性の因子を係数A′が受け持ち、引張強度TSとして常温の値を採用することで、簡易に上記剪断荷重予測値Fを演算することが可能となる。
ここで、図2に示す剪断温度αと係数A′との関係において、200〜300℃前後の特定温度領域で係数A′が常温の約1/3まで小さくなっている。この特定温度領域は、青熱脆性域の温度と重なっている。この青熱脆性域の温度では、一般に、鋼の引張強度TSや硬さが常温の場合より増加し、伸び・絞りが減少する現象が知られている。
In addition, the coefficient A ′ obtained by making the tensile strength TS and the plate thickness t dimensionless is set as a parameter of the shear temperature α, that is, the tensile strength TS is also temperature dependent, but in predicting the shear load. The coefficient A ′ is responsible for the temperature-dependent factor, and by adopting a normal temperature value as the tensile strength TS, the shear load predicted value F can be easily calculated.
Here, in the relationship between the shear temperature α and the coefficient A ′ shown in FIG. 2, the coefficient A ′ is reduced to about 3 of the normal temperature in a specific temperature range of about 200 to 300 ° C. This specific temperature region overlaps with the temperature of the blue heat brittle region. It is known that the temperature of the blue heat brittle region generally increases the tensile strength TS and hardness of steel compared to that at room temperature, and decreases the elongation and drawing.

このように、上記青熱脆性域の温度では逆に常温時よりも引張強度TSが増加していることから、仮に、温度依存性がある引張強度TS自体を、剪断温度αをパラメータとして上記(1)式に適用した場合には、剪断荷重予測値Fが、常温時よりも青熱脆性域の温度で高い値となり、実態と離れる。このため、(1)式とは異なる式によって剪断荷重予測値Fを求める必要が発生する。これに対し、本願発明では、剪断荷重を予測するに当たって温度依存性の因子を係数A′(あるいは係数A)が受け持ち、引張強度TSとして常温の値を採用するので、従来使用している(1)式を使用しつつ、簡易に剪断温度αに基づく剪断荷重予測値Fを求めることが可能となる。なお、常温時に比べて、青熱脆性域の温度での引張強度TSは、通常2倍も高くなることは無い。   Thus, since the tensile strength TS is higher than that at normal temperature at the temperature of the blue-hot brittle region, the temperature-dependent tensile strength TS itself is assumed to be the above ( When applied to the equation (1), the predicted shear load value F is higher at the temperature in the blue-hot brittle region than at normal temperature, and deviates from the actual situation. For this reason, it is necessary to obtain the shear load predicted value F by an expression different from the expression (1). On the other hand, in the present invention, the coefficient A ′ (or coefficient A) is responsible for the temperature-dependent factor in predicting the shear load, and the normal temperature value is adopted as the tensile strength TS. ), The predicted shear load value F based on the shear temperature α can be easily obtained. In addition, compared with the normal temperature, the tensile strength TS in the temperature of a blue-hot brittle area does not usually become 2 times as high.

以上のように、本実施形態では、上記予め求めた「係数A′−剪断温度α」の関係を採用して(3)に基づき求めた剪断荷重予測値Fを使用すると、青熱脆性域の温度以外の剪断温度αであっても、実際の剪断荷重予測値Fを簡易且つ精度良く求めることが可能となる。この結果、従来、剪断不可と判定される場合であっても、実際に剪断可能な鋼板11を剪断可能と判定できる結果、従来よりも多くの鋼板を剪断処理することが可能になり、オフラインでの切断処理を減少させることが出来る。   As described above, in the present embodiment, when the predicted shear load F obtained based on (3) is used by adopting the relationship of “coefficient A′−shear temperature α” obtained in advance, the blue hot brittle region is used. Even if the shear temperature α is other than the temperature, the actual shear load predicted value F can be obtained easily and accurately. As a result, even if it is conventionally determined that shearing is impossible, it is possible to determine that the steel plate 11 that can actually be sheared can be sheared. The cutting process can be reduced.

そして、上述した判定方法により剪断可能であると判断された鋼板を前記剪断装置で剪断することにより、厚鋼板などの鋼板を製造すれば、従来に比べてより多くの鋼板を各種の熱切断でなく剪断で処理することが可能となるので、生産効率向上に寄与する。
ここで、上記実施形態では、剪断装置に到達したときの剪断温度αから剪断可否を判定する場合を説明した。この処理の代わりに、次のように処理しても良い。
1)常温での剪断荷重予測値Fが限界剪断荷重Fxよりも高い鋼板11にだけ、上記剪断温度αに基づく剪断可否を実施するようにしても良い。常温での剪断荷重予測値Fは前もって求めることが出来るので、上記剪断温度αに基づく剪断可否を判定する鋼板11を減らすことが出来る。
2)また剪断装置の限界剪断荷重Fxから、剪断可能な係数A′の上限値Axを先に求めておき、その係数Axと、上記剪断温度αから求めた係数A′とを比較して剪断可否を判定しても良い。
And, by manufacturing a steel plate such as a thick steel plate by shearing the steel plate determined to be shearable by the above-described determination method with the shearing device, a larger number of steel plates can be obtained by various types of thermal cutting than before. Therefore, it is possible to process by shearing, which contributes to improvement in production efficiency.
Here, in the above-described embodiment, the case where the shearability is determined from the shearing temperature α when reaching the shearing device has been described. Instead of this processing, the following processing may be performed.
1) Shearability based on the shearing temperature α may be performed only on the steel plate 11 whose shear load prediction value F at normal temperature is higher than the limit shear load Fx. Since the predicted shear load value F at normal temperature can be obtained in advance, the number of steel plates 11 for determining whether shearing is possible based on the shear temperature α can be reduced.
2) Further, the upper limit value Ax of the shearable coefficient A ′ is first obtained from the limit shear load Fx of the shearing device, and the coefficient Ax is compared with the coefficient A ′ obtained from the shear temperature α to perform shearing. You may determine whether it is possible.

3)また上記上限の係数Axから、温度剪断情報に基づき、対象とする板を剪断可能な剪断温度αの上限αxを求め、その上限値αxと実際の剪断温度αとを比較して剪断可否を判定しても良い。逆に剪断温度αが上記上限値αx以上かつ青熱脆性域以下の温度までの温度に予め鋼板11を加熱する加熱装置を別途設けるようにしても良い。この場合、例えば、図4に示すように、クロップシャー7の上流側に加熱装置20を設け、コントローラ12の指示を受けて鋼板11を加熱し、加熱装置20に内蔵される図示しない温度検出装置により、剪断可能な温度域にまで鋼板が加熱されたことを確認した上で、クロップシャー7にて鋼板を剪断することができる。例えば、コントローラ12は、対象とする鋼板11の剪断可能な温度の情報を加熱装置20に出力する。そして、加熱装置20が、図示しない温度検出装置の検出情報に基づき鋼板11を剪断可能な温度以上に加熱した後に、鋼板11をクロップシャー7側に搬送するようにする。
ここで、上記説明では、係数A′を使用して説明したが、係数A′の代わりに係数A(=A′/tanθ)そのものを使用しても良い。
3) From the above upper limit coefficient Ax, based on the temperature shear information, the upper limit αx of the shear temperature α at which the target plate can be sheared is obtained, and the upper limit αx is compared with the actual shear temperature α to determine whether shearing is possible. May be determined. Conversely, a heating device for heating the steel plate 11 in advance to a temperature up to the temperature where the shear temperature α is not less than the upper limit value αx and not more than the blue brittleness region may be provided separately. In this case, for example, as shown in FIG. 4, a heating device 20 is provided on the upstream side of the crop shear 7, and the steel plate 11 is heated in response to an instruction from the controller 12. Thus, the steel plate can be sheared by the crop shear 7 after confirming that the steel plate has been heated to a shearable temperature range. For example, the controller 12 outputs information on the shearable temperature of the target steel plate 11 to the heating device 20. And after heating device 20 heats steel plate 11 more than the temperature which can be sheared based on detection information of a temperature detection device which is not illustrated, steel plate 11 is conveyed to the crop shear 7 side.
Here, in the above description, the coefficient A ′ is used. However, the coefficient A (= A ′ / tan θ) itself may be used instead of the coefficient A ′.

7 クロップシャー(剪断装置)
11 鋼板
12 コントローラ
12A 剪断判定部
13 温度検出装置
20 加熱装置
A、A′ 剪断係数
F 剪断荷重予測値
Fx 限界剪断荷重
TS 引張強度
α 剪断温度
7 Crop shear (shear device)
DESCRIPTION OF SYMBOLS 11 Steel plate 12 Controller 12A Shear determination part 13 Temperature detection apparatus 20 Heating apparatus A, A 'Shear coefficient F Shear load prediction value Fx Limit shear load TS Tensile strength (alpha) Shear temperature

Claims (5)

搬送されてくる鋼板に対し、剪断装置で剪断可能か否かを判定する剪断可否判定方法において、
剪断候補の鋼板毎に、対象とする鋼板の剪断時の温度である剪断温度と係数Aとの関係である温度剪断情報を予め求めておき、
剪断候補の鋼板の実際の剪断温度と上記予め求めた温度剪断情報とから求めた係数Aと、下記(1)式とに基づき、剪断可能か否かを判定することを特徴とする剪断可否判定方法。
F =A・t・TS/tanθ ・・・(1)
ここで、
F:剪断荷重予測値
A:剪断に係る係数
t:鋼板の板厚
TS:鋼板の引張強度
θ:剪断レーキ角
である。
In the method for determining whether shearing is possible or not, it is determined whether the steel plate being conveyed can be sheared by a shearing device.
For each shear candidate steel plate, temperature shear information that is a relationship between the shear temperature and the coefficient A, which is the temperature at the time of shearing of the target steel plate, is obtained in advance.
Shearability determination characterized by determining whether or not shearing is possible based on the coefficient A obtained from the actual shearing temperature of the steel plate as a shearing candidate and the temperature shearing information obtained in advance and the following equation (1). Method.
F = A · t 2 · TS / tan θ (1)
here,
F: Shear load prediction value A: Coefficient for shearing t: Plate thickness of steel plate TS: Tensile strength of steel plate θ: Shear rake angle
対象とする鋼板の実際の剪断温度から、上記予め求めた温度剪断情報に基づき当該剪断温度に対応する係数Aを求め、その求めた係数Aを使用して剪断荷重予測値Fを求め、その求めた剪断荷重予測値Fに基づき、剪断可能か否かを判定することを特徴とする請求項1に記載した剪断可否判定方法。   A coefficient A corresponding to the shear temperature is obtained from the actual shear temperature of the target steel plate based on the temperature shear information obtained in advance, and a shear load predicted value F is obtained using the obtained coefficient A, and the obtained value is obtained. 2. The shearability determination method according to claim 1, wherein whether or not shearing is possible is determined based on the predicted shear load value F. 請求項1又は請求項2に記載の剪断可否判定方法で剪断可能と判定された鋼板を前記剪断装置で剪断することを特徴とする鋼板の製造方法。   A method for producing a steel plate, comprising: shearing a steel plate determined to be shearable by the shearability determination method according to claim 1 or 2 with the shearing device. 搬送されてくる鋼板を剪断装置で剪断する剪断設備であって、
請求項1又は請求項2に記載の剪断可否判定方法で剪断可否を判定する剪断判定部を備え、
剪断判定部により剪断可能と判定された場合には、前記鋼板を剪断することを特徴とする鋼板の剪断設備。
A shearing equipment for shearing a steel plate being conveyed by a shearing device,
A shear determination unit that determines whether or not shearing is possible by the shearability determination method according to claim 1 or 2,
A steel plate shearing facility, wherein the steel plate is sheared when it is determined by the shear determination unit that shearing is possible.
前記剪断判定部に加えて、
剪断装置の上流に配置されて、剪断時の鋼板の温度を増加可能な加熱装置、を備え、
剪断判定部の判定に基づき加熱すると剪断可能な場合には、前記鋼板を剪断可能な温度にまで上記加熱装置で加熱することを特徴とする請求項4に記載の鋼板の剪断設備。
In addition to the shear determination unit,
A heating device disposed upstream of the shearing device and capable of increasing the temperature of the steel plate during shearing;
5. The steel sheet shearing equipment according to claim 4, wherein when the steel sheet can be sheared when heated based on the determination of the shear determination unit, the steel sheet is heated to a temperature at which the steel sheet can be sheared.
JP2012149632A 2012-07-03 2012-07-03 Shearability determination method, steel plate manufacturing method, and steel plate shearing equipment Active JP5862487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012149632A JP5862487B2 (en) 2012-07-03 2012-07-03 Shearability determination method, steel plate manufacturing method, and steel plate shearing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012149632A JP5862487B2 (en) 2012-07-03 2012-07-03 Shearability determination method, steel plate manufacturing method, and steel plate shearing equipment

Publications (2)

Publication Number Publication Date
JP2014012299A JP2014012299A (en) 2014-01-23
JP5862487B2 true JP5862487B2 (en) 2016-02-16

Family

ID=50108373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012149632A Active JP5862487B2 (en) 2012-07-03 2012-07-03 Shearability determination method, steel plate manufacturing method, and steel plate shearing equipment

Country Status (1)

Country Link
JP (1) JP5862487B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2535404B2 (en) * 1989-03-22 1996-09-18 株式会社神戸製鋼所 Standard length cutting device for rolled material
JP2005014041A (en) * 2003-06-26 2005-01-20 Jfe Steel Kk Method for manufacturing hot-rolled steel strip
JP4333283B2 (en) * 2003-08-28 2009-09-16 Jfeスチール株式会社 Manufacturing method of high-strength steel sheet
JP5130838B2 (en) * 2007-09-12 2013-01-30 Jfeスチール株式会社 Method for eliminating shear warpage of thick steel plate, shearing method and shearing line

Also Published As

Publication number Publication date
JP2014012299A (en) 2014-01-23

Similar Documents

Publication Publication Date Title
KR101185597B1 (en) Method of continuous annealing for steel strip with curie point and continuous annealing apparatus therefor
KR101516476B1 (en) Apparatus for calculating set value, method of calculating set value, and program recording medium for calculating set value
JP5293022B2 (en) Temperature control method in continuous annealing furnace and continuous annealing furnace
JP5862487B2 (en) Shearability determination method, steel plate manufacturing method, and steel plate shearing equipment
JP6287895B2 (en) Continuous heat treatment line control method and continuous heat treatment line
JP6295932B2 (en) Metal strip shape control method and shape control apparatus
JP5217542B2 (en) Continuous annealing method and continuous annealing equipment for steel strip with Curie point
JP2008297583A (en) Method for manufacturing thick steel plate having surface hardness of which upper limit is specified, and manufacturing facility therefor
JP5130838B2 (en) Method for eliminating shear warpage of thick steel plate, shearing method and shearing line
JP6756312B2 (en) Manufacturing method of thick steel plate
JP2013087319A (en) Method and apparatus for controlling direct-fired continuous heating furnace
KR102440768B1 (en) Method and apparatus for manufacturng thick-sheet iron
JP6874730B2 (en) Hot rolling line controller
KR101377504B1 (en) Temperature control method of heating furnace
JP5966454B2 (en) Thick steel plate measuring control method and thick steel plate measuring control device
JP7425377B2 (en) Internal oxide layer thickness estimation device, internal oxide layer thickness estimation method, and program
JP6152837B2 (en) Cold rolled steel sheet manufacturing method and rolling mill
JP2014079778A (en) Manufacturing method and manufacturing apparatus of hot rolled steel sheet
JP4333283B2 (en) Manufacturing method of high-strength steel sheet
JP2007222922A (en) Linear heating method and linear heating control system
JP7141995B2 (en) Hot-rolled steel sheet manufacturing method and hot-rolled steel sheet manufacturing system
JP5459821B2 (en) Rolled material manufacturing method
JP2015167967A (en) Setup condition deciding method in cold rolling
KR101602864B1 (en) Method and apparatus for processing rolled materials in continuous hot rolling equipment
JP2016182625A (en) Steel material shearing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R150 Certificate of patent or registration of utility model

Ref document number: 5862487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250