JP5858465B2 - 光通信装置、波長数測定装置、光中継装置、および波長数測定方法 - Google Patents

光通信装置、波長数測定装置、光中継装置、および波長数測定方法 Download PDF

Info

Publication number
JP5858465B2
JP5858465B2 JP2011277515A JP2011277515A JP5858465B2 JP 5858465 B2 JP5858465 B2 JP 5858465B2 JP 2011277515 A JP2011277515 A JP 2011277515A JP 2011277515 A JP2011277515 A JP 2011277515A JP 5858465 B2 JP5858465 B2 JP 5858465B2
Authority
JP
Japan
Prior art keywords
light
wavelength
output
signal light
wavelengths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011277515A
Other languages
English (en)
Other versions
JP2013128245A (ja
Inventor
泰三 前田
泰三 前田
崇 豊巻
崇 豊巻
卓也 宮下
卓也 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2011277515A priority Critical patent/JP5858465B2/ja
Priority to US13/711,773 priority patent/US8891961B2/en
Publication of JP2013128245A publication Critical patent/JP2013128245A/ja
Application granted granted Critical
Publication of JP5858465B2 publication Critical patent/JP5858465B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07957Monitoring or measuring wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本件は、光信号を受信する光通信装置、波長数測定装置、光中継装置、および波長数測定方法に関する。
WDM(Wavelength Division Multiplexing)の信号光を受信する光通信装置には、受信した信号光のレベルが所定値で一定となるように、ALC(Automatic Level Control)を行っているものがある。ALCは、アンプの出力パワーをモニタし、そのアンプの出力パワーが一定となるように制御して、信号光のレベルが所定値で一定となるように制御する。
また、信号光は、アンプで増幅する際、ASE(Amplified Spontaneous Emission)光が含まれる場合がある。そのため、アンプの出力パワーに含まれるASE光のパワーが、信号光のパワーに対して相対的に大きくなると、信号光のレベルは、ALCで一定制御されるべき値より小さい値で一定制御される。そこで、ASE光による信号光のレベル低下を補正するASE補正がある。
ALCやASE補正では、信号光の波長数情報を要する。ALCやASE補正を行う光通信装置は、例えば、OSC(Optical Supervisory Channel)によって、信号光の波長数を知ることができる。
なお、従来、WDMで伝送される複数の信号光から波長変換対象である一または二以上の信号光(波長変換対象信号光)を、フィルタ作用を持つ光部品で取り出して波長変換対象光とし、それを波長変換する波長変換装置が提供されている(例えば、特許文献1参照)。
特開2001−249368号公報
しかし、従来の光伝送システムでは、受信側の光通信装置がALCやASE補正を行うのに、送信側の光通信装置に波長数情報を送信するための装置を要し、光伝送システムのコストが高くなるという問題点があった。
例えば、送信側の光通信装置は、波長数情報を含むOSCを送信するための装置を要し、光伝送システムのコストが高くなる。
本件はこのような点に鑑みてなされたものであり、安価なコストで光伝送システムを構築することができる光通信装置、波長数測定装置、光中継装置、および波長数測定方法を提供することを目的とする。
上記課題を解決するために、光通信装置が提供される。この光通信装置は、出力する光の波長が可変な光源と、前記光源の波長を制御する波長制御部と、伝送路から受信した信号光に前記光源から出力される光を合波する合波器と、前記合波器から出力される光が入力され、四光波混合光を発生する光学媒質と、伝送路から受信した第1の信号光波長を持つ信号光と、前記光源から出力された、前記第1の信号光波長と異なる第1の波長を持つ光との合波光が、前記光学媒質に入力された際に、前記光学媒質から出力される、前記第1の波長と異なる波長の前記四光波混合光をモニタするモニタ部と、前記モニタ部のモニタ結果に基づいて前記伝送路で伝送されている信号光の波長数を測定する波長数測定部と、を有する。
開示の光通信装置によれば、安価なコストで光伝送システムを構築することができる。
第1の実施の形態に係る光通信装置を説明する図である。 第2の実施の形態に係る光伝送システムを示した図である。 送信側の光通信装置のブロック図である。 受信側の光通信装置のブロック図である。 ALCを説明する図のその1である。 ALCを説明する図のその2である。 信号光、波長可変光、およびFWM光の関係を説明する図である。 波長数測定のためのパラメータ例を示した図である。 波長数測定を説明する図である。 波長数を増設した場合の光通信装置の動作シーケンスを示した図である。 波長数を増設した場合のアンプの入出力パワーを示した図である。 波長数を減設した場合の光通信装置の動作シーケンスを示した図である。 波長数を減設した場合のアンプの入出力パワーを示した図である。 第3の実施の形態に係る受信側の光通信装置のブロック図である。 波長数を増設した場合の光通信装置の動作シーケンスを示した図である。 第4の実施の形態に係る波長数を増設した場合の光通信装置の動作シーケンスを示した図である。 波長数を増設した場合のアンプの入出力パワーを示した図である。 波長数を減設した場合の光通信装置の動作シーケンスを示した図である。 波長数を減設した場合のアンプの入出力パワーを示した図である。 第5の実施の形態に係る波長数を増設した場合の光通信装置の動作シーケンスを示した図である。 第6の実施の形態に係る受信側の光通信装置のブロック図である。 第7の実施の形態に係る光中継装置のブロック図である。 第8の実施の形態に係る光通信装置のブロック図である。
以下、実施の形態を、図面を参照して詳細に説明する。
[第1の実施の形態]
図1は、第1の実施の形態に係る光通信装置を説明する図である。図1には、WDMの信号光を受信する光通信装置と、その光通信装置の動作を説明する動作説明図が示してある。
図1に示すように、光通信装置は、分波器1、光源2、合波器3、光学媒質4、モニタ部5、および波長数測定部6を有している。
分波器1には、図示しない伝送路を伝搬した光が入力される。すなわち、分波器1には、送信側の光通信装置が送信した信号光が入力される。分波器1は、入力される光を分波し、合波器3と、図示しない後段の受信信号処理装置とに出力する。
光源2は、例えば、CW(Continuous Wave)光を出力する。光源2は、波長制御部を備え、波長制御部は光源が出力する光の波長を制御する。波長制御部は、プロセッサ、回路、FPGA(Field-Programmable Gate Array)などで実現することができる。以下では、光源2の出力する光を波長可変光と呼ぶことがある。
合波器3には、分波器1から出力される光と、光源2から出力される波長可変光とが入力される。合波器3は、分波器1から出力される光に、光源2から出力される波長可変光を合波する。
光学媒質4は、合波器3から出力される光によって四光波混合(FWM:Four Wave Mixing)光を発生する。
モニタ部5は、光学媒質4から出力される所定波長のFWM光をモニタする。
波長数測定部6は、モニタ部5のFWM光のモニタ結果に基づいて、送信側の光通信装置が送信した信号光の波長数を測定する。波長数測定部6は、プロセッサ、回路、FPGAなどで実現することができる。
光通信装置の動作を、動作説明図を用いて説明する。図1の右側に示す動作説明図は、光通信装置が受信する信号光と、光源2が出力する波長可変光と、光学媒質4で発生するFWM光との関係の一例を示している。動作説明図の縦方向は波長を示し、横方向は時間を示す。
動作説明図に示すx1〜x4は、送信側の光通信装置が送信する信号光の波長を示している。すなわち、送信側の光通信装置からは、波長x1〜x4の4波長の信号光が波長多重されて送信されているとする。
y1〜y4は、光源2が出力する波長可変光の波長を示している。a1,b1〜b4は、光学媒質4から出力されるFWM光の波長を示している。モニタ部5は、光学媒質4から出力される波長a1の光をモニタする。すなわち、モニタ部5は、図1の矢印A1に示す波長の光をモニタする。
光源2は、上記したように、出力する光の波長を可変する。光源2から出力される光の波長が波長y1のとき、光学媒質4からは、光学媒質4に入射される波長y1の波長可変光と、波長x1の信号光とによって、波長a1,b1のFWM光が出力される。光学媒質4からは、波長a1の光(FWM光)が出力されるので、モニタ部5は、波長a1の光をモニタ(検出)する。
光源2は、出力する光の波長を波長y1からさらに可変する。光源2から出力される光の波長が波長y2のとき、光学媒質4からは、光学媒質4に入射される波長y2の波長可変光と、波長x2の信号光とによって、波長a1,b2のFWM光が出力される。光学媒質4からは、波長a1のFWM光が出力されるので、モニタ部5は、波長a1の光を検出する。
光源2は、出力する光の波長を波長y2からさらに可変する。光源2から出力される光の波長が波長y3のとき、光学媒質4からは、光学媒質4に入射される波長y3の波長可変光と、波長x3の信号光とによって、波長a1,b3のFWM光が出力される。光学媒質4からは、波長a1のFWM光が出力されるので、モニタ部5は、波長a1の光を検出する。
光源2は、出力する光の波長を波長y3からさらに可変する。光源2から出力される光の波長が波長y4のとき、光学媒質4からは、光学媒質4に入射される波長y4の波長可変光と、波長x4の信号光とによって、波長a1,b4のFWM光が出力される。光学媒質4からは、波長a1のFWM光が出力されるので、モニタ部5は、波長a1の光を検出する。
波長数測定部6は、例えば、モニタ部5でモニタされた波長a1の光の数によって、送信側の光通信装置が送信している信号光の波長数を測定する。例えば、上記例の場合、モニタ部5は、4つのFWM光をモニタするので、波長数測定部6は、送信側の光通信装置からは、4波長の信号光が送信されていると測定できる。
すなわち、図1に示す光通信装置は、波長可変光を生成して、伝送路から受信した光に合波し、所定の波長a1で発生するFWM光をモニタする。そして、光通信装置は、波長x1,x2,x3,x4の信号光の波長数を測定する。
このように、光通信装置は、FWM光を発生する光学媒質4に、伝送路から受信した光と波長可変光とを入射し、光学媒質4から出力される所定波長のFWM光をモニタする。そして、光通信装置は、FWM光のモニタ結果に基づいて、伝送路で伝送されている信号光の波長数を測定する。
これにより、信号光を受信する光通信装置は、送信側の光通信装置から波長数情報を通知されなくても、受信する信号光の波長数を知ることができ、例えば、ALCやASE補正を行うことができる。すなわち、送信側の光通信装置は、波長数情報を送信する装置を具備しなくて済み、光伝送システムのコストを低減することができる。
[第2の実施の形態]
次に、第2の実施の形態を、図面を参照して詳細に説明する。
図2は、第2の実施の形態に係る光伝送システムを示した図である。図2に示す四角は、光通信装置を示す。光伝送システムは、複数の光通信装置を備え、光ファイバで接続されている。
光伝送システムは、例えば、図2に示すように、アクセス系ネットワーク11、メトロネットワーク12、およびコアネットワーク13に分けられる。アクセス系ネットワーク11は、例えば、メトロネットワーク12とエンドユーザとを結ぶネットワークである。メトロネットワーク12は、例えば、都市部などの地域で形成されるネットワークである。コアネットワーク13は、例えば、メトロネットワーク12を結ぶ、長距離の基幹ネットワークである。
アクセス系ネットワーク11では、メトロネットワーク12およびコアネットワーク13に適用されるDWDM(Dense WDM)に比べ、光通信装置の数が多い。そのため、アクセス系ネットワーク11に用いられる光通信装置は、性能よりも安価であることが求められる。また、アクセス系ネットワーク11では、WDMで伝送される信号光の波長数が少なく、例えば、4〜8波で使用されることが多い。
信号光は、アンプで増幅する際、ASE光が含まれる場合がある。そのため、以下で詳細に説明するが、アンプの出力パワーに含まれるASE光のパワーが、信号光のパワーに対して相対的に大きくなると、信号光のレベルは、ALCされるべき所定値より小さい値で一定制御される。
アクセス系の光伝送システムでは、上記したように信号光は、例えば、4〜8波の少数波で使用されることが多い。そのため、アクセス系の光伝送システムでは、ASE光のパワーが信号光のパワーに対して相対的に大きくなりやすく、信号光の劣化が生じやすい。また、アクセス系の光伝送システムにおいて、例えば、ファイバロスが大きい場合や、中継器ノードをカスケード接続した場合、ASE光のパワーが信号光のパワーに対して相対的に大きくなりやすい。この場合、受信側の光通信装置では、信号光のレベルが低下し、伝送信号の劣化が生じる。
ASE光による信号劣化を抑制する方法としてASE補正がある。ASE補正は、信号光のピークレベルを所定値に保つために、波長数に応じてALCの利得を増減する。例えば、ASE補正は、波長数が小さい場合、ALCの利得を大きくして、ASE光によって低下する信号光のピークレベルを所定値に保つようにする。
図3は、送信側の光通信装置のブロック図である。図3には、信号光を送信する送信側の光通信装置20が示してある。光通信装置20は、TRPN(TRansPoNder)21a〜21nおよび合波器22を有している。
TRPN21a〜21nには、受信側の光通信装置に送信される信号が入力される。TRPN21a〜21nは、入力される信号のそれぞれを、異なる波長の信号光に変換して合波器22に出力する。
合波器22は、TRPN21a〜21nから出力される信号光を波長多重する。合波器22で波長多重された信号光は、伝送路に出力される。
光通信装置20は、例えば、図2のアクセス系ネットワーク11に設けられ、4〜8波のWDMの信号光を受信側の光通信装置に送信する。また、上記したように、アクセス系ネットワーク11では、光通信装置20は、安価であることが求められる。そのため、光通信装置20は、例えば、OSCを送信するための装置を具備していない。すなわち、光通信装置20は、信号光の波長情報を、受信側の光通信装置に送信しない。
図4は、受信側の光通信装置のブロック図である。図4には、信号光を受信する受信側の光通信装置30が示してある。光通信装置30は、アンプ31、カプラ32,34、波長可変レーザ33、光学媒質35、フィルタ36、PD(Photo Diode)37、波長数測定部38、アンプ制御部39、制御部40、分波器41、およびTRPN42a〜42nを有している。
アンプ31には、伝送路を伝搬した光が入力される。すなわち、アンプ31には、送信側の光通信装置20が送信した信号光が入力される。アンプ31は、入力された光を増幅し、カプラ32に出力する。
カプラ32には、アンプ31で増幅された光が入力される。カプラ32は、入力された光を分波して、カプラ34と分波器41とに出力する。
波長可変レーザ33は、例えば、CW光を出力する。波長可変レーザ33は、出力する光の波長を可変することができる。以下では、波長可変レーザ33の出力する光を波長可変光と呼ぶことがある。
カプラ34には、カプラ32から出力される光と、波長可変レーザ33から出力される波長可変光とが入力される。カプラ34は、カプラ32から出力される光に、波長可変レーザ33から出力される波長可変光を合波する。
光学媒質35は、カプラ34から出力される光によってFWM光を発生する。光学媒質35は、例えば、DSF(Dispersion Shift Fiber)である。または、光学媒質35は、高非線形ファイバである。
フィルタ36は、光学媒質35から出力される光の所定波長の光を透過する。
PD37は、フィルタ36から出力される光のパワーに応じた電流を出力する。
波長数測定部38は、PD37から出力される電流に基づいて、伝送路で伝送されている信号光の波長数を測定する。
アンプ制御部39は、アンプ31のALCおよびAGC(Automatic Gain Control)を行う。アンプ制御部39は、アンプ31の出力のトータルパワーに基づいてALCを行う。また、アンプ制御部39は、アンプ31の入出力の光パワーに基づいて、AGCを行う。アンプ制御部39は、ALCを行う際、波長数測定部38によって測定された信号光の波長数に基づいて、ASE補正を行う。
制御部40は、光通信装置30全体の制御を行う。例えば、制御部40は、アンプ制御部39に対してALCまたはAGCの開始や停止の制御を行う。
分波器41には、カプラ32から出力される光が入力される。分波器41は、波長多重された信号光を波長ごとの信号光に分波し、TRPN42a〜42nに出力する。
TRPN42a〜TRPN42nは、分波器41によって分波された信号光を電気信号に変換する。
なお、波長数測定部38、アンプ制御部39および制御部40は、プロセッサ、回路、FPGAなどで実現されてもよい。
ALCについて説明する。
図5は、ALCを説明する図のその1である。図5には、図4に示したアンプ31とアンプ制御部39が示してある。また、図5には、アンプ31に入力される信号光のスペクトルSP11が示してある。また、図5には、アンプ31から出力される信号光のスペクトルSP12が示してある。アンプ31には、スペクトルSP11に示すように、波長多重された信号光が入力される。
アンプ31では、ASE光が発生する。そのため、アンプ31の出力のスペクトルには、スペクトルSP12に示すように、ASE光のパワーが含まれる。
アンプ31は、アンプ制御部39によってALCが行われる。例えば、アンプ31は、アンプ制御部39の制御によって、1chあたりxdBmの信号光を出力することを目標とする。
アンプ制御部39は、アンプ31の出力のトータルパワーが一定となるようにALCを行う。すなわち、アンプ制御部39は、スペクトルSP12に示すASE光のパワーと、信号光のパワーとの合計のパワーが、所定値で一定となるようにALCを行う。そのため、アンプ31から出力される信号光のパワーは、目標とするパワー(xdBm)より低下する。例えば、図5の矢印A11に示すように、信号光のパワーは、目標とするパワーより低下する。
図6は、ALCを説明する図のその2である。図6には、図4に示したアンプ31とアンプ制御部39が示してある。また、図6には、アンプ31に入力される信号光のスペクトルSP21が示してある。また、図6には、アンプ31から出力される信号光のスペクトルSP22が示してある。図6では、図5に対し、少数波長(1波長)の信号光がアンプ31に入力されるとする。
アンプ31では、ASE光が発生する。そのため、アンプ31の出力のスペクトルには、スペクトルSP22に示すように、ASE光のパワーが含まれる。
アンプ31は、アンプ制御部39によってALCが行われる。例えば、アンプ31は、アンプ制御部39によって、1chあたりxdBmの信号光を出力することを目標とする。
アンプ制御部39は、アンプ31の出力のトータルパワーが一定となるようにALCを行う。すなわち、アンプ制御部39は、スペクトルSP22に示すASE光のパワーと、信号光のパワーとの合計のパワーが、所定値で一定となるようにALCを行う。そのため、アンプ31から出力される信号光のパワーは、目標とするパワー(xdBm)より低下する。例えば、図6の矢印A21に示すように、信号光のパワーは、目標とするパワーより低下する。
図6に示すように、増幅する信号光の波長が少数の場合、ASE光のパワーが信号光のパワーに対して相対的に大きいので、信号光のパワーは、図5の矢印A11の場合より、大きく低下する。
ASE補正について説明する。アンプ31から出力される信号光のパワーは、図5および図6に示したように、信号光の波長数によって所望のパワーから低下する。そこで、アンプ制御部39は、低下するパワーを補うようASE補正を行う。
アンプ制御部39には、波長数測定部38で測定された波長数が、制御部40を介して通知される。すなわち、アンプ制御部39には、アンプ31に入力される信号光の波長数が入力される。アンプ制御部39は、波長数測定部38で測定された波長数に基づいて、所望のパワーから低下した分、アンプ31から出力される信号光のパワーを増加させる。すなわち、アンプ制御部39は、図5および図6に示す矢印A11,A21分、アンプ31の出力のパワーを増加させて、信号光のパワーが所定値で一定となるようにALCを行う。
アンプ制御部39は、次の式(1)に基づいて、アンプ31のパワーを増加させる。
Figure 0005858465
式(1)のNFはアンプ31のアンプノイズ指数を示す。hはプランク定数を示す。νは光周波数を示す。BASEはアンプ31内のフィルタ帯域で決まるASE光帯域を示す。Psig#inは入力信号光のパワーを示す。mはアンプ31に入力される信号光の波長数を示す。
すなわち、アンプ制御部39は、式(1)に基づいてASE補正量を算出し、アンプ31の出力の信号光のパワーが所定値で一定となるようにALCを行う。
波長数の測定について説明する。
図7は、信号光、波長可変光、およびFWM光の関係を説明する図である。図7の左側には、アクセス系ネットワーク11で伝送できる信号光の波長が示してある。図7の右側には、光通信装置30が受信する信号光と、波長可変レーザ33が出力する波長可変光と、光学媒質35で発生するFWM光との関係が示してある。図7の右側の関係図は、縦方向は波長を示し、横方向は時間を示す。
図3に示した送信側の光通信装置20は、例えば、図7の左側に示すNo16,18,22,26の波長の信号光を、ch1〜ch4の信号光として送信するとする。図4に示した受信側の光通信装置30は、波長多重されたch1〜ch4の信号光を受信するとする。
x11〜x14は、送信側の光通信装置20が送信する信号光の波長を示している。すなわち、波長x11〜x14は、ch1〜ch4の波長を示している。
y11〜y14は、波長可変レーザ33が出力する波長可変光の波長を示している。a11,b11〜b14は、光学媒質35から出力されるFWM光の波長を示している。
フィルタ36は、光学媒質35から出力される所定波長の光を透過する。例えば、フィルタ36は、波長a11の光を通過させる。従って、PD37は、図7の矢印A31に示す波長a11の光を検出する。
波長可変レーザ33は、出力する光の波長を可変する。波長可変レーザ33から出力される光の波長が波長y11になったとき、光学媒質35からは、光学媒質35に入射される波長y11の波長可変光と、波長x11の信号光とによって、波長a11,b11のFWM光が出力される。光学媒質35からは、波長aの光(FWM光)が出力されるので、その光はフィルタ36を通過し、モニタ部5は波長a11の光を検出する。
波長可変レーザ33は、出力する光の波長を波長y11からさらに可変する。波長可変レーザ33から出力される光の波長が波長y12になったとき、光学媒質35からは、光学媒質35に入射される波長y12の波長可変光と、波長x12の信号光とによって、波長a11,b12のFWM光が出力される。光学媒質35からは、波長a11のFWM光が出力されるので、その光はフィルタ36を通過し、PD37は、波長a11の光を検出する。
波長可変レーザ33は、出力する光の波長を波長y12からさらに可変する。波長可変レーザ33から出力される光の波長が波長y13になったとき、光学媒質35からは、光学媒質35に入射される波長y13の波長可変光と、波長x13の信号光とによって、波長a11,b13のFWM光が出力される。光学媒質35からは、波長a11のFWM光が出力されるので、その光はフィルタ36を通過し、PD37は、波長a11の光を検出する。
波長可変レーザ33は、出力する光の波長を波長y13からさらに可変する。波長可変レーザ33から出力される光の波長が波長y14になったとき、光学媒質35からは、光学媒質35に入射される波長y14の波長可変光と、波長x14の信号光とによって、波長a11,b14のFWM光が出力される。光学媒質35からは、波長a11のFWM光が出力されるので、その光はフィルタ36を通過し、PD37は、波長a11の光を検出する。
波長数測定部38は、例えば、PD37で検出された波長a11の光の数によって、送信側の光通信装置20が送信している信号光の波長数を測定する。例えば、上記例の場合、PD37は、4つのFWM光を検出するので、波長数測定部38は、送信側の光通信装置20からは、4波長の信号光が送信されていると測定できる。
測定された波長数は、制御部40を介してアンプ制御部39に通知される。アンプ制御部39は、波長数測定部38から出力される波長数に基づいてASE補正量を算出し、アンプ31の出力の信号光のパワーが所定値で一定となるようにALCを行う。
なお、波長可変レーザ33は、送信され得る信号光のchが分かっている場合、そのchの波長数を検出できる分、出力する光の波長をスイープさせる。例えば、送信側の光通信装置20からは、図7の左側に示すch1〜ch4の信号光が送信され得るとする。この場合、波長可変レーザ33は、図7に示すNo9からNo14の波長をスイープすればよい。そして、波長可変レーザ33の出力する光の波長が、例えば、No10(y12)、No12(y13)のとき、PD37によってFWM光が検出された場合、波長数測定部38は、波長数2の信号光が送信されていると測定できる。
また、波長可変レーザ33は、例えば、No1からNo40の波長を連続的にスイープして光を出力するようにしてもよい。また、波長可変レーザ33は、例えば、No1からNo40のそれぞれの波長を切り替えて光を出力してもよい。半導体集積型の波長可変レーザ33であれば、例えば、No1からNo40のそれぞれの波長を数μsecで切り替えながら光を出力することができる。
波長数測定部38の波長数測定について説明する。まず、波長数測定部38が波長数を測定するためのパラメータ例について説明する。
図8は、波長数測定のためのパラメータ例を示した図である。図8において、図4と同じものには同じ符号を付し、その説明を省略する。
図8に示すように、アンプ31には、−20dBm/chの信号光が入力されるとする。アンプ31は、入力される信号光を増幅し、アンプ31からは、+13.5dBm/chの信号光が出力されるとする。
カプラ34からは、+10dBm/chの信号光が出力されるとする。光学媒質35からは、−3.6dBm/chの信号光が出力されるとする。なお、光学媒質35の平均零分散波長、零分散波長標準偏差、および分散スロープは、それぞれ、1550nm、6.24nm、および0.0695とする。また、光学媒質35のロス係数、有効断面積、屈折率、および非線形屈折率は、それぞれ、0.17dB/km、49μm2、1.45、および3.00×10-202/Wとする。
フィルタ36からは、例えば、光学媒質35から波長aのFWM光が出力された場合、−4.1dBmの光が出力される。フィルタ36からは、例えば、光学媒質35から波長aのFWM光が出力されない場合、−27dBmの光(ASE光)が出力される。
図9は、波長数測定を説明する図である。図9の信号光の欄に示すch1〜ch4は、図7に示すch1〜ch4に対応する。信号光有無の欄に示す‘有’および‘無’は、各chの信号光が伝送された場合と伝送されない場合とを示す。
偏波並行の欄は、波長可変レーザ33から出力される光の偏光状態が、信号光に対し並行である場合の光学媒質35から出力されるFWM光のパワーを示している。偏波直交の欄は、波長可変レーザ33から出力される光の偏光状態が、信号光に対し直交である場合の光学媒質35から出力されるFWM光のパワーを示している。なお、偏波並行の欄および偏波直交の欄では、アンプ31で発生するASE光を考慮していない。
偏波並行+ASEおよび偏波直交+ASEは、アンプ31のASE光を考慮した場合のFWM光のパワーを示している。すなわち、PD37に入力される光のパワーを示している。例えば、送信側の光通信装置20からch2の信号光が送信されているとする。波長可変レーザ33からは、ch2の信号光に対し、偏光状態が並行の光が出力されているとする。この場合、PD37には、−15.6dBmの光が入力される。また、送信側の光通信装置20からch2の信号光が送信されていない場合には、PD37には、−27.0dBmの光が入力される。
on/off比の欄には、送信側の光通信装置20から信号光が送信された場合と、送信されなかった場合の、信号光の比が示してある。なお、on/off比の欄には、偏波直交+ASEにおける信号光の比(オン・オフ比の条件の悪い方の比)が示してある。例えば、ch2の場合、オン時のPD37に入力される光のパワーは、−18.3dBmであり、オフ時のPD37に入力される光のパワーは、−27.0dBmである。従って、ch2のon/off比は、8.7dBである。
判定閾値の欄には、波長数測定部38が光学媒質35でFWM光が発生していると判断する閾値例が示してある。例えば、判定閾値は、図9に示すように、−20.0dBmとする。
判定結果の欄は、波長数測定部38のFWM光の判定結果が示してある。例えば、PD37において、FWM光のパワー‘−18.3dBm’が検出されたとする。すなわち、ch2のFWM光が検出されたとする。この場合、前記値は、判定閾値−20dBmより大きいので、波長数測定部38は‘オン’(信号光有り)と判定する。
波長数測定部38は、波長可変レーザ33が波長を可変する間に、判定閾値−20.0を超えるFWM光をカウントすることによって、送信側の光通信装置20から送信される信号光の波長数をカウントできる。例えば、波長可変レーザ33は、波長を1535.04(y11)から1538.98(y14)に可変するとする。この間に、波長数測定部38は、判定閾値−20.0を超えるFWM光を4つカウントしたとする。この場合、波長数測定部38は、送信側の光通信装置20から4つの波長の信号光が送信されていると測定する。
図10は、波長数を増設した場合の光通信装置の動作シーケンスを示した図である。光通信装置30のアンプ制御部39は、信号光の増減中以外はALCで動作する。アンプ制御部39は、アンプ31の出力をモニタし、レベル目標設定値に対し、アンプ時定数(sec/dB)に従ってレベル調整を行う。例えば、アンプ31のレベル目標設定値を+2dBm/chとする。波長数がnの場合、アンプ制御部39は、アンプ31の出力が+2+10log10(n)dBm(レベル目標設定値)となるようにALCを行う。
なお、以下では、送信側の光通信装置20のTRPN21a〜21nの出力には、VOA(Variable Optical Attenuator)が配置され、波長の減設は、VOAの開閉によって行われるとする。従って、信号光の急激なレベルの上昇および低下(数百μsec以下)は発生しないとする。
信号光の波長数の増設が発生したとする。例えば、波長数が1から2へ増設されたとする。光通信装置30は、以下のステップに示す処理を実行する。
[ステップS1]波長数測定部38は、波長数2を測定する。
[ステップS2]波長数測定部38は、測定した波長数2を制御部40へ通知する。
[ステップS3]制御部40は、ALCからAGCへの移行を判断する。
[ステップS4]制御部40は、アンプ制御部39に対し、AGCへの移行を指示する。
[ステップS5]アンプ制御部39は、アンプ31に対し、AGCを行う。
[ステップS6]制御部40は、ステップS4のAGC移行指示の後、ALCへの移行を判断する。
[ステップS7]制御部40は、アンプ制御部39に対し、ALCへの移行を指示する。
[ステップS8]アンプ制御部39は、アンプ31に対し、ALCを行う。このとき、アンプ制御部39は、波長数に応じたASE補正量を考慮したALCのレベル目標設定値を算出して、ALCを行う。
[ステップS9]アンプ制御部39は、アンプ31の出力が、レベル目標設定値になったことを制御部40に通知する。なお、アンプ制御部39は、以後も、アンプ31の出力がレベル目標設定値になるようにALCを行う。このとき、アンプ制御部39は、ASE補正量を考慮する。
図11は、波長数を増設した場合のアンプの入出力パワーを示した図である。図11の上図は、アンプ31の入力パワーを示している。図11の下図は、アンプ31の出力パワーを示している。縦軸はアンプ31の入力および出力のトータルパワーを示し、横軸は時間を示している。
図11に示す時間0〜時間T1は、波長数の増設に要する時間を示している。時間T1は、波長数の増設が完了した時間を示している。
時間T1から時間T2は、波長数測定部38の波長数の測定にかかる時間を示している。時間T2は、波長数の測定が完了し、AGCへ移行する時間を示している。例えば、時間T2は、図10のステップS5において、アンプ制御部39がAGCを開始した時間を示す。
時間T2〜T3は、ALCのレベル目標設定値の算出に要する時間を示している。また、時間T2〜T3は、アンプ制御部39がAGCを行っている時間を示す。例えば、時間T2〜T3は、図10のステップS7において、アンプ制御部39がALCの移行指示を受け、ステップS8において、ALCのレベル目標設定値を算出する時間を示す。
時間T3は、アンプ制御部39がALCを開始した時間を示す。時間T3〜T4は、アンプ31の出力がレベル目標設定値になるまでの時間を示す。
時間T4は、アンプ31の出力が、レベル目標設定値になった時間を示す。時間T4は、例えば、図10のステップS9において、アンプ制御部39が制御部40に通知する時間に対応する。
図12は、波長数を減設した場合の光通信装置の動作シーケンスを示した図である。信号光の波長数の減設が発生したとする。例えば、波長数が2から1へ減設されたとする。光通信装置30は、以下のステップに示す処理を実行する。
[ステップS21]波長数測定部38は、波長数1を測定する。
[ステップS22]波長数測定部38は、測定した波長数1を制御部40へ通知する。
[ステップS23]制御部40は、ALCからAGCへの移行を判断する。
[ステップS24]制御部40は、アンプ制御部39に対し、AGCへの移行を指示する。
[ステップS25]アンプ制御部39は、アンプ31に対し、AGCを行う。
[ステップS26]制御部40は、ステップS24のAGC移行指示の後、ALCへの移行を判断する。
[ステップS27]制御部40は、アンプ制御部39に対し、ALCへの移行を指示する。
[ステップS28]アンプ制御部39は、アンプ31に対し、ALCを行う。このとき、アンプ制御部39は、波長数に応じたASE補正量を考慮したALCのレベル目標設定値を算出して、ALCを行う。
[ステップS29]アンプ制御部39は、アンプ31の出力が、レベル目標設定値になったことを制御部40に通知する。なお、アンプ制御部39は、以後も、アンプ31の出力がレベル目標設定値になるようにALCを行う。このとき、アンプ制御部39は、ASE補正量を考慮する。
図13は、波長数を減設した場合のアンプの入出力パワーを示した図である。図13の上図は、アンプ31の入力パワーを示している。図13の下図は、アンプ31の出力パワーを示している。縦軸はアンプ31の入力および出力のトータルパワーを示し、横軸は時間を示している。
図13に示す時間0〜時間T1は、波長数の減設に要する時間を示している。時間T1は、波長数の減設が完了した時間を示している。
時間T1から時間T2は、波長数測定部38の波長数の測定にかかる時間を示している。時間T2は、波長数の測定が完了し、AGCへ移行する時間を示している。例えば、時間T2は、図12のステップS25において、アンプ制御部39がAGCを開始した時間を示す。
時間T2〜T3は、ALCのレベル目標設定値の算出に要する時間を示している。また、時間T2〜T3は、アンプ制御部39がAGCを行っている時間を示す。例えば、時間T2〜T3は、図12のステップS27において、アンプ制御部39がALCの移行指示を受け、ステップS28において、ALCのレベル目標設定値を算出する時間を示す。
時間T3は、アンプ制御部39がALCを開始した時間を示す。時間T3〜T4は、アンプ31の出力がレベル目標設定値になるまでの時間を示す。
時間T4は、アンプ31の出力が、レベル目標設定値になった時間を示す。時間T4は、例えば、図12のステップS29において、アンプ制御部39が制御部40に通知する時間に対応する。
このように、光通信装置30は、FWM光を発生する光学媒質35に、伝送路から受信した光と波長可変光とを入射し、光学媒質35から出力される所定波長のFWM光をモニタする。そして、光通信装置30は、FWM光のモニタ結果に基づいて、伝送路で伝送された信号光の波長数を測定するようにした、
これにより、光通信装置30は、送信側の光通信装置20から波長数情報を通知されなくても、受信する信号光の波長数を知ることができ、例えば、ALCやASE補正を行うことができる。すなわち、送信側の光通信装置20は、例えば、OSCなどの波長数情報を送信する装置を具備しなくて済み、光伝送システムのコストを低減することができる。
なお、上記では、送信側と受信側の光通信装置を別々に説明したが、1台の光通信装置は、信号光を送受信することもできる。例えば、図4に示す光通信装置30は、図3に示すTRPN21a〜21nおよび合波器22を有していてもよい。
また、光通信装置30は、伝送路を伝搬している信号光の波長を測定することもできる。例えば、波長数測定部38は、所定波長のFWM光の有無と、波長可変レーザ33が出力している光の波長とに基づいて、信号光の波長を測定することができる。例えば、図7に示す波長a11の光がPD37で検出されたとする。このとき、波長可変レーザ33から、波長y12の光が出力されていたとする。この場合、波長数測定部38は、波長x12の信号光が伝送路を伝搬していると測定することができる。
また、光通信装置30は、測定した信号光の波長数に基づいてASE補正を行い、伝送性能の劣化を抑制することができる。例えば、上記したように、伝送される信号光の波長数が少数波の場合、信号光の劣化が生じやすいが、光通信装置30は、測定した信号光の波長数に基づいて、ASE補正を行うことができるので、信号光の劣化を抑制できる。
[第3の実施の形態]
次に、第3の実施の形態を、図面を参照して詳細に説明する。第2の実施の形態では、波長数測定部38は、測定した波長数を制御部40に通知した。第3の実施の形態では、アンプ制御部39に通知する。
図14は、第3の実施の形態に係る受信側の光通信装置のブロック図である。図14において、図4と同じものには同じ符号が付してある。図14では、波長数測定部38で測定された波長数は、アンプ制御部51に出力される。アンプ制御部51は、波長数測定部38から出力される波長数に基づいて、ALCおよびAGCを行う。
図15は、波長数を増設した場合の光通信装置の動作シーケンスを示した図である。信号光の波長数の増設が発生したとする。例えば、波長数が1から2へ増設されたとする。光通信装置30は、以下のステップに示す処理を実行する。
[ステップS41]波長数測定部38は、波長数2を測定する。
[ステップS42]波長数測定部38は、測定した波長数2をアンプ制御部51へ通知する。
[ステップS43]アンプ制御部51は、ALCからAGCへの移行を判断する。
[ステップS44]アンプ制御部51は、アンプ31に対し、AGCを行う。
[ステップS45]アンプ制御部51は、AGCからALCへの移行を判断する。
[ステップS46]アンプ制御部51は、アンプ31に対し、ALCを行う。このとき、アンプ制御部51は、波長数に応じたASE補正量を考慮したALCのレベル目標設定値を算出して、ALCを行う。
以後、アンプ制御部51は、アンプ31の出力がレベル目標設定値になるようにALCを行う。すなわち、アンプ制御部51は、アンプ31の出力が、レベル目標設定値からずれると、アンプ31の出力がレベル目標設定値となるようにALCを行う。なお、波長数が減設した場合も、光通信装置30は、図15に示すシーケンスと同様の処理を行い、その説明を省略する。
このように、波長数測定部38は、測定した波長数をアンプ制御部51に通知するようにした。この場合でも、光通信装置30は、送信側の光通信装置20から波長数情報を通知されなくても、受信する信号光の波長数を知ることができ、例えば、ALCやASE補正を行うことができる。すなわち、送信側の光通信装置20は、例えば、OSCなどの波長数情報を送信する装置を具備しなくて済み、光伝送システムのコストを低減することができる。
[第4の実施の形態]
次に、第4の実施の形態を、図面を参照して詳細に説明する。第2の実施の形態では、アンプ制御部39は、波長数の増減設にともない、AGCへ移行した。第4の実施の形態では、AGCに移行しないで、ALCのレベル目標設定を行う。第4の実施の形態に係る光通信装置は、図4と同様であり、そのブロック図の説明を省略する。だたし、第4の実施の形態に係る制御部40およびアンプ制御部39は、AGCへの移行処理を行わない。
図16は、第4の実施の形態に係る波長数を増設した場合の光通信装置の動作シーケンスを示した図である。信号光の波長数の増設が発生したとする。例えば、波長数が1から2へ増設されたとする。光通信装置30は、以下のステップに示す処理を実行する。
[ステップS51]波長数測定部38は、波長数2を測定する。
[ステップS52]波長数測定部38は、測定した波長数2を制御部40へ通知する。
[ステップS53]制御部40は、波長数測定部38から通知された波長数をアンプ制御部39に通知する。
[ステップS54]アンプ制御部39は、アンプ31に対し、新たな波長数におけるALCを行う。このとき、アンプ制御部39は、波長数に応じたASE補正量を考慮したALCのレベル目標設定値を算出して、ALCを行う。
[ステップS55]アンプ制御部39は、アンプ31の出力が、レベル目標設定値になったことを制御部40に通知する。なお、アンプ制御部39は、以後も、アンプ31の出力がレベル目標設定値になるようにALCを行う。このとき、アンプ制御部39は、ASE補正量を考慮する。
図17は、波長数を増設した場合のアンプの入出力パワーを示した図である。図17の上図は、アンプ31の入力パワーを示している。図17の下図は、アンプ31の出力パワーを示している。縦軸はアンプ31の入力および出力のトータルパワーを示し、横軸は時間を示している。
図17に示す時間0〜時間T1は、波長数の増設に要する時間を示している。時間T1は、波長数の増設が完了した時間を示している。
時間T1から時間T2は、波長数測定部38の波長数の測定にかかる時間を示している。時間T2は、波長数の測定が完了し、レベル目標設定値の算出を開始する時間を示している。
時間T2〜T3は、ALCのレベル目標設定値の算出に要する時間を示している。例えば、時間T2〜T3は、図16のステップS54において、アンプ制御部39がレベル目標設定値を算出する時間を示す。
時間T3は、アンプ制御部39がALCを開始する時間を示す。時間T3〜T4は、アンプ31の出力がレベル目標設定値になるまでの時間を示す。
時間T4は、アンプ31の出力が、レベル目標設定値になった時間を示す。時間T4は、例えば、図16のステップS55において、アンプ制御部39が制御部40に通知する時間に対応する。
なお、光通信装置30の動作は、AGCを行わないので動作はシンプルになる。一方、光通信装置30は、AGC動作していた時間もALCで動作し続けるので、レベル目標設定値更新後に、その値になるまでの時間が、AGC動作していた場合よりも長くなる。例えば、図17に示す時間T3〜T4の時間は、図11に示す時間T3〜T4より長くなる。
図18は、波長数を減設した場合の光通信装置の動作シーケンスを示した図である。信号光の波長数の減設が発生したとする。例えば、波長数が2から1へ減設されたとする。光通信装置30は、以下のステップに示す処理を実行する。
[ステップS61]波長数測定部38は、波長数1を測定する。
[ステップS62]波長数測定部38は、測定した波長数1を制御部40へ通知する。
[ステップS63]制御部40は、波長数測定部38から通知された波長数をアンプ制御部39に通知する。
[ステップS64]アンプ制御部39は、アンプ31に対し、新たな波長数におけるALCを行う。このとき、アンプ制御部39は、波長数に応じたASE補正量を考慮したALCのレベル目標設定値を算出して、ALCを行う。
[ステップS65]アンプ制御部39は、アンプ31の出力が、レベル目標設定値になったことを制御部40に通知する。なお、アンプ制御部39は、以後も、アンプ31の出力がレベル目標設定値になるようにALCを行う。このとき、アンプ制御部39は、ASE補正量を考慮する。
図19は、波長数を減設した場合のアンプの入出力パワーを示した図である。図19の上図は、アンプ31の入力パワーを示している。図19の下図は、アンプ31の出力パワーを示している。縦軸はアンプ31の入力および出力のトータルパワーを示し、横軸は時間を示している。
図19に示す時間0〜時間T1は、波長数の減設に要する時間を示している。時間T1は、波長数の減設が完了した時間を示している。
時間T1から時間T2は、波長数測定部38の波長数の測定にかかる時間を示している。時間T2は、波長数の測定が完了し、レベル目標設定値の算出を開始する時間を示している。
時間T2〜T3は、ALCのレベル目標設定値の算出に要する時間を示している。例えば、時間T2〜T3は、図18のステップS64において、アンプ制御部39がレベル目標設定値を算出する時間を示す。
時間T3は、アンプ制御部39がALCを開始する時間を示す。時間T3〜T4は、アンプ31の出力がレベル目標設定値になるまでの時間を示す。
時間T4は、アンプ31の出力が、レベル目標設定値になった時間を示す。時間T4は、例えば、図18のステップS65において、アンプ制御部39が制御部40に通知する時間に対応する。
なお、光通信装置30の動作は、AGCを行わないので動作はシンプルになる。一方、光通信装置30は、AGC動作していた時間もALCで動作し続けるので、レベル目標設定値更新後に、その値になるまでの時間が、AGC動作していた場合よりも長くなる。例えば、図19に示す時間T3〜T4の時間は、図13に示す時間T3〜T4より長くなる。
このように、光通信装置30は、AGCを省略した場合でも、受信する信号光の波長数を知ることができ、例えば、ALCやASE補正を行うことができる。すなわち、送信側の光通信装置20は、例えば、OSCなどの波長数情報を送信する装置を具備しなくて済み、光伝送システムのコストを低減することができる。
[第5の実施の形態]
次に、第5の実施の形態を、図面を参照して詳細に説明する。第4の実施の形態では、波長数測定部38は、測定した波長数を制御部40に通知した。第5の実施の形態では、波長数をアンプ制御部39に通知する。第5の実施の形態に係る光通信装置は、図14と同様であり、そのブロックの説明を省略する。ただし、第5の実施の形態に係る光通信装置30は、AGCを行わない。
図20は、第5の実施の形態に係る波長数を増設した場合の光通信装置の動作シーケンスを示した図である。信号光の波長数の増設が発生したとする。例えば、波長数が1から2へ増設されたとする。光通信装置30は、以下のステップに示す処理を実行する。
[ステップS71]波長数測定部38は、波長数2を測定する。
[ステップS72]波長数測定部38は、測定した波長数2をアンプ制御部51へ通知する。
[ステップS73]アンプ制御部51は、アンプ31に対し、新たな波長数におけるALCを行う。このとき、アンプ制御部51は、波長数に応じたASE補正量を考慮したALCのレベル目標設定値を算出して、ALCを行う。
以後、アンプ制御部51は、アンプ31の出力がレベル目標設定値になるようにALCを行う。すなわち、アンプ制御部51は、アンプ31の出力が、レベル目標設定値からずれると、アンプ31の出力がレベル目標設定値となるようにALCを行う。なお、波長数が減設した場合も、光通信装置30は、図20に示すシーケンスと同様の処理を行い、その説明を省略する。
このように、光通信装置は、AGCを省略し、波長数をアンプ制御部51に通知する場合でも、受信する信号光の波長数を知ることができ、例えば、ALCやASE補正を行うことができる。すなわち、送信側の光通信装置20は、例えば、OSCなどの波長数情報を送信する装置を具備しなくて済み、光伝送システムのコストを低減することができる。
[第6の実施の形態]
次に、第6の実施の形態を、図面を参照して詳細に説明する。第2の実施の形態では、アンプ(プリアンプ)31の後段にカプラ32を設け、伝送路から受信した光を分岐し、信号光の波長数を測定するようにした。第6の実施の形態では、プリアンプの前段で伝送路から受信した光を分岐し、信号光の波長数を測定するようにする。
図21は、第6の実施の形態に係る受信側の光通信装置のブロック図である。図21において、図4と同じものには同じ符号が付してある。
図21の光通信装置30は、アンプ31の前段に、カプラ32,34、波長可変レーザ33、光学媒質35、フィルタ36、PD37、波長数測定部38、アンプ制御部39、および制御部40が設けられている。また、光通信装置30は、カプラ32で分岐された光を増幅してカプラ34に出力するアンプ61が設けられている。アンプ61は、光学媒質35で十分なFWM光が発生するように、カプラ32で分岐された光を増幅する。
なお、カプラ32,34、波長可変レーザ33、光学媒質35、フィルタ36、PD37、波長数測定部38、アンプ制御部39、および制御部40の動作は、図4で説明した光通信装置と同様であり、その説明を省略する。
このように、光通信装置30は、アンプ31の前段で分岐した光から波長数を求めることもできる。なお、第6の実施の形態に係る光通信装置30にも、第3の実施の形態〜第5の実施の形態で説明した動作を行わせることができる。
[第7の実施の形態]
次に、第7の実施の形態を、図面を参照して詳細に説明する。送信側の光通信装置と受信側の光通信装置との間には、例えば、伝送路で減衰する信号光を増幅する光中継装置が設けられる場合がある。このとき、送信側の光通信装置が、波長数情報を送信する装置を具備しなくて済むよう、光中継装置も上記で説明した受信側の光通信装置と同様の波長数を測定する装置を具備する。
図22は、第7の実施の形態に係る光中継装置のブロック図である。光中継装置70は、図4で説明した光通信装置30と同様のブロックを有している。ただし、光中継装置70は、光通信装置30に対し、分波器41およびTRPN42a〜42nを有していない。すなわち、光中継装置70は、受信した信号光をアンプ31で増幅し、伝送路に出力する。なお、光中継装置70は、送信側の光通信装置20と受信側の光通信装置30との間に、複数カスケード接続されていてもよい。
図22に示すブロックは、図4で説明したブロックと同様の動作をする。すなわち、光中継装置70は、送信側の光通信装置から波長数情報を通知されなくても、受信する信号光の波長数を知ることができ、例えば、ALCやASE補正を行うことができる。これにより、送信側の光通信装置は、波長数情報を送信する装置を具備しなくて済み、光伝送システムのコストを低減することができる。
なお、光中継装置70にも、第3の実施の形態〜第5の実施の形態で説明した動作を行わせることができる。また、第6の実施の形態と同様に、アンプ31の前段にカプラ32を設けるようにしてもよい。
[第8の実施の形態]
次に、第8の実施の形態を、図面を参照して詳細に説明する。第8の実施の形態では、受信した光を可変フィルタでスイープしながら各波長のパワーを検出し、信号光の波長数を測定する。
図23は、第8の実施の形態に係る光通信装置のブロック図である。図23において、図4と同じものには同じ符号が付してあり、その説明を省略する。
図23に示す光通信装置80は、図4に示す光通信装置30に対し、波長可変レーザ33、カプラ34、および光学媒質35を有していない。また、図23に示す光通信装置80は、図4に示す光通信装置30に対し、可変フィルタ81を有している。
可変フィルタ81は、カプラ32で分岐された光の透過帯域を可変できるフィルタである。従って、伝送路から受信した信号光の波長と、可変フィルタ81の透過帯域とが重なれば、PD37で光が検出される。すなわち、波長数測定部38は、送信側の光通信装置20から送信される信号光の波長数を測定できる。
可変フィルタ81の透過帯域をスイープする時間は、波長可変レーザ33の波長可変光より時間がかかる。例えば、干渉薄膜型の可変フィルタ81では、80nm/35secかかり、回折格子型の可変フィルタ81では、40nm/secかかる。これに対し、波長可変レーザ33は、例えば、上記したように数μsecで波長を変えることができる。
このように、光通信装置30は、可変フィルタ81を用いた光通信装置80より速く波長数を測定することができる。図22で説明した光中継装置70についても同様である。
1 分波器
2 光源
3 合波器
4 光学媒質
5 モニタ部
6 波長数測定部

Claims (6)

  1. 出力する光の波長が可変な光源と、
    前記光源の波長を制御する波長制御部と、
    伝送路から受信した信号光に前記光源から出力される光を合波する合波器と、
    前記合波器から出力される光が入力され、四光波混合光を発生する光学媒質と、
    伝送路から受信した第1の信号光波長を持つ信号光と、前記光源から出力された、前記第1の信号光波長と異なる第1の波長を持つ光との合波光が、前記光学媒質に入力された際に、前記光学媒質から出力される、前記第1の波長と異なる波長の前記四光波混合光をモニタするモニタ部と、
    前記モニタ部のモニタ結果に基づいて前記伝送路で伝送されている信号光の波長数を測定する波長数測定部と、
    を有することを特徴とする光通信装置。
  2. 前記波長数測定部の測定した波長数に基づいて、前記信号光の自動レベル制御の際の自然放出光の補正を行う自動レベル制御部をさらに有することを特徴とする請求項1記載の光通信装置。
  3. 出力する光の波長が可変な光源と、
    伝送路から受信した信号光に前記光源から出力される光を合波する合波器と、
    前記合波器から出力される光が入力され、四光波混合光を発生する光学媒質と、
    伝送路から受信した第1の信号光波長を持つ信号光と、前記光源から出力された、前記第1の信号光波長と異なる第1の波長を持つ光との合波光が、前記光学媒質に入力された際に、前記光学媒質から出力される、前記第1の波長と異なる波長の前記四光波混合光をモニタするモニタ部と、
    前記モニタ部のモニタ結果に基づいて前記伝送路で伝送されている信号光の波長数を測定する波長数測定部と、
    を有することを特徴とする波長数測定装置。
  4. 出力する光の波長が可変な光源と、
    前記光源の波長を制御する波長制御部と、
    伝送路から受信した信号光に前記光源から出力される光を合波する合波器と、
    前記合波器から出力される光が入力され、四光波混合光を発生する光学媒質と、
    伝送路から受信した第1の信号光波長を持つ信号光と、前記光源から出力された、前記第1の信号光波長と異なる第1の波長を持つ光との合波光が、前記光学媒質に入力された際に、前記光学媒質から出力される、前記第1の波長と異なる波長の前記四光波混合光をモニタするモニタ部と、
    前記モニタ部のモニタ結果に基づいて前記伝送路で伝送されている信号光の波長数を測定する波長数測定部と、
    を有することを特徴とする光中継装置。
  5. 伝送路から受信した信号光に光源から出力される光を合波し、
    前記合波された光を四光波混合光を発生する光学媒質に入射し、
    伝送路から受信した第1の信号光波長を持つ信号光と、前記光源から出力された、前記第1の信号光波長と異なる第1の波長を持つ光との合波光が、前記光学媒質に入力された際に、前記光学媒質から出力される、前記第1の波長と異なる波長の前記四光波混合光をモニタし、
    モニタ結果に基づいて前記伝送路で伝送されている信号光の波長数を測定する、
    ことを特徴とする波長数測定方法。
  6. 前記モニタ部は、伝送路から受信した前記第1の信号光波長を持つ信号光と、前記光源から出力された、前記第1の信号光波長より短波長側の前記第1の波長を持つ光との合波光が、前記光学媒質に入力された際に、前記光学媒質から出力される、前記第1の波長より短波長側の波長の前記四光波混合光をモニタすることを特徴とする請求項1記載の光通信装置。
JP2011277515A 2011-12-19 2011-12-19 光通信装置、波長数測定装置、光中継装置、および波長数測定方法 Expired - Fee Related JP5858465B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011277515A JP5858465B2 (ja) 2011-12-19 2011-12-19 光通信装置、波長数測定装置、光中継装置、および波長数測定方法
US13/711,773 US8891961B2 (en) 2011-12-19 2012-12-12 Optical communication device, wavelength number measurement device, optical repeater, and wavelength number measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011277515A JP5858465B2 (ja) 2011-12-19 2011-12-19 光通信装置、波長数測定装置、光中継装置、および波長数測定方法

Publications (2)

Publication Number Publication Date
JP2013128245A JP2013128245A (ja) 2013-06-27
JP5858465B2 true JP5858465B2 (ja) 2016-02-10

Family

ID=48610254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011277515A Expired - Fee Related JP5858465B2 (ja) 2011-12-19 2011-12-19 光通信装置、波長数測定装置、光中継装置、および波長数測定方法

Country Status (2)

Country Link
US (1) US8891961B2 (ja)
JP (1) JP5858465B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9252912B2 (en) 2012-04-09 2016-02-02 Telefonaktiebolaget L M Ericsson (Publ) Method for routing and spectrum assignment
US9112635B2 (en) * 2012-06-13 2015-08-18 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatus for a passive access subnetwork
USD848405S1 (en) 2017-02-06 2019-05-14 Hunter Douglas Inc. Wireless repeater

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303821A (ja) * 1997-04-25 1998-11-13 Nec Corp 光信号増幅伝送方式
JP4089093B2 (ja) * 1999-07-28 2008-05-21 住友電気工業株式会社 波長多重信号数監視装置
JP2001077754A (ja) * 1999-09-01 2001-03-23 Fujitsu Ltd 光分岐装置および光分岐・挿入装置
JP4875237B2 (ja) 1999-12-28 2012-02-15 古河電気工業株式会社 波長変換装置を用いた波長分割多重伝送方法
JP3779176B2 (ja) * 2001-05-16 2006-05-24 富士通株式会社 光伝送装置及び波長多重通信システム
CN101449494B (zh) * 2006-05-25 2012-06-06 三菱电机株式会社 光中继装置以及光中继传输系统
JP2010130270A (ja) * 2008-11-27 2010-06-10 Fujitsu Ltd 光波長多重伝送装置および光波長多重伝送方法
JP5177035B2 (ja) * 2009-03-19 2013-04-03 日本電気株式会社 波長分割多重装置、波長分割多重伝送システムおよび波長多重信号制御方法

Also Published As

Publication number Publication date
JP2013128245A (ja) 2013-06-27
US20130156422A1 (en) 2013-06-20
US8891961B2 (en) 2014-11-18

Similar Documents

Publication Publication Date Title
JP4671478B2 (ja) 波長多重光通信システムおよび波長多重光通信方法
JP5564692B2 (ja) 光伝送システム、及び、光ノード
JP4727485B2 (ja) 光伝送装置
US10608775B2 (en) Optical transmission apparatus, optical transmission method, and optical transmission system
US8059959B2 (en) Loss-of-light detecting apparatus
US8554070B2 (en) Optical transmission apparatus and optical attenuation amount control method
WO2004102841A2 (en) Method and system for optical performance monitoring
US7512345B2 (en) Wavelength division multiplexing optical transmission system and method
US9641252B2 (en) Method of optimizing optical signal quality in an optical communications link, optical network element and optical communications link
US7725032B2 (en) Optical transmission apparatus
JP2004289707A (ja) 波長多重光信号の品質監視方法および装置、並びに、それを用いた光伝送システム
WO2013185343A1 (zh) 抑制导频信号串扰的方法、装置及导频信号接收装置
JP5644446B2 (ja) 光伝送装置
US20060188262A1 (en) Optical transmission system
US9300426B2 (en) Transmission apparatus, transmission system, and method of controlling average optical input power
JP5858465B2 (ja) 光通信装置、波長数測定装置、光中継装置、および波長数測定方法
WO2010072423A1 (en) Identifying a characteristic of a mesh network
JP2005208515A (ja) 波長変換方法および波長変換器
JP5862388B2 (ja) 測定装置、ネットワーク設計装置、伝送システム、ネットワーク管理装置
JP2008042096A (ja) 光増幅器および光伝送システム
JP2008503886A (ja) 波長分割多重(wdm)光分波器
JP2012015675A (ja) Wdm信号光の監視装置
JP2003152645A (ja) 誘導ブリリュアン散乱を利用した雑音光除去方法、雑音光除去装置および光伝送システム
EP2983311A1 (en) Optical transmission apparatus, optical trasmission system, and control method of optical transmission system
JP5251661B2 (ja) 光アンプ装置とその制御方法、光伝送システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20151127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151210

R150 Certificate of patent or registration of utility model

Ref document number: 5858465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees