JP5857503B2 - Biomarkers for stress-related diseases - Google Patents

Biomarkers for stress-related diseases Download PDF

Info

Publication number
JP5857503B2
JP5857503B2 JP2011165272A JP2011165272A JP5857503B2 JP 5857503 B2 JP5857503 B2 JP 5857503B2 JP 2011165272 A JP2011165272 A JP 2011165272A JP 2011165272 A JP2011165272 A JP 2011165272A JP 5857503 B2 JP5857503 B2 JP 5857503B2
Authority
JP
Japan
Prior art keywords
biomarker
stress
irritable bowel
bowel syndrome
mammal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011165272A
Other languages
Japanese (ja)
Other versions
JP2012047735A (en
Inventor
清至 勝又
清至 勝又
秀明 多田
秀明 多田
博 若園
博 若園
林 昭夫
昭夫 林
杉岡 真紀子
真紀子 杉岡
村井 淳
淳 村井
智宏 丹羽
智宏 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ono Pharmaceutical Co Ltd
Original Assignee
Ono Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ono Pharmaceutical Co Ltd filed Critical Ono Pharmaceutical Co Ltd
Priority to JP2011165272A priority Critical patent/JP5857503B2/en
Publication of JP2012047735A publication Critical patent/JP2012047735A/en
Application granted granted Critical
Publication of JP5857503B2 publication Critical patent/JP5857503B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、過敏性腸症候群のようなストレス性疾患に対する治療薬物について、その薬理応答性の評価や有効性の早期予測、患者毎に有効性を示す最適なこれら治療薬物の種類やその投与量の選択を行うために用いられるストレス性疾患のバイオマーカーに関する。   The present invention relates to therapeutic drugs for stress-related diseases such as irritable bowel syndrome, evaluation of pharmacological responsiveness and early prediction of efficacy, and the types and dosages of these therapeutic drugs that are effective for each patient. It is related with the biomarker of the stress-related disease used in order to perform selection.

過敏性腸症候群(以下にIBSとも称する)は、強い緊張・不安・ストレスなどに起因して惹起される一種の消化器系ストレス性疾患である。過敏性腸症候群は、大抵は大腸、時には小腸での消化管運動機能異常症状、例えば腹部不快感や腹痛を伴う慢性的な下痢症状若しくは便秘症状、腸内でのガス過多による腹部膨満感や鈍痛を伴うガスが溜まる症状、又はそれらを交互に繰り返す症状のような通便異常を主症状とする。   Irritable bowel syndrome (hereinafter also referred to as IBS) is a kind of gastrointestinal stress disease caused by strong tension, anxiety, stress and the like. Irritable bowel syndrome is usually a disorder of gastrointestinal motility in the large intestine, sometimes in the small intestine, such as chronic diarrhea or constipation with abdominal discomfort or abdominal pain, abdominal bloating or dull pain due to excessive gas in the intestine The main symptom is a stool abnormality such as a symptom of accumulating gas or a symptom of repeating them alternately.

過敏性腸症候群の殆どは、レントゲン撮影診断や内視鏡診断でも腸の形態異常所見が見当たらず、血液検査・尿検査・検便でも検査項目に異常が無いにも関わらず、長期間、通便異常症状が持続するものである。このような過敏性腸症候群は、確実な検査方法が無く、症状のみから診断しなければならない厄介な疾病であり、長らくそのバイオマーカーすら知られていなかった。   In most cases of irritable bowel syndrome, no abnormal findings of the intestine can be found in radiography or endoscopy, and there are no abnormalities in the examination items in blood tests, urinalysis, and stool tests. Abnormal symptoms persist. Such irritable bowel syndrome is a troublesome disease that has no reliable testing method and must be diagnosed only from symptoms, and even its biomarker has not been known for a long time.

最近になって過敏性腸症候群は、脳と腸との機能的関連が病態の中心をなす消化管障害であることが分かってきた。非特許文献1には、脳と腸との双方に豊富に存在するコルチコトロピン放出ホルモン(CHR)の負荷により、下垂体からアデノコルチコトロピンホルモン(ACTH)が放出されると共に腸運動が惹起されることから、コルチコトロピン放出ホルモンやアデノコルチコトロピンホルモンが、バイオマーカーとして開示されている。   Recently, irritable bowel syndrome has been found to be a gastrointestinal disorder in which the functional relationship between the brain and intestine is central to the pathology. Non-patent document 1 describes that adenocorticotropin hormone (ACTH) is released from the pituitary gland and intestinal motility is caused by the load of corticotropin releasing hormone (CHR), which is abundant in both the brain and intestine. Corticotropin-releasing hormone and adenocorticotropin hormone have been disclosed as biomarkers.

さらに、非特許文献2には、過敏性腸症候群のバイオマーカーとして、血中サイトカインが開示されている。   Furthermore, Non-Patent Document 2 discloses blood cytokines as biomarkers for irritable bowel syndrome.

また、特許文献1に、過敏性腸症候群を治療するために有用な薬が投与されている個体中のIL−8やレプチンのようなサイトカイン等の診断マーカーの存在又は値を検出することによって、診断マーカープロファイルを決定する工程と、それに基づくアルゴリズムを用いて、過敏性腸症候群と関連するか否かを分類したり、薬の効果をモニタリングしたりする方法が開示されている。   Further, in Patent Document 1, by detecting the presence or value of a diagnostic marker such as IL-8 or a cytokine such as leptin in an individual administered with a drug useful for treating irritable bowel syndrome, A method for determining a diagnostic marker profile and using an algorithm based thereon to classify whether it is associated with irritable bowel syndrome or to monitor the effect of a drug is disclosed.

特許文献2に、ヒトの粘膜から放出されたクロモグラニンAのような神経ホルモンである神経内分泌消化管系成分を測定しその濃度を計算して、過敏性腸疾患のような機能性胃腸管障害などの胃腸管障害を診断する方法が、開示されている。   Patent Document 2 discloses functional gastrointestinal tract disorders such as irritable bowel disease by measuring neuroendocrine gastrointestinal system components that are neurohormones such as chromogranin A released from human mucosa and calculating their concentrations. A method for diagnosing gastrointestinal tract disorders is disclosed.

特許文献3に、過敏性腸症候群を診断するために、個体から血液を採取し、その血清からβ−トリプターゼ含量を測定する方法が開示されている。   Patent Document 3 discloses a method of collecting blood from an individual and measuring β-tryptase content from the serum in order to diagnose irritable bowel syndrome.

これらの非特許文献や特許文献に記載のバイオマーカーは、比較的高分子量であって生体試料、特に尿中に排泄され難く血中に極微量しか存在せず熱に不安定なタンパクやペプチドであるため、簡易な汎用分析機器を用いた簡便な方法で迅速かつ正確に検出し難いうえ、個体差、同一個体内での日差変動・再現変動が大きく、しかも高分子量の所為で測定誤差が大きく定量性に欠け、病態を的確に反映し難いという問題点があった。   The biomarkers described in these non-patent documents and patent documents are proteins and peptides that have a relatively high molecular weight and are difficult to be excreted in biological samples, particularly urine, and are present in blood in trace amounts and are unstable to heat. Therefore, it is difficult to detect quickly and accurately with a simple method using a simple general-purpose analytical instrument, and there are large individual differences, daily variations and reproducible variations within the same individual, and measurement errors due to high molecular weight. There is a problem that it is difficult to accurately reflect the disease state because it is largely lacking in quantitativeness.

グット(Gut),2004年,第53巻,p.1102−1108Gut, 2004, 53, p. 1102-1108 ガストロエンテラロジー(Gastroenterology),2006年,第130巻,p.304〜311Gastroenterology, 2006, 130, p.304-311

特表2010−506144号公報Special table 2010-506144 特表2010−503827号公報Japanese translation of PCT publication 2010-503827 国際公開第2010/151699号International Publication No. 2010/151699

本発明は前記の課題を解決するためになされたもので、生体試料中に安定に存在した非ペプチド性の低分子量の化合物であって、過敏性腸症候群のようなストレス性疾患の病態を的確に反映でき、簡易な汎用分析機器を用い簡便な方法で迅速かつ正確に検出でき、検出条件下で分解し難く、ストレス性疾患治療薬として峻別するのに用いられるバイオマーカーを提供することを目的とする。さらにこのバイオマーカーを用いて、被験薬物をストレス性疾患の治療薬の適否の観点で峻別する方法を提供することを目的とする。   The present invention has been made to solve the above problems, and is a non-peptidic low molecular weight compound that is stably present in a biological sample, and can accurately determine the pathology of stress diseases such as irritable bowel syndrome. The purpose is to provide a biomarker that can be reflected quickly and accurately by a simple method using a simple general-purpose analytical instrument, is difficult to decompose under detection conditions, and is used as a therapeutic agent for stress diseases And It is another object of the present invention to provide a method for distinguishing test drugs from the viewpoint of suitability of therapeutic agents for stress diseases using this biomarker.

前記の目的を達成するためのストレス性疾患のバイオマーカーは、例えば
〔1〕ストレス性疾患に罹患した哺乳動物から採取される尿、血液、唾液又は脳脊髄液の生体液からなる試料から検出されるストレス性疾患のバイオマーカーであって、
負電荷又は正電荷エレクトロイオンスプレー質量分析法におけるm/z値が、
289.1、496.7、305.1、291.1、379.2、393.2、293.1、760.3、715.2、357.1、732.2、
407.2、642.2、303.1、805.4、305.1、629.3、683.3、605.2、307.1、461.1、275.1、
291.1、263.0、261.0、632.4、312.2、255.1、363.2、277.1、294.2、331.2、409.2、
385.2、279.2、343.1、286.2、及び316.2
で示される代謝化合物及びその前駆化合物から選ばれる少なくとも1種類の化合物であることを特徴とするストレス性疾患のバイオマーカーである。
The biomarker for stress disease for achieving the above object is detected from, for example, a sample composed of a biological fluid such as urine, blood, saliva or cerebrospinal fluid collected from a mammal suffering from stress disease [1]. A biomarker for stress-related diseases,
M / z value in negative or positive charge electroion spray mass spectrometry is
289.1, 496.7, 305.1, 291.1, 379.2, 393.2, 293.1, 760.3, 715.2, 357.1, 732.2,
407.2, 642.2, 303.1, 805.4, 305.1, 629.3, 683.3, 605.2, 307.1, 461.1, 275.1,
291.1, 263.0, 261.0, 632.4, 312.2, 255.1, 363.2, 277.1, 294.2, 331.2, 409.2,
385.2, 279.2, 343.1, 286.2, and 316.2
A biomarker for stress-related diseases, characterized in that the biomarker is at least one compound selected from the metabolic compounds and precursor compounds thereof .

前記の目的を達成するためのストレス性疾患のバイオマーカーは、より具体的には、
〔2−1〕下記化学式(1)並びに(2)

Figure 0005857503
で表される化合物;
下記化学式(3)
Figure 0005857503
で表される化合物;
下記化学式(4)並びに(5)
Figure 0005857503
で表される化合物;
3−メトキシ−4−ヒドロキシフェニルグリコール類、及び下記化学式(6)
Figure 0005857503
で表される3−メトキシ−4−ヒドロキシフェニルグリコール類の硫酸抱合体;
ホモバニリン酸、及び下記化学式(7)
Figure 0005857503
で表されるそれの硫酸抱合化合物;
下記化学式(8)
Figure 0005857503
(式(8)中、−CO−Rは、オクテノイル基、デカジエノイル基、イソ−デカジエノイル基、デカエノイル基及びゲラノイル基から選ばれる不飽和アシル基、又はそれらの飽和アシル基を表す。)で表されるアシル化カルニチン類;
下記化学式(9)
Figure 0005857503
で表されるプロゲスタゲン類縁体;
下記化学式(10)
Figure 0005857503
(式(10)中、Rは水素原子、又はメチル基を表す。)で表されるベンゾキノン類;
の何れかであるというものである。
前記の目的を達成するためになされた本発明は、
〔2−2〕前記化学式(2)で表される化合物;
及び前記化学式(6)で表される3−メトキシ−4−ヒドロキシフェニルグリコール類の硫酸抱合体;の何れかであることを特徴とする過敏性腸症候群(以下、単に、ストレス性疾患と言うことがある)のバイオマーカー; More specifically, the biomarker for stress disease for achieving the above-mentioned purpose is as follows:
[ 2-1 ] Chemical formulas (1) and (2) below
Figure 0005857503
In represented Ru of compounds;
The following chemical formula (3)
Figure 0005857503
In represented Ru of compounds;
The following chemical formulas (4) and (5)
Figure 0005857503
In represented Ru of compounds;
3-methoxy-4-hydroxyphenyl glycols and the following chemical formula (6)
Figure 0005857503
A sulfated conjugate of 3-methoxy-4-hydroxyphenyl glycols represented by:
Homovanillic acid and the following chemical formula (7)
Figure 0005857503
Its sulfate conjugate compound represented by:
The following chemical formula (8)
Figure 0005857503
(In formula (8), —CO—R 1 represents an unsaturated acyl group selected from an octenoyl group, a decadienoyl group, an iso-decadienoyl group, a decaenoyl group and a geranoyl group, or a saturated acyl group thereof). Acylated carnitines;
The following chemical formula (9)
Figure 0005857503
A progestagen analog represented by :
The following chemical formula (10)
Figure 0005857503
(In formula (10), R 2 represents a hydrogen atom or a methyl group);
Either .
The present invention, which has been made to achieve the above object,
[2-2] Compound represented by the chemical formula (2);
And Formula sulfate conjugates of 3-methoxy-4-hydroxyphenyl glycols represented by (6); irritable bowel syndrome characterized in that either (hereinafter, simply be referred to as stress-induced disease biomarkers of there);

〔3〕過敏性腸症候群が、消化器系ストレス性疾患の一種であることを特徴とする前記〔1〕に記載のストレス性疾患のバイオマーカー; [3] The biomarker for stress disease according to [1], wherein the irritable bowel syndrome is a kind of digestive system stress disease ;

〔4〕下記化学式(2)

Figure 0005857503
で表される化合物;
である。
ストレス性疾患のバイオマーカーは、
〔5〕下記化学式(10)
Figure 0005857503
(式(10)中、Rは水素原子、又はメチル基を表す。)で表される化合物;
であってもよい。 [4] Chemical formula (2)
Figure 0005857503
A compound represented by:
It is.
Biomarkers for stress-related diseases
[5] Chemical formula (10)
Figure 0005857503
(In formula (10), R 2 represents a hydrogen atom or a methyl group);
It may be.

また、前記の目的を達成するためになされた本発明は、
〔6〕過敏性腸症候群に罹患しており被験薬物が投与された哺乳動物から採取された尿、血液、唾液又は脳脊髄液の生体液からなる試料と、過敏性腸症候群に罹患している哺乳動物の器官若しくは組織又はそれらの何れかから採取した細胞へ被験薬物が添加されている試料とから選ばれる生体由来試料について、前記〔−2〕に記載のバイオマーカーの濃度又は存否を指標とした測定を行うことにより、該被験薬物を該哺乳動物に対する過敏性腸症候群の治療薬として峻別する方法;
The present invention made to achieve the above object
Urine (6) irritable bowel syndrome is suffering from study drug was taken from a mammal which has been administered, blood, a sample consisting of a biological fluid of saliva or cerebrospinal fluid, suffering from irritable bowel syndrome for biological sample selected from a sample mammalian organs or tissues, or test drug into cells taken from any of them is added, the concentration or presence of a biomarker previously described Symbol [2-2] A method of distinguishing the test drug as a therapeutic agent for irritable bowel syndrome for the mammal by performing measurement as an index;

〔7〕該バイオマーカーの濃度に応じて、該哺乳動物に対する該被験薬物の感受性と非感受性とを選別し、又は該哺乳動物に対する該被験薬物の有効投与量を推定することを特徴とする前記〔6〕に記載の方法; [7] The method according to the invention, wherein the sensitivity and insensitivity of the test drug to the mammal are selected according to the concentration of the biomarker, or the effective dose of the test drug to the mammal is estimated. [6] The method according to

〔8〕該指標が、健常な同種の該哺乳動物での生体由来試料における該バイオマーカーの濃度と比較した増減であることを特徴とする前記〔6〕又は〔7〕に記載の方法; [8] The method according to [6] or [7] above, wherein the index is an increase or decrease compared to the concentration of the biomarker in a sample derived from a living organism of the same healthy mammal.

〔9〕該被験薬物が、ミトコンドリア型ベンゾジアゼピン受容体拮抗薬であることを特徴とする前記〔6〕乃至〔8〕の何れかに記載の方法; [9] The method according to any one of [6] to [8] above, wherein the test drug is a mitochondrial benzodiazepine receptor antagonist;

〔10〕過敏性腸症候群が、消化器系ストレス性疾患の一種であることを特徴とする前記〔6〕乃至〔9〕の何れかに記載の方法; [10] The method according to any one of [6] to [9], wherein the irritable bowel syndrome is a kind of digestive system stress disease ;

〔11〕該測定が、質量分析測定、液体クロマトグラフ測定、ガスクロマトグラフ測定、及び/又は核磁気共鳴スペクトル測定であることを特徴とする前記〔6〕乃至〔10〕の何れかに記載の方法;及び [11] The method according to any one of [6] to [10], wherein the measurement is mass spectrometry measurement, liquid chromatography measurement, gas chromatography measurement, and / or nuclear magnetic resonance spectrum measurement ;as well as

〔12〕過敏性腸症候群に罹患した哺乳動物から採取された尿、血液、唾液又は脳脊髄液の生体液と、該哺乳動物から摘出した器官若しくは組織又はそれらの何れかから採取した細胞若しくは生体液成分とから選ばれる生体由来試料について、前記〔−2〕に記載のバイオマーカーの濃度又は存否を指標として、液体クロマトグラフ法、ガスクロマトグラフ法、質量分析法、核磁気共鳴スペクトル測定法、又はそれらの何れかを組み合わせた測定法により、過敏性腸症候群のバイオマーカーを測定する方法;
である。
[12] Urine, blood, saliva, or cerebrospinal fluid biological fluid collected from a mammal suffering from irritable bowel syndrome , and an organ or tissue extracted from the mammal, or cells or living collected from any of them for biological sample selected from a body fluid component, as an indicator the concentration or presence of a biomarker previously described Symbol [2-2], liquid chromatography, gas chromatography, mass spectrometry, nuclear magnetic resonance spectroscopy Or a method for measuring a biomarker of irritable bowel syndrome by a measurement method combining any of them;
It is.

本発明のストレス性疾患のバイオマーカーは、過敏性腸症候群のようなストレス性疾患の病態、例えばストレス性疾患病態モデルである反復低温ストレス負荷非ヒト哺乳動物や過敏性腸症候群のようなストレス性疾患患者の病態を、その非ヒト哺乳動物や患者からの尿・血液、器官若しくは組織又はそれらの細胞若しくは生体液成分のような生体由来試料中の濃度又は存否によって、的確に反映できる生体代謝化合物である。   The biomarker for stress disease of the present invention is a stress disease such as irritable bowel syndrome such as irritable bowel syndrome, such as recurrent low temperature stress non-human mammal which is a stress disease disease model and irritable bowel syndrome. A biometabolic compound that can accurately reflect the pathology of a diseased patient depending on the concentration or presence / absence in a sample derived from a non-human mammal or urine / blood, organ or tissue, or cell or biological fluid component thereof It is.

このバイオマーカーは、生体由来試料中、とりわけ尿中に分析可能な十分な濃度で安定して存在しており、分析条件下で検出し易い非ペプチド性の低分子量の化合物である。このバイオマーカーは、簡易な汎用分析機器、特にクロマトグラフ装置、質量分析計、核磁気共鳴スペクトル測定装置等を用いた簡便な方法で、迅速かつ正確に、定性的に、また定量的に測定して検出できる。   This biomarker is a non-peptidic low molecular weight compound that is stably present at a sufficient concentration that can be analyzed in a sample derived from a living body, particularly in urine, and is easy to detect under analytical conditions. This biomarker can be measured quickly, accurately, qualitatively, and quantitatively by a simple method using a simple general-purpose analytical instrument, particularly a chromatograph apparatus, mass spectrometer, nuclear magnetic resonance spectrum measuring apparatus, etc. Can be detected.

そのため、このバイオマーカーは、被験薬物をストレス性疾患の治療薬として適切か否かの観点から峻別するのに用いることができる。   Therefore, this biomarker can be used to distinguish the test drug from the viewpoint of whether or not the test drug is suitable as a therapeutic agent for stress diseases.

本発明の哺乳動物に対するストレス性疾患の治療薬として峻別する方法によれば、非ヒト哺乳動物におけるin vivoやin vitroで被験薬物の薬理応答性・薬理効果を定性的又は定量的に評価したり、非ヒト哺乳動物や個々の患者の被験薬物の感受性と非感受性とを的確に評価したり、患者毎に被験薬物の有効投与量を正確に推定したりすることができる。   According to the method of distinguishing as a therapeutic agent for stress-related diseases for mammals of the present invention, the pharmacological responsiveness / pharmacological effect of a test drug in a non-human mammal can be evaluated qualitatively or quantitatively in vivo or in vitro. It is possible to accurately evaluate the sensitivity and insensitivity of the test drug in non-human mammals and individual patients, or to accurately estimate the effective dose of the test drug for each patient.

そのため、この峻別方法によれば、患者に最適な被験薬物を峻別して投与したり適切な投与量を決定して投与したり治療効果を推し量り治癒の程度を判断したりする診療に役立つ。   Therefore, according to this distinction method, it is useful for medical treatment in which the optimal test drug is distinctly administered to a patient, or an appropriate dose is determined and administered, the therapeutic effect is estimated, and the degree of healing is judged.

また、本発明のストレス性疾患のバイオマーカーを測定する方法によれば、貴重で微量な生体由来試料から、特定のバイオマーカーを、短時間で誤認すること無く、精密に検出することができ、これによりストレス性疾患の治療効果やその被験薬物の適否の判断の際に、有用なデータを供給することができる。   Further, according to the method for measuring a biomarker for stress-related diseases of the present invention, a specific biomarker can be accurately detected in a short time from a precious and trace amount of a biological sample, This makes it possible to supply useful data when determining the therapeutic effect of stress-related diseases and the suitability of the test drug.

このストレス性疾患のバイオマーカーを測定する方法によれば、測定感度に優れるので、尿・血液等の採取を最小限に抑えて非ヒト哺乳動物や患者の肉体的・精神的負担を軽減できる。   According to this method of measuring a biomarker for stress disease, the measurement sensitivity is excellent, so that the physical and mental burdens of non-human mammals and patients can be reduced by minimizing the collection of urine and blood.

本発明を適用するストレス性疾患のバイオマーカーの同定過程の一例を示す図である。It is a figure which shows an example of the identification process of the biomarker of the stress disease which applies this invention.

以下、本発明を実施するための形態について詳細に説明するが、本発明の範囲はこれらの形態に限定されるものではない。   Hereinafter, although the form for implementing this invention is demonstrated in detail, the scope of the present invention is not limited to these forms.

本発明のストレス性疾患のバイオマーカーは、過敏性腸症候群などのようなストレス性疾患の患者の病態を的確に反映する実験系として、ラットのような哺乳動物を室温下と低温下とに交互に反復して曝して反復低温ストレス(以下にRCSとも称する)を負荷する動物モデル、又は拘束ストレスケージを用いて拘束ストレスを負荷する動物モデルを用いて、ミトコンドリア型ベンゾジアゼピン受容体(以下にMBRとも称する)拮抗薬を被験薬物として投与したとき、該哺乳動物の尿中で、その投与に対して特異的に増加又は減少する化合物や、反復低温ストレス又は拘束ストレスの負荷に対して特異的に増加又は減少する化合物である。該バイオマーカーは、哺乳動物、とりわけヒトの尿、血液、唾液、又は脳脊髄液のような各種生体液中に存在する。   The biomarker for stress-related diseases of the present invention is an experimental system that accurately reflects the pathology of patients with stress-related diseases such as irritable bowel syndrome. Mitochondrial benzodiazepine receptor (hereinafter also referred to as MBR) using an animal model that is repeatedly exposed to and subjected to repeated cold stress (hereinafter also referred to as RCS), or an animal model that is subjected to restraint stress using a restraint stress cage. When an antagonist is administered as a test drug, the compound specifically increases or decreases in the mammal's urine, and increases specifically in response to repeated cold stress or restraint stress. Or a decreasing compound. The biomarker is present in various biological fluids such as urine, blood, saliva, or cerebrospinal fluid of mammals, particularly humans.

このようなストレス性疾患のバイオマーカーの好ましい一例は、下記化学式(1)及び(2)

Figure 0005857503
で表される3−ヒドロキシ−5−メガスチグメン−9−オン類((4-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)butan-2-one、又は3-hydroxy-5-megastigmene-9-one:以下にHMOとも称する)やその硫酸抱合化合物(3,5,5-trimethyl-4-(3-oxobutyl)cyclohex-3-en-1yl hydrogen sulfate、又は3-hydroxy-5-megastigmene-9-one 3-O-sulfate:以下にHMOSとも称する)である。化学式(1)及び(2)の化合物は、抗酸化物質であるカロテノイドの一種であるβ−カロテンに由来する代謝物であり、RCSの負荷により上昇し、MBR受容体拮抗薬投与によりそれに応答して上昇抑制する性質を有するものである。化学式(1)及び(2)の化合物は、光学活性体であってもよいがdl体であってもよい。 Preferred examples of such biomarkers for stress diseases include the following chemical formulas (1) and (2)
Figure 0005857503
3-hydroxy-5-megagustigment-9-one ((4- (4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl) butan-2-one or 3- hydroxy-5-megastigmene-9-one: hereinafter also referred to as HMO) and its sulfate-conjugated compound (3,5,5-trimethyl-4- (3-oxobutyl) cyclohex-3-en-1yl hydrogen sulfate, or 3- Hydroxy-5-megastigmene-9-one 3-O-sulfate (hereinafter also referred to as HMOS) The compounds of the chemical formulas (1) and (2) are added to β-carotene, which is a kind of antioxidant carotenoid. It is a metabolite derived from the compound, and has the property of being increased by the load of RCS and suppressing the increase in response to administration of the MBR receptor antagonist, The compounds of the chemical formulas (1) and (2) are optically active substances. However, it may be a dl form.

化学式(1)及び(2)の化合物と同様にこの性質を有するストレス性疾患のバイオマーカーとして、それらの不飽和基の二重結合及び/又はカルボニル基が還元された還元化合物、例えばその不飽和基が単結合に還元された化合物あってジアステレオマー若しくはその混合物であってもよく、そのカルボニル基がヒドロキシ基に還元された化合物であってジアステレオマー又はその混合物であってもよい。これらの還元化合物の2、4、6、7又は8位の何れかに水酸基が導入された水酸基置換化合物であってもよい。   Similar to the compounds of the chemical formulas (1) and (2), as a biomarker for stress-related diseases having this property, a reduced compound in which the double bond of the unsaturated group and / or the carbonyl group is reduced, for example, the unsaturated compound A compound in which a group is reduced to a single bond and may be a diastereomer or a mixture thereof, or a compound in which a carbonyl group is reduced to a hydroxy group and may be a diastereomer or a mixture thereof. A hydroxyl group-substituted compound in which a hydroxyl group is introduced at any of the 2, 4, 6, 7, or 8 positions of these reducing compounds may be used.

また、ストレス性疾患のバイオマーカーは、下記化学式(3)

Figure 0005857503
で表されカロテノイド類に由来する代謝物である3−ヒドロキシ−5−メガスチグメン−9−オン類のグルクロン酸抱合化合物(3,5,5-trimethyl-4-(3-oxobutyl)cyclohex-3-en-1-yl hexopyranosiduronic acid、又は3-O-Glucronide 3-hydroxy-5-megastigmene-9-one)であってもよい。そのアグリコンは光学活性体であってもよいがdl体であってもよい。 In addition, biomarkers for stress diseases are represented by the following chemical formula (3)
Figure 0005857503
A glucuronide-conjugated compound of 3-hydroxy-5-megastigmen-9-ones, which is a metabolite derived from carotenoids (3,5,5-trimethyl-4- (3-oxobutyl) cyclohex-3-en -1-yl hexopyranosiduronic acid or 3-O-Glucronide 3-hydroxy-5-megastigmene-9-one). The aglycone may be an optically active form or a dl form.

ストレス性疾患のバイオマーカーは、ビタミンE由来のもので、下記化学式(4)及び(5)

Figure 0005857503
で表される2−カルボキシエチル−6−ヒドロキシクロマン類(3-[(2S)-2,5,7,8-tetramethyl-6-(hydroxy)-3,4-dihydro-2H-chromen-2-yl]propanoic acid:以下にα−CEHCとも称する)、及びそれの硫酸抱合化合物(3-[(2S)-2,5,7,8-tetramethyl-6-(sulfooxy)-3,4-dihydro-2H-chromen-2-yl]propanoic acid:以下にα−CEHCSとも称する)であってもよい。α−CEHCやその硫酸抱合化合物α−CEHCSの位置異性体やその類縁体、例えばβ−CEHCやβ−CEHCS、γ−CEHCやγ−CEHCS、δ−CEHCやδ−CEHCS、又はそれらの何れかの混合物であってもよい。その硫酸抱合化合物α−、β−、γ−又はδ−CEHCSの二量体、若しくはそれ以外の分子イオンとの複合体となったものであってもよい。また、同じくビタミンE由来のもので、CEHCやCEHCSの前駆化合物である3,4-dihydro-6-hydroxy-α,2,5,7,8-pentamethyl-2H-1-benzopyran-2-pentanoic acid (α−CMBHC)、その異性体であるβ−、γ−又はδ−CMBHCや、それらの硫酸抱合化合物であるβ−、γ−又はδ−CMBHCSであってもよい。 The biomarker for stress disease is derived from vitamin E and has the following chemical formulas (4) and (5)
Figure 0005857503
2-carboxyethyl-6-hydroxychromans (3-[(2S) -2,5,7,8-tetramethyl-6- (hydroxy) -3,4-dihydro-2H-chromen-2- yl] propanoic acid: hereinafter also referred to as α-CEHC) and its sulfate-conjugated compound (3-[(2S) -2,5,7,8-tetramethyl-6- (sulfooxy) -3,4-dihydro- 2H-chromen-2-yl] propanoic acid: hereinafter also referred to as α-CEHCS). α-CEHC and its sulfate conjugated compound α-CEHCS positional isomers and analogs thereof, such as β-CEHC and β-CEHCS, γ-CEHC and γ-CEHCS, δ-CEHC and δ-CEHCS, or any of them It may be a mixture of It may be a dimer of the sulfate-conjugated compound α-, β-, γ-, or δ-CEHCS, or a complex with other molecular ions. Also, 3,4-dihydro-6-hydroxy-α, 2,5,7,8-pentamethyl-2H-1-benzopyran-2-pentanoic acid, which is also derived from vitamin E and is a precursor compound of CEHC and CEHCS (Α-CMBHC), its isomers β-, γ-, or δ-CMBHC, and their sulfate-conjugated compounds β-, γ-, or δ-CMBHCS may be used.

ストレス性疾患のバイオマーカーは、カテコラミンに由来のもので、3−メトキシ−4−ヒドロキシフェニルグリコール(3-methoxy-4-hydroxyphenylglycol:以下にMHPGとも称する)や、その硫酸抱合体、例えば下記化学式(6)

Figure 0005857503
で表される3−メトキシ−4−ヒドロキシフェニルグリコールの硫酸抱合体(2-hydroxy-1-(4-hydroxy-3-methoxyphenyl)ethyl hydrogen sulfate:以下にMHPGSとも称する)であってもよい。 Biomarkers for stress diseases are derived from catecholamines, such as 3-methoxy-4-hydroxyphenylglycol (hereinafter also referred to as MHPG) and its sulfate conjugates, for example, the following chemical formula ( 6)
Figure 0005857503
Or 2-methoxy-1-hydroxyphenyl glycol sulfate (2-hydroxy-1- (4-hydroxy-3-methoxyphenyl) ethyl hydrogen sulfate: hereinafter also referred to as MHPGS).

ストレス性疾患のバイオマーカーは、カテコラミンに由来のホモバニリン酸(以下にHVAとも称する)であってもよく、下記化学式(7)

Figure 0005857503
で表されるそれの硫酸抱合化合物([3-methoxy-4-(sulfooxy)phenyl]acetic acid:以下にHVASとも称する)であってもよい。 The biomarker for stress disease may be homovanillic acid derived from catecholamine (hereinafter also referred to as HVA), which has the following chemical formula (7)
Figure 0005857503
It may be a sulfate-conjugated compound ([3-methoxy-4- (sulfooxy) phenyl] acetic acid: hereinafter also referred to as HVAS).

ストレス性疾患のバイオマーカーは、カルニチンに由来するもので、下記化学式(8)

Figure 0005857503
例えば、−CO−Rが不飽和アシル基として、オクテノイル基であるカルニチン類(Octenolycarnitine:以下にC8:1-Carnitineとも称する)、デカジエノイル基やイソデカジエノイル基やゲラノイル基であるカルニチン類(2-trans,4-cis-Decadienoylcarnitineなど:以下にC10:2-Carnitineとも称する)であってもよく、−CO−Rが飽和アシル基としてそれらに対応する飽和アシル基、例えばデカノイル基であるカルニチン類(Decanoylcarnitineなど:以下にC10:0-Carnitineとも称する)であってもよい。
ストレス性疾患のバイオマーカーは、コレステロールに由来するプロゲスタゲン類縁体であって、下記化学式(9)
Figure 0005857503
で表される4-Pregnen-19-ol-3,20-dione(以下にC21 Progestageneとも称する)であってもよく、後述する表5に記載しているようなそれの水酸基の位置が異なる位置異性体やその構造異性体である各種Pregnen類やAndrostadien類やAndrosten類やEstren類であってもよい。 The biomarker for stress disease is derived from carnitine and has the following chemical formula (8)
Figure 0005857503
For example, a -CO-R 1 is an unsaturated acyl group, carnitines are octenoyl group (Octenolycarnitine: below C8: 1-Carnitine also called), Dekajienoiru group and isobutyl deca diene decanoyl group and carnitines is Geranoiru group ( 2-trans, 4-cis-Decadienoylcarnitine and the like: hereinafter also referred to as C10: 2-Carnitine), and —CO—R 1 is a saturated acyl group corresponding to them as a saturated acyl group, for example, a decanoyl group Carnitines (such as Decanoylcarnitine: hereinafter also referred to as C10: 0-Carnitine) may be used.
A biomarker for stress-related diseases is a progestagen analog derived from cholesterol having the following chemical formula (9)
Figure 0005857503
4-Pregnen-19-ol-3,20-dione (hereinafter also referred to as C21 Progestagene) represented by the above, and the position of the hydroxyl group as described in Table 5 to be described later is different. It may be an isomer or various structural isomers such as Pregnen, Androstadien, Androsten, and Estren.

ストレス性疾患のバイオマーカーは、下記化学式(10)

Figure 0005857503
(式(10)中、Rは水素原子、又はメチル基を表す。)で表されるベンゾキノン類であってもよい。化学式(10)の化合物は、光学活性体であってもよいが、dl体であってもよく、ジアステレオマー又はその混合物であってもよい。 The biomarker for stress-related diseases has the following chemical formula (10)
Figure 0005857503
(In formula (10), R 2 represents a hydrogen atom or a methyl group.) A benzoquinone represented by the formula (10) may be used. The compound of the chemical formula (10) may be an optically active form, but may be a dl form, a diastereomer or a mixture thereof.

ストレス性疾患のバイオマーカーは、前記のm/zと、例えばC18修飾シリカゲル系充填剤又はポリマー系充填剤による液体カラムクロマトグラフィー保持時間Rとで特定された化合物であれば、構わない。ここで、液体カラムクロマトグラフィーは、後記するUPLC条件で行うこともできることに加え、その測定条件は適宜変更してもよい。これらバイオマーカーは、殆ど、RCSにより増加し、MBR拮抗薬投与によりそれに応答して増加抑制する性質を有するものであるが、それとは逆に、m/zが632.4で保持時間が85秒の化合物のみが、RCSの負荷により減少し、MBR拮抗薬投与によりそれに応答して減少抑制する性質を有する。 Biomarkers of stress disorders, and the said m / z, it is a compound identified by the example C 18 modified silica gel-based filler or a polymer-based liquid chromatography retention time by fillers R t, may. Here, the liquid column chromatography can be performed under UPLC conditions described later, and the measurement conditions may be appropriately changed. Most of these biomarkers are increased by RCS and have the property of suppressing the increase in response to MBR antagonist administration. On the contrary, m / z is 632.4 and retention time is 85 seconds. Only these compounds have the property of being decreased by the load of RCS and suppressing the decrease in response to MBR antagonist administration.

被験薬物は、過敏性腸症候群に対するミトコンドリア型ベンゾジアゼピン受容体(別名:トランスロケータープロテイン18KDa(TSPO))拮抗薬の例を示したが、その他のストレス性疾患に対する薬物、例えば、抗不安薬(例えば、ベンゾジアゼピン系抗不安薬、チエノジアゼピン系抗不安薬、非ベンゾジアゼピン系抗不安薬、セロトニン作動薬、CRF拮抗薬等)、抗うつ薬(例えば、モノアミン遊離薬、モノアミンオキシダーゼ阻害薬、モノアミン再取込み阻害薬(SNRI、SSRI)、CRF拮抗薬、ニューロテンシン拮抗薬、三環式抗うつ薬、四環式抗うつ薬等)、抗コリン薬、消化管機能調整薬(例えば、整腸薬、CCK−A拮抗薬、ニューロテンシン拮抗薬、オピオイド作動薬、ムスカリン作動薬、5−HT作動薬等)、消化管運動促進薬(例えば、整腸薬、CCK−A拮抗薬、ニューロテンシン拮抗薬、オピオイド作動薬、ムスカリン作動薬、5−HT作動薬等)、止瀉薬(例えば、止痢薬、オピオイドμ受容体刺激薬等)、瀉下薬(例えば、膨張性下剤、塩類下剤、刺激性下剤、親和性ポリアクリル樹脂、ルビプロストン等)、粘膜麻痺薬、自律神経調節薬、カルシウム拮抗薬、ホスホジエステラーゼ阻害薬、セロトニン拮抗薬(例えば、5−HT拮抗薬、5−HT拮抗薬)、ダリフェナジン、ポリカルボフィルカルシウム、乳酸菌製剤、抗生物質(例えば、リファキシミン等)であってもよい。 Test drugs have shown examples of mitochondrial benzodiazepine receptor (also known as translocator protein 18 KDa (TSPO)) antagonists for irritable bowel syndrome, but drugs for other stress diseases such as anti-anxiety drugs (for example, Benzodiazepine anxiolytics, thienodiazepine anxiolytics, non-benzodiazepine anxiolytics, serotonin agonists, CRF antagonists, etc., antidepressants (eg monoamine liberators, monoamine oxidase inhibitors, monoamine reuptake inhibitors ( SNRI, SSRI), CRF antagonist, neurotensin antagonist, tricyclic antidepressant, tetracyclic antidepressant, etc.), anticholinergic agent, gastrointestinal function regulator (eg, intestinal regulating agent, CCK-A antagonist) Drugs, neurotensin antagonists, opioid agonists, muscarinic agonists, 5-HT 4 agonists Etc.), gastrointestinal motility promoting agents (eg, intestinal regulating agents, CCK-A antagonists, neurotensin antagonists, opioid agonists, muscarinic agonists, 5-HT 4 agonists, etc.), antidiarrheal agents (eg, diarrhea) Drugs, opioid μ receptor stimulants, etc.), laxatives (eg, expansive laxatives, salt laxatives, stimulant laxatives, affinity polyacrylic resins, rubiprostone, etc.), mucosal paralytics, autonomic nerve regulators, calcium antagonists, It may be a phosphodiesterase inhibitor, serotonin antagonist (for example, 5-HT 3 antagonist, 5-HT 4 antagonist), darifadazine, polycarbophil calcium, lactic acid bacteria preparation, antibiotic (for example, rifaximin).

このストレス性疾患のバイオマーカーは、ストレスに起因する消化器系、中枢神経系、呼吸器系、循環器系、泌尿器系、生殖器系、婦人系、内分泌系、代謝系、眼系、耳鼻咽喉系、口腔系、歯系、皮膚系、整形外科・外科系のような各種疾患に特異的な指標成分となり得るものである。とりわけ消化器系ストレス性疾患、例えば過敏性腸症候群の患者の指標成分として有用である。   Biomarkers of this stress disorder are digestive system, central nervous system, respiratory system, circulatory system, urinary system, genital system, gynecological system, endocrine system, metabolic system, ophthalmic system, otolaryngology system caused by stress It can be an indicator component specific to various diseases such as oral system, dental system, skin system, orthopedics / surgical system. It is particularly useful as an indicator component for patients with gastrointestinal stress diseases such as irritable bowel syndrome.

このストレス性疾患のバイオマーカーは、生体由来試料として哺乳動物の尿から検出される例を示したが、必要に応じ哺乳動物とりわけストレス性疾患患者の血液、器官若しくは組織又はそれらの何れかから採取した細胞のような生体由来試料からも検出が可能である。反復した採尿・採血等による非ヒト哺乳動物や患者の肉体的・精神的な負担軽減や、十分量確保したり試料保存したりする観点から、生体由来試料として尿を用いることが好ましい。   Although this biomarker for stress-related diseases has been shown to be detected from mammalian urine as a biological sample, it is collected from blood, organs and / or tissues of mammals, particularly stress-related diseases, as necessary. Detection is also possible from a sample derived from a living body such as a cultured cell. From the viewpoint of reducing the physical and mental burdens of non-human mammals and patients by repeated urine collection and blood collection, and securing a sufficient amount or storing the sample, it is preferable to use urine as a biological sample.

ストレス性疾患のバイオマーカーは、これらの内から選ばれる1種又は複数種であることが好ましく、検出精度や信頼性の向上のため、2種程度の複数種であると一層好ましい。この複数のバイオマーカーとして、前記式(2)の化合物、前記式(3)の化合物、ホモバニリン酸、3−メトキシ−4−ヒドロキシフェニルグリコールの硫酸抱合化合物の何れかの組合せが、好ましい。   The biomarker for stress disease is preferably one or more selected from among these, and more preferably about two or more types in order to improve detection accuracy and reliability. As the plurality of biomarkers, any combination of the compound of formula (2), the compound of formula (3), homovanillic acid, and a sulfated compound of 3-methoxy-4-hydroxyphenylglycol is preferable.

これらのストレス性疾患のバイオマーカーは、尿、血液、唾液又は脳脊髄液、器官若しくは組織又はそれらの細胞を採取した生体試料中の存否・同定や濃度について、各種機器分析、具体的には、物理化学的理化学分析、より具体的には、
クロマトグラフ法、例えば高速液体クロマトグラフ法(HPLC法)、超高速液体クロマトグラフ法(UHPLC法)、超臨界液体クロマトグラフ法(SFC法)、ガスクロマトグラフ法(GC法);
質量分析法(MS法)、例えば電子イオン化法(EI−MS法)、化学イオン化法(CI−MS法)、電解脱離法(FD−MS法)、高速原子衝突法(FAB−MS法)、マトリックス支援レーザー脱離イオン化法(MALDI−MS法)、エレクトロスプレーイオン化法(ESI−MS法)、大気圧化学イオン化法(APCI−MS法)などによる、磁場偏向型、四重極型(QMS)、三連四重極型(TQ−MS)、イオントラップ型(IT−MS)、飛行時間型(TOF−MS)、フーリエ変換イオンサイクロトロン共鳴型(FI−ICR−MS)、タンデム型(MS/MS)での手法;
核磁気共鳴スペクトル測定法(NMR法)、例えばH−NMRや13C−NMR、より具体的には一次元H−NMR又は13C−NMR、HH−若しくはCH−COSY,NOESY,TOCSY,wetTOCSYのような二次元NMR;
又はそれらの何れかを組み合わせた測定法、例えば液体クロマトグラフ−質量分析法(LC−MS)好ましくは超高速液体クロマトグラフ−質量分析法(UPLC/MS法;UPLCは登録商標)、高速液体クロマトグラフ−質量分析法(HPLC−MS)、液体クロマトグラフ−タンデム型質量分析法(LC−MS/MS)、液体クロマトグラフ−核磁気共鳴スペクトル測定法(LC−NMR法)、液体クロマトグラフ−核磁気共鳴スペクトル/質量分析法(LC−NMR/MS)
により、正常状態の健常哺乳動物と比較して、定性的に、又は定量的に、測定して検出される。
Biomarkers of these stress-related diseases include urine, blood, saliva or cerebrospinal fluid, organs or tissues, or presence / identification and concentration in biological samples collected from those cells, various instrumental analysis, specifically, Physicochemical physicochemical analysis, more specifically,
Chromatographic methods such as high performance liquid chromatography (HPLC), ultra high performance liquid chromatography (UHPLC), supercritical liquid chromatography (SFC), gas chromatography (GC);
Mass spectrometry (MS method), for example, electron ionization method (EI-MS method), chemical ionization method (CI-MS method), electrolytic desorption method (FD-MS method), fast atom collision method (FAB-MS method) Magnetic field deflection type, quadrupole type (QMS) by matrix assisted laser desorption ionization method (MALDI-MS method), electrospray ionization method (ESI-MS method), atmospheric pressure chemical ionization method (APCI-MS method), etc. ), Triple quadrupole (TQ-MS), ion trap (IT-MS), time of flight (TOF-MS), Fourier transform ion cyclotron resonance (FI-ICR-MS), tandem (MS) / MS) method;
Nuclear magnetic resonance spectrum measurement method (NMR method), for example, 1 H-NMR or 13 C-NMR, more specifically, one-dimensional 1 H-NMR or 13 C-NMR, HH- or CH-COSY, NOESY, TOCSY, two-dimensional NMR such as wetTOCSY;
Or any combination thereof, for example, liquid chromatography-mass spectrometry (LC-MS), preferably ultrahigh performance liquid chromatography-mass spectrometry (UPLC / MS method; UPLC is a registered trademark), high performance liquid chromatography Graph-mass spectrometry (HPLC-MS), liquid chromatograph-tandem mass spectrometry (LC-MS / MS), liquid chromatograph-nuclear magnetic resonance spectroscopy (LC-NMR method), liquid chromatograph-nucleus Magnetic resonance spectrum / mass spectrometry (LC-NMR / MS)
Therefore, it is detected qualitatively or quantitatively as compared with a normal healthy mammal.

ストレス性疾患のバイオマーカーの他の検出方法としては、生化学的理化学分析、具体的には、抗原抗体反応を利用したEIA法(Enzyme Immunoassay:酵素免疫測定法)、とりわけELISA法(Enzyme-linked Immunosorbent Assay:酵素結合免疫溶媒測定法)、RIA法(Radio-immuno-assay:放射線免疫測定法)等を用いることもできる。   Other methods for detecting biomarkers of stress diseases include biochemical physicochemical analysis, specifically, EIA method (Enzyme Immunoassay) using antigen-antibody reaction, especially ELISA method (Enzyme-linked). Immunosorbent Assay (enzyme-linked immunosolvent assay), RIA (Radio-immuno-assay) and the like can also be used.

生体試料中でのストレス性疾患のバイオマーカーの同定は、標品の質量分析スペクトルや核磁気共鳴スペクトルとの比較、標品のクロマトグラムの保持時間の比較によって行うことができ、又、バイオマーカーの濃度の算定は、それらスペクトルの強度又はクロマトグラムのピーク面積と、標品での強度又はピーク面積及び濃度の標準検量線との対比によって行うことができる。   Biomarkers for stress-related diseases in biological samples can be identified by comparing the mass spectrometry spectrum and nuclear magnetic resonance spectrum of the sample, and comparing the retention times of the chromatograms of the sample. The concentration of these can be calculated by comparing the intensity of these spectra or the peak area of the chromatogram with the standard calibration curve of the intensity or peak area and concentration in the standard.

このようなストレス性疾患のバイオマーカーは、生体由来試料に含有された多数の成分から網羅的に分析し得られたデータを解析してマーカーとして特定の物質を選び出す以下のようなメタボローム解析により、絞り込まれて、有用マーカー成分として同定されたものである。その同定の過程を、図1を参照しながら、詳細に説明する。   Such biomarkers of stress diseases are analyzed by the following metabolome analysis that selects specific substances as markers by analyzing data obtained by comprehensive analysis from a large number of components contained in biological samples, It was narrowed down and identified as a useful marker component. The identification process will be described in detail with reference to FIG.

(i)先ず、ストレス性疾患に罹患していない正常な非ヒト哺乳動物を、予備飼育した。 (I) First, normal non-human mammals not suffering from stress-related diseases were preliminarily raised.

(ii)この哺乳動物から1回目の採尿を行い、尿から尿中代謝物を抽出し、その全成分を、超高速液体クロマトグラフ−質量分析法(UPLC/TOF−MS法)にかけて、ポジティブモードとネガティブモードとでm/zを測定し、夫々得られた1万数千成分の保持時間とm/zと相対強度との生データを基に、行列データを作成する。そのデータから、その横軸を保持時間とし縦軸をm/zとして、プロットグラフを作成する。 (Ii) The first urine collection is performed from this mammal, urinary metabolites are extracted from the urine, and all the components are subjected to ultra high performance liquid chromatography-mass spectrometry (UPLC / TOF-MS method), and in positive mode. M / z is measured in negative mode, and matrix data is created based on the raw data of the retention time, m / z, and relative intensity of each of the thousands components obtained. From the data, a plot graph is created with the horizontal axis as the retention time and the vertical axis as m / z.

(iii)また、これと同種の予備飼育した哺乳動物を日中、1時間毎に低温下と室温下とに交互に曝して数日間飼育することによって、この哺乳動物に作為的にRCS負荷をかける。このストレス負荷は、ヒトのストレス性疾患、特に過敏性腸症候群の病態と極めて近似しているので、過敏性腸症候群の動物モデルとなり得るものである。 (Iii) In addition, by preliminarily rearing a mammal of the same kind as that of the same species in the daytime by alternately exposing to a low temperature and a room temperature every hour for several days, the RCS load is intentionally applied to this mammal. Call. Since this stress load is very close to the pathological condition of human stress disease, particularly irritable bowel syndrome, it can be an animal model of irritable bowel syndrome.

(iv)RCS負荷後に、何も投与しないか、若しくは媒体又は被験物質を投与した後、2回目の採尿を行い、同様にその全成分を、超高速液体クロマトグラフ−質量分析法にかけ、行列データとプロットグラフとを作成する。1回目の採尿と2回目の採尿との行列データとプロットグラフとを比較し、RCS負荷に特異的な強度の増減成分として数千成分を、一次選別する。 (Iv) After RCS loading, do not administer anything, or administer the vehicle or test substance, and then perform a second urine collection. Similarly, all the components are subjected to ultra high performance liquid chromatography-mass spectrometry, and matrix data And plot graph. The matrix data of the first urine collection and the second urine collection are compared with the plot graph, and thousands of components are primarily selected as an increase / decrease component specific to the RCS load.

(v)一方、RCSを負荷しない哺乳動物からか、若しくはRCS負荷をかけつつその哺乳動物に、媒体又は被験物質を投与し暫くしてから、3回目の採尿を行い、同様に超高速液体クロマトグラフ−質量分析法にかけ、行列データとプロットグラフとを作成する。一次選別した成分ピークの中から、RCS負荷に関わらず強度が増減する成分や、被験物質の投与によっても殆ど強度が増減しない成分や、強度の増減に再現性のない成分のような偽陽性マーカー成分を除外し、RCS負荷によって強度が増加し被験物質の投与によって強度が減少するか、又はRCS負荷によって強度が減少し被験物質の投与によって強度が増加する数百成分だけを、二次選別する。 (V) On the other hand, a medium or test substance is administered to a mammal not loaded with RCS or to the mammal while being loaded with RCS, and after a while, the urine is collected for the third time. Graph-mass spectrometry is applied to create matrix data and a plot graph. False positive markers such as components whose intensity increases / decreases regardless of RCS load, components whose intensity hardly increases / decreases even when the test substance is administered, and components whose intensity increase / decrease is not reproducible Exclude ingredients and secondary sort only hundreds of ingredients that increase in intensity with RCS loading and decrease in intensity with test substance administration or decrease in intensity with RCS loading and increase in intensity with test substance administration .

(vi)さらに、定量測定を確実にするために、感度不足であったり夾雑成分に影響されてしまったりする強度(シグナル値)の低い成分を除外し、被験物質を再投与して再現性の高い成分を、UPLC/MRM法(UPLCを用いたMS/MS分析(multiple reaction monitoring:MRM))を用い、定量分析することにより、三次選別して、数十成分をストレス性疾患のバイオマーカーとする。 (Vi) Furthermore, in order to ensure quantitative measurement, remove low-intensity components (signal values) that are insensitive or affected by contaminating components, and re-administer the test substance to ensure reproducibility. The high component is subjected to quantitative analysis by using UPLC / MRM method (MS / MS analysis (MRM) using UPLC), and then the tens of components are selected as biomarkers for stress diseases. To do.

(vii)このストレス性疾患のバイオマーカーを、各種機器分析、例えば質量分析法、核磁気共鳴スペクトル測定法などにより、同定する。 (Vii) The biomarker of this stress disease is identified by various instrumental analysis, for example, mass spectrometry, nuclear magnetic resonance spectrum measurement method and the like.

なお、一次〜三次選別は、適宜、主成分分析、回帰分析、クラスター解析、分散解析のような多変量解析、Welchのt検定、paired t検定、差の比較検定、又はunpaired t検定により、行われる。   In addition, primary to tertiary sorting is performed by multivariate analysis such as principal component analysis, regression analysis, cluster analysis, variance analysis, Welch's t-test, paired t-test, difference comparison test, or unpaired t-test as appropriate. Is called.

前記のように特定されたストレス性疾患のバイオマーカーは、生体由来試料中の濃度とストレス性疾患の治療効果との間に、正の相関性又は負の相関性を有するものである。例えば、ストレスモデル動物へのストレス負荷期間中の脱糞量と、尿中のバイオマーカー濃度との間に、相関傾向が認められる。そのためこのバイオマーカーの濃度に基づき、ストレス性疾患の病状レベルとして換算して数値化することができる。また、その濃度に基づき、投与した被験薬物についてストレス性疾患治療薬の有効性レベルとして換算して数値化することもできる。また、ストレス性疾患の患者に投与した被験薬物の感受性の有無又はその感受レベルとして換算して数値化し、必要に応じて被験薬物の投与の適否を判断するのに用いてもよい。また、哺乳動物、特にストレス性疾患の患者に対する被験薬物の有効投与量や最適投与量や投与可能範囲などを推定するのに用いてもよい。   The biomarker for stress disease identified as described above has a positive correlation or a negative correlation between the concentration in the biological sample and the therapeutic effect of the stress disease. For example, a correlation tendency is observed between the amount of defecation during a stress load period on a stress model animal and the biomarker concentration in urine. Therefore, based on the concentration of this biomarker, it can be converted into a numerical value by converting as a disease state level of stress-related diseases. Also, based on the concentration, the administered test drug can be converted into a numerical value by converting it as the effectiveness level of the therapeutic agent for stress disease. Moreover, it may be converted into a numerical value as the presence or absence or sensitivity level of a test drug administered to a patient with a stress disorder, and used to determine the suitability of administration of the test drug as necessary. Moreover, you may use for estimating the effective dose of a test drug with respect to a mammal, especially the patient of a stress-related disease, the optimal dose, the administration possible range, etc.

以下、本発明のストレス性疾患のバイオマーカーを具体的に同定した例について、詳細に説明する。   Hereinafter, an example in which the biomarker for stress disease of the present invention is specifically identified will be described in detail.

(実施例1)
先ず、ストレス性疾患であって全人口の数%が罹患していると言われている過敏性腸症候群の病態に、極めて近似している過敏性腸症候群動物モデルを、ラットへのRCS負荷により作製し、ストレス性疾患のバイオマーカーの同定を行った。
Example 1
First, an irritable bowel syndrome animal model that is very close to the pathological condition of irritable bowel syndrome, which is said to be a stress disorder and affects several percent of the total population, is obtained by RCS loading on rats. And biomarkers for stress-related diseases were identified.

(1. 使用動物及びその予備飼育)
雄性Wistar系ラット(日本チャールス・リバー株式会社)を、過敏性腸症候群動物モデルの作製開始時に7週齢となるように、室温で、予備飼育し、必要に応じ検疫し、馴化させた。
(1. Animals used and their preliminary breeding)
Male Wistar rats (Nippon Charles River Co., Ltd.) were preliminarily raised at room temperature, quarantined as necessary, and acclimatized so that they would be 7 weeks old at the start of the production of an irritable bowel syndrome animal model.

(2. 過敏性腸症候群動物モデルの作製手順、及び被験物質又は対照物質の投与手順)
ラットにRCS負荷をかけた過敏性腸症候群動物モデルの具体的作製手順は、1日目は午前9時から午後7時までの間に飼育環境温度を、1時間毎に8回、2℃と室温(24±2℃)とに交互に変化させ、その後、翌朝まで2℃の飼育環境温度で飼育し、2日目から6日目までは午前9時から午後8時までの間に飼育環境温度を、1時間毎に9回変化させ、9回目終了後から翌朝まで2℃の飼育環境温度で飼育するというものである。これによって、直腸伸展刺激に対する感受性亢進のようなヒトの過敏性腸症候群の症状に似た病態を誘発し、ストレス性疾患の動物モデルとなっている。
(2. Procedure for preparing animal model of irritable bowel syndrome and administration of test substance or control substance)
The specific procedure for producing an animal model of irritable bowel syndrome in which rats were loaded with RCS was as follows. On the first day, the breeding environment temperature was set to 8 ° C. and 2 ° C. between 9 am and 7 pm Change to room temperature (24 ± 2 ° C) alternately, and then raise at 2 ° C in the rearing environment temperature until the next morning. From the second day to the sixth day, the rearing environment is between 9:00 am and 8:00 pm The temperature is changed nine times every hour, and the animals are raised at a breeding environment temperature of 2 ° C. from the end of the ninth time until the next morning. This induces pathological conditions similar to those of human irritable bowel syndrome, such as increased sensitivity to rectal extension stimulation, and has become an animal model for stress-related diseases.

2群のラットに夫々、前記のようにしてRCS負荷をかけつつ、被験物質としてMBR拮抗薬、又は対照物質として0.5w/v%メチルセルロース水溶液である媒体を投与し、夫々、被験物質投与群、媒体投与対照群とした。被験物質及び媒体の投与手順は、RCS負荷1日目から6日目までの午前中(凡そ午前9時〜11時までの間)及び午後(凡そ午後5時〜6時半の間)にそれぞれ1回ずつ、被験物質(10mg/kg)又は媒体(5mL/kg)を経口投与するというものである。なお、被験物質であるMBR選択的リガンドとして、ヨーロピアン・ジャーナル・オブ・ファーマコロジー(European Journal of Pharmacology)、1985年、第119巻、p.153〜167に記載の(1−(2−クロロフェニル)−N−メチル−N−(1−メチルプロピル)−3−イソキノリンカルボキサミド)であるPK11195、国際公開第2004/113300号や国際公開第2006/068164号に記載の実施例の化合物の何れかを用いた。   Each of the two groups of rats was administered a medium which is an MBR antagonist as a test substance or a 0.5 w / v% methylcellulose aqueous solution as a control substance while applying an RCS load as described above. A vehicle administration control group was used. Test substance and vehicle dosing procedures were in the morning (between 9am and 11am) and afternoon (between 5pm and 6:30 pm) from day 1 to day 6 of RCS loading, respectively. The test substance (10 mg / kg) or vehicle (5 mL / kg) is orally administered once. In addition, as an MBR selective ligand which is a test substance, (1- (2-chlorophenyl) described in European Journal of Pharmacology, 1985, Vol. 119, p.153-167. -N-methyl-N- (1-methylpropyl) -3-isoquinolinecarboxamide) PK11195, any of the compounds of the examples described in WO 2004/113300 and WO 2006/068164 It was.

(3. 採尿及び分析前処理)
a)RCS負荷前日及びRCS負荷7日目に、負荷終了後、ラットを代謝ケージに入れ、7時間経過してから、無投与群、媒体投与群と被験物質投与群の各ラットから、尿を全量採取し、夫々、無投与−RCS負荷群試料、媒体投与−RCS負荷群試料、及び被験物質投与−RCS負荷群試料とした。
(3. Urine collection and analysis pretreatment)
a) On the day before RCS loading and on the 7th day of RCS loading, after completion of loading, the rats were placed in a metabolic cage, and after 7 hours, urine was collected from each of the rats in the non-administration group, vehicle administration group and test substance administration group All the amounts were collected and used as a non-administration-RCS load group sample, a vehicle administration-RCS load group sample, and a test substance administration-RCS load group sample, respectively.

b)RCS負荷前日及びRCS負荷7日目に、負荷終了後、ラットを代謝ケージに入れ、7時間経過してから、媒体投与群と被験物質投与群の各ラットから、尿を全量採取し、夫々、RCS負荷前後の媒体投与−RCS負荷群試料、被験物質投与−RCS負荷群試料とした。媒体投与を6日間行い、RCSを負荷しない群として、媒体投与−非RCS負荷群を設けた。これらについても前記と同様に各群の試料を採取した。   b) On the day before the RCS loading and the 7th day of the RCS loading, after completion of the loading, the rats are placed in a metabolic cage, and after 7 hours, the whole amount of urine is collected from each of the rats in the vehicle administration group and the test substance administration group, Respectively, a medium administration-RCS load group sample and a test substance administration-RCS load group sample before and after RCS loading were used. Vehicle administration was performed for 6 days, and a vehicle administration-non-RCS loading group was provided as a group not loaded with RCS. Also for these, samples of each group were collected as described above.

各試料につき、採取した尿の容量を測定した後、室温下、12,000Gで5分間、遠心分離し、上清に1.2%のアジ化ナトリウム水溶液を1/60量(終濃度0.02%)添加後、液体窒素で凍結し、分析に供するまで−80℃で保存した。   After measuring the volume of the collected urine for each sample, the sample was centrifuged at 12,000 G for 5 minutes at room temperature, and 1/60 volume of 1.2% sodium azide aqueous solution (final concentration 0. 02%) after addition, it was frozen in liquid nitrogen and stored at −80 ° C. until analysis.

(4. 質量分析)
前記a)で取得した各試料を、UPLC/TOF−MS法で分析するのに供するため、前記凍結した試料を再溶解して用い、その採取した尿の50μLに、0.1容量%ギ酸含有水溶液150μLを添加して混和し、16000Gで3分間、4℃で遠心分離することにより得られた上清を、2μmのポリテトラフルオロエチレン(PTFE)製フィルタで、ろ過した。
(4. Mass spectrometry)
In order to use each sample obtained in a) for analysis by the UPLC / TOF-MS method, the frozen sample was redissolved and used, and 50 μL of the collected urine contained 0.1 vol% formic acid. 150 μL of an aqueous solution was added and mixed, and the supernatant obtained by centrifugation at 16000 G for 3 minutes at 4 ° C. was filtered through a 2 μm polytetrafluoroethylene (PTFE) filter.

それを、UPLC/TOF−MS法システム機器により、ネガティブモード及びポジティブモードで質量分析した。その機器は、超高速液体クロマトグラフ装置がACQUITY Ultra Performance Liquid Chromatography system(Waters社製)であり、質量分析計が、直交加速飛行時間型のMicromass LCT Premier(Waters社製)であって、それらを組み合わせたシステムである。   It was subjected to mass spectrometry in negative mode and positive mode by UPLC / TOF-MS method system equipment. The instrument is an ACQUITY Ultra Performance Liquid Chromatography system (manufactured by Waters), and a mass spectrometer is Micromass LCT Premier (manufactured by Waters) of orthogonal acceleration time-of-flight. It is a combined system.

〔ネガティブモードの測定条件〕
<UPLC条件>
・カラム:ACQUITY UPLC BEH C18(1.7μm粒径 2.1mm内径×150mm長)(Waters社製)
・カラムオーブン温度:40℃
・移動相成分A:0.1重量%ギ酸水溶液
・移動相成分B:0.1重量%ギ酸アセトニトリル溶液
・移動相成分A/Bの溶出のグラジエント条件
0分 100%(A) 0%(B)
7分 0%(A) 100%(B)
14分 0%(A) 100%(B)
14.1分 100%(A) 0%(B)
21分 100%(A) 0%(B)
・流速:300μL/分
・オートサンプラー内温度:4℃
・測定サンプル注入量:4μL
<MS条件>
・極性:ネガティブ
・キャピラリー電圧:2700V
・コーン電圧:35V
・噴霧ガス温度:350℃
・イオンソース温度:120℃
・コーンガス流速:50L/h
・噴霧ガス流速:500L/h
・モード:Wモード
[Negative mode measurement conditions]
<UPLC conditions>
-Column: ACQUITY UPLC BEH C18 (1.7 μm particle size 2.1 mm inner diameter × 150 mm length) (Waters)
-Column oven temperature: 40 ° C
-Mobile phase component A: 0.1 wt% formic acid aqueous solution-Mobile phase component B: 0.1 wt% formic acid acetonitrile solution-Gradient conditions for elution of mobile phase component A / B 0 min 100% (A) 0% (B )
7 minutes 0% (A) 100% (B)
14 minutes 0% (A) 100% (B)
14.1 minutes 100% (A) 0% (B)
21 minutes 100% (A) 0% (B)
・ Flow rate: 300 μL / min ・ Autosampler temperature: 4 ° C.
・ Measurement sample injection volume: 4 μL
<MS conditions>
・ Polarity: Negative ・ Capillary voltage: 2700V
・ Cone voltage: 35V
-Spray gas temperature: 350 ° C
・ Ion source temperature: 120 ℃
・ Cone gas flow rate: 50 L / h
-Spray gas flow rate: 500 L / h
・ Mode: W mode

〔ポジティブモードの測定条件〕
<UPLC条件>
・カラム:ACQUITY UPLC BEH C18(1.7μm粒径 2.1mm内径×150mm長)(Waters社製)
・カラムオーブン温度:40℃
・移動相成分A:0.1重量%ギ酸水溶液
・移動相成分B:0.1重量%ギ酸アセトニトリル溶液
・移動相成分A/Bの溶出のグラジエント条件
0分 100%(A) 0%(B)
7分 0%(A) 100%(B)
15分 0%(A) 100%(B)
15.1分 100%(A) 0%(B)
20分 100%(A) 0%(B)
・流速:300μL/分
・オートサンプラー内温度:4℃
・測定サンプル注入量:4μL
<MS測定条件>
・極性:ポジティブ
・キャピラリー電圧:2800V
・コーン電圧:44V
・噴霧ガス温度:350℃
・イオンソース温度:120℃
・コーンガス流速:50L/h
・噴霧ガス流速:600L/h
・モード:Wモード
[Positive mode measurement conditions]
<UPLC conditions>
-Column: ACQUITY UPLC BEH C18 (1.7 μm particle size 2.1 mm inner diameter × 150 mm length) (Waters)
-Column oven temperature: 40 ° C
-Mobile phase component A: 0.1 wt% formic acid aqueous solution-Mobile phase component B: 0.1 wt% formic acid acetonitrile solution-Gradient conditions for elution of mobile phase component A / B 0 min 100% (A) 0% (B )
7 minutes 0% (A) 100% (B)
15 minutes 0% (A) 100% (B)
15.1 min 100% (A) 0% (B)
20 minutes 100% (A) 0% (B)
・ Flow rate: 300 μL / min ・ Autosampler temperature: 4 ° C.
・ Measurement sample injection volume: 4 μL
<MS measurement conditions>
・ Polarity: Positive capillary voltage: 2800V
・ Cone voltage: 44V
-Spray gas temperature: 350 ° C
・ Ion source temperature: 120 ℃
・ Cone gas flow rate: 50 L / h
-Spray gas flow rate: 600 L / h
・ Mode: W mode

UPLC/TOF−MS法で絞り込まれたバイオマーカー候補化合物について、さらに、UPLC/MRM法で定量分析するのに供するため、前記b)で採取した尿を、10000Gで5分間、4℃で遠心分離することにより得られた上清50μLに、0.1重量%ギ酸水溶液を200μL添加し、攪拌した。   The biomarker candidate compounds narrowed down by the UPLC / TOF-MS method are further subjected to quantitative analysis by the UPLC / MRM method, and the urine collected in b) is centrifuged at 10,000 G for 5 minutes at 4 ° C. Then, 200 μL of 0.1 wt% aqueous formic acid solution was added to 50 μL of the supernatant obtained and stirred.

それを、超高速液体クロマトグラフ装置としてACQUITY Ultra Performance Liquid Chromatography system(Waters社製)を用い、質量分析計として、MRM(Multiple reaction Monitoring)モードを有する三連四重極型であるAPI 4000QTRAP LC/MS/MS System(Applied Biosystems社製)を組み合わせて分析した。   API 4000QTRAP LC /, which is a triple quadrupole type with MRM (Multiple reaction Monitoring) mode, using the ACQUITY Ultra Performance Liquid Chromatography system (manufactured by Waters) as an ultra-high performance liquid chromatograph. Analysis was performed in combination with MS / MS System (Applied Biosystems).

<UPLC測定条件>
・カラム:ACQUITY UPLC BEH C18(1.7μm粒径 2.1mm内径×150mm長)(Waters社製)
・カラムオーブン温度:40℃
・移動相成分A:0.1重量%ギ酸水溶液
・移動相成分B:0.1重量%アセトニトリル溶液
・移動相成分A/Bの溶出のグラジエント条件
0分 100%(A) 0%(B)
7分 0%(A) 100%(B)
14分 0%(A) 100%(B)
14.1分 100%(A) 0%(B)
21分 100%(A) 0%(B)
・流速:300μL/分
・測定サンプル注入量:4μL
<MS条件>
・スキャンタイプ:MRM
・極性:ネガティブ
・イオン化方法:ESI(エレクトロスプレーイオン)法
・ソース温度:400℃
<UPLC measurement conditions>
-Column: ACQUITY UPLC BEH C18 (1.7 μm particle size 2.1 mm inner diameter × 150 mm length) (Waters)
-Column oven temperature: 40 ° C
-Mobile phase component A: 0.1 wt% formic acid aqueous solution-Mobile phase component B: 0.1 wt% acetonitrile solution-Gradient conditions for elution of mobile phase component A / B 0 min 100% (A) 0% (B)
7 minutes 0% (A) 100% (B)
14 minutes 0% (A) 100% (B)
14.1 minutes 100% (A) 0% (B)
21 minutes 100% (A) 0% (B)
・ Flow rate: 300 μL / min ・ Measurement sample injection volume: 4 μL
<MS conditions>
・ Scan type: MRM
・ Polarity: Negative ・ Ionization method: ESI (electrospray ion) method ・ Source temperature: 400 ° C.

この条件下でのバイオマーカー候補化合物のQ1・Q3でのモニターイオンのm/z、及び分析条件は、下記表1−1及び表1−2の通りである(DP:Declustering Potential、CE:Collision Energy、CXP:Collision Cell Exit Potential)。   Under these conditions, m / z of monitor ions at Q1 and Q3 of biomarker candidate compounds and analysis conditions are as shown in Table 1-1 and Table 1-2 below (DP: Declustering Potential, CE: Collision) Energy, CXP: Collision Cell Exit Potential).

Figure 0005857503
Figure 0005857503

Figure 0005857503
Figure 0005857503

<MS条件>
・スキャンタイプ:MRM
・極性:ポジティブ
・イオン化方法:ESI(エレクトロスプレーイオン)法
・ソース温度:400℃
<MS conditions>
・ Scan type: MRM
・ Polarity: Positive ・ Ionization method: ESI (electrospray ion) method ・ Source temperature: 400 ° C.

この条件下でのバイオマーカー候補化合物のQ1・Q3でのモニターイオンのm/z、及び分析条件は下記表2の通りである(DP:Declustering Potential、CE:Collision Energy、CXP:Collision Cell Exit Potential)。   The monitor ion m / z at Q1 and Q3 under the above conditions and the analysis conditions are as shown in Table 2 below (DP: Declustering Potential, CE: Collision Energy, CXP: Collision Cell Exit Potential) ).

Figure 0005857503
Figure 0005857503

UPLC/TOF-MS法で絞り込まれたバイオマーカー候補化合物の関連化合物についても、さらに、UPLC/MRM法で定量分析するのに供するため、前記b)で採取した尿を、10000Gで5分間、4℃で遠心分離することにより得られた上清50μLに、0.1重量%ギ酸水溶液を200μL添加し、攪拌した。   The related compounds of the candidate biomarker compounds narrowed down by UPLC / TOF-MS method are also used for quantitative analysis by UPLC / MRM method. 200 μL of a 0.1 wt% aqueous formic acid solution was added to 50 μL of the supernatant obtained by centrifugation at 0 ° C. and stirred.

それを、超高速液体クロマトグラフ装置としてACQUITY Ultra Performance Liquid Chromatography system(Waters社製)を用い、質量分析計として、MRM(Multiple reaction Monitoring)モードを有する三連四重極型であるAPI 4000QTRAP LC/MS/MS System(Applied Biosystems社製)を組み合わせて分析した。   API 4000QTRAP LC /, which is a triple quadrupole type with MRM (Multiple reaction Monitoring) mode, using the ACQUITY Ultra Performance Liquid Chromatography system (manufactured by Waters) as an ultra-high performance liquid chromatograph. Analysis was performed in combination with MS / MS System (Applied Biosystems).

<UPLC測定条件>
・カラム:ACQUITY UPLC BEH C18(1.7μm粒径 2.1mm内径×100mm長)(Waters社製)
・カラムオーブン温度:40℃
・移動相成分A:[Positive]0.1重量%ギ酸水溶液,[Negative] 6.5mM 炭酸水素アンモニウム水溶液
・移動相成分B:[Positive]0.1重量%メタノール溶液,[Negative] 6.5mM炭酸水素アンモニウム95%メタノール水溶液
・移動相成分A/Bの溶出のグラジエント条件
0分 100%(A) 0%(B)
4分 30%(A) 70%(B)
4.5分 2%(A) 98%(B)
10分 2%(A) 98%(B)
10.1分 100%(A) 0%(B)
17分 100%(A) 0%(B)
・流速:350μL/分
・測定サンプル注入量:4μL
<MS条件>
・スキャンタイプ:MRM
・極性:ネガティブ
・イオン化方法:ESI(エレクトロスプレーイオン)法
・ソース温度:400℃
<UPLC measurement conditions>
Column: ACQUITY UPLC BEH C18 (1.7 μm particle size 2.1 mm inner diameter x 100 mm length) (Waters)
-Column oven temperature: 40 ° C
-Mobile phase component A: [Positive] 0.1 wt% formic acid aqueous solution, [Negative] 6.5 mM ammonium hydrogen carbonate aqueous solution-Mobile phase component B: [Positive] 0.1 wt% methanol solution, [Negative] 6.5 mM hydrogencarbonate Gradient conditions for elution of 95% aqueous ammonium solution / mobile phase component A / B 0 min 100% (A) 0% (B)
4 minutes 30% (A) 70% (B)
4.5 minutes 2% (A) 98% (B)
10 minutes 2% (A) 98% (B)
10.1 minutes 100% (A) 0% (B)
17 minutes 100% (A) 0% (B)
・ Flow rate: 350 μL / min ・ Measurement sample injection volume: 4 μL
<MS conditions>
・ Scan type: MRM
・ Polarity: Negative ・ Ionization method: ESI (electrospray ion) method ・ Source temperature: 400 ° C.

この条件下でのバイオマーカー候補化合物のQ1・Q3でのモニターイオンのm/z、及び分析条件は、下記表3の通りである(DP:Declustering Potential、CE:Collision Energy、CXP:Collision Cell Exit Potential)。   The monitor ion m / z of Q1 and Q3 of the biomarker candidate compound under these conditions and the analysis conditions are as shown in Table 3 below (DP: Declustering Potential, CE: Collision Energy, CXP: Collision Cell Exit) Potential).

Figure 0005857503
Figure 0005857503

<MS条件>
・スキャンタイプ:MRM
・極性:ポジティブ
・イオン化方法:ESI(エレクトロスプレーイオン)法
・ソース温度:400℃
<MS conditions>
・ Scan type: MRM
・ Polarity: Positive ・ Ionization method: ESI (electrospray ion) method ・ Source temperature: 400 ° C.

この条件下でのバイオマーカー候補化合物のQ1・Q3でのモニターイオンのm/z、及び分析条件は下記表4の通りである(DP:Declustering Potential、CE:Collision Energy、CXP:Collision Cell Exit Potential)。   The monitor ion m / z at Q1 and Q3 of the biomarker candidate compound under these conditions and the analysis conditions are as shown in Table 4 below (DP: Declustering Potential, CE: Collision Energy, CXP: Collision Cell Exit Potential) ).

Figure 0005857503
Figure 0005857503

(5. メタボローム解析)
UPLC/TOF−MS分析によって得られたクロマトグラムデータを、質量分析ソフトウェアMassLynx Ver.4.1(Waters社製)を用いて、netCDFフォーマットのデータに変換した。次いで、得られたデータを、解析ソフトMZmine Ver.1.91(フリーソフトウェア:http://mzmine.sourceforge.net/download.shtmlより入手)を用いて得られた各ピークの精密質量数(ポジティブ、ネガティブ)、溶出時間(RT;Retention Time)、ピークエリア値、ピーク強度値データを、行列形式に変換した。
(5. Metabolome analysis)
The chromatogram data obtained by UPLC / TOF-MS analysis was converted into data in netCDF format using mass spectrometry software MassLynx Ver.4.1 (manufactured by Waters). Subsequently, the obtained data was obtained by using the analysis software MZmine Ver.1.91 (free software: obtained from http://mzmine.sourceforge.net/download.shtml). ), Elution time (RT), peak area value, and peak intensity value data were converted into a matrix format.

この行列形式のデータを用いて、
アレイ解析ソフトExpressionist Pro Analyst Ver.5.1.4(Genedata社)、又はOffice Excel 2007(Microsoft社)により、変動比及びp値を算出した。
Using this matrix format data,
The variation ratio and p-value were calculated by using the array analysis software Expressionist Pro Analyst Ver. 5.1.4 (Genedata) or Office Excel 2007 (Microsoft).

先ず、(1)(i)無投与−RCS負荷群及び媒体投与−RCS負荷群の夫々、RCS負荷の前日試料と7日目試料とを用いて、Welchのt検定を行い、p値が0.2未満、両群間で1.5倍以上又は0.67倍以下のシグナル値の変動比を示し、かつ(ii)媒体投与−RCS負荷群と被験物質投与−RCS負荷群の夫々、RCS負荷後の7日目試料を用いて、Welchのt検定を行い、p値が0.3未満、両群間で1.33倍以上又は0.75倍以下の変動比を示したピークを、バイオマーカー候補として、315ピーク選別した。   First, (1) (i) Welch's t-test was performed using the sample on the previous day and the sample on the 7th day of RCS loading in the non-administration-RCS loading group and the vehicle administration-RCS loading group, respectively. .2, a signal value variation ratio of 1.5 times or more or 0.67 times or less between both groups, and (ii) vehicle administration-RCS loading group and test substance administration-RCS loading group, RCS, respectively. Using the 7th day sample after loading, Welch's t-test was performed, and the peak that showed a p-value of less than 0.3 and a fluctuation ratio of 1.33 times or more or 0.75 times or less between both groups, 315 peaks were selected as biomarker candidates.

次に、(2)無投与−RCS負荷群及び媒体投与−RCS負荷群の夫々、RCS負荷7日目とRCS負荷前日との差(7日目のシグナル値−0日目のシグナル値)を比較し、Welchのt検定を用いて、p値が0.2未満、両群間で1.5倍以上又は0.67倍以下のシグナル値の変動比を示し、かつ媒体投与−RCS負荷群のRCS負荷7日目とRCS負荷前日との差のメジアン値から、被験物質投与−RCS負荷群のRCS負荷7日目とRCS負荷前日との差のメジアン値を差し引いた値が、0より大きいか、又は0未満の変動を示したピークを、バイオマーカー候補として、379ピーク選別した。   Next, (2) the difference between the 7th day of RCS loading and the day before RCS loading (the signal value on the 7th day−the signal value on the 0th day) of the non-administration-RCS load group and the vehicle administration-RCS load group, respectively. In comparison, using Welch's t-test, p-value is less than 0.2, the signal value variation ratio is 1.5 times or more or 0.67 times or less between both groups, and vehicle administration-RCS load group The value obtained by subtracting the median value of the difference between the RCS loading day 7 and the RCS loading day of the test substance administration-RCS loading group from the median value of the difference between the RCS loading day 7 and the RCS loading day is greater than 0 379 peaks were selected as biomarker candidates.

上記(1)の手順で選別したピークと、上記(2)の手順で選別したピークでは夫々、統計学的手法が異なることから、両方の手法で重複して抽出されたピークは言うまでもなく、いずれかの手法で抽出されたピークも、バイオマーカー候補として考えられ、合計515ピーク選別した。   Since the statistical method is different between the peak selected by the procedure (1) and the peak selected by the procedure (2), it goes without saying that the peaks extracted by both methods are not limited. The peaks extracted by this method are also considered as biomarker candidates, and a total of 515 peaks were selected.

上記で選別したバイオマーカー候補のうち、89ピーク(ネガティブ:62ピーク、ポジティブ:27ピーク)については、別途UPLC−MRM定量測定を実施した。測定データ処理には、Analyst Ver.1.4.2(Applied Biosystems社製)、Excel 2002(Microsoft社)を用いた。全ピークのAnalyte Peak Area(counts)値を、コントロールとしてクレアチニンのAnalyte Peak Area(counts)値により補正を行った。媒体投与−非RCS負荷群、媒体投与−RCS負荷群、及び被験物質投与−RCS負荷群の各群の試料について、RCS負荷前から負荷後の変動差の比較、各群のRCS負荷又は非負荷7日後の比較と変動比を評価した。比較解析は、unpaired t検定(両側)により行った。   Of the biomarker candidates selected above, UPLC-MRM quantitative measurement was separately performed on 89 peaks (negative: 62 peaks, positive: 27 peaks). For measurement data processing, Analyst Ver. 1.4.2 (Applied Biosystems) and Excel 2002 (Microsoft) were used. The Analyte Peak Area (counts) value of all peaks was corrected with the Analyte Peak Area (counts) value of creatinine as a control. Comparison of variation difference between before and after RCS loading, RCS loading or non-loading of each group with respect to samples of each group of vehicle administration-non-RCS loading group, vehicle administration-RCS loading group, and test substance administration-RCS loading group The comparison and variation ratio after 7 days were evaluated. Comparative analysis was performed by unpaired t-test (two-sided).

これにより、RCS負荷により増強し被験物質投与により減少するバイオマーカー、及びRCS負荷により減少し被験物質投与により増加するバイオマーカーも、選別できた(表5)。
また、同定されたバイオマーカーに関連する化合物についても、標品を購入し前記と同様にストレス性疾患のバイオマーカーとなり得るかについて評価したところ、α-CEHC、β及びγ-CEHCS、C8:1 carnitine(オクテノイルカルニチン)、C10:0 carnitine(デカノイルカルニチン)が、バイオマーカーになり得ることがわかった(表6)。
As a result, biomarkers that were enhanced by RCS loading and decreased by test substance administration, and biomarkers that were decreased by RCS loading and increased by test substance administration could also be selected (Table 5).
In addition, as for compounds related to the identified biomarkers, a sample was purchased and evaluated whether it could be a biomarker for stress-related diseases as described above. Α-CEHC, β and γ-CEHCS, C8: 1 It was found that carnitine (octenoylcarnitine) and C10: 0 carnitine (decanoylcarnitine) can be biomarkers (Table 6).

その結果、ストレス性疾患のバイオマーカーとして、下記表5、及び表6に示す通り、合計38種類の化合物が、見出された。   As a result, a total of 38 types of compounds were found as biomarkers for stress-related diseases, as shown in Tables 5 and 6 below.

Figure 0005857503
Figure 0005857503

化合物No.2の推定構造としては、3-O-sulfated 3-Hydroxy-5,6-epoxy-5-megastigmene-9-dione、3又は6-O-sulfated 3,6-Dihydroxy-4-megastigmen-9-one、3又は7-O-sulfated 3,7-Dihydroxy-5-megastigmen-9-one、3又は11-O-sulfated 3,11-Dihydroxy-5-megastigmen-9-one、3又は6-O-sulfated 3,6-Dihydroxy-7-megastigmen-9-one、若しくは3,6-Epoxy-7-megastigmene-5,9-diol、3-(1-Hydroxyoctyl)-5-methyl-2(5H)-furanone、3-Oxo-2-pentylcyclopentaneacetic acid Me ester、5,6-Epoxy-7-megastigmene-3,9-diol、5,8-Epoxy-6-megastigmene-3,9-diol、5-(3-Ethyl-4-methyl-1-pentenyl)-4,5-dihydro-3-hydroxy-5-methyl-2(3H)furanone、5-(7-Hydroxy-6-methyloctyl)-2(5H)-furanone、6,9-Dihydroxy-4,7-megastigmadien-3-one, 7,8-Dihydro、6,9-Dihydroxy-7-megastigmen-3-one、6,9-Epoxy-4-megastigmene-3,9-diol、Durgamone、Stegobiol、又はこれらの硫酸抱合体が挙げられる。   As the presumed structure of Compound No. 2, 3-O-sulfated 3-Hydroxy-5,6-epoxy-5-megastigmene-9-dione, 3 or 6-O-sulfated 3,6-Dihydroxy-4-megastigmen- 9-one, 3 or 7-O-sulfated 3,7-Dihydroxy-5-megastigmen-9-one, 3 or 11-O-sulfated 3,11-Dihydroxy-5-megastigmen-9-one, 3 or 6- O-sulfated 3,6-Dihydroxy-7-megastigmen-9-one, or 3,6-Epoxy-7-megastigmene-5,9-diol, 3- (1-Hydroxyoctyl) -5-methyl-2 (5H) -furanone, 3-Oxo-2-pentylcyclopentaneacetic acid Me ester, 5,6-Epoxy-7-megastigmene-3,9-diol, 5,8-Epoxy-6-megastigmene-3,9-diol, 5- (3 -Ethyl-4-methyl-1-pentenyl) -4,5-dihydro-3-hydroxy-5-methyl-2 (3H) furanone, 5- (7-Hydroxy-6-methyloctyl) -2 (5H) -furanone , 6,9-Dihydroxy-4,7-megastigmadien-3-one, 7,8-Dihydro, 6,9-Dihydroxy-7-megastigmen-3-one, 6,9-Epoxy-4-megastigmene-3,9 -diol, Durgamone, Stegobiol, or their sulfate conjugates.

化合物No.3の推定構造としては、1-(3,4-Dihydroxyphenyl)-2-propen-1-ol, 3'-Me ether、4'-(2-methylpropanoyl), 1-Ac、1-O-Coumaroylglycerol, 4'-Me ether、2,3-O-isopropylidene、11-Hydroxy-12-methoxydihydrokawain, Me ether、11-Hydroxy-3,8-dioxo-1,4-eudesmadien-12-oic acid, Me ester、15-Hydroxy-1(10),4,11(13)-germacratrien-12,6-olid-14-oic acid, Me ester、3-(3,4-Dihydroxyphenyl)-2-propen-1-ol, 3'-Me ether、4'-O-(2-methylpropanoyl), 1-Ac、3-(4-Hydroxy-3-methoxyphenyl)-2-propenoic acid, 4-Methyl-3-oxopentyl ester、3-(4-Hydroxy-3-methoxyphenyl)-2-propenoic acid, 4-O-(3-Oxohexyl)、5,7-Dihydroxy-2,2-dimethyl-2H-1-benzopyran-6-propanoic acid; Di-Me ether、6,7-Epoxy-1-hydroxy-13-nor-9-eremophilene-8,11-dione, Ac、8,9-Dihydroxy-14-oxo-1(10),4,11(13)-germacratrien-12,6-olide, 9-Me ether、8-(2,3-Dihydroxy-3-methylbutyl)-7-hydroxy-2H-1-benzopyran-2-one, 3',7-Di-Me ether、8-Acetyl-5,6,7-trihydroxy-2,2-dimethyl-2H-1-benzopyran; Tri-Me ether、8-Hydroxy-1(10),4,7(11)-germacratrien-12,8-olid-15-oic acid, Me ester、8-Hydroxy-1,3,7(11)-elematrien-12,8-olid-15-oic acid; 8-OH-form, Me ester、8-Hydroxy-7(11)-eremophilene-12,8:15,6-diolide, Me ether、Cladosporin、Coriandrone A、Coriandrone B、Curvularin、Evodione、Isosecotanapartholide; 3-Epimer, Me ether、Isosecotanapartholide; Me ether、Morinin A; 3-Methoxy, 5'-hydroxy、Sericealactone、Sinapyl alcohol,1-O-(3-Methyl-2-butenoyl)、Sinapyl alcohol, 1-O-Angeloyl、10-(3,4-dimethoxy-6-methyl-2,5-benzoquinone)-9-hydroxy-4,8-dimethyl-9-hydroxy-4-decenoic acidが挙げられる。   As the presumed structure of Compound No. 3, 1- (3,4-Dihydroxyphenyl) -2-propen-1-ol, 3'-Me ether, 4 '-(2-methylpropanoyl), 1-Ac, 1-O -Coumaroylglycerol, 4'-Me ether, 2,3-O-isopropylidene, 11-Hydroxy-12-methoxydihydrokawain, Me ether, 11-Hydroxy-3,8-dioxo-1,4-eudesmadien-12-oic acid, Me ester, 15-Hydroxy-1 (10), 4,11 (13) -germacratrien-12,6-olid-14-oic acid, Me ester, 3- (3,4-Dihydroxyphenyl) -2-propen-1- ol, 3'-Me ether, 4'-O- (2-methylpropanoyl), 1-Ac, 3- (4-Hydroxy-3-methoxyphenyl) -2-propenoic acid, 4-Methyl-3-oxopentyl ester, 3 -(4-Hydroxy-3-methoxyphenyl) -2-propenoic acid, 4-O- (3-Oxohexyl), 5,7-Dihydroxy-2,2-dimethyl-2H-1-benzopyran-6-propanoic acid; Di -Me ether, 6,7-Epoxy-1-hydroxy-13-nor-9-eremophilene-8,11-dione, Ac, 8,9-Dihydroxy-14-oxo-1 (10), 4,11 (13 ) -germacratrien-12,6-olide, 9-Me ether, 8- (2,3-Dihydroxy-3-methylbutyl) -7-hydroxy-2H-1-benzopyran-2-one, 3 ', 7-Di- Me ether, 8-Acetyl-5,6,7-trihydroxy-2,2-dimethyl-2H-1-benzopyran; Tri-Me ether, 8-Hydroxy-1 (10), 4,7 (11) -germacratrien -12,8-olid-15-oic acid, Me ester, 8-Hydroxy-1,3,7 (11) -elematrien-12,8-olid-15-oic acid; 8-OH-form, Me ester, 8-Hydroxy-7 (11) -eremophilene-12,8: 15,6-diolide, Me ether, Cladosporin, Coriandrone A, Coriandrone B, Curvularin, Evodione, Isosecotanapartholide; 3-Epimer, Me ether, Isosecotanapartholide; Me ether, Morinin A; 3-Methoxy, 5'-hydroxy, Sericealactone, Sinapyl alcohol, 1-O- (3-Methyl-2-butenoyl), Sinapyl alcohol, 1-O-Angeloyl, 10- (3,4-dimethoxy-6 -methyl-2,5-benzoquinone) -9-hydroxy-4,8-dimethyl-9-hydroxy-4-decenoic acid.

化合物No.6の推定構造としては、3-O-sulfated 4,7-Megastigmadiene-3,9-diol,4,5,7,8-Tetrahydro、9-O-sulfated 4,7-Megastigmadiene-3,9-diol,4,5,7,8-Tetrahydro、若しくは、5-Megastigmene-3,9-diol,5,6-dihydroxy、8-Hydroxy-5-isopropyl-8-methyl-6-nonan-2-one、9-Dodecan-1-ol, Formyl、又はこれらの硫酸抱合体が挙げられる。   As the presumed structure of Compound No. 6, 3-O-sulfated 4,7-Megastigmadiene-3,9-diol, 4,5,7,8-Tetrahydro, 9-O-sulfated 4,7-Megastigmadiene-3, 9-diol, 4,5,7,8-Tetrahydro or 5-Megastigmene-3,9-diol, 5,6-dihydroxy, 8-Hydroxy-5-isopropyl-8-methyl-6-nonan-2- one, 9-Dodecan-1-ol, Formyl, or sulfate conjugates thereof.

化合物No.11の推定構造としては、1,3,7,14-Tetrahydroxy-16-kaurene-12,15-dione, 16,17-Dihydro, 3-Ac、1,7,14,18,20-Pentahydroxy-16-kauren-15-one, 18-Ac、12,20-Epoxy-11,13,20-trihydroxy-3,14-clerodadien-2-one, 3,4-Epoxide, 11-Ac、12,20-Epoxy-7,11,13,20-tetrahydroxy-3,14-clerodadien-2-one, 11-Ac、15,16-Epoxy-3,4,7,12-tetrahydroxy-13(16),14-clerodadien-20-al, 7-Ac、15,16-Epoxy-6,9,13,20-tetrahydroxy-14-labden-19-oic acid, 19,6 Lactone, 20-Ac、2,19:4,18:11,16:15,16-Tetraepoxy-14-clerodene-6,19-diol, 14,15-Dihydro, 6-Ac、3,4,11-Trihydroxy-6-eudesmen-8-one, 3-(2,3-Epoxy-2-methylbutanoyl), 4-Ac、3,4,11-Trihydroxy-6-eudesmen-8-one, 11-Hydroperoxide, 3-angeloyl, 4-Ac、3,4,11-Trihydroxy-6-eudesmen-8-one, 3-(2,3-Epoxy-2-methylbutanoyl), 4-Ac、3,4-Dihydroxy-7(11)-eudesmen-8-one, 7,11-Epoxide, 3-(2,3-epoxy-2-methylbutanoyl), 4-Ac、3,5,7-Trihydroxy-p-menth-1-en-6-one, 6-Alcohol, 3,6-ditigloyl, 5-Ac、4,18:15,16-Diepoxy-13(16),14-clerodadiene-3,6,12,19-tetrol, 6-Ac、7,20-Epoxy-16-kaurene-1,6,7,11,15-pentol, 11-Ac、7,20-Epoxy-16-kaurene-1,6,7,14,15-pentol, 1-Ac、7,20-Epoxy-16-kaurene-1,6,7,15,19-pentol, 19-Ac、7,20-Epoxy-16-kaurene-6,7,11,14,15-pentol, 6-Ac、7,8,16,18-Tetrahydroxy-19-serrulatanoic acid; 18-Ac、9,13-Epoxy-3,6-dihydroxy-7-oxo-15,16-labdanolide, 3-Ac、Cinncassiol A; 19-Deoxy, 1-Ac、Dysodanthin E、Hymenoxon; 2-Tigloyloxy, 4-Et ether、Javanicin Z、Nigakilactone N; 12-Me ether、Picrasinol Dが挙げられる。   As the deduced structure of Compound No. 11, 1,3,7,14-Tetrahydroxy-16-kaurene-12,15-dione, 16,17-Dihydro, 3-Ac, 1,7,14,18,20- Pentahydroxy-16-kauren-15-one, 18-Ac, 12,20-Epoxy-11,13,20-trihydroxy-3,14-clerodadien-2-one, 3,4-Epoxide, 11-Ac, 12, 20-Epoxy-7,11,13,20-tetrahydroxy-3,14-clerodadien-2-one, 11-Ac, 15,16-Epoxy-3,4,7,12-tetrahydroxy-13 (16), 14 -clerodadien-20-al, 7-Ac, 15,16-Epoxy-6,9,13,20-tetrahydroxy-14-labden-19-oic acid, 19,6 Lactone, 20-Ac, 2,19: 4 , 18: 11,16: 15,16-Tetraepoxy-14-clerodene-6,19-diol, 14,15-Dihydro, 6-Ac, 3,4,11-Trihydroxy-6-eudesmen-8-one, 3 -(2,3-Epoxy-2-methylbutanoyl), 4-Ac, 3,4,11-Trihydroxy-6-eudesmen-8-one, 11-Hydroperoxide, 3-angeloyl, 4-Ac, 3,4,11 -Trihydroxy-6-eudesmen-8-one, 3- (2,3-Epoxy-2-methylbutanoyl), 4-Ac, 3,4-Dihydroxy-7 (11) -eudesmen-8-one, 7,11- Epoxide, 3- (2,3-epoxy-2-methylbutanoyl), 4-Ac, 3,5,7-Trihydroxy-p-menth-1-en-6-one, 6-Alcohol, 3,6-ditigloyl, 5-Ac, 4,18: 15,16-Diepoxy-13 (16), 14-clerodadiene-3,6,12,19-tetrol, 6-Ac, 7,20-Epoxy-16 -kaurene-1,6,7,11,15-pentol, 11-Ac, 7,20-Epoxy-16-kaurene-1,6,7,14,15-pentol, 1-Ac, 7,20-Epoxy -16-kaurene-1,6,7,15,19-pentol, 19-Ac, 7,20-Epoxy-16-kaurene-6,7,11,14,15-pentol, 6-Ac, 7,8 , 16,18-Tetrahydroxy-19-serrulatanoic acid; 18-Ac, 9,13-Epoxy-3,6-dihydroxy-7-oxo-15,16-labdanolide, 3-Ac, Cinncassiol A; 19-Deoxy, 1 -Ac, Dysodanthin E, Hymenoxon; 2-Tigloyloxy, 4-Et ether, Javanicin Z, Nigakilactone N; 12-Me ether, Picrasinol D.

化合物No.13の推定構造としては、3-O-sulfated 3-Hydroxy-5-megastigmene-4,9-dione、3-O-sulfated 3-Hydroxy-5-megastigmene-7,9-dione、若しくは1-Butoxy-3-phenoxy-2-propanol、10-Hydroxy-8-dodecen-11-ynoic acid, Me ester、11-Hydroxy-4-methyl-2,4,6-dodecatrienoic acid、13-Oxo-9,11-tridecadienoic acid、3,11-Dihydroxy-5-megastigmen-9-one, 11-Aldehyde、3,5-Dihydroxy-6,7-megastigmadien-9-one、5,11-Epoxy-9-hydroxy-7-megastigmen-3-one、5,13-Epoxy-7-megastigmene-3,9-dione; 7,8-Dihydro、5,6-Epoxy-7-megastigmene-3,9-diol, 9-Ketone、5,6-Epoxy-7-megastigmene-3,9-diol, 3-Ketone、5-(2-Hydroxy-2-methylpropylidene)-3-methoxy-2,4,4-trimethyl-2-cyclopenten-1-one、5-(7-Hydroxy-6-methyloctyl)-2(5H)-furanone; 7'-Ketone、6,9-Dihydroxy-4,7-megastigmadien-3-one、6-Hydroxy-7-megastigmene-3,9-dione、Guaymasol、Hyalopyrone、Jasmonic acid; Me ester、Jhanilactone、Norannuic acid、Similin A、Stegobiol; 2'-Ketone、p-Mentha-1,3,5-triene-2,3,5-triol; Tri-Me ester、又はこれらの硫酸抱合体が挙げられる。   As the predicted structure of Compound No. 13, 3-O-sulfated 3-Hydroxy-5-megastigmene-4,9-dione, 3-O-sulfated 3-Hydroxy-5-megastigmene-7,9-dione, or 1 -Butoxy-3-phenoxy-2-propanol, 10-Hydroxy-8-dodecen-11-ynoic acid, Me ester, 11-Hydroxy-4-methyl-2,4,6-dodecatrienoic acid, 13-Oxo-9, 11-tridecadienoic acid, 3,11-Dihydroxy-5-megastigmen-9-one, 11-Aldehyde, 3,5-Dihydroxy-6,7-megastigmadien-9-one, 5,11-Epoxy-9-hydroxy-7 -megastigmen-3-one, 5,13-Epoxy-7-megastigmene-3,9-dione; 7,8-Dihydro, 5,6-Epoxy-7-megastigmene-3,9-diol, 9-Ketone, 5 , 6-Epoxy-7-megastigmene-3,9-diol, 3-Ketone, 5- (2-Hydroxy-2-methylpropylidene) -3-methoxy-2,4,4-trimethyl-2-cyclopenten-1-one , 5- (7-Hydroxy-6-methyloctyl) -2 (5H) -furanone; 7'-Ketone, 6,9-Dihydroxy-4,7-megastigmadien-3-one, 6-Hydroxy-7-megastigmene-3 , 9-dione, Guaymasol, Hyalopyrone, Jasmonic acid; Me ester, Johanilactone, Norannuic acid, Similin A, Stegobiol; 2'-Ketone, p-Mentha-1,3,5-triene-2,3,5-triol; Tri-Me ester or their sulfur And acid conjugates.

化合物No.14の推定構造としては、11-Hydroxy-9-tridecenoic acid、7-Hydroxy-4-dodecenoic acid, Me ether、7-Megastigmene-3,4,9-triol、7-Megastigmene-3,6,9-triol、7-Megastigmene-5,6,9-triol、8,9-Dihydroxy-5-isopropyl-8-methyl-6-nonen-2-one、8-Hydroxy-5-isopropyl-8-methyl-6-nonen-2-one, 6,7-Epoxide、9,13-Dihydroxy-3-megastigmanone、Trimethyl-2-(1-methylethyl)-6,8-dioxabicyclo[3.2.1]octane-7-methanol、又はこれらのグルクロン酸抱合体、若しくは、5,11-Epoxy-7-megastigmene-3,6,9-triol、7-Megastigmene-2,5,6,9-tetrol, 9-Ketone、9-Hydroxy-2,2,4-trimethyl-6-oxo-3-decenoic acid、又はこれらのO−グリコシドが挙げられる。   As the presumed structure of Compound No. 14, 11-Hydroxy-9-tridecenoic acid, 7-Hydroxy-4-dodecenoic acid, Me ether, 7-Megastigmene-3,4,9-triol, 7-Megastigmene-3,6 , 9-triol, 7-Megastigmene-5,6,9-triol, 8,9-Dihydroxy-5-isopropyl-8-methyl-6-nonen-2-one, 8-Hydroxy-5-isopropyl-8-methyl -6-nonen-2-one, 6,7-Epoxide, 9,13-Dihydroxy-3-megastigmanone, Trimethyl-2- (1-methylethyl) -6,8-dioxabicyclo [3.2.1] octane-7-methanol Or these glucuronic acid conjugates, or 5,11-Epoxy-7-megastigmene-3,6,9-triol, 7-Megastigmene-2,5,6,9-tetrol, 9-Ketone, 9-Hydroxy -2,2,4-trimethyl-6-oxo-3-decenoic acid, or these O-glycosides.

化合物No.20の推定構造としては、11-Hydroxy-9-tridecenoic acid、7-Hydroxy-4-dodecenoic acid, Me ether、7-Megastigmene-3,4,9-triol、7-Megastigmene-3,6,9-triol、7-Megastigmene-5,6,9-triol、8,9-Dihydroxy-5-isopropyl-8-methyl-6-nonen-2-one、8-Hydroxy-5-isopropyl-8-methyl-6-nonen-2-one, 6,7-Epoxide、9,13-Dihydroxy-3-megastigmanone、Trimethyl-2-(1-methylethyl)-6,8-dioxabicyclo[3.2.1]octane-7-methanol、又はこれらの硫酸抱合体が挙げられる。   As the presumed structure of Compound No. 20, 11-Hydroxy-9-tridecenoic acid, 7-Hydroxy-4-dodecenoic acid, Me ether, 7-Megastigmene-3,4,9-triol, 7-Megastigmene-3,6 , 9-triol, 7-Megastigmene-5,6,9-triol, 8,9-Dihydroxy-5-isopropyl-8-methyl-6-nonen-2-one, 8-Hydroxy-5-isopropyl-8-methyl -6-nonen-2-one, 6,7-Epoxide, 9,13-Dihydroxy-3-megastigmanone, Trimethyl-2- (1-methylethyl) -6,8-dioxabicyclo [3.2.1] octane-7-methanol Or sulfate conjugates thereof.

化合物No.22の推定構造としては、2-O-sulfated 2-hydroxy-dihydroactinidiolide、3-O-sulfated 3-hydroxy-dihydroactinidiolide、4-O-sulfated 4-hydroxy-dihydroactinidiolide又はその開環体が挙げられる。   The presumed structure of Compound No. 22 includes 2-O-sulfated 2-hydroxy-dihydroactinidiolide, 3-O-sulfated 3-hydroxy-dihydroactinidiolide, 4-O-sulfated 4-hydroxy-dihydroactinidiolide or its ring-opened form. .

化合物No.23の推定構造としては、3-O-sulfated 3,9-dihydroxy-5-megastigmene、9-O-sulfated 3,9-dihydroxy-5-megastigmene、3-O-sulfated 3-hydroxy-5-megastigmene-9-one, 5,6-dihydro、若しくは4,7-Megastigmadiene-3,9-diol, 7,8-Dihydro、8-Hydroxy-5-isopropyl-8-methyl-6-nonen-2-one、9-Dodecen-1-ol, Formyl又はこれらの硫酸抱合体が挙げられる。   The presumed structure of Compound No. 23 is 3-O-sulfated 3,9-dihydroxy-5-megastigmene, 9-O-sulfated 3,9-dihydroxy-5-megastigmene, 3-O-sulfated 3-hydroxy-5 -megastigmene-9-one, 5,6-dihydro, or 4,7-Megastigmadiene-3,9-diol, 7,8-Dihydro, 8-Hydroxy-5-isopropyl-8-methyl-6-nonen-2- one, 9-Dodecen-1-ol, Formyl or sulfate conjugates thereof.

化合物No.32の推定構造としては、4-Pregnen-19-ol-3, 20-dioneが最も好ましく、他には4-Pregnen-6β-ol-3, 20-dione、4-Pregnen-7α-ol-3, 20-dione、4-Pregnen-7β-ol-3, 20-dione、4-Pregnen-11α-ol-3, 20-dione、4-Pregnen-11β-ol-3, 20-dione、4-Pregnen-21-ol-3, 20-dione、4-Pregnen-17-ol-3, 20-dione、4-Pregnen-12α-ol-3, 20-dione、4-Pregnen-16α-ol-3, 20-dione、4-Pregene-18-ol-3, 20-dione、4-Pregne-18-ol, 3, 20-dione (20α及び20β ols) 18, 20-hemiketal、5-Pregnen-16, 17-epoxy-3β-ol-20-one、5-Pregnen-3β-ol-7, 20-dione、5-Pregnen-3β-ol-11, 20-dione、5-Pregnen-3β-ol-16, 20-dione、16, (5α)-Pregnen-3α-ol-11, 20-dione、16, (5α)-Pregnen-3β-ol-11, 20-dione、5, 16-Androstadien-3β-ol-17β-carboxylic acid methyl ester、1, (5α)-Androsten-17β-ol-3-one acetate、2, (5α)-Androsten-3-ol-17-one acetate、2, (5α)-Androsten-11α-ol-17-one acetate、4-Androsten-3β-ol-17-one acetate、4-Androsten-17α-ol-3-one acetate、4-Androsten-17β-ol-3-one acetate、4-Androsten-3-one-17β-carboxylic acid methyl ester、5-Androsten-3, 17-dione 3-ethylenketal、5-Androsten-3β-ol-16-one acetate、5-Androsten-3α-ol-17-one acetate、5-Androsten-3β-ol-17-one acetate、4-Estren-7α-methyl-17β-ol-3-one acetate、又は4-Estren-17β-ol-3-one propionate又はこの硫酸抱合体が挙げられる。   As the deduced structure of Compound No. 32, 4-Pregnen-19-ol-3, 20-dione is most preferable, and 4-Pregnen-6β-ol-3, 20-dione, 4-Pregnen-7α- ol-3, 20-dione, 4-Pregnen-7β-ol-3, 20-dione, 4-Pregnen-11α-ol-3, 20-dione, 4-Pregnen-11β-ol-3, 20-dione, 4-Pregnen-21-ol-3, 20-dione, 4-Pregnen-17-ol-3, 20-dione, 4-Pregnen-12α-ol-3, 20-dione, 4-Pregnen-16α-ol- 3, 20-dione, 4-Pregene-18-ol-3, 20-dione, 4-Pregne-18-ol, 3, 20-dione (20α and 20β ols) 18, 20-hemiketal, 5-Pregnen-16 , 17-epoxy-3β-ol-20-one, 5-Pregnen-3β-ol-7, 20-dione, 5-Pregnen-3β-ol-11, 20-dione, 5-Pregnen-3β-ol-16 , 20-dione, 16, (5α) -Pregnen-3α-ol-11, 20-dione, 16, (5α) -Pregnen-3β-ol-11, 20-dione, 5, 16-Androstadien-3β-ol -17β-carboxylic acid methyl ester, 1, (5α) -Androsten-17β-ol-3-one acetate, 2, (5α) -Androsten-3-ol-17-one acetate, 2, (5α) -Androsten- 11α-ol-17-one acetate, 4-Androsten-3β-ol-17-one acetate, 4-Androsten-17α-ol-3-one acetate, 4-Androsten-17β-ol-3-one acetate, 4- And rosten-3-one-17β-carboxylic acid methyl ester, 5-Androsten-3, 17-dione 3-ethylenketal, 5-Androsten-3β-ol-16-one acetate, 5-Androsten-3α-ol-17-one acetate, 5-Androsten-3β-ol-17-one acetate, 4-Estren-7α-methyl-17β-ol-3-one acetate, or 4-Estren-17β-ol-3-one propionate or its sulfate conjugate Is mentioned.

Figure 0005857503
Figure 0005857503

それらストレス性疾患のバイオマーカーの幾つかについて、以下のようにして同定した。   Some of these biomarkers for stress diseases were identified as follows.

(6. ストレス性疾患のバイオマーカーのNMRによる同定)
〔6.1 バイオマーカーのNMR分析用サンプルの分取・精製及び構造推定〕
RCS負荷有り媒体投与群試料の尿10mLを凍結乾燥したのち、水300μLに再溶解した。この再溶解したサンプルを、HPLC−MSシステム機器(Varian社製)に注入し、溶出液を20秒毎に分画して採取した。採取した分画のうち質量分析でm/zが289として検出される分画を集め、減圧下、濃縮乾固し、水50μLに再溶解した。異なる3種のカラムを用いて、同様なHPLC−MSによる分画の採取と濃縮操作を、さらに3回順次行った。4回目は所望の分画を減圧下濃縮乾固後、重メタノール180μLに溶解させ、尿精製NMR測定用サンプルを調製した。
(6. Identification of biomarkers of stress-related diseases by NMR)
[6.1 Separation and purification of biomarker samples for NMR analysis and structure estimation]
After lyophilizing 10 mL of urine from the RCS-loaded medium administration group sample, it was redissolved in 300 μL of water. This redissolved sample was injected into an HPLC-MS system instrument (manufactured by Varian), and the eluate was fractionated and collected every 20 seconds. Among the collected fractions, fractions detected by mass spectrometry as m / z 289 were collected, concentrated to dryness under reduced pressure, and redissolved in 50 μL of water. Using three different types of columns, the same fraction-collection and concentration operations by HPLC-MS were sequentially performed three more times. In the fourth round, the desired fraction was concentrated to dryness under reduced pressure and then dissolved in 180 μL of deuterated methanol to prepare a sample for urine purification NMR measurement.

なお、HPLC条件、MS測定条件及びNMR測定条件は以下の通りである。
<HPLC条件>
・カラム:(1回目)Unison UK-C8 (3μm粒径 4.6mm内径×250mm長)(Imtakt社製)
(2回目)Unison UK-Phenyl(3μm粒径 6.0mm内径×250mm長)(Imtakt社製)
(3回目)Cadenza CD-C18 (3μm粒径 6.0mm内径×250mm長)(Imtakt社製)
(4回目)Unison UK-Phenyl(3μm粒径 6.0mm内径×250mm長)(Imtakt社製)
・移動相成分A:0.1重量%ギ酸水溶液
・移動相成分B:アセトニトリル
・移動相成分A/Bの溶出のグラジエント条件
時間(分)/Bの割合(%):0分/12%→33分/45%
・流速:1.0mL/分
・カラム温度:35℃
・サンプル注入量:50〜95μL
<MS測定条件>
・イオン化法:ネガティブ エレクトロスプレーイオン化法(Negative ESI)
・質量測定範囲:m/z 100〜500
<NMR測定条件>
・測定機器:600MHz核磁気共鳴分析装置 VNMRS 600(Varian社製)
・プローブ:600MHz 1H{13C/15N}5mmφ
PFG Triple Resonance 13C Enhanced Cold Probe
・化学シフト基準:CD3OD (3.3ppm)
・測定法:wet1次元H−NMR、及びwetTOCSY法
The HPLC conditions, MS measurement conditions, and NMR measurement conditions are as follows.
<HPLC conditions>
・ Column: (First) Unison UK-C8 (3μm particle size 4.6mm inner diameter x 250mm length) (Imtakt)
(Second) Unison UK-Phenyl (3μm particle size 6.0mm inner diameter x 250mm length) (Imtakt)
(3rd) Cadenza CD-C18 (3μm particle size 6.0mm inner diameter x 250mm length) (Imtakt)
(4th) Unison UK-Phenyl (3μm particle size 6.0mm ID x 250mm length) (Imtakt)
-Mobile phase component A: 0.1 wt% formic acid aqueous solution-Mobile phase component B: acetonitrile-Gradient conditions for elution of mobile phase component A / B Time (min) / B ratio (%): 0 min / 12% → 33 minutes / 45%
・ Flow rate: 1.0 mL / min ・ Column temperature: 35 ° C.
Sample injection volume: 50-95 μL
<MS measurement conditions>
・ Ionization method: Negative electrospray ionization method (Negative ESI)
Mass measurement range: m / z 100-500
<NMR measurement conditions>
Measuring instrument: 600MHz nuclear magnetic resonance analyzer VNMRS 600 (Varian)
・ Probe: 600MHz 1 H { 13 C / 15 N} 5mmφ
PFG Triple Resonance 13 C Enhanced Cold Probe
・ Chemical shift standard: CD 3 OD (3.3ppm)
Measurement method: wet 1 -dimensional 1 H-NMR and wet TOCSY method

H−NMR測定の結果を以下に示す。
δ(ppm) 4.57 (m, 1H), 2.55 (m, 2H), 2.44 (m, 1H), 2.28 (m, 1H), 2.21 (m, 1H), 2.13 (s, 3H), 2.12 (m, 1H), 1.95 (m, 1H), 1.61 (s, 3H), 1.52 (t, 1H), 1.06 (d, 6H)
The results of 1 H-NMR measurement are shown below.
δ (ppm) 4.57 (m, 1H), 2.55 (m, 2H), 2.44 (m, 1H), 2.28 (m, 1H), 2.21 (m, 1H), 2.13 (s, 3H), 2.12 (m, 1H), 1.95 (m, 1H), 1.61 (s, 3H), 1.52 (t, 1H), 1.06 (d, 6H)

このNMRスペクトル解析により、質量分析でm/zが289の化合物(化合物No.16)の構造は、分子式がC1322Sであり分子量290であって、下記化学式(2)で示されるものであると、推定した。 According to the NMR spectrum analysis, the structure of the compound (compound No. 16) having an m / z of 289 by mass spectrometry has a molecular formula of C 13 H 22 O 5 S, a molecular weight of 290, and is represented by the following chemical formula (2). It was estimated that

Figure 0005857503
Figure 0005857503

〔6.2 LC−NMR/MSによるバイオマーカーの同定〕
前記のm/zが289の尿精製NMR測定用サンプルを、そのままLC−NMR/MS測定用サンプルとして用いた。一方、別途合成することで得た化学式(2)の構造が特定された標品を、2mg/mLとなるように重メタノールに溶解して、LC−NMR/MS測定用標品サンプルとした。両サンプルを、それぞれHPLCに注入し、質量分析のm/z値を用いて、フラクションループに採取した。夫々、該当分画について、NMRで測定を行なった。
[6.2 Identification of biomarkers by LC-NMR / MS]
The urine purified NMR measurement sample having the m / z of 289 was used as it was as the LC-NMR / MS measurement sample. On the other hand, a sample with the structure of chemical formula (2) obtained by synthesis separately was dissolved in deuterated methanol so as to be 2 mg / mL, and used as a sample for LC-NMR / MS measurement. Both samples were each injected into the HPLC and collected in a fraction loop using mass spectrometry m / z values. Each of the relevant fractions was measured by NMR.

<LC−NMR/MSシステム機器>
・HPLC装置:PRO STAR (Varian Technologies社製)
・NMR装置 :VNMRS 600(Varian Technologies社製)
・MS装置 :1200L (Varian Technologies社製)
<HPLC条件>
・カラム:Cadenza CD-C18(3μm粒径 4.6mm内径×250mm長)(Imtakt社製)
・移動相成分A:0.1容量%重ギ酸重水溶液
・移動相成分B:重アセトニトリル
・移動相成分A/Bの溶出のグラジエント条件
時間(分)/Bの割合(%):0分/25%→15分/40%
・流速:1.0mL/分
・カラム温度:40℃
・サンプル注入量:10〜45μL
<MS条件>
・イオン化法:ネガティブ エレクトロスプレーイオン化法(Negative ESI)
・質量測定範囲:m/z 100〜500
<NMR条件>
・プローブ:600MHz 1H{13C/15N}5mmφ
PFG Triple Resonance 13C Enhanced Cold Probe
・分画採取法:フラクションループ法
・化学シフト基準:TSP-d4 (0ppm)
・測定法:wet1次元H−NMR、及びwetTOCSY法
<LC-NMR / MS system equipment>
・ HPLC apparatus: PRO STAR (manufactured by Varian Technologies)
NMR device: VNMRS 600 (manufactured by Varian Technologies)
・ MS device: 1200L (manufactured by Varian Technologies)
<HPLC conditions>
Column: Cadenza CD-C18 (3 μm particle size 4.6 mm inner diameter x 250 mm length) (Imtakt)
-Mobile phase component A: 0.1 vol% heavy aqueous solution of heavy formic acid-Mobile phase component B: Heavy acetonitrile-Gradient conditions for elution of mobile phase component A / B Time (min) / B ratio (%): 0 min / 25% → 15 minutes / 40%
・ Flow rate: 1.0 mL / min ・ Column temperature: 40 ° C.
Sample injection volume: 10 to 45 μL
<MS conditions>
・ Ionization method: Negative electrospray ionization method (Negative ESI)
Mass measurement range: m / z 100-500
<NMR conditions>
・ Probe: 600MHz 1 H { 13 C / 15 N} 5mmφ
PFG Triple Resonance 13 C Enhanced Cold Probe
・ Fraction collection method: Fraction loop method ・ Chemical shift standard: TSP-d 4 (0ppm)
Measurement method: wet 1 -dimensional 1 H-NMR and wet TOCSY method

NMR測定の結果を以下に示す。
・尿精製NMR測定用サンプル
δ (ppm) 4.55 (m, 1H), 2.58 (m, 2H), 2.38 (m, 1H), 2.26 (m, 1H), 2.22-2.10 (m, 5H), 1.89 (m, 1H), 1.59 (s, 3H), 1.54 (t, 1H), 1.04 (d, 6H)
・標品サンプル
δ (ppm) 4.55 (m, 1H), 2.58 (m, 2H), 2.38 (m, 1H), 2.26 (m, 1H), 2.22-2.10 (m, 5H), 1.89 (m, 1H), 1.59 (s, 3H), 1.54 (t, 1H), 1.04 (d, 6H)
The results of NMR measurement are shown below.
・ Sample for urine purification NMR measurement δ (ppm) 4.55 (m, 1H), 2.58 (m, 2H), 2.38 (m, 1H), 2.26 (m, 1H), 2.22-2.10 (m, 5H), 1.89 ( m, 1H), 1.59 (s, 3H), 1.54 (t, 1H), 1.04 (d, 6H)
Standard sample δ (ppm) 4.55 (m, 1H), 2.58 (m, 2H), 2.38 (m, 1H), 2.26 (m, 1H), 2.22-2.10 (m, 5H), 1.89 (m, 1H ), 1.59 (s, 3H), 1.54 (t, 1H), 1.04 (d, 6H)

両者は、NMRスペクトルデータが完全に一致していることから、尿精製NMR測定用サンプルの化合物は、前記化学式(2)の化合物であると、同定された。   Since both NMR spectrum data were completely in agreement, the compound of the sample for urine purification NMR measurement was identified as the compound of the chemical formula (2).

他のバイオマーカー候補化合物については、(1)MS/MSによる同定、又は(2)m/z値を用いて、各種データベース(Human metabolome database(http://hmdb.ca/labm/jsp/mlims/MSDbParent.jsp)、MassBank.jp(http://www.massbank.jp/QuickSearch.html)及びMetabolome.jp(http://www.metabolome.jp/mass_search/))を用いて構造決定あるいは構造推定を行った。   For other biomarker candidate compounds, (1) identification by MS / MS, or (2) using m / z value, various databases (Human metabolome database (http://hmdb.ca/labm/jsp/mlims /MSDbParent.jsp), MassBank.jp (http://www.massbank.jp/QuickSearch.html) and Metabolome.jp (http://www.metabolome.jp/mass_search/))) Estimation was performed.

(7.拘束ストレスモデルにおける脱糞量とバイオマーカー量の検討)
雄性Sprague−Dawley(SD)系ラット(日本チャールスリバー、使用時7週齢)を用いて、拘束ストレスを負荷した(ジャーナル オブ ファーマコロジカル サイエンシズ(Journal of Pharmacolgical Sciences),2007年,第104巻,p.263〜273)。ラットに媒体又は被験物質を投与した2時間後、ラットを拘束ストレスゲージ(W250×L110×H190mm;KN468;夏目製作所)に入れることにより、ストレス負荷を開始した。当該拘束ストレスを負荷したラットの尿を経時的に採取し、かつラットの排便総湿重量(g/h)を測定した。採取した尿について、上記実施例で選別したバイオマーカー候補化合物について、UPLC/MRM法を用いて定量した。その結果、ストレスの一指標であるストレス負荷中脱糞量と本発明のバイオマーカー量は正の相関関係を示すものが多いことがわかった。特に、化合物No.29のバイオマーカーについては、r=0.59の正相関を示し、ストレス症状との関連性が示唆された。
(7. Examination of defecation volume and biomarker volume in restraint stress model)
Male Sprague-Dawley (SD) rats (Nippon Charles River, 7 weeks old at the time of use) were subjected to restraint stress (Journal of Pharmacolgical Sciences, 2007, Vol. 104, p. .263-273). Two hours after administration of the vehicle or test substance to rats, stress loading was initiated by placing the rats in a restraint stress gauge (W250 × L110 × H190 mm; KN468; Natsume Seisakusho). The urine of rats loaded with the restraint stress was collected over time, and the total defecation wet weight (g / h) of the rats was measured. With respect to the collected urine, the biomarker candidate compounds selected in the above examples were quantified using the UPLC / MRM method. As a result, it was found that the amount of defecation during stress loading, which is an index of stress, and the amount of biomarker of the present invention often show a positive correlation. In particular, the biomarker of Compound No. 29 showed a positive correlation of r = 0.59, suggesting an association with stress symptoms.

本発明のストレス性疾患のバイオマーカー及びそれを用いた哺乳動物に対するストレス性疾患の治療薬として被験薬物を峻別する方法並びにそのバイオマーカーの測定方法は、ストレス性疾患治療薬のスクリーニング、前臨床開発段階における動物モデルでの薬効評価・有効性評価や有効投与量の設定、臨床開発段階での薬理応答の確認、臨床現場での患者毎の最適薬物の選択、患者毎の薬効発現の有無の予測・感受性予測、有効性を示す患者の早期予測・効率的選別、治療効果の確認などの診療に、有用である。   Biomarkers for stress diseases according to the present invention, methods for distinguishing test drugs as therapeutic agents for stress diseases for mammals using the same, and methods for measuring the biomarkers include screening for therapeutic agents for stress diseases, preclinical development Efficacy assessment / efficacy assessment and setting of effective dose in animal models at the stage, confirmation of pharmacological response at the clinical development stage, selection of the optimal drug for each patient at the clinical site, prediction of the occurrence of drug efficacy for each patient -It is useful for medical care such as sensitivity prediction, early prediction / efficiency selection of patients showing efficacy, and confirmation of treatment effect.

Claims (8)

下記化学式(2)
Figure 0005857503
で表される化合物;
び下記化学式(6)
Figure 0005857503
で表される3−メトキシ−4−ヒドロキシフェニルグリコール類の硫酸抱合体;
何れかであることを特徴とする過敏性腸症候群のバイオマーカー。
The following chemical formula ( 2)
Figure 0005857503
In represented Ru of compounds;
beauty following chemical formula (6)
Figure 0005857503
A sulfated conjugate of 3-methoxy-4-hydroxyphenyl glycols represented by:
A biomarker for irritable bowel syndrome , which is any of the above.
下記化学式(2)
Figure 0005857503
で表される化合物。
The following chemical formula (2)
Figure 0005857503
A compound represented by
過敏性腸症候群に罹患しており被験薬物が投与された哺乳動物から採取された尿、血液、唾液又は脳脊髄液の生体液からなる試料と、過敏性腸症候群に罹患している哺乳動物の器官若しくは組織又はそれらの何れかから採取した細胞へ被験薬物が添加されている試料とから選ばれる生体由来試料について、請求項に記載のバイオマーカーの濃度又は存否を指標とした測定を行うことにより、該被験薬物を該哺乳動物に対する過敏性腸症候群の治療薬として峻別する方法。 A sample of a biological fluid such as urine, blood, saliva or cerebrospinal fluid collected from a mammal suffering from irritable bowel syndrome and administered a test drug; and a mammal suffering from irritable bowel syndrome The measurement using the concentration or presence or absence of the biomarker according to claim 1 as an index for a biological sample selected from a sample obtained by adding a test drug to a cell collected from an organ or tissue or any of them. To distinguish the test drug as a remedy for irritable bowel syndrome to the mammal. 該バイオマーカーの濃度に応じて、該哺乳動物に対する該被験薬物の感受性と非感受性とを選別し、又は該哺乳動物に対する該被験薬物の有効投与量を推定することを特徴とする請求項に記載の方法。 Depending on the concentration of the biomarker, were selected and sensitivity and insensitivity said test drug to the mammal, or to claim 3, characterized in that estimating the effective dose of said test drug to the mammal The method described. 該指標が、健常な同種の該哺乳動物の生体由来試料における該バイオマーカーの濃度と比較した増減であることを特徴とする請求項又はに記載の方法。 The method according to claim 3 or 4 , wherein the index is an increase or decrease compared to the concentration of the biomarker in a sample of a living organism of the same healthy mammal. 該被験薬物が、ミトコンドリア型ベンゾジアゼピン受容体拮抗薬であることを特徴とする請求項乃至の何れかに記載の方法。 Said test drug, the method according to any one of claims 3 to 5, characterized in that a mitochondrial benzodiazepine receptor antagonists. 該測定が、質量分析測定、液体クロマトグラフ測定、ガスクロマトグラフ測定、及び/又は核磁気共鳴スペクトル測定であることを特徴とする請求項乃至の何れかに記載の方法。 The method according to any one of claims 3 to 6 , wherein the measurement is a mass spectrometry measurement, a liquid chromatography measurement, a gas chromatography measurement, and / or a nuclear magnetic resonance spectrum measurement. 過敏性腸症候群に罹患した哺乳動物から採取された尿、血液、唾液又は脳脊髄液の生体液と、該哺乳動物から摘出した器官若しくは組織又はそれらの何れかから採取した細胞とから選ばれる生体由来試料について、請求項に記載のバイオマーカーの濃度又は存否を指標として、液体クロマトグラフ法、ガスクロマトグラフ法、質量分析法、核磁気共鳴スペクトル測定法、又はそれらの何れかを組み合わせた測定法により、過敏性腸症候群のバイオマーカーを測定する方法。 A biological body selected from urine, blood, saliva, or cerebrospinal fluid biological fluid collected from a mammal suffering from irritable bowel syndrome , and an organ or tissue extracted from the mammal, or a cell collected from any of them For a derived sample, using the concentration or presence of the biomarker according to claim 1 as an indicator, a liquid chromatographic method, a gas chromatographic method, a mass spectrometry method, a nuclear magnetic resonance spectrum measuring method, or a measuring method combining any of them To measure biomarkers of irritable bowel syndrome .
JP2011165272A 2010-07-29 2011-07-28 Biomarkers for stress-related diseases Expired - Fee Related JP5857503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011165272A JP5857503B2 (en) 2010-07-29 2011-07-28 Biomarkers for stress-related diseases

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010171199 2010-07-29
JP2010171199 2010-07-29
JP2011165272A JP5857503B2 (en) 2010-07-29 2011-07-28 Biomarkers for stress-related diseases

Publications (2)

Publication Number Publication Date
JP2012047735A JP2012047735A (en) 2012-03-08
JP5857503B2 true JP5857503B2 (en) 2016-02-10

Family

ID=45902755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011165272A Expired - Fee Related JP5857503B2 (en) 2010-07-29 2011-07-28 Biomarkers for stress-related diseases

Country Status (1)

Country Link
JP (1) JP5857503B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2653733C2 (en) 2012-12-04 2018-05-14 Инго СТОРК наз. ВЕРСБОРГ Heat treatment monitoring system
JP6082328B2 (en) * 2013-07-31 2017-02-15 株式会社Lsiメディエンス Bile acid simultaneous analysis method
WO2015125818A1 (en) * 2014-02-18 2015-08-27 小野薬品工業株式会社 Biomarker for diagnosis of irritable bowel syndrome
JP2017067510A (en) * 2015-09-29 2017-04-06 花王株式会社 Method for analyzing mass of lipid
WO2020017608A1 (en) 2018-07-19 2020-01-23 国立大学法人大阪大学 Virus measuring method, virus measuring device, virus determining program, stress determining method, and stress determining device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330445A (en) * 1986-07-24 1988-02-09 Japan Tobacco Inc Beta-ionone derivative, production thereof and flavor and taste improving agent consisting of said compound for tobacco
JP3943689B2 (en) * 1998-01-09 2007-07-11 大塚製薬株式会社 Diagnosis of schizophrenia
EP1554580B1 (en) * 2002-10-25 2008-05-14 Techlab, Inc. Inflammatory bowel disease and irritable bowel syndrome ibd-first chek diagnostic panel
JPWO2006080087A1 (en) * 2005-01-31 2008-06-19 山本 隆宣 Antistress substance screening method and antistress substance
JP5008064B2 (en) * 2006-11-24 2012-08-22 独立行政法人産業技術総合研究所 On-chip analysis method for saliva components
FI20085101L (en) * 2008-02-05 2009-08-06 Valio Oy Procedure for Diagnosing Irritable Bowel Syndrome IBS
JP2009229456A (en) * 2008-02-29 2009-10-08 Yakult Honsha Co Ltd Irritable bowel syndrome determining marker
MX2012005015A (en) * 2009-10-30 2012-06-12 Prometheus Lab Inc Methods for diagnosing irritable bowel syndrome.

Also Published As

Publication number Publication date
JP2012047735A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP6021187B2 (en) Metabolic biomarkers of autism
EP3322980B1 (en) Methods and compositions for the diagnosis and for the treatment of adrenoleukodystrophy
JP5857503B2 (en) Biomarkers for stress-related diseases
Gicquel et al. Fatal intoxication related to two new arylcyclohexylamine derivatives (2F-DCK and 3-MeO-PCE)
Kuhn et al. Simultaneous measurement of amiodarone and desethylamiodarone in human plasma and serum by stable isotope dilution liquid chromatography–tandem mass spectrometry assay
Zhao et al. A novel LC–MS/MS assay for the simultaneous determination of melatonin and its two major metabolites, 6-hydroxymelatonin and 6-sulfatoxymelatonin in dog plasma: Application to a pharmacokinetic study
Mierzchala-Pasierb et al. Altered profiles of serum amino acids in patients with sepsis and septic shock–Preliminary findings
Arteaga-Henriquez et al. Activation and deactivation steps in the tryptophan breakdown pathway in major depressive disorder: a link to the monocyte inflammatory state of patients
Kłys et al. Determination of oxcarbazepine and its metabolites in postmortem blood and hair by means of liquid chromatography with mass detection (HPLC/APCI/MS)
Fenli et al. Biochemical mechanism studies of venlafaxine by metabonomic method in rat model of depression.
Esposito et al. Use of ‘dilute-and-shoot’liquid chromatography-high resolution mass spectrometry in preclinical research: Application to a DMPK study of perhexiline in mouse plasma
Zhao et al. Simultaneous determination of mosapride and its active des-p-fluorobenzyl and 4′-N-oxide metabolites in rat plasma using UPLC–MS/MS: an application for a pharmacokinetic study
Grapp et al. Toxicological investigation of a case series involving the synthetic cathinone α-pyrrolidinohexiophenone (α-PHP) and identification of phase I and II metabolites in human urine
AU2007239347A1 (en) Method for diagnosing in vitro or ex vivo psychiatric disorders and/or intestinal dysbioses
Larabi et al. Validation of an UPLC-MS/MS method for the determination of sixteen synthetic cannabinoids in human hair. Application to document chronic use of JWH-122 following a non-fatal overdose
Turcant et al. Acute combined poisoning with the new designer drug 4-methyl-N-ethyl-cathinone (4-MEC) and gammabutyrolactone (GBL): A case report with different analytical approaches for identification of some metabolites
JP6713723B2 (en) Biomarkers for the diagnosis of irritable bowel syndrome
Sun et al. Simultaneous determination of ivabradine, metoprolol and their metabolites in rat plasma by ultra-performance liquid chromatography tandem mass spectrometry and its application in a pharmacokinetic study
WO2017107279A1 (en) Metabolic marker for diagnosis of coronary arteriosclerosis
EP2157431A1 (en) Method for the diagnosis of NASH using metabolic profiles
Popa et al. Bioanalytical method development and pharmacokinetics of MCI-92, a sigma-1 receptor ligand
Cooper et al. Methodology for controlled administration of smoked synthetic cannabinoids JWH-018 and JWH-073
JP2023547378A (en) Method for quantifying lysergic acid diethylamide (LSD) and 2,3-dihydro-3-hydroxy-2-oxolisergide (OH-LSD) in human plasma
EP3207926A1 (en) Oxidized lipids in the treatment of chronic or neuropathic pain
Arteaga Henríquez Immune system dysfunction and its link to the monoaminergic theory of Major Depressive Disorder: Implications and therapeutic approaches

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151130

R150 Certificate of patent or registration of utility model

Ref document number: 5857503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees