JP4333283B2 - Manufacturing method of high-strength steel sheet - Google Patents

Manufacturing method of high-strength steel sheet Download PDF

Info

Publication number
JP4333283B2
JP4333283B2 JP2003305093A JP2003305093A JP4333283B2 JP 4333283 B2 JP4333283 B2 JP 4333283B2 JP 2003305093 A JP2003305093 A JP 2003305093A JP 2003305093 A JP2003305093 A JP 2003305093A JP 4333283 B2 JP4333283 B2 JP 4333283B2
Authority
JP
Japan
Prior art keywords
steel sheet
temperature
power
induction heating
heating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003305093A
Other languages
Japanese (ja)
Other versions
JP2005076051A (en
Inventor
正敏 杉岡
信行 石川
慶次 飯島
浩 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003305093A priority Critical patent/JP4333283B2/en
Publication of JP2005076051A publication Critical patent/JP2005076051A/en
Application granted granted Critical
Publication of JP4333283B2 publication Critical patent/JP4333283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Control Of Heat Treatment Processes (AREA)

Description

本発明は、機械構造用、建築土木用、及びラインパイプ用等に用いられる鋼板であって、剪断機で切断した際その切断面に割れが生じない、優れた耐切断割れ性を有する高強度鋼板の製造方法に関する。   The present invention is a steel plate used for machine structures, architectural civil engineering, line pipes, etc., and has high strength with excellent cutting cracking resistance, which does not cause cracks on the cut surface when cut with a shearing machine. The present invention relates to a method of manufacturing a steel plate.

熱間圧延により所定の板厚に圧延された厚鋼板は、冷却床で冷却されてから採寸作業が行われ、採寸された厚鋼板は所定の寸法の幅及び長さに切断される。この切断は、剪断機による切断又はガス切断により行われる。通常、板厚が50mm程度よりも薄い厚鋼板は剪断機により切断され、それを越える場合にはガス切断が行われる。剪断機には、厚鋼板のトップ部及びボトム部を切断するクロップシャー、耳部を切断するサイドシャー、厚鋼板の幅方向を2分割するスリッター、長さ方向を所定の寸法に切断するエンドシャー等があり、これらの剪断機で構成される切断ラインを通過することにより、所定の寸法の厚鋼板に切断される。   A thick steel plate rolled to a predetermined thickness by hot rolling is cooled in a cooling bed and then a measuring operation is performed. The measured thick steel plate is cut into a predetermined width and length. This cutting is performed by cutting with a shearing machine or gas cutting. Usually, a thick steel plate having a thickness less than about 50 mm is cut by a shearing machine, and if it exceeds that, gas cutting is performed. The shearing machine includes a crop shear that cuts the top and bottom portions of the thick steel plate, a side shear that cuts the ear, a slitter that divides the width direction of the thick steel plate into two parts, and an end shear that cuts the length direction into a predetermined dimension. By passing through a cutting line composed of these shearing machines, the steel sheet is cut into a thick steel plate having a predetermined size.

剪断機による切断面の不良には、タレ、カエリ、機械割れ、切込み、段付き等があり、これらが発生した場合、そのままでは成品として使用できず、グラインダー研削等の手入れ若しくは再切断等が必要となり、歩留りの低下や製造コストの上昇を招く。これら切断面不良の対策として様々な提案がなされている。   Defects on the cut surface by a shearing machine include sagging, burrs, mechanical cracks, cutting, stepping, etc. If these occur, they cannot be used as they are, and require maintenance such as grinder grinding or recutting. Thus, the yield is reduced and the manufacturing cost is increased. Various proposals have been made as countermeasures for these cut surface defects.

例えば、これら切断面不良は剪断機の設備的な条件で決まる度合が大きいとして、剪断機の設備条件を適正値に管理することが提案されている(例えば、非特許文献1参照。)。また、タレを少なくする方法として、切断線を含むクロップ部を予熱してから剪断機により切断する方法が提案されている(例えば、特許文献1参照。)。   For example, it is proposed that the equipment conditions of the shearing machine are managed at appropriate values, assuming that these cut surface defects are largely determined by the equipment conditions of the shearing machine (see Non-Patent Document 1, for example). Further, as a method of reducing sagging, a method of preheating a crop part including a cutting line and then cutting with a shearing machine has been proposed (for example, see Patent Document 1).

しかし、機械構造用、建築土木用、及びラインパイプ用等に用いられる、引張強度が550MPa程度以上の高靭性高強度鋼板では、剪断機の設備条件を適正値に管理しても、発生頻度は少ないものの、切断面には板厚中心部に沿った割れ(以下、「切断割れ」と記す)が発生する場合がある。このようなシャー切断割れが発生すると、割れ部を除去する必要が生じるため、歩留りが低下する。更に、切断割れを防止するためには、ガス切断機を用いる必要があり、シャー切断に比べて大幅な生産性の低下を招いていた。   However, with high-toughness and high-strength steel sheets with a tensile strength of about 550 MPa or more used for mechanical structures, civil engineering, and line pipes, even if the equipment conditions of the shearing machine are managed at appropriate values, the frequency of occurrence is Although there are few, the cut surface may have a crack (hereinafter referred to as “cut crack”) along the center of the plate thickness. When such shear cutting cracks occur, it is necessary to remove the cracks, and the yield decreases. Furthermore, in order to prevent cutting cracks, it is necessary to use a gas cutter, resulting in a significant reduction in productivity compared to shear cutting.

このような剪断機による切断割れの防止、即ち耐切断割れ性の改善を目的として、化学成分を規定した高靭性高強度厚鋼板が提案されている(例えば、特許文献2参照。)。この技術では、C含有量、S含有量、Pcm値を低く抑え、またCaを添加することにより、剪断機による切断性が大幅に改善されている。   For the purpose of preventing cut cracking by such a shearing machine, that is, improving the resistance to cut cracking, a high toughness and high strength thick steel sheet having a specified chemical component has been proposed (for example, see Patent Document 2). In this technique, the C content, S content, and Pcm value are kept low, and the addition of Ca significantly improves the cutting ability with a shearing machine.

一方、熱間圧延後の鋼板を高温の熱処理装置内に通過させながら脱水素処理する高強度鋼板の剪断時水素割れ防止方法が開示されている(例えば、特許文献3参照。)。   On the other hand, a method for preventing hydrogen cracking at the time of shearing of a high-strength steel sheet, in which the hot-rolled steel sheet is dehydrogenated while being passed through a high-temperature heat treatment apparatus has been disclosed (for example, see Patent Document 3).

また、熱間圧延後の鋼板をライン上に設置した誘導加熱装置で再加熱する方法が開示されている(例えば、特許文献4参照。)。
特開平6−190627号公報 特開2000−309845号公報 特開2000−119744号公報 特開2002−256339号公報 日本鉄鋼協会編、鉄鋼便覧第3巻(1)圧延基礎・鋼板、第3版、285頁
Moreover, the method of reheating the steel plate after hot rolling with the induction heating apparatus installed on the line is disclosed (for example, refer patent document 4).
JP-A-6-190627 JP 2000-309845 A JP 2000-119744 A JP 2002-256339 A Edited by Japan Iron and Steel Institute, Steel Handbook, Volume 3 (1) Rolled Foundation / Steel, 3rd Edition, page 285

しかし、これらの従来技術には次の問題点がある。   However, these conventional techniques have the following problems.

まず、前記特許文献1記載の技術では、剪断機により切断する前にクロップ部を予熱する必要があり、剪断作業の効率を低下させるという問題がある。   First, in the technique described in Patent Document 1, it is necessary to preheat the crop part before cutting with a shearing machine, and there is a problem that the efficiency of the shearing work is reduced.

また、前記特許文献2記載の技術では、化学成分が限定されるため、幅広い用途の鋼材に適用することが困難であり、更に素材コストの上昇を招くという問題がある。   Moreover, in the technique of the said patent document 2, since a chemical component is limited, there exists a problem that it is difficult to apply to the steel material of a wide use, and also raises a raw material cost.

そして、前記特許文献3記載の技術では、550〜700℃の高温で脱水素処理するため強度低下及びDWTT特性等の材質劣化を招いてしまう。   And in the technique of the said patent document 3, since it dehydrogenates at 550-700 degreeC, material deterioration, such as a strength fall and DWTT characteristic, will be caused.

さらに、前記特許文献4に記載の誘導加熱装置を用いたインライン熱処理技術のアイディアは従来から存在していたが、実用化には至らなかった。その理由には、誘導加熱能力の不足などのハード面の問題以外にも、ソフト面の問題もあった。熱処理を行うためには、長手方向・厚み方向で温度差をつけないで均一に加熱することが必要となる。このためには、誘導加熱時の鋼板の内部温度を精度よく推定する必要があり、この温度推定モデルを用いて加熱のための電力を求める計算をする必要がある。さらには、加熱前の温度により加熱時の電力も異なるため、これらの処理をオンラインで行う必要がある。しかしながら、これらの問題に対して明確な解答を与えるような、電力の計算方法や搬送速度の決め方について検討した文献は見当たらない。   Furthermore, although the idea of the in-line heat processing technique using the induction heating apparatus described in Patent Document 4 has existed conventionally, it has not been put into practical use. The reason for this was not only hardware problems such as insufficient induction heating capacity, but also soft problems. In order to perform the heat treatment, it is necessary to heat uniformly without making a temperature difference in the longitudinal direction and the thickness direction. For this purpose, it is necessary to accurately estimate the internal temperature of the steel sheet at the time of induction heating, and it is necessary to calculate the power for heating using this temperature estimation model. Furthermore, since the power during heating varies depending on the temperature before heating, it is necessary to perform these processes online. However, there are no literatures on how to calculate the power and how to determine the transport speed that give a clear answer to these problems.

本発明は上記事情に鑑みなされたもので、熱間圧延後、加速冷却又は焼入れされる鋼板において、剪断機にて切断しても、その切断面に切断割れが発生しない、優れた耐切断割れ性を有する高強度鋼板の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and in steel sheets that are accelerated or cooled or quenched after hot rolling, even if they are cut with a shearing machine, no cut cracks are generated on the cut surfaces, and excellent cut resistance It aims at providing the manufacturing method of the high strength steel plate which has the property.

この発明は、剪断機による切断割れについて鋭意研究を行った結果、切断割れの原因となる鋼中に存在する拡散性水素が、鋼中の各種の欠陥に固着されないようにするためには、加速冷却または焼入れ後、ライン上に設置した誘導加熱装置で再加熱することが最も有効であるという知見に基づきなされたものである。そして、誘導加熱装置を用いてインライン熱処理を行うためには、誘導加熱時の鋼板の表層温度と内部温度を精度良く推定し、かつ加熱温度の目標値を満たす電力と搬送速度の設定が重要であることを知見した。   As a result of diligent research on cutting cracks by a shearing machine, the present invention is accelerated in order to prevent diffusible hydrogen present in steel causing cutting cracks from adhering to various defects in steel. This is based on the knowledge that it is most effective to reheat with an induction heating device installed on the line after cooling or quenching. In order to perform in-line heat treatment using an induction heating device, it is important to accurately estimate the surface layer temperature and internal temperature of the steel sheet during induction heating, and to set the power and conveyance speed that satisfy the target value of the heating temperature. I found out that there was.

本発明は上記知見によりなされたもので、以下のような特徴を有する。   The present invention has been made based on the above findings and has the following characteristics.

[1]熱間圧延後、加速冷却または直接焼入れ後に誘導加熱装置を用いてライン上で再加熱を行う鋼板の製造方法において、
前記鋼板の搬送速度と前記誘導加熱装置に供給予定の電力とを含むデータから誘導加熱後における前記鋼板の表面温度と厚み方向内部の温度を推定する演算ステップと、
前記鋼板の表面の最高温度がAc1変態点未満、厚み方向内部の温度が300℃以上500℃未満となるかどうかを判定する判定ステップと、
前記温度条件に適合しない場合は、前記電力を修正して前記演算ステップと前記判定ステップとを繰り返して実行する判定処理ステップと、
前記温度条件に適合する場合は、その演算に用いられた電力を前記誘導加熱装置に供給する供給ステップと、
前記鋼板を再加熱した後、ライン上でシャー切断を行う切断ステップと
を備えたことを特徴とするシャー切断割れ性に優れた高強度鋼板の製造方法。
[1] In a method for producing a steel sheet, which is reheated on a line using an induction heating device after hot rolling, after accelerated cooling or direct quenching,
A calculation step of estimating the surface temperature of the steel sheet and the temperature in the thickness direction after induction heating from data including the conveyance speed of the steel sheet and the power to be supplied to the induction heating device,
A determination step of determining whether the maximum temperature of the surface of the steel sheet is less than the Ac1 transformation point and whether the temperature in the thickness direction is 300 ° C. or more and less than 500 ° C .;
If the temperature condition is not met, a determination processing step of correcting the power and repeatedly executing the calculation step and the determination step;
When the temperature condition is met, a supply step of supplying the induction heating device with the electric power used for the calculation;
A method for producing a high-strength steel sheet having excellent shear cutting cracking characteristics, comprising: a cutting step of performing shear cutting on a line after reheating the steel sheet.

[2]熱間圧延後、加速冷却または直接焼入れ後に誘導加熱装置を用いてライン上で再加熱を行う鋼板の製造方法において、
前記鋼板の搬送速度と前記誘導加熱装置に供給予定の電力とを含むデータから誘導加熱後における前記鋼板の表面温度と厚み方向内部の温度を推定する演算ステップと、
前記鋼板の表面の最高温度がAc1変態点未満、厚み方向内部の温度が300℃以上500℃未満となるかどうかを判定する判定ステップと、
前記温度条件に適合しない場合は、前記電力を修正して前記演算ステップと前記判定ステップとを繰り返して実行する判定処理ステップと、
前記温度条件に適合する場合は、その演算に用いられた電力に基づいて、前記鋼板の加熱に利用されるそれぞれの誘導加熱装置の電力値の合計値が所定の値以下である電力条件に適合するかどうかを判定する電力判定ステップと、
前記温度条件に適合する場合は、その演算に用いられた電力を前記誘導加熱装置に供給する供給ステップと、
前記鋼板を再加熱した後、ライン上でシャー切断を行う切断ステップと
を備えたことを特徴とするシャー切断割れ性に優れた高強度鋼板の製造方法。
[2] In a method for manufacturing a steel sheet, after hot rolling, accelerated cooling or direct quenching and then reheating on the line using an induction heating device,
A calculation step of estimating the surface temperature of the steel sheet and the temperature in the thickness direction after induction heating from data including the conveyance speed of the steel sheet and the power to be supplied to the induction heating device,
A determination step of determining whether the maximum temperature of the surface of the steel sheet is less than the Ac1 transformation point and whether the temperature in the thickness direction is 300 ° C. or more and less than 500 ° C .;
If the temperature condition is not met, a determination processing step of correcting the power and repeatedly executing the calculation step and the determination step;
When the temperature condition is met, based on the power used for the calculation, the total power value of each induction heating device used for heating the steel sheet meets a power condition that is equal to or less than a predetermined value. A power determination step for determining whether to
When the temperature condition is met, a supply step of supplying the induction heating device with the electric power used for the calculation;
A method for producing a high-strength steel sheet having excellent shear cutting cracking characteristics, comprising: a cutting step of performing shear cutting on a line after reheating the steel sheet.

[3]熱間圧延後、加速冷却または直接焼入れ後に誘導加熱装置を用いてライン上で再加熱を行う鋼板の製造方法において、
前記鋼板の搬送速度と前記誘導加熱装置に供給予定の電力とを含むデータから誘導加熱後における前記鋼板の表面温度と厚み方向内部の温度を推定する演算ステップと、
前記鋼板の表面の最高温度がAc1変態点未満、厚み方向内部の温度が300℃以上500℃未満となるかどうかを判定する判定ステップと、
前記温度条件に適合しない場合は、前記電力を修正して前記演算ステップと前記判定ステップとを繰り返して実行する判定処理ステップと、
前記温度条件に適合する場合は、前記搬送速度を増加した新たな搬送速度を用いて前記演算ステップ、判定ステップ、判定処理ステップを前記温度条件に適合しなくなるまで繰り返して実行し、前記温度条件に適合する最終の演算に用いられた電力と搬送速度を抽出する抽出ステップと、
抽出された搬送速度で前記鋼板を搬送しつつ、抽出された電力を前記誘導加熱装置に供給する供給ステップと、
前記鋼板を再加熱した後、ライン上でシャー切断を行う切断ステップと
を備えたことを特徴とするシャー切断割れ性に優れた高強度鋼板の製造方法。
[3] In the method of manufacturing a steel sheet, after hot rolling, accelerated cooling or direct quenching and then reheating on the line using an induction heating device,
A calculation step of estimating the surface temperature of the steel sheet and the temperature in the thickness direction after induction heating from data including the conveyance speed of the steel sheet and the power to be supplied to the induction heating device,
A determination step of determining whether the maximum temperature of the surface of the steel sheet is less than the Ac1 transformation point and whether the temperature in the thickness direction is 300 ° C. or more and less than 500 ° C .;
If the temperature condition is not met, a determination processing step of correcting the power and repeatedly executing the calculation step and the determination step;
When the temperature condition is satisfied, the calculation step, the determination step, and the determination processing step are repeatedly performed using the new transfer speed obtained by increasing the transfer speed until the temperature condition is not satisfied. An extraction step to extract the power and transport speed used for the final operation that fits;
A supply step of supplying the extracted electric power to the induction heating device while conveying the steel sheet at the extracted conveyance speed;
A method for producing a high-strength steel sheet having excellent shear cutting cracking characteristics, comprising: a cutting step of performing shear cutting on a line after reheating the steel sheet.

[4]熱間圧延後、加速冷却または直接焼入れ後に誘導加熱装置を用いてライン上で再加熱を行う鋼板の製造方法において、
前記鋼板の搬送速度と前記誘導加熱装置に供給予定の電力とを含むデータから誘導加熱後における前記鋼板の表面温度と厚み方向内部の温度を推定する演算ステップと、
前記鋼板の表面の最高温度がAc1変態点未満、厚み方向内部の温度が300℃以上500℃未満となるかどうかを判定する判定ステップと、
前記温度条件に適合しない場合は、前記電力を修正して前記演算ステップと前記判定ステップとを繰り返して実行する判定処理ステップと、
前記温度条件に適合する場合は、その演算に用いられた電力に基づいて、前記鋼板の加熱に利用されるそれぞれの誘導加熱装置の電力値の合計値が所定の値以下である電力条件に適合するかどうかを判定する電力判定ステップと、
前記温度条件に適合する場合は、前記搬送速度を増加した新たな搬送速度を用いて前記演算ステップ、判定ステップ、判定処理ステップを前記温度条件に適合しなくなるまで繰り返して実行し、前記温度条件に適合する最終の演算に用いられた電力と搬送速度を抽出する抽出ステップと、
抽出された搬送速度で前記鋼板を搬送しつつ、抽出された電力を前記誘導加熱装置に供給する供給ステップと、
前記鋼板を再加熱した後、ライン上でシャー切断を行う切断ステップと
を備えたことを特徴とするシャー切断割れ性に優れた高強度鋼板の製造方法。
[4] In the method for manufacturing a steel sheet, which is reheated on the line using an induction heating apparatus after hot rolling, after accelerated cooling or direct quenching,
A calculation step of estimating the surface temperature of the steel sheet and the temperature in the thickness direction after induction heating from data including the conveyance speed of the steel sheet and the power to be supplied to the induction heating device,
A determination step of determining whether the maximum temperature of the surface of the steel sheet is less than the Ac1 transformation point and whether the temperature in the thickness direction is 300 ° C. or more and less than 500 ° C .;
If the temperature condition is not met, a determination processing step of correcting the power and repeatedly executing the calculation step and the determination step;
When the temperature condition is met, based on the power used for the calculation, the total power value of each induction heating device used for heating the steel sheet meets a power condition that is equal to or less than a predetermined value. A power determination step for determining whether to
When the temperature condition is satisfied, the calculation step, the determination step, and the determination processing step are repeatedly performed using the new transfer speed obtained by increasing the transfer speed until the temperature condition is not satisfied. An extraction step to extract the power and transport speed used for the final operation that fits;
A supply step of supplying the extracted electric power to the induction heating device while conveying the steel sheet at the extracted conveyance speed;
A method for producing a high-strength steel sheet having excellent shear cutting cracking characteristics, comprising: a cutting step of performing shear cutting on a line after reheating the steel sheet.

[5]前記[3]または[4]に記載の高強度鋼板の製造方法において、前記誘導加熱装置での加熱開始温度が確定するまでに、前記演算ステップから前記抽出ステップまでの各ステップを行って、事前に電力と搬送速度を抽出しておき、加熱開始温度が確定した時点で、前記演算ステップで予測していた加熱開始温度から前記確定した加熱開始温度への変更量に基づいて、前記事前に抽出された搬送速度を修正して新たに抽出された搬送速度とするとともに、その新たな抽出された搬送速度で電力の再計算を行って得られた電力を新たに抽出された電力とし、これらの新たに抽出された搬送速度と新たに抽出された電力を用いて前記供給ステップを行うことを特徴とする高強度鋼板の製造方法。
]鋼板温度が150℃以下に冷却される前に、誘導加熱装置で再加熱することを特徴とする前記[1]〜[]のいずれかに記載の高強度鋼板の製造方法。
[5] In the method for manufacturing a high-strength steel sheet according to [3] or [4], the steps from the calculation step to the extraction step are performed until the heating start temperature in the induction heating device is determined. Then, the electric power and the conveyance speed are extracted in advance, and when the heating start temperature is determined, based on the amount of change from the heating start temperature predicted in the calculation step to the determined heating start temperature, Correct the transport speed extracted before the article to make it a newly extracted transport speed, and newly extract the power obtained by recalculating the power at the newly extracted transport speed A method for producing a high-strength steel sheet, wherein the supplying step is performed using the newly extracted conveyance speed and the newly extracted electric power.
[ 6 ] The method for producing a high-strength steel sheet according to any one of [1] to [ 5 ], wherein the steel sheet is reheated by an induction heating device before being cooled to 150 ° C. or lower.

本発明は、圧延後の鋼板の加速冷却又は焼入れの後、鋼板温度が所定の温度以下に低下する前に再加熱することにより、鋼中の欠陥に水素が固着することを防止し、鋼中の水素を十分に除去することを可能とする。従って、切断面に水素が集積することがなく、割れの発生を防止することができる。本発明により、剪断機で切断してもその切断面に切断割れが発生しない鋼板を安定して製造することが可能となり、その結果、歩留り向上、製造コスト削減等の工業上有益な効果がもたらされる。   In the present invention, after accelerated cooling or quenching of the steel sheet after rolling, reheating before the steel sheet temperature falls below a predetermined temperature prevents hydrogen from adhering to defects in the steel. It is possible to sufficiently remove hydrogen. Therefore, hydrogen does not accumulate on the cut surface, and cracking can be prevented. According to the present invention, it is possible to stably produce a steel plate that does not generate a cut crack on the cut surface even if it is cut by a shearing machine, and as a result, industrially beneficial effects such as yield improvement and production cost reduction are brought about. It is.

また、ライン上に設置された誘導加熱装置での高精度の熱処理が可能となり、生産性が大幅に向上し工業上有益な効果が得られる。   In addition, highly accurate heat treatment can be performed with an induction heating apparatus installed on the line, so that productivity is greatly improved and industrially beneficial effects can be obtained.

以下に本発明の構成要件とその限定理由について説明する。まず、本発明で対象とする鋼材は、熱間圧延後、加速冷却又は焼入れされる鋼板であるが、これは、加速冷却又は焼入れされた鋼板は、一般に強度が高く、剪断機により切断した場合、切断割れを生じる可能性が高いためである。   The constituent requirements of the present invention and the reasons for limitation will be described below. First, the steel material to be used in the present invention is a steel plate that is accelerated or cooled or quenched after hot rolling. This is because the steel plate that has been accelerated or cooled is generally high in strength and cut by a shearing machine. This is because there is a high possibility of causing breakage.

一般に、加速冷却又は焼入れされた鋼板は、冷却床等で冷却されるが、本発明では所定の温度まで冷却される前に再加熱を行う。これにより、鋼中の拡散性水素を除去しやすくする。再加熱は、鋼板温度が150℃以下に冷却される前に行う。その理由は、150℃以下に冷却されると、鋼中の拡散性水素が転位や点欠陥又は結晶粒界等の各種の欠陥に固着されるため、その後の加熱処理において除去されにくくなるためである。従って、本発明では、加速冷却又は焼入れの後、鋼板温度が150℃以下に冷却される前に再加熱を行う。   In general, a steel plate that has been accelerated or quenched is cooled in a cooling bed or the like, but in the present invention, reheating is performed before cooling to a predetermined temperature. This facilitates removal of diffusible hydrogen in the steel. Reheating is performed before the steel sheet temperature is cooled to 150 ° C. or lower. The reason is that when cooled to 150 ° C. or lower, diffusible hydrogen in the steel is fixed to various defects such as dislocations, point defects, or grain boundaries, and thus is difficult to be removed in the subsequent heat treatment. is there. Therefore, in the present invention, after accelerated cooling or quenching, reheating is performed before the steel sheet temperature is cooled to 150 ° C. or lower.

その後、200℃以上500℃未満の温度に再加熱することにより、拡散性水素を除去する。再加熱が200℃以上未満の温度では拡散性水素の除去が不十分であり、剪断機で切断した場合に切断割れを生じやすくなる。一方、再加熱が500℃以上の温度では拡散性水素は十分に除去されるため、シャー切断時に割れを生じることはなくなるが、焼戻しと言うよりむしろ焼きなましによる強度の低下量が大きくなりすぎ、十分な強度が得られない。従って、再加熱の温度を200℃以上500℃未満に規定する。   Thereafter, diffusible hydrogen is removed by reheating to a temperature of 200 ° C. or higher and lower than 500 ° C. When the reheating is performed at a temperature lower than 200 ° C., removal of diffusible hydrogen is insufficient, and cutting cracks are likely to occur when cutting with a shearing machine. On the other hand, diffusible hydrogen is sufficiently removed when the reheating is performed at a temperature of 500 ° C. or higher, so that cracking does not occur at the time of shear cutting, but rather the amount of decrease in strength due to annealing becomes rather large rather than tempering. A sufficient strength cannot be obtained. Therefore, the reheating temperature is specified to be 200 ° C. or higher and lower than 500 ° C.

本発明では、鋼板温度が150℃以下に冷却される前に再加熱する必要があるため、再加熱を圧延設備、冷却設備と同一のライン上に設置された誘導加熱装置により行う。   In this invention, since it is necessary to reheat before steel plate temperature is cooled to 150 degrees C or less, reheating is performed with the induction heating apparatus installed on the same line as rolling equipment and cooling equipment.

以下、誘導加熱装置による再加熱の際の制御方法を説明する。   Hereinafter, a control method at the time of reheating by the induction heating apparatus will be described.

誘導加熱装置による加熱方法には、表面加熱と均一加熱がある。   Heating methods using an induction heating device include surface heating and uniform heating.

どちらの場合にも、鋼板の表面温度と内部温度をそれぞれ別の目標に加熱する。内部温度とは、板厚方向の平均温度(平均温度)の場合、板厚中心部の温度(中心温度)の場合等がある。   In both cases, the surface temperature and the internal temperature of the steel sheet are heated to different targets. The internal temperature includes an average temperature in the thickness direction (average temperature), a temperature at the center of the thickness (center temperature), and the like.

表層加熱の場合は、加熱終了時に表面温度を目標温度に加熱を行う。その場合に、加熱過程中の内部温度が上限温度を超えないように加熱を行う。   In the case of surface layer heating, the surface temperature is heated to the target temperature at the end of heating. In that case, heating is performed so that the internal temperature during the heating process does not exceed the upper limit temperature.

均一加熱の場合は、加熱終了時に内部温度を目標温度に加熱を行う。その場合に、加熱過程中の表面温度が上限温度を超えないように加熱を行う。   In the case of uniform heating, the internal temperature is heated to the target temperature at the end of heating. In that case, heating is performed so that the surface temperature during the heating process does not exceed the upper limit temperature.

均一加熱を行うためには、誘導加熱装置を複数台用意して加熱過程と冷却過程を繰り返しながら徐々に加熱する必要がある。   In order to perform uniform heating, it is necessary to prepare a plurality of induction heating devices and gradually heat them while repeating the heating process and the cooling process.

また、誘導加熱装置群を複数回往復させて加熱を行うこともある。圧延能率を阻害しないように搬送速度を上げるには、加熱能力(最大電力)をあげ、数多くの台数を用意する必要があるが、これには装置コストと設置スペースがかさむためである。   Further, heating may be performed by reciprocating the induction heating device group a plurality of times. In order to increase the conveyance speed so as not to hinder the rolling efficiency, it is necessary to increase the heating capacity (maximum power) and prepare a large number of units, because this increases the cost of the apparatus and the installation space.

さらに、同じ製造条件でも、加速冷却後の鋼板温度が操業条件により異なる。このため、電力をテーブル等であらかじめ用意しておくよりは、加速冷却後の鋼板温度を実測した後、オンラインで求める求めるような仕組みを構築する必要がある。   Furthermore, even under the same manufacturing conditions, the steel plate temperature after accelerated cooling differs depending on the operating conditions. For this reason, it is necessary to construct a mechanism for obtaining the power online after actually measuring the temperature of the steel plate after accelerated cooling, rather than preparing power in advance using a table or the like.

誘導加熱装置によりオンラインで上記熱処理を精度良く行うためには、以下の課題がある。
(a)誘導加熱時の鋼板の内部温度を精度良く推定する。
(b)加熱温度の目標、制限を満たす、電力と搬送速度を求める。
さらに、実用化にあたって、
(c)消費電力を、なるべく小さくする。
(d)操業を阻害しない搬送速度で熱処理を行う。
(e)加熱前の鋼板温度を実測し、その値により加熱電力、搬送速度等を決定する。
In order to accurately perform the heat treatment online with an induction heating apparatus, there are the following problems.
(A) The internal temperature of the steel sheet during induction heating is accurately estimated.
(B) The power and the conveyance speed that satisfy the target and limit of the heating temperature are obtained.
Furthermore, in practical use,
(C) Reduce power consumption as much as possible.
(D) Heat treatment is performed at a conveyance speed that does not impede operation.
(E) The steel plate temperature before heating is measured, and the heating power, the conveyance speed, etc. are determined based on the measured values.

本発明では上記課題を解決するために以下の手段を用いる。   In the present invention, the following means are used to solve the above problems.

(a)誘導加熱時の鋼板の内部温度を精度良く推定するため、厚み方向の差分式を採用して、鋼板温度、電力により透磁率と浸透深さを推定し、鋼板の厚み方向の誘導電流分布を求め、発熱量を計算する。   (A) In order to accurately estimate the internal temperature of the steel sheet during induction heating, a differential equation in the thickness direction is adopted, the permeability and penetration depth are estimated from the steel sheet temperature and power, and the induced current in the thickness direction of the steel sheet Obtain the distribution and calculate the calorific value.

(b)加熱電力設定を求めるために、温度条件が複数あり、操作量(電力)も複数あり、モデルが非線形であるため、非線形計画法で算出する。その結果、表面温度と内部温度は独立変数ではないが、誘導加熱装置を複数台配置して加熱することである程度独立とみなせ、別々に目標設定することが可能となる。
式で表すと以下のようになる。
変数:各誘導加熱装置に与える電力P=[p1,……,pi,……,pn]
内部温度条件:|Ti−Tr|<c (cは定数)
表面温度条件:Tu−Ts>0
目的関数:消費電力の和(kWh)Σ(pi*v)
ただし、Ts:表面温度最大値、Tr:加熱目標温度、Tu:上限温度、Ti:内部温度最大値、v:搬送速度 である。
(B) In order to obtain the heating power setting, since there are a plurality of temperature conditions, a plurality of manipulated variables (power), and the model is nonlinear, calculation is performed by nonlinear programming. As a result, the surface temperature and the internal temperature are not independent variables, but by placing a plurality of induction heating devices and heating them, they can be regarded as independent to some extent and can be set separately.
This is expressed as follows.
Variable: Power P given to each induction heating device P = [p1,..., Pi,.
Internal temperature condition: | Ti-Tr | <c (c is a constant)
Surface temperature condition: Tu-Ts> 0
Objective function: Sum of power consumption (kWh) Σ (pi * v)
However, Ts: surface temperature maximum value, Tr: heating target temperature, Tu: upper limit temperature, Ti: internal temperature maximum value, v: transport speed.

(c)非線形計画法の目的関数を消費電力の和とすることにより、温度条件を満たす中で消費電力が最小となる電力が求まる。   (C) By using the objective function of nonlinear programming as the sum of power consumption, the power that minimizes the power consumption can be found while satisfying the temperature condition.

(d)ある速度で電力設定を求めてから、加熱可能な範囲で、搬送速度を変更しながら繰り返し計算を行うことで、温度条件を満たす中で、操業条件を阻害しない搬送速度が求まる。   (D) By obtaining the power setting at a certain speed and then repeatedly performing the calculation while changing the transport speed within a heatable range, a transport speed that does not hinder the operating conditions can be obtained while satisfying the temperature condition.

(e)オンラインで電力と速度を求めるために、初期設定において事前に電力設定を行い最適化計算を簡略化する。また、加速冷却終了時に実測温度により電力と搬送速度の修正計算を行うことで、さらに高精度の制御が可能となる。   (E) In order to obtain the power and speed online, power setting is performed in advance in the initial setting to simplify the optimization calculation. Further, by performing a correction calculation of the electric power and the conveyance speed based on the actually measured temperature at the end of the accelerated cooling, it is possible to control with higher accuracy.

誘導加熱による鋼材の温度分布は以下のようにして求める。   The temperature distribution of the steel material by induction heating is obtained as follows.

鋼材内部の電流分布は、浸透深さで表される。浸透深さは式(2)のように周波数、比透磁率で表される。
δ=50.3*SQRT*(R/μ/fx)/100 ……(2)
ただし、δ:浸透深さ、R:比抵抗、μ:比透磁率、fx :周波数
浸透深さの値が大きい場合には誘導電流が鋼材内部まで流れるが、浸透深さが小さい場合には、誘導電流が表面に集中するため加熱も表面に集中し、鋼材内部は表面からの熱伝達により加熱されることになる。したがって、同じ電力を投入しても、浸透深さにより表面の加熱温度は変わってくる。そこで、比透磁率等により浸透深さを求め、浸透深さにより鋼材内部での電流分布を算出し、電流分布により鋼材内部の温度分布を求める。
The current distribution inside the steel material is represented by the penetration depth. The penetration depth is expressed by a frequency and a relative magnetic permeability as shown in Equation (2).
δ = 50.3 * SQRT * (R / μ / fx) / 100 (2)
However, δ: penetration depth, R: specific resistance, μ: relative permeability, fx: frequency When the penetration depth is large, the induced current flows to the inside of the steel material, but when the penetration depth is small, Since the induced current is concentrated on the surface, the heating is also concentrated on the surface, and the inside of the steel material is heated by heat transfer from the surface. Therefore, even when the same electric power is applied, the surface heating temperature varies depending on the penetration depth. Therefore, the penetration depth is obtained from the relative permeability, the current distribution inside the steel material is calculated from the penetration depth, and the temperature distribution inside the steel material is obtained from the current distribution.

一般に、鋼材表面からの距離zと、誘導電流I(z)の関係は式(3)で表される。αは定数である。
I(z)=αexp(-z/δ) ……(3)
よって、鋼材表面からの距離zにおける消費電力の比は式(4)で表される。
E0(z)= I(z)2/∫I(z)2 ……(4)
すなわち、式(4)を誘導加熱の際の電力分布と考えることができる。
In general, the relationship between the distance z from the steel material surface and the induced current I (z) is expressed by equation (3). α is a constant.
I (z) = αexp (-z / δ) (3)
Therefore, the ratio of the power consumption at the distance z from the steel material surface is expressed by Expression (4).
E 0 (z) = I (z) 2 / ∫I (z) 2 ...... (4)
That is, Equation (4) can be considered as the power distribution during induction heating.

次に、誘導加熱装置を用いた加熱過程における鋼材の温度変化を数式で表す。熱伝導方程式の差分式から、式(5)を得る。
Next, the temperature change of the steel material in the heating process using the induction heating apparatus is expressed by a mathematical formula. Equation (5) is obtained from the difference equation of the heat conduction equation.

Figure 0004333283
Figure 0004333283

Figure 0004333283
Figure 0004333283

式(5)〜(8)を用いることにより、加熱後の鋼材の温度分布(x1,j x2,j … xnb-1,j xnb,j を求めることができる。これの計算フローを図3に示す。鋼材が誘導加熱装置を抜けたところで計算終了となる。 By using the equations (5) to (8), the temperature distribution of the steel material after heating (x 1, j x 2, j ... x nb-1, j x nb, j ) Can be requested. The calculation flow is shown in FIG. The calculation ends when the steel material passes through the induction heating device.

次に、この温度モデルを用いた加熱電力の求め方を図4に示す。   Next, FIG. 4 shows how to obtain the heating power using this temperature model.

まず適当な初期値電力uk,jを与えて、誘導加熱装置出側の加熱温度分布xi,jを計算する。そして、各誘導加熱装置での加熱温度と温度条件を比較し、温度条件を満たしているかどうかの判定を行う。温度条件に合致していれば、その加熱電力を最終的な加熱電力として計算を終了する。合致していない場合は、新たな加熱誘導加熱電力を与えて温度計算のやり直しを行う。新しい加熱電力uk,jを与える方法は、線形計画法、非線形計画法など一般的な方法でかまわない。温度条件が実現可能であるならば、有限回の計算で収束する。 First, an appropriate initial value power u k, j is given, and the heating temperature distribution x i, j on the induction heating device outlet side is calculated. And the heating temperature and temperature conditions in each induction heating apparatus are compared, and it is determined whether the temperature conditions are satisfied. If the temperature condition is met, the calculation ends with the heating power as the final heating power. If they do not match, a new heating induction heating power is given and the temperature calculation is repeated. The method for giving the new heating power u k, j may be a general method such as linear programming or nonlinear programming. If the temperature condition is feasible, it converges with a finite number of calculations.

さらに、目的関数として各誘導加熱装置での消費電力量の和を与える。加熱後の鋼材温度が温度条件に合致するかどうかの判定を行った後、各誘導加熱装置での消費電力量が最少になるかどうかの判定も重ねて行う。すなわち、この処理によって求められる加熱電力が誘導加熱装置での消費電力量を最少にするようにする。この場合も、新しい加熱電力uk,jを与える方法は、線形計画法、非線形計画法など一般的な方法でかまわない。この計算フローを図5に示す。 Furthermore, the sum of the power consumption in each induction heating apparatus is given as an objective function. After determining whether or not the steel material temperature after heating meets the temperature condition, it is also determined whether or not the power consumption in each induction heating device is minimized. That is, the heating power required by this process minimizes the power consumption in the induction heating device. Also in this case, the method for giving the new heating power u k, j may be a general method such as linear programming or non-linear programming. This calculation flow is shown in FIG.

搬送速度の決定には、始めにパス数を決めておき、図6に示すような収束計算を行う。適当な初期速度から始めて、電力設定計算を行う。速度によっては、電力能力の上限や、温度の条件によっては、加熱が不可能の場合がある。その場合は、速度を下げて電力の設定計算を行う。加熱可能なら、搬送速度を上げて電力の設定計算を行う。加熱可能な範囲の中で最も早い速度を求める。   To determine the transport speed, the number of passes is determined first, and convergence calculation as shown in FIG. 6 is performed. Start with an appropriate initial speed and perform power setting calculations. Depending on the speed, heating may not be possible depending on the upper limit of the power capacity and temperature conditions. In that case, the power setting calculation is performed at a reduced speed. If heating is possible, increase the transfer speed and calculate the power setting. Find the fastest speed within the heatable range.

そして、ここで決まった搬送速度をもとに、前項の電力設定計算を用いて加熱電力を求める。求めた加熱電力と搬送速度を使用して、鋼材の加熱を行う。   And based on the conveyance speed decided here, heating electric power is calculated | required using the electric power setting calculation of the preceding clause. The steel material is heated using the obtained heating power and conveyance speed.

このようにして求まる加熱電力・搬送速度は事前に計算してテーブル等に保存しておき利用することもできるし、鋼材の加速冷却が終了し、加熱開始温度が確定した時点にオンラインで計算して求めることもできる。   The heating power and transfer speed obtained in this way can be calculated in advance and stored in a table, etc., or used online, or calculated online when the accelerated cooling of the steel has been completed and the heating start temperature has been determined. Can also be requested.

しかしながら、事前に計算しておいた場合は、加速冷却終了時の温度が予定と異なる場合がある。また、複雑なモデルを用いて収束計算を繰り返し行うため膨大な計算量になり、オンラインでは計算が間に合わないことも考えられる。このような場合は、以下のような修正方式が有効である。これは、加熱電力と搬送速度を事前に計算しておき、加速冷却終了後の実績温度で搬送速度を修正し、電力を再計算する方式である。これを以下に示す。   However, if calculated in advance, the temperature at the end of the accelerated cooling may be different from the schedule. In addition, since the convergence calculation is repeatedly performed using a complicated model, the calculation amount is enormous, and the calculation may not be in time on-line. In such a case, the following correction method is effective. In this method, the heating power and the conveyance speed are calculated in advance, the conveyance speed is corrected with the actual temperature after the completion of the accelerated cooling, and the power is recalculated. This is shown below.

まず、図6に示す事前に搬送速度を求める計算を行った後に、加熱開始温度が変更になった場合の搬送速度の影響係数を求めておく。この手順を図7に示す。加熱開始温度をTi、加熱開始温度の変更量をΔTiとし、加熱開始温度がTi+ΔTiの場合に搬送速度をどれだけ変更すれば良いのかの係数を求める。影響係数を1から処理を始めて、加熱可能で最も処理時間が短くなるように影響係数を調整する。この値をqとすると、実際の加熱開始温度がTi+ΔTの場合の搬送速度v’は、下式(9)で求められる。
v’(np)=(qΔT+1)v(np) ……(9)
ただし、np:パス数、v’(np):修正された搬送速度、v(np):事前に求めておいた速度、q:影響係数
加速冷却を終了し、実績温度が検出された時点で、このようにな搬送速度の修正を行う。さらに、修正された速度で図3または図4に示す電力計算を再度行う。電力計算の収束計算のみであれば、時間はさほどかからない。修正方式を利用することにより、最も効率のよい搬送速度を求めることができ、加熱電力を精度よく設定することができる。
First, after calculating in advance the conveyance speed shown in FIG. 6, the influence coefficient of the conveyance speed when the heating start temperature is changed is obtained. This procedure is shown in FIG. The heating start temperature is Ti, the change amount of the heating start temperature is ΔTi, and a coefficient of how much the conveyance speed should be changed when the heating start temperature is Ti + ΔTi is obtained. Starting from the influence coefficient of 1, the influence coefficient is adjusted so that heating is possible and the processing time is the shortest. When this value is q, the conveyance speed v ′ when the actual heating start temperature is Ti + ΔT is obtained by the following equation (9).
v ′ (n p ) = (qΔT + 1) v (n p ) (9)
However, n p : number of passes, v ′ (n p ): corrected transport speed, v (n p ): speed determined in advance, q: influence coefficient Accelerated cooling is terminated, and actual temperature is detected At this point, the conveyance speed is corrected in this way. Further, the power calculation shown in FIG. 3 or 4 is performed again at the corrected speed. If only the convergence calculation of the power calculation, it will not take much time. By using the correction method, the most efficient conveyance speed can be obtained, and the heating power can be set with high accuracy.

図2は、本発明に係る高強度鋼板の製造方法が適用される熱処理装置の概略構成を示す側面図である。   FIG. 2 is a side view showing a schematic configuration of a heat treatment apparatus to which the method for producing a high-strength steel plate according to the present invention is applied.

鋼材2は、誘導加熱装置5の中を搬送ローラ11によって移動しながら加熱される。誘導加熱装置5の入り口には鋼材2の温度を検出する温度検出器9が備えられている。上記温度検出器9で得られた温度信号は、制御装置13に入力される。制御装置13は、鋼板2の温度若しくは加熱開始の予定温度と搬送速度とに基づいて誘導加熱装置5に供給する電力を計算し、その値を電力供給装置12に出力する。電力供給装置12は、供給電力が制御装置13から与えられた値になるように誘導加熱装置5の出力を制御する。   The steel material 2 is heated while being moved by the conveyance roller 11 in the induction heating device 5. A temperature detector 9 for detecting the temperature of the steel material 2 is provided at the entrance of the induction heating device 5. The temperature signal obtained by the temperature detector 9 is input to the control device 13. The control device 13 calculates the power to be supplied to the induction heating device 5 based on the temperature of the steel plate 2 or the scheduled heating start temperature and the conveyance speed, and outputs the value to the power supply device 12. The power supply device 12 controls the output of the induction heating device 5 so that the supplied power becomes a value given from the control device 13.

以下、本発明の実施例を示す。表1に供試鋼の化学成分を示す。これらの鋼は、転炉とRH真空脱ガス装置との組合せにより溶製し、連続鋳造法にてスラブ鋳片とした。この鋳片を熱間圧延にて板厚13〜25mmの鋼板に圧延後、水冷型の加速冷却設備を用いて冷却を行った。
Examples of the present invention will be described below. Table 1 shows the chemical composition of the test steel. These steels were melted by a combination of a converter and an RH vacuum degassing apparatus, and slab slabs were formed by a continuous casting method. The slab was rolled into a steel plate having a thickness of 13 to 25 mm by hot rolling, and then cooled using a water-cooled accelerated cooling facility.

Figure 0004333283
Figure 0004333283

この時の圧延終了温度及び冷却停止温度を表2に示す。その後、冷却設備と同一ライン上に設置した誘導加熱装置を用いて再加熱を行った。   Table 2 shows the rolling end temperature and the cooling stop temperature at this time. Then, it reheated using the induction heating apparatus installed on the same line as the cooling facility.

図1は、この実施例における設備配置の模式図である。圧延ライン1上に配置された熱間圧延機3で圧延された鋼板2が加速冷却装置4によって冷却された後、同一ライン1上に設置された3台直列のソレノイド型誘導加熱装置5によって再加熱される。そして、ホットレベラー6で矯正された後、剪断機7によってシャー切断される。これらの再加熱条件を表2に併せて示す。   FIG. 1 is a schematic diagram of equipment arrangement in this embodiment. After the steel plate 2 rolled by the hot rolling mill 3 arranged on the rolling line 1 is cooled by the accelerated cooling device 4, the steel plate 2 is re-started by the three solenoid induction heating devices 5 arranged in series on the same line 1. Heated. Then, after correction by the hot leveler 6, shear cutting is performed by the shearing machine 7. These reheating conditions are also shown in Table 2.

鋼板を加熱するための搬送速度及び電力は、No.1については事前処理方式により決定した。すなわち、予め鋼板の加熱開始予定温度と加熱目標温度とから搬送速度とパス数を決め、その値をもとに加熱に必要な電力を計算した。   The conveyance speed and electric power for heating a steel plate were determined by the pre-processing system about No.1. That is, the conveyance speed and the number of passes were determined in advance from the heating start scheduled temperature and the heating target temperature of the steel sheet, and the electric power required for heating was calculated based on the values.

No.2〜No.7については、修正処理方式により決定した。すなわち、鋼板の加熱開始前温度を実測し、実測された加熱開始前温度と、搬送速度とに基づいて加熱に必要な電力を計算した。この計算においては、必要に応じて搬送速度を修正しつつ所望の電力を求めた。内部温度としては、板厚方向の平均温度を用いた。
No. 2 to No. 7 were determined by the correction processing method. That is, the temperature before starting heating of the steel sheet was measured, and the electric power necessary for heating was calculated based on the actually measured temperature before starting heating and the conveyance speed. In this calculation, the desired power was obtained while correcting the conveyance speed as necessary. As the internal temperature, the average temperature in the thickness direction was used.

Figure 0004333283
Figure 0004333283

再加熱後の鋼板は、鋼板温度が100℃以下まで冷却されてから、剪断機により各鋼板10箇所切断して、切断割れの試験を行った。試験では、鋼板切断端面を磁粉探傷により調査し、切断割れが認められた切断部(端面)の数を求めた。ここで、1つの端面内に複数の割れが確認できた場合でも、端面としては1つなので、切断割れの発生件数は1とした。また、引張強度は、全厚試験片を用いた引張試験により測定した。以上の試験、測定結果を表2に併せて示す。   After the reheated steel plate was cooled to a temperature of 100 ° C. or lower, each steel plate was cut at 10 locations by a shearing machine, and a cut crack test was performed. In the test, the steel plate cut end face was investigated by magnetic particle flaw detection, and the number of cut portions (end face) where cut cracks were observed was determined. Here, even when a plurality of cracks could be confirmed in one end face, the number of occurrences of cut cracks was set to 1 because there was one end face. The tensile strength was measured by a tensile test using a full thickness test piece. The above test and measurement results are also shown in Table 2.

本発明例であるNo.1〜No.4は、いずれも冷却後、鋼板温度が150℃以下となる前に300〜500℃の範囲に再加熱されており、切断端面で割れの発生は認められなかった。なお、No.1とNo.2を比較すると、冷却後の鋼板温度を実測して設定したNo.2の方が、再加熱後の内部温度は目標温度に近い値が得られた。   Examples No. 1 to No. 4, which are examples of the present invention, are all reheated in the range of 300 to 500 ° C. before the steel plate temperature becomes 150 ° C. or lower after cooling, and the occurrence of cracks at the cut end faces is recognized. I couldn't. When No. 1 and No. 2 were compared, the internal temperature after reheating was closer to the target temperature in No. 2 which was set by actually measuring the steel plate temperature after cooling.

これに対して、比較例であるNo.5は再加熱温度が500℃を超えており、シャー切断割れを生じなかったが、強度低下が顕著であった。また、No.6は再加熱前の鋼板温度が150℃以下であり、No.7は再加熱温度が300℃未満であり、いずれも切断端面で割れが発生した。   On the other hand, No. 5, which is a comparative example, had a reheating temperature exceeding 500 ° C. and did not cause shear cutting cracking, but the strength reduction was significant. In No. 6, the steel plate temperature before reheating was 150 ° C. or less, and in No. 7, the reheating temperature was less than 300 ° C., and cracks occurred at the cut end faces.

本発明例では、誘導加熱時の鋼板の表層温度と内部温度を精度良く推定して電力設定したため、表面がAc1変態点を超えて過加熱されることはなく、内部温度も300〜500℃に正確に保持することができた。また、誘導加熱装置で再加熱する際の搬送速度を最適化したため、次に熱処理される鋼板を誘導加熱装置前で待機させたり、圧延能率を阻害させることなく、効率的な熱処理が可能であった。   In the present invention example, the surface temperature and the internal temperature of the steel sheet during induction heating were accurately estimated and the power was set, so the surface was not overheated beyond the Ac1 transformation point, and the internal temperature was also 300 to 500 ° C. I was able to hold it accurately. In addition, because the conveyance speed when reheating with the induction heating device is optimized, the steel plate to be heat treated next can be efficiently heat treated without waiting in front of the induction heating device or hindering rolling efficiency. It was.

本発明の実施例における設備配置の模式図。The schematic diagram of the equipment arrangement | positioning in the Example of this invention. 本発明に係る高強度鋼板の製造方法が適用される熱処理装置の概略構成を示す側面図。The side view which shows schematic structure of the heat processing apparatus with which the manufacturing method of the high strength steel plate which concerns on this invention is applied. 本発明の実施形態における温度分布の計算フロー図。The calculation flow figure of the temperature distribution in embodiment of this invention. 本発明の実施形態における電力の計算フロー図。The power calculation flow figure in the embodiment of the present invention. 本発明の実施形態における消費電力の最適化フロー図。The power consumption optimization flowchart in the embodiment of the present invention. 本発明の実施形態における搬送速度の最適化フロー図。The conveyance speed optimization flowchart in the embodiment of the present invention. 本発明の実施形態における影響係数の算出フロー図。The influence coefficient calculation flow figure in embodiment of this invention.

符号の説明Explanation of symbols

1 圧延ライン
2 鋼板
3 熱間圧延機
4 加速冷却装置
5 誘導加熱装置
6 ホットレベラー
7 剪断機
9 温度検出器
11 搬送ローラ
12 電力供給装置
13 制御装置
DESCRIPTION OF SYMBOLS 1 Rolling line 2 Steel plate 3 Hot rolling mill 4 Accelerated cooling apparatus 5 Induction heating apparatus 6 Hot leveler 7 Shearing machine 9 Temperature detector 11 Conveyance roller 12 Power supply apparatus 13 Control apparatus

Claims (6)

熱間圧延後、加速冷却または直接焼入れ後に誘導加熱装置を用いてライン上で再加熱を行う鋼板の製造方法において、
前記鋼板の搬送速度と前記誘導加熱装置に供給予定の電力とを含むデータから誘導加熱後における前記鋼板の表面温度と厚み方向内部の温度を推定する演算ステップと、
前記鋼板の表面の最高温度がAc1変態点未満、厚み方向内部の温度が300℃以上500℃未満となるかどうかを判定する判定ステップと、
前記温度条件に適合しない場合は、前記電力を修正して前記演算ステップと前記判定ステップとを繰り返して実行する判定処理ステップと、
前記温度条件に適合する場合は、その演算に用いられた電力を前記誘導加熱装置に供給する供給ステップと、
前記鋼板を再加熱した後、ライン上でシャー切断を行う切断ステップと
を備えたことを特徴とするシャー切断割れ性に優れた高強度鋼板の製造方法。
In the method of manufacturing a steel sheet after hot rolling, reheating on the line using an induction heating device after accelerated cooling or direct quenching,
A calculation step of estimating the surface temperature of the steel sheet and the temperature in the thickness direction after induction heating from data including the conveyance speed of the steel sheet and the power to be supplied to the induction heating device,
A determination step of determining whether the maximum temperature of the surface of the steel sheet is less than the Ac1 transformation point and whether the temperature in the thickness direction is 300 ° C. or more and less than 500 ° C .;
If the temperature condition is not met, a determination processing step of correcting the power and repeatedly executing the calculation step and the determination step;
When the temperature condition is met, a supply step of supplying the induction heating device with the electric power used for the calculation;
A method for producing a high-strength steel sheet having excellent shear cutting cracking characteristics, comprising: a cutting step of performing shear cutting on a line after reheating the steel sheet.
熱間圧延後、加速冷却または直接焼入れ後に誘導加熱装置を用いてライン上で再加熱を行う鋼板の製造方法において、
前記鋼板の搬送速度と前記誘導加熱装置に供給予定の電力とを含むデータから誘導加熱後における前記鋼板の表面温度と厚み方向内部の温度を推定する演算ステップと、
前記鋼板の表面の最高温度がAc1変態点未満、厚み方向内部の温度が300℃以上500℃未満となるかどうかを判定する判定ステップと、
前記温度条件に適合しない場合は、前記電力を修正して前記演算ステップと前記判定ステップとを繰り返して実行する判定処理ステップと、
前記温度条件に適合する場合は、その演算に用いられた電力に基づいて、前記鋼板の加熱に利用されるそれぞれの誘導加熱装置の電力値の合計値が所定の値以下である電力条件に適合するかどうかを判定する電力判定ステップと、
前記温度条件に適合する場合は、その演算に用いられた電力を前記誘導加熱装置に供給する供給ステップと、
前記鋼板を再加熱した後、ライン上でシャー切断を行う切断ステップと
を備えたことを特徴とするシャー切断割れ性に優れた高強度鋼板の製造方法。
In the method of manufacturing a steel sheet after hot rolling, reheating on the line using an induction heating device after accelerated cooling or direct quenching,
A calculation step of estimating the surface temperature of the steel sheet and the temperature in the thickness direction after induction heating from data including the conveyance speed of the steel sheet and the power to be supplied to the induction heating device,
A determination step of determining whether the maximum temperature of the surface of the steel sheet is less than the Ac1 transformation point and whether the temperature in the thickness direction is 300 ° C. or more and less than 500 ° C .;
If the temperature condition is not met, a determination processing step of correcting the power and repeatedly executing the calculation step and the determination step;
When the temperature condition is met, based on the power used for the calculation, the total power value of each induction heating device used for heating the steel sheet meets a power condition that is equal to or less than a predetermined value. A power determination step for determining whether to
When the temperature condition is met, a supply step of supplying the induction heating device with the electric power used for the calculation;
A method for producing a high-strength steel sheet having excellent shear cutting cracking characteristics, comprising: a cutting step of performing shear cutting on a line after reheating the steel sheet.
熱間圧延後、加速冷却または直接焼入れ後に誘導加熱装置を用いてライン上で再加熱を行う鋼板の製造方法において、
前記鋼板の搬送速度と前記誘導加熱装置に供給予定の電力とを含むデータから誘導加熱後における前記鋼板の表面温度と厚み方向内部の温度を推定する演算ステップと、
前記鋼板の表面の最高温度がAc1変態点未満、厚み方向内部の温度が300℃以上500℃未満となるかどうかを判定する判定ステップと、
前記温度条件に適合しない場合は、前記電力を修正して前記演算ステップと前記判定ステップとを繰り返して実行する判定処理ステップと、
前記温度条件に適合する場合は、前記搬送速度を増加した新たな搬送速度を用いて前記演算ステップ、判定ステップ、判定処理ステップを前記温度条件に適合しなくなるまで繰り返して実行し、前記温度条件に適合する最終の演算に用いられた電力と搬送速度を抽出する抽出ステップと、
抽出された搬送速度で前記鋼板を搬送しつつ、抽出された電力を前記誘導加熱装置に供給する供給ステップと、
前記鋼板を再加熱した後、ライン上でシャー切断を行う切断ステップと
を備えたことを特徴とするシャー切断割れ性に優れた高強度鋼板の製造方法。
In the method of manufacturing a steel sheet after hot rolling, reheating on the line using an induction heating device after accelerated cooling or direct quenching,
A calculation step of estimating the surface temperature of the steel sheet and the temperature in the thickness direction after induction heating from data including the conveyance speed of the steel sheet and the power to be supplied to the induction heating device,
A determination step of determining whether the maximum temperature of the surface of the steel sheet is less than the Ac1 transformation point and whether the temperature in the thickness direction is 300 ° C. or more and less than 500 ° C .;
If the temperature condition is not met, a determination processing step of correcting the power and repeatedly executing the calculation step and the determination step;
When the temperature condition is satisfied, the calculation step, the determination step, and the determination processing step are repeatedly performed using the new transfer speed obtained by increasing the transfer speed until the temperature condition is not satisfied. An extraction step to extract the power and transport speed used for the final operation that fits;
A supply step of supplying the extracted electric power to the induction heating device while conveying the steel sheet at the extracted conveyance speed;
A method for producing a high-strength steel sheet having excellent shear cutting cracking characteristics, comprising: a cutting step of performing shear cutting on a line after reheating the steel sheet.
熱間圧延後、加速冷却または直接焼入れ後に誘導加熱装置を用いてライン上で再加熱を行う鋼板の製造方法において、
前記鋼板の搬送速度と前記誘導加熱装置に供給予定の電力とを含むデータから誘導加熱後における前記鋼板の表面温度と厚み方向内部の温度を推定する演算ステップと、
前記鋼板の表面の最高温度がAc1変態点未満、厚み方向内部の温度が300℃以上500℃未満となるかどうかを判定する判定ステップと、
前記温度条件に適合しない場合は、前記電力を修正して前記演算ステップと前記判定ステップとを繰り返して実行する判定処理ステップと、
前記温度条件に適合する場合は、その演算に用いられた電力に基づいて、前記鋼板の加熱に利用されるそれぞれの誘導加熱装置の電力値の合計値が所定の値以下である電力条件に適合するかどうかを判定する電力判定ステップと、
前記温度条件に適合する場合は、前記搬送速度を増加した新たな搬送速度を用いて前記演算ステップ、判定ステップ、判定処理ステップを前記温度条件に適合しなくなるまで繰り返して実行し、前記温度条件に適合する最終の演算に用いられた電力と搬送速度を抽出する抽出ステップと、
抽出された搬送速度で前記鋼板を搬送しつつ、抽出された電力を前記誘導加熱装置に供給する供給ステップと、
前記鋼板を再加熱した後、ライン上でシャー切断を行う切断ステップと
を備えたことを特徴とするシャー切断割れ性に優れた高強度鋼板の製造方法。
In the method of manufacturing a steel sheet after hot rolling, reheating on the line using an induction heating device after accelerated cooling or direct quenching,
A calculation step of estimating the surface temperature of the steel sheet and the temperature in the thickness direction after induction heating from data including the conveyance speed of the steel sheet and the power to be supplied to the induction heating device,
A determination step of determining whether the maximum temperature of the surface of the steel sheet is less than the Ac1 transformation point and whether the temperature in the thickness direction is 300 ° C. or more and less than 500 ° C .;
If the temperature condition is not met, a determination processing step of correcting the power and repeatedly executing the calculation step and the determination step;
When the temperature condition is met, based on the power used for the calculation, the total power value of each induction heating device used for heating the steel sheet meets a power condition that is equal to or less than a predetermined value. A power determination step for determining whether to
When the temperature condition is satisfied, the calculation step, the determination step, and the determination processing step are repeatedly performed using the new transfer speed obtained by increasing the transfer speed until the temperature condition is not satisfied. An extraction step to extract the power and transport speed used for the final operation that fits;
A supply step of supplying the extracted electric power to the induction heating device while conveying the steel sheet at the extracted conveyance speed;
A method for producing a high-strength steel sheet having excellent shear cutting cracking characteristics, comprising: a cutting step of performing shear cutting on a line after reheating the steel sheet.
請求項3または4に記載の高強度鋼板の製造方法において、前記誘導加熱装置での加熱開始温度が確定するまでに、前記演算ステップから前記抽出ステップまでの各ステップを行って、事前に電力と搬送速度を抽出しておき、加熱開始温度が確定した時点で、前記演算ステップで予測していた加熱開始温度から前記確定した加熱開始温度への変更量に基づいて、前記事前に抽出された搬送速度を修正して新たに抽出された搬送速度とするとともに、その新たな抽出された搬送速度で電力の再計算を行って得られた電力を新たに抽出された電力とし、これらの新たに抽出された搬送速度と新たに抽出された電力を用いて前記供給ステップを行うことを特徴とする高強度鋼板の製造方法。In the manufacturing method of the high-strength steel plate according to claim 3 or 4, before the heating start temperature in the induction heating device is determined, each step from the calculation step to the extraction step is performed, Extracted in advance based on the amount of change from the heating start temperature predicted in the calculation step to the determined heating start temperature when the conveyance speed is extracted and the heating start temperature is determined The transport speed is corrected to the newly extracted transport speed, and the power obtained by recalculating the power at the newly extracted transport speed is used as the newly extracted power. A method for producing a high-strength steel sheet, characterized in that the supplying step is performed using the extracted conveyance speed and newly extracted electric power. 鋼板温度が150℃以下に冷却される前に、誘導加熱装置で再加熱することを特徴とする請求項1〜のいずれかに記載の高強度鋼板の製造方法。 The method for producing a high-strength steel sheet according to any one of claims 1 to 5 , wherein the steel sheet is reheated by an induction heating device before being cooled to 150 ° C or lower.
JP2003305093A 2003-08-28 2003-08-28 Manufacturing method of high-strength steel sheet Expired - Fee Related JP4333283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003305093A JP4333283B2 (en) 2003-08-28 2003-08-28 Manufacturing method of high-strength steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003305093A JP4333283B2 (en) 2003-08-28 2003-08-28 Manufacturing method of high-strength steel sheet

Publications (2)

Publication Number Publication Date
JP2005076051A JP2005076051A (en) 2005-03-24
JP4333283B2 true JP4333283B2 (en) 2009-09-16

Family

ID=34408595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003305093A Expired - Fee Related JP4333283B2 (en) 2003-08-28 2003-08-28 Manufacturing method of high-strength steel sheet

Country Status (1)

Country Link
JP (1) JP4333283B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5862487B2 (en) * 2012-07-03 2016-02-16 Jfeスチール株式会社 Shearability determination method, steel plate manufacturing method, and steel plate shearing equipment
DE102014221068A1 (en) * 2014-10-16 2016-04-21 Sms Group Gmbh Plant and method for the production of heavy plates

Also Published As

Publication number Publication date
JP2005076051A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
CN101181718B (en) Method for producing wide strip steel by bar strip continuous casting and rolling as well as system therefor
KR20090115195A (en) Method of continuous annealing for steel strip with curie point and continuous annealing apparatus therefor
JP6068146B2 (en) Set value calculation apparatus, set value calculation method, and set value calculation program
JP2019515796A (en) Method of manufacturing cold rolled and welded steel sheet and sheet so manufactured
JP4333283B2 (en) Manufacturing method of high-strength steel sheet
CN101543836B (en) Production method and device for microstress hot rolling plates
JP4333282B2 (en) Manufacturing method of high-strength steel sheet
JP4325326B2 (en) Manufacturing method of high-tensile steel sheet
JP5015386B2 (en) Heat treatment method for thick steel plate
JP6582892B2 (en) Hot rolling method for steel
JP3945238B2 (en) Steel plate manufacturing method
JP4655684B2 (en) Heat treatment method for steel sheet
JP4396237B2 (en) Steel material heat treatment apparatus and steel material manufacturing method
JP2000144320A (en) Deformed bar steel for reinforcing bar and its production
JP2006272395A (en) Method and apparatus for controlling cooling and computer program
JP2009012040A (en) Manufacturing method and equipment of thick steel plate
JP5050537B2 (en) Thick steel plate cutting method
JP3818215B2 (en) Manufacturing method of high-strength steel sheet
JP4239729B2 (en) Steel manufacturing method
JP2000119807A (en) Deformed reinforcing bar and its manufacture
JP5098201B2 (en) Method for tempering thick steel plates
JP4089607B2 (en) Heat treatment method for steel sheet
JP2004283846A (en) Hot rolling method and its equipment
JP3945212B2 (en) Heat treatment apparatus and method for thick steel plate
JP4089606B2 (en) Heat treatment method for steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060526

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees