JP5855840B2 - 2-spindle facing NC lathe and vibration isolation method - Google Patents

2-spindle facing NC lathe and vibration isolation method Download PDF

Info

Publication number
JP5855840B2
JP5855840B2 JP2011063914A JP2011063914A JP5855840B2 JP 5855840 B2 JP5855840 B2 JP 5855840B2 JP 2011063914 A JP2011063914 A JP 2011063914A JP 2011063914 A JP2011063914 A JP 2011063914A JP 5855840 B2 JP5855840 B2 JP 5855840B2
Authority
JP
Japan
Prior art keywords
spindle
workpiece
machining
axial force
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011063914A
Other languages
Japanese (ja)
Other versions
JP2012196748A (en
Inventor
覚本 雅彦
雅彦 覚本
Original Assignee
中村留精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中村留精密工業株式会社 filed Critical 中村留精密工業株式会社
Priority to JP2011063914A priority Critical patent/JP5855840B2/en
Publication of JP2012196748A publication Critical patent/JP2012196748A/en
Application granted granted Critical
Publication of JP5855840B2 publication Critical patent/JP5855840B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Turning (AREA)

Description

この発明は、旋盤でワークを加工する際にワークの振動によって所望の加工が不可能ないし困難になるのを防止する手段に関するもので、特に、同一軸線上で近接離隔自在に対向する2本の主軸を備えたNC旋盤における上記手段に関するものである。   The present invention relates to a means for preventing desired machining from becoming impossible or difficult due to workpiece vibration when machining a workpiece with a lathe. In particular, the present invention relates to two pieces that are opposed to each other on the same axis. The present invention relates to the above means in an NC lathe provided with a main shaft.

旋盤でワークを加工するときにワークが振動して所望の加工ができなくなることがある。この現象は、通常ワークが細長いときに生じ、ワークの振動のために刃物に所望の切り込みを与えることができなくなったり、加工したワークの表面にワークの振動に起因するしま模様が表れたりする。   When machining a workpiece with a lathe, the workpiece may vibrate and the desired machining may not be performed. This phenomenon usually occurs when the workpiece is elongated, and it becomes impossible to give a desired cut to the blade due to the vibration of the workpiece, or a striped pattern caused by the vibration of the workpiece appears on the surface of the processed workpiece.

従来はこのようなときにワークの振動を防止する手段として、ステディレストと呼ばれる加工治具でワークを支持する方法が採用されている。ステディレストを用いる加工方法は、ワークの振動を防止する点では極めて有効であるが、ステディレストで支持している部分は加工できないとか、ステディレストの製作・調整や加工中の段取り替えが煩雑になるという欠点がある。   Conventionally, as a means for preventing the vibration of the workpiece in such a case, a method of supporting the workpiece with a processing jig called a steady rest has been adopted. The processing method using a steady rest is extremely effective in preventing the vibration of the workpiece, but the part supported by the steady rest cannot be processed, and the manufacture / adjustment of the steady rest and the setup change during processing are complicated. There is a drawback of becoming.

そこで本願出願人は、2主軸対向旋盤におけるワークの加工において、ワークの両端を第1主軸と第2主軸とで把持して第2主軸を所定量後退させることにより、ワークに軸力(軸方向の張力)を付与してワークを加工する防振加工方法を提案した(特許文献1、2)。ワークに軸力を付与することによってワークの剛性が高まり、ワークの振動は抑止されるため、ステディレストを用いないで加工できるワークの範囲を拡大できる。   Therefore, the applicant of the present invention, in machining a workpiece on a two-spindle opposed lathe, grips both ends of the workpiece with the first spindle and the second spindle and retracts the second spindle by a predetermined amount, thereby causing the workpiece to have an axial force (axial direction). Proposed a vibration-proofing method for processing a workpiece with a high tension) (Patent Documents 1 and 2). By applying an axial force to the workpiece, the rigidity of the workpiece increases and vibration of the workpiece is suppressed, so that the range of workpieces that can be processed without using a steady rest can be expanded.

特開平3−287301号公報JP-A-3-287301 特開平5−245740号公報JP-A-5-245740

ワークは、その加工箇所、加工工程の別、加工面精度の相違などに応じて、刃物(バイト)及び主軸回転数を変えて、複数工程で加工される。同じワークであっても、振動が生ずるかどうかは、工程毎に異なることは勿論、同じ工程中であっても刃物とワークとの位置関係などによって逐次変化する。   The workpiece is machined in a plurality of steps by changing the cutting tool (tool) and the spindle rotation speed according to the machining location, the machining process, the difference in machining surface accuracy, and the like. Whether or not vibration occurs even in the same work varies depending on the process, and also changes sequentially depending on the positional relationship between the cutter and the work even during the same process.

従来の防振加工方法では、もっとも振動が起こりやすい状態に対応する軸力をワークに付与する必要があった。ワークは、軸力が付与されると軸方向ひずみが生じ、振動が生じやすい細長いワークは、軸力によるワークの軸方向ひずみも大きくなるから、軸方向寸法の加工精度に悪影響を与える。また、必要以上の軸力が付与された状態が長く継続すると、主軸軸受の発熱も大きくなり、機械温度が上昇して、機械やワークの熱変形による加工誤差も増大する。   In the conventional vibration-proofing method, it is necessary to apply an axial force corresponding to a state in which vibration is most likely to occur to the workpiece. When an axial force is applied to the workpiece, an axial strain is generated, and an elongated workpiece, which is likely to be vibrated, also has a large axial strain of the workpiece due to the axial force, which adversely affects the machining accuracy of the axial dimension. Further, if the state where the axial force more than necessary is applied continues for a long time, the heat generation of the main shaft bearing also increases, the machine temperature rises, and the machining error due to the thermal deformation of the machine and the workpiece also increases.

これらの問題を避けようとすると、ワークに付与する軸力を低くせざるを得ず、従って従来の技術では、防振に必要な軸力をワークに付与することができなくなり、振動を防止できなくなる事態が往々にして生じていた。   In order to avoid these problems, the axial force applied to the work must be reduced. Therefore, with the conventional technology, the axial force required for vibration isolation cannot be applied to the work and vibration can be prevented. There were often situations where it disappeared.

この発明は、特許文献1、2で提案した技術を改良することにより、2主軸対向旋盤を用いたワークの加工において、防振加工中にワークに必要以上の軸力が付与されるのを防止して、ワークのひずみや軸受の発熱を抑制しつつ、加工中におけるワークの振動を防止することができる技術手段を得ることを課題としている。   The present invention improves the techniques proposed in Patent Documents 1 and 2 to prevent an excessive axial force from being applied to the workpiece during vibration isolation during machining of the workpiece using a two-spindle facing lathe. Thus, an object of the present invention is to obtain technical means capable of preventing vibration of the workpiece during processing while suppressing distortion of the workpiece and heat generation of the bearing.

この発明の2主軸対向NC旋盤は、同一の主軸軸線上で対向する2本の主軸1L、1Rと、2本の主軸の少なくとも一方の移動側主軸1Rを主軸軸線方向に移動及び位置決めする主軸送りモータ3と、刃物台5及びこれを送る工具送りモータ7z、7xとを備えている。この発明の2主軸対向NC旋盤は、更に、ワーク加工中の加工負荷を逐次検出する負荷検出手段と、検出された加工負荷に基づいて加工中のワークに付与する軸力ないし軸方向変位(以下、単に「変位」という。)を演算する演算手段31と、演算された軸力ないし変位をワークに付与するように前記主軸送りモータ3を逐次駆動する主軸送り手段28とを備えている。   The two-spindle-facing NC lathe of the present invention is a spindle feed that moves and positions two spindles 1L, 1R facing each other on the same spindle axis and at least one moving-side spindle 1R of the two spindles in the spindle axis direction. A motor 3, a tool post 5, and tool feed motors 7 z and 7 x that send the tool post 5 are provided. The two-spindle-facing NC lathe according to the present invention further includes load detecting means for sequentially detecting a machining load during workpiece machining, and an axial force or axial displacement (hereinafter referred to as “working force”) applied to the workpiece being machined based on the detected machining load. , Simply referred to as “displacement”) and a spindle feed means 28 for sequentially driving the spindle feed motor 3 so as to apply the calculated axial force or displacement to the workpiece.

負荷検出手段としては、主軸モータ11L、11R及び工具送りモータ7z、7xの負荷トルクを検出するトルク検出手段を用いることができる。   As the load detection means, torque detection means for detecting the load torque of the spindle motors 11L and 11R and the tool feed motors 7z and 7x can be used.

ワーク45に与える軸力ないし変位の演算は、加工プログラムに演算式を記述して行うこともできるが、種々のワークを加工する汎用の旋盤では、プログラムの作成が非常に煩雑になる。また、加工中の振動は、旋盤自体の剛性や刃物の剛性とも無関係ではないので、演算した値と実際に必要な軸力ないし変位との誤差が大きくなる恐れがあり、演算に時間がかかって加工負荷の変化に追従できない恐れも生ずる。そのため上記演算手段としては、ワークの種類毎に予め試験加工により定めた係数及び定数と検出した加工負荷の値とを用いて軸力ないし変位を演算する演算式をそれぞれの旋盤のNC装置に登録して用いるのが、演算速度や他種類のワークに対応できる点で、実用的である。   The calculation of the axial force or displacement applied to the workpiece 45 can be performed by describing an arithmetic expression in a machining program. However, with a general-purpose lathe for machining various workpieces, the creation of the program becomes very complicated. In addition, since vibration during machining is not related to the rigidity of the lathe itself or the rigidity of the blade, the error between the calculated value and the actually required axial force or displacement may increase, and the calculation takes time. There is also a possibility that it cannot follow the change of the processing load. Therefore, as the above calculation means, an arithmetic expression for calculating the axial force or displacement using the coefficient and constant determined in advance by test machining and the detected machining load value is registered in the NC device of each lathe. It is practical in that it can be used for calculation speed and other types of workpieces.

加工に際しては、加工しようとするワーク45の両端を対向する主軸1L、1Rで把持し、前記演算手段でその時々の加工負荷に基づいて演算した軸力ないし変位がワーク45に作用するように主軸送りモータ3を制御して、ワーク45内に引張応力を付与した状態で加工する。   At the time of machining, both ends of the workpiece 45 to be machined are gripped by the opposed spindles 1L, 1R, and the spindle is operated so that the axial force or displacement calculated based on the machining load at that time by the computing means acts on the workpiece 45. The feed motor 3 is controlled to process the workpiece 45 with a tensile stress applied.

加工中のワークに引張り方向の軸力を付与することにより、ワークの見かけ上の剛性が高くなる。ワークの長さが長いときは、加工負荷がかからなくても振動が生ずることがあり、また、刃物がワークを切り込み始めるときのワークの逃げを防止するために、上記演算手段は、加工負荷を検出しないときにも軸力ないし変位をゼロでない値として算出する演算手段を用いるのが好ましい。   By applying an axial force in the tensile direction to the workpiece being processed, the apparent rigidity of the workpiece is increased. When the workpiece length is long, vibration may occur even when the machining load is not applied, and in order to prevent the workpiece from escaping when the cutter starts to cut the workpiece, It is preferable to use a calculation means for calculating the axial force or displacement as a non-zero value even when the signal is not detected.

加工中のワーク45に生じさせる軸力ないし変位は、加工精度に影響を及ぼすような変形をワークに生じさせない限度において高めに設定するのが良いが、加工によるワーク45の熱膨張も考慮する必要があり、チャック爪のすべりを生じない範囲の力でなければならない。これらの点を考慮すれば、上記演算手段は、軸力ないし変位を予め設定された最大値を超えない値として算出することが好ましい。これは、ワーク毎に軸力を演算する演算式と共に軸力の最大値を設定する最大軸力設定手段を設けることにより容易に実現できる。   The axial force or displacement generated in the workpiece 45 during processing should be set higher as long as the workpiece does not undergo deformation that affects the processing accuracy, but it is necessary to consider the thermal expansion of the workpiece 45 due to processing. There must be a force within a range that does not cause the chuck claw to slide. Considering these points, it is preferable that the calculation means calculates the axial force or displacement as a value that does not exceed a preset maximum value. This can be easily realized by providing a maximum axial force setting means for setting the maximum value of the axial force together with an arithmetic expression for calculating the axial force for each workpiece.

加工負荷は、主軸モータ11L、11Rのトルク検出で検出される主分力Ftのみの検出でも良いか、主分力並びにZ軸方向及びX軸方向の分力Fz、Fxのそれぞれを変数として軸力ないし変位を演算する演算手段を登録し、加工中に加工負荷の主分力Ft、Z軸方向分力Fz及びX軸方向分力Fxを個別に逐次検出して演算することにより、ワークの形状や切削位置に対応したより高度な防振加工を実現できる。Z軸方向分力Fz及びX軸方向分力Fxは、工具送りモータ7z、7xのトルクを検出することにより、検出できる。   The machining load may be the detection of only the main component force Ft detected by the torque detection of the spindle motors 11L and 11R, or the axis with the main component force and the component forces Fz and Fx in the Z-axis direction and X-axis direction as variables. By registering calculation means for calculating force or displacement, the main component force Ft, the Z-axis direction component force Fz, and the X-axis direction component force Fx of the processing load are separately detected and calculated during machining, More advanced anti-vibration processing corresponding to the shape and cutting position can be realized. The Z-axis direction component force Fz and the X-axis direction component force Fx can be detected by detecting the torques of the tool feed motors 7z and 7x.

工具の切り込みを大きくすると加工中のワークの振動が起こり、切り込みを小さくすると振動が起こらなくなることからも理解されるように、加工中のワークの振動の発生と加工負荷とには大きな相関関係がある。この発明により、2主軸対向NC旋盤を用いたワークの防振加工において、必要以上の軸力がワークに付与される事態を防止でき、加工精度の低下や機械の発熱を抑制しつつ、ワーク加工中に生ずる振動を有効に防止することができる。また、一時的に重切削が行われる場合など、防振に必要な大きな軸力が一時的に付与されて防振加工が行われるので、加工能率の向上を図ることができる。   As can be understood from the fact that the vibration of the workpiece during machining occurs when the cutting depth of the tool is increased and the vibration does not occur when the cutting depth is reduced, there is a large correlation between the generation of workpiece vibration during machining and the machining load. is there. By virtue of this invention, in the vibration isolation processing of a workpiece using a two-spindle opposed NC lathe, it is possible to prevent a situation in which an excessive axial force is applied to the workpiece, while reducing the machining accuracy and suppressing the heat generation of the machine, It is possible to effectively prevent vibrations generated therein. Further, when heavy cutting is temporarily performed, a large axial force necessary for vibration isolation is temporarily applied to perform vibration isolation processing, so that the machining efficiency can be improved.

また、検出された加工負荷を変数とする演算式をワークの種類及び工程毎に登録して加工中のワークに与える軸力ないし変位を演算すれば、加工負荷の変動に追従可能で、かつ他種類のワークの防振加工を、それぞれのワーク及び旋盤に最適な状態で行うことができるという効果がある。   In addition, if an arithmetic expression with the detected machining load as a variable is registered for each workpiece type and process and the axial force or displacement applied to the workpiece being machined is calculated, it is possible to follow fluctuations in the machining load and Anti-vibration processing of different types of workpieces can be performed in an optimal state for each workpiece and lathe.

この発明の2主軸対向NC旋盤の要部の一例を模式的に示すブロック図The block diagram which shows typically an example of the principal part of 2 spindle opposing NC lathe of this invention 加工負荷の説明図Illustration of processing load 軸力付与手順を示すフローチャートFlow chart showing the axial force application procedure

図1はこの発明の2主軸対向NC旋盤の要部の一例を模式的に示すブロック図である。図の例では、固定側の左主軸1Lと軸方向移動可能な右主軸1Rとを備えた2主軸対向NC旋盤を例にしている。固定側主軸1Lは、旋盤のフレーム(ベッド)と実質上一体の固定主軸台2Lに軸着されて定位置に保持されている。移動側主軸1Rは、主軸の軸線方向(Z軸方向)に移動可能な移動主軸台2Rに軸着されて固定側主軸1Lと対向している。移動主軸台2Rには、主軸送りモータ(サーボモータ)3で正逆方向に回転駆動される送りねじ4が螺合しており、主軸送りモータ3の回転により移動側主軸1Rは固定側主軸1Lに対して近接離隔する。   FIG. 1 is a block diagram schematically showing an example of a main part of a two-spindle opposed NC lathe of the present invention. In the illustrated example, a two-spindle opposed NC lathe provided with a fixed-side left main spindle 1L and an axially movable right main spindle 1R is taken as an example. The fixed-side main shaft 1L is pivotally mounted on a fixed main shaft 2L that is substantially integrated with a lathe frame (bed) and is held in place. The moving-side main shaft 1R is attached to a moving main shaft 2R that can move in the axial direction (Z-axis direction) of the main shaft, and faces the fixed-side main shaft 1L. A feed screw 4 that is rotationally driven in the forward and reverse directions by a spindle feed motor (servo motor) 3 is screwed to the moving spindle stock 2R, and the moving-side spindle 1R is fixed to the fixed-side spindle 1L by the rotation of the spindle feed motor 3. Is closely spaced.

固定側主軸1Lと移動側主軸1Rの間には、タレット6を備えた刃物台5が配置されている。2主軸対向旋盤には、通常、2〜4個の刃物台が設けられるのが普通であるが、図はそのうちの1個の刃物台のみが示されている。刃物台5は、旋盤の主軸方向(Z軸方向)の工具送りモータ7z及び送りねじ8z並びに工具切り込み方向(X軸方向)の工具送りモータ7x及び送りねじ8xにより、主軸方向及び工具の切り込み送り方向(X軸方向)に移動及び位置決め自在である。   A tool post 5 having a turret 6 is arranged between the fixed side spindle 1L and the moving side spindle 1R. Usually, a two-spindle opposed lathe is usually provided with 2 to 4 tool rests, but only one of the tool rests is shown in the figure. The tool post 5 includes a tool feed motor 7z and a feed screw 8z in the lathe spindle direction (Z-axis direction) and a tool feed motor 7x and a feed screw 8x in the tool cutting direction (X-axis direction). It can be moved and positioned in the direction (X-axis direction).

工具送りモータ7z、7xはサーボモータで、加工プログラム21の工具送り指令がNC装置22の位置カウンタ23及びサーボ装置9z、9xを介して工具送りモータ7z、7xに与えられている。工具送りモータ7z、7xは、パルスエンコーダ10z、10xを備えており、NC装置22から与えられる位置指令az、axとパルスエンコーダ10z、10xで検出された位置フィードバック信号bz、bxの差信号(位置偏差)cz、cxが差分検出器25から補償回路26に与えられている。そして、この位置偏差cz、cxに基づいて補償回路26から出力される速度指令と微分器24からの速度フィードバック信号との差信号がパワーアンプ27に与えられ、パワーアンプ27は、工具送りモータ7z、7xの負荷トルクに応じた値の電流を工具送りモータ7z、7xに供給している。   The tool feed motors 7z and 7x are servo motors, and a tool feed command of the machining program 21 is given to the tool feed motors 7z and 7x via the position counter 23 of the NC device 22 and the servo devices 9z and 9x. The tool feed motors 7z and 7x are provided with pulse encoders 10z and 10x, and a difference signal (position between position commands az and ax given from the NC device 22 and position feedback signals bz and bx detected by the pulse encoders 10z and 10x. Deviations cz and cx are given from the difference detector 25 to the compensation circuit 26. A difference signal between the speed command output from the compensation circuit 26 and the speed feedback signal from the differentiator 24 based on the position deviations cz and cx is given to the power amplifier 27. The power amplifier 27 is connected to the tool feed motor 7z. , A current having a value corresponding to the load torque of 7x is supplied to the tool feed motors 7z and 7x.

従って、NC装置は、自身が出力している位置指令az、axと工具送りモータの位置フィードバック信号bz、bxとを比較することにより、これらのモータの負荷トルクから刃物台5に作用している加工負荷のZ軸方向分力Fz及びX軸方向分力Fxを検出することができる。   Therefore, the NC device acts on the tool rest 5 from the load torque of these motors by comparing the position commands az, ax output by itself with the position feedback signals bz, bx of the tool feed motor. The Z-axis direction component force Fz and the X-axis direction component force Fx of the machining load can be detected.

なお、工具をZ軸方向に移動して加工を行っているときは、X軸方向分力Fxが加工負荷の背分力、Z軸方向分力Fzが送り分力となる。また、工具をX軸方向に送って加工を行っているときは、Z軸方向分力Fzが背分力、X軸方向分力Fxが送り分力となる。   When machining is performed by moving the tool in the Z-axis direction, the X-axis direction component force Fx is the back component force of the machining load, and the Z-axis direction component force Fz is the feed component force. Further, when machining is performed by sending the tool in the X-axis direction, the Z-axis direction component force Fz is the back component force, and the X-axis direction component force Fx is the feed component force.

また、図ではZ軸方向の工具送りモータのサーボ装置9zについて、その内部構成を記載してないが、X軸方向の工具送りモータ7xのサーボ装置9xと同じである。   In the drawing, the internal configuration of the servo device 9z for the tool feed motor in the Z-axis direction is not shown, but it is the same as the servo device 9x for the tool feed motor 7x in the X-axis direction.

主軸モータ11L、11Rには、送りモータ7z、7xと同様な制御により主軸モータ11L、11Rの速度を制御するパルスエンコーダ10L、10R及び主軸モータ制御装置12L、12Rが設けられており、NC装置は、主軸モータ制御装置12L、12Rへの指令信号とフィードバック信号との差信号cr、clにより、加工負荷の主分力Ft(図2参照)を逐次検出することができる。   The spindle motors 11L and 11R are provided with pulse encoders 10L and 10R and spindle motor control devices 12L and 12R that control the speeds of the spindle motors 11L and 11R by the same control as the feed motors 7z and 7x. The main component force Ft (see FIG. 2) of the machining load can be sequentially detected based on the difference signals cr and cl between the command signal to the spindle motor control devices 12L and 12R and the feedback signal.

主軸送りモータ3は、工具送りモータ7z、7xに設けたと同様なサーボ装置9aを介して制御されている。サーボ装置9aには、NC装置22の主軸送り手段28から位置指令aが与えられている。主軸送りモータ3はパルスエンコーダ10aを備えており、NC装置22から与えられた位置指令aとパルスエンコーダ10aで検出された位置フィードバック信号bの差信号(位置偏差)cが差分検出器25から補償回路26に与えられている。そしてこの位置偏差cに基いて補償回路26から出力される速度指令と微分器24からの速度フィードバック信号との差信号とがパワーアンプ27に与えられ、パワーアンプ27は主軸送りモータ3の負荷トルクに応じた値の電流を主軸送りモータ3に供給している。   The spindle feed motor 3 is controlled via a servo device 9a similar to that provided for the tool feed motors 7z and 7x. A position command a is given to the servo device 9a from the spindle feeding means 28 of the NC device 22. The spindle feed motor 3 includes a pulse encoder 10a, and a difference signal (position deviation) c between the position command a given from the NC device 22 and the position feedback signal b detected by the pulse encoder 10a is compensated from the difference detector 25. The circuit 26 is provided. A difference signal between the speed command output from the compensation circuit 26 and the speed feedback signal from the differentiator 24 based on the position deviation c is given to the power amplifier 27, and the power amplifier 27 loads the load torque of the spindle feed motor 3. Is supplied to the spindle motor 3.

パワーアンプ27から出力される電流の最大値は、最大電流設定器29によって制限されており、その制限値はNC装置22に登録した演算手段31の最大軸力設定手段32で指令されている。   The maximum value of the current output from the power amplifier 27 is limited by the maximum current setting unit 29, and the limit value is commanded by the maximum axial force setting means 32 of the calculation means 31 registered in the NC device 22.

NC装置22の演算手段31には、防振加工時にワークに付与する軸力を演算する演算式41と、この演算で使用する係数及び定数をワークの種類毎に登録するテーブル42が登録されている。登録する係数と定数は、加工しようとするワークについて、加工実績や試験加工に基づいて決定されたものである。新しい種類のワークを加工するときは、そのワークに対する係数と定数の組をテーブル42に追加登録する。   Registered in the calculation means 31 of the NC device 22 is a calculation formula 41 for calculating the axial force applied to the workpiece during vibration isolation processing, and a table 42 for registering coefficients and constants used in this calculation for each type of workpiece. Yes. The coefficients and constants to be registered are determined on the workpiece to be machined based on machining results and test machining. When machining a new type of work, a set of coefficients and constants for the work is additionally registered in the table 42.

実施例における演算式41は、ワークに付与する軸力Pを
P=A×Ft+B×Fz+C×Fx+D
で演算している。ここで、
Ft:切削負荷の主分力
Fz:切削負荷のZ軸方向分力
Fx:切削負荷のX軸方向分力
A:係数(主分力用)
B:係数(Z軸方向分力用)
C:係数(X軸方向分力用)
D:係数(切片)
である。切削負荷の主分力Ftは、主軸モータ11L、11Rのトルクにより逐次検出することができ、切削負荷のZ軸方向分力Fz及びX軸方向分力Fxは、前述した工具送りモータ7z、7xに与える指令信号az、axとフィードバック信号bz、bxにより逐次検出することができる。また、係数AないしDは、ワークの材質、長さ、径、把握力、把握冶具の状態(爪やコレットの形状や把握代)、使用する工具の材質、工具の取付状態(バイト形状や突出長)、切削速度、切込深さなどにより変化する値であり、ワーク毎に予め実験して決定し、下表のようなテーブル42として演算手段31に登録する。
In the calculation formula 41 in the embodiment, the axial force P applied to the workpiece is expressed as P = A × Ft + B × Fz + C × Fx + D.
Calculated with here,
Ft: Main component force of cutting load Fz: Z-axis direction component force of cutting load Fx: X-axis direction component force of cutting load A: Coefficient (for main component force)
B: Coefficient (for Z axis direction component force)
C: Coefficient (for X-axis direction component)
D: Coefficient (intercept)
It is. The main component force Ft of the cutting load can be sequentially detected by the torques of the spindle motors 11L and 11R, and the Z-axis direction component force Fz and the X-axis direction component force Fx of the cutting load are the above-described tool feed motors 7z and 7x. Can be sequentially detected by command signals az, ax and feedback signals bz, bx. The coefficients A to D are the workpiece material, length, diameter, grasping force, grasping jig condition (claw and collet shape and grasping allowance), tool material used, tool mounting condition (tool shape and protrusion). Length), a cutting speed, a depth of cut, and the like. The value is determined by experimenting in advance for each workpiece, and is registered in the calculation unit 31 as a table 42 as shown in the table below.

Figure 0005855840
Figure 0005855840

NC装置22には、主軸送りモータのサーボ装置から位置偏差cを取得する位置偏差検出手段33、取得した位置偏差cから検出されるワークの軸力と演算手段31で演算された軸力とを比較する比較手段34及び比較手段34の判定結果に基づいて移動主軸台2Rの送り指令を出力する主軸送り手段28とを備えている。主軸送り手段28は、軸力の検出値が演算値より大きいときには移動側主軸1Rが固定側主軸1Lに接近する方向の移動指令をサーボ装置9aに与え、軸力の検出値が演算値より小さいときには移動側主軸1Rが固定側主軸1Lから離隔する方向の移動指令をサーボ装置9aに与える。   The NC device 22 includes a position deviation detecting means 33 for obtaining the position deviation c from the servo motor of the spindle feed motor, and the workpiece axial force detected from the obtained position deviation c and the axial force calculated by the calculating means 31. Comparing means 34 for comparison and spindle feeding means 28 for outputting a feed command for the moving headstock 2R based on the determination result of the comparing means 34 are provided. When the detected value of the axial force is larger than the calculated value, the main shaft feeding means 28 gives a movement command in the direction in which the moving main shaft 1R approaches the fixed main shaft 1L to the servo device 9a, and the detected value of the axial force is smaller than the calculated value. Sometimes, a movement command in a direction in which the moving-side main shaft 1R is separated from the fixed-side main shaft 1L is given to the servo device 9a.

この発明の2主軸対向NC旋盤は、図3に示す手順により、防振加工工程を含むワークの加工を行う。NC装置には複数の加工プログラムが登録され、各加工プログラムには、当該プログラムで加工するワークの各部分についての旋削粗加工、旋削仕上げ加工、回転工具による孔明け加工など、多数の加工工程(ブロック)が記述されている。NC装置22は、指定された加工プログラムを順に選択して、各プログラムに記述された工程を順に読み込んでワークを連続的に加工する。防振加工を行うかどうかは、各加工プログラムの各工程毎に指定され、読み込んだ工程に防振加工が指定されていれば、NC装置は制御を防振加工モードに設定(ON)し、防振加工が指定されていなければ、防振加工モードの設定を解除(OFF)する。   The two-spindle-facing NC lathe according to the present invention processes a workpiece including a vibration-proofing process by the procedure shown in FIG. A plurality of machining programs are registered in the NC device, and each machining program includes a number of machining processes (such as roughing turning, turning finishing machining, and drilling with a rotating tool) for each part of the workpiece to be machined with the program. Block) is described. The NC device 22 sequentially selects the designated machining program, reads the processes described in each program in order, and continuously machines the workpiece. Whether to perform anti-vibration processing is specified for each process of each processing program. If anti-vibration processing is specified for the read process, the NC unit sets the control to the anti-vibration processing mode (ON), If anti-vibration processing is not designated, the anti-vibration processing mode setting is canceled (OFF).

図3の手順は、ワークの加工動作と並行して実行され、ワークの加工が開始されると同時に図3の手順が実行される。この発明の防振加工は、ワークを両端を把持した状態で行われる。読み込んだ工程の加工が両持ち加工でないとき(ワークのロードアンロードなどでの待機時を含む)は、ステップ51で分岐して、何もしないで当該ステップと加工終了の判断ステップ56のループを繰り返す。また、両持ち加工であっても、防振加工モードに切り替わっていなければ、ステップ52で分岐して、ステップ51、52から加工終了の判断ステップ56のループを繰り返す。   The procedure shown in FIG. 3 is executed in parallel with the workpiece machining operation, and the procedure shown in FIG. 3 is executed simultaneously with the workpiece machining. The anti-vibration processing of the present invention is performed in a state where the workpiece is gripped at both ends. If the read process is not a double-sided process (including a standby time for loading or unloading a workpiece), the process branches at step 51, and the loop of step 56 and the process end determination step 56 is performed without doing anything. repeat. Further, even in the case of both-end processing, if the vibration-proof processing mode has not been switched, the process branches at step 52, and the loop from step 51, 52 to the end of processing step 56 is repeated.

制御が防振加工モードに設定された状態で両持ち加工を行うときは、ステップ53で、ワーク番号で指定されているワークの種類に対応するパラメータ(上記実施例における係数A〜D)をテーブル42からメモリに読み込む。そしてステップ54で、当該時点で検出されている加工負荷と読み込んだパラメータを用いて、ワークに付与する軸力ないし変位を演算し、演算された軸力ないし変位をワークに付与するように、主軸送りモータ3に送り指令を与える。   When double-sided machining is performed with the control set to the vibration-proof machining mode, in step 53, parameters corresponding to the type of workpiece specified by the workpiece number (coefficients A to D in the above embodiment) are tabled. 42 is read into the memory. Then, in step 54, the spindle force or displacement to be applied to the workpiece is calculated using the machining load detected at that time and the read parameter, and the spindle is applied to the calculated axial force or displacement to the workpiece. A feed command is given to the feed motor 3.

すなわち、主軸モータ11L、11R及び工具送りモータ7z、7xの位置偏差ないし出力トルクから加工負荷の主分力Ft、Z軸方向分力Fz及びX軸方向分力Fxを求め、これらの値とメモリに記憶した係数A、B、C、Dを用いて軸力Pを演算する。この演算結果は、比較手段34により、その時点で検出した主軸送りモータ3の位置偏差cから求められる軸力と比較され、演算した軸力Pの方が大きければ、主軸送り手段28により、主軸送りモータ3に移動側主軸1Rを固定側主軸1Lから離隔させる方向の移動指令を与える。一方、位置偏差cから検出した軸力が演算された軸力Pより大きければ、主軸送り手段28は、主軸送りモータ3に移動側主軸1Rが固定側主軸1Lに接近する方向の移動指令を与える。演算された軸力と検出した軸力が同じ(両者の差が設定されたしきい値以下)であれば、その時点の移動側主軸1Rの位置を保持する。   That is, the main component force Ft, the Z-axis direction component force Fz, and the X-axis direction component force Fx of the machining load are obtained from the position deviation or output torque of the spindle motors 11L and 11R and the tool feed motors 7z and 7x, and these values and memory are obtained. The axial force P is calculated using the coefficients A, B, C, and D stored in FIG. This calculation result is compared with the axial force obtained from the position deviation c of the spindle feed motor 3 detected at that time by the comparison means 34, and if the calculated axial force P is larger, the spindle feed means 28 makes the spindle The feed motor 3 is given a movement command in a direction in which the moving-side main shaft 1R is separated from the fixed-side main shaft 1L. On the other hand, if the axial force detected from the position deviation c is greater than the calculated axial force P, the spindle feed means 28 gives the spindle feed motor 3 a movement command in the direction in which the moving spindle 1R approaches the fixed spindle 1L. . If the calculated axial force and the detected axial force are the same (the difference between them is equal to or less than a set threshold value), the position of the moving main spindle 1R at that time is held.

ステップ51とステップ56のループを短い時間間隔で繰り返すことにより、加工中の加工負荷が逐次検出されて、当該加工負荷に対応する引張り方向の軸力がワークに与えられ、ワークの振動を適切に防止した状態でワークの加工が継続される。   By repeating the loop of step 51 and step 56 at short time intervals, the machining load during machining is sequentially detected, the axial force in the tension direction corresponding to the machining load is applied to the workpiece, and the workpiece vibration is appropriately adjusted. Processing of the workpiece is continued in the prevented state.

加工プログラムにワークに付与する最大軸力の制限値が記載されているときは、演算手段31の最大軸力設定手段32は、当該軸力に対応する値の電流を制限値として最大電流設定器29に与える。これにより、主軸送り手段28から制限された最大軸力以上の軸力を付与するように移動側主軸1Rを移動させようとしても、主軸送りモータ3のトルクが制限されて移動させることができなくなり、ワークに過大な軸力が作用するのを防止できる。   When the limit value of the maximum axial force to be applied to the workpiece is described in the machining program, the maximum axial force setting unit 32 of the calculation unit 31 uses the current corresponding to the axial force as a limit value to set the maximum current setter 29. Thereby, even if it is going to move the main spindle 1R so that the axial force more than the maximum axial force restricted from the spindle feeding means 28 may be applied, the torque of the spindle feeding motor 3 is restricted and cannot be moved. It is possible to prevent an excessive axial force from acting on the workpiece.

防振加工が指定されていない工程を読み込むと、防振加工モードがOFFに切り替えられ、ステップ55でループから抜け、ワークに軸力ないし変位を付与しない状態での加工ないしワークのロードアンロードなどが実行される。この手順を一連の加工動作の終了信号を受けるステップ56まで繰り返す。   When a process for which anti-vibration processing is not specified is read, the anti-vibration processing mode is switched off, and in step 55, the loop is exited, machining without applying axial force or displacement to the workpiece, or load unloading of the workpiece, etc. Is executed. This procedure is repeated up to step 56 where the end signal of a series of machining operations is received.

以上の説明では、演算された軸力をワークに付与するように主軸送りモータを制御する例について説明したが、ワークに付与する軸力と、当該軸力によって生ずるワークの変位(軸方向ひずみ)とは比例関係にあるので、軸力に変えて変位を演算して当該変位を発生させるように主軸送りモータ3を制御するようにしても、上記実施例と同様な防振加工を実現することができる。また、上記実施例の演算式は、軸力を加工負荷の一時関数として演算する式であるが、このような演算式に限定されるものではなく、二乗や平方根、分数などを含む計算式であってもよく、要は加工反力の変化と、加工反力の変化に応じて防振に必要な軸力ないし変位との関係を適切に、かつ簡単な関係で演算することができる演算式を登録する。ここで言う簡単な演算式とは、少ない実験によって使用する係数を定めることができ、かつ短い時間での繰り返し演算が可能な演算式である。   In the above description, the example in which the spindle motor is controlled so as to apply the calculated axial force to the workpiece has been described, but the axial force applied to the workpiece and the displacement of the workpiece (axial strain) caused by the axial force. Therefore, even if the spindle feed motor 3 is controlled so as to generate the displacement by calculating the displacement instead of the axial force, the same vibration proofing as in the above embodiment can be realized. Can do. Further, the arithmetic expression of the above embodiment is an expression for calculating the axial force as a temporary function of the machining load, but is not limited to such an arithmetic expression, and is an arithmetic expression including a square, a square root, a fraction, and the like. In short, the calculation formula that can calculate the relationship between the change in the machining reaction force and the axial force or displacement necessary for vibration isolation according to the change in the machining reaction force in an appropriate and simple relationship. Register. The simple arithmetic expression referred to here is an arithmetic expression that can determine a coefficient to be used by a small number of experiments and that can be repeatedly calculated in a short time.

1L,1R 主軸
3 主軸送りモータ
11L,11R 主軸モータ
28 主軸送り手段
31 演算手段
Ft 主分力
Fz Z軸方向分力
Fx X軸方向分力
1L, 1R Spindle 3 Spindle feed motor
11L, 11R spindle motor
28 Spindle feed means
31 Calculation means Ft Main component force Fz Z-axis direction component force Fx X-axis direction component force

Claims (5)

同一軸線上で近接離隔自在に対向する2本の主軸(1L,1R)及びこれらを駆動する主軸モータ(11L,11R)と、刃物台(5)及びこれを送る工具送りモータ(7z,7x)と、移動側主軸(1R)を前記軸線方向に移動及び位置決めする主軸送りモータ(3)とを備えた2主軸対向NC旋盤において、
ワーク加工中の前記主軸モータの負荷トルクを検出する負荷検出手段と、検出された加工負荷に基づいて加工中のワークに付与する軸力ないし軸方向変位を演算する演算手段(31)と、演算された軸力ないし軸方向変位をワークに付与するように前記主軸送りモータ(3)を駆動する主軸送り手段(28)とを備えている、2主軸対向NC旋盤。
Two spindles (1L, 1R) that face each other on the same axis so as to be freely separated from each other, spindle motors (11L, 11R) that drive these, turret (5), and tool feed motor (7z, 7x) that sends them And a two-spindle opposed NC lathe equipped with a spindle feed motor (3) for moving and positioning the moving-side spindle (1R) in the axial direction,
Load detecting means for detecting the load torque of the spindle motor during workpiece machining, computing means (31) for computing axial force or axial displacement applied to the workpiece being machined based on the detected machining load, and computation A two-spindle opposed NC lathe, comprising: a spindle feed means (28) for driving the spindle feed motor (3) so as to apply the axial force or axial displacement to the workpiece.
前記演算手段は、加工負荷を検出しないときの軸力ないし軸方向変位をゼロでない値として演算する、請求項1記載の2主軸対向NC旋盤。   The two-spindle opposed NC lathe according to claim 1, wherein the calculation means calculates an axial force or axial displacement when a machining load is not detected as a non-zero value. 前記演算手段は、軸力ないし軸方向変位を予め設定された最大値を超えない値として演算する、請求項1記載の2主軸対向NC旋盤。   The two-spindle opposed NC lathe according to claim 1, wherein the calculating means calculates an axial force or axial displacement as a value not exceeding a preset maximum value. 前記演算手段は、検出された加工負荷の主分力(Ft)、Z軸方向分力(Fz)及びX軸方向分力(Fx)のそれぞれを変数として前記軸力ないし軸方向変位を演算する、請求項1記載の2主軸対向NC旋盤。   The computing means computes the axial force or axial displacement using the detected main component force (Ft), Z-axis direction component force (Fz) and X-axis direction component force (Fx) as variables. The two-spindle opposed NC lathe according to claim 1. 請求項1記載の2主軸対向NC旋盤を用い、
加工しようとするワークの一端を対向する主軸の一方(1)で把持して加工を行う際に、他方の主軸(3)で当該ワークの他端を把持し、加工中のワークの加工負荷を逐次検出し、検出した加工負荷と当該ワークの種類に対応する前記演算手段とで軸力ないし軸方向変位を演算し、演算した軸力ないし軸方向変位を当該ワークに付与するように前記主軸送りモータを逐次制御しながらワークを加工することを特徴とする、2主軸対向NC旋盤における防振加工方法。
Using the two-spindle opposed NC lathe according to claim 1,
When one end of the workpiece to be machined is gripped by one of the opposing spindles (1) and the workpiece is machined, the other spindle (3) grips the other end of the workpiece to reduce the machining load on the workpiece being machined. Sequentially detecting, calculating the axial force or axial displacement with the detected machining load and the calculation means corresponding to the type of the workpiece, and feeding the spindle so that the calculated axial force or axial displacement is applied to the workpiece An anti-vibration machining method for a two-spindle opposed NC lathe, wherein a workpiece is machined while sequentially controlling a motor.
JP2011063914A 2011-03-23 2011-03-23 2-spindle facing NC lathe and vibration isolation method Active JP5855840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011063914A JP5855840B2 (en) 2011-03-23 2011-03-23 2-spindle facing NC lathe and vibration isolation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011063914A JP5855840B2 (en) 2011-03-23 2011-03-23 2-spindle facing NC lathe and vibration isolation method

Publications (2)

Publication Number Publication Date
JP2012196748A JP2012196748A (en) 2012-10-18
JP5855840B2 true JP5855840B2 (en) 2016-02-09

Family

ID=47179492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011063914A Active JP5855840B2 (en) 2011-03-23 2011-03-23 2-spindle facing NC lathe and vibration isolation method

Country Status (1)

Country Link
JP (1) JP5855840B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3536425B1 (en) * 2018-03-08 2023-08-16 AB Sandvik Coromant Turning method for a cnc-lathe
EP4410455A1 (en) 2021-09-30 2024-08-07 Nakamura-Tome Precision Industry Co., Ltd. Vibration-control machining method for long workpiece
CN114578755B (en) * 2022-03-03 2024-04-02 东莞市正森精密零件有限公司 Numerical control machining device with automatic cutter feeding compensation function

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228752A (en) * 1988-03-10 1989-09-12 Fanuc Ltd Spindle synchronizing system
JPH0635082B2 (en) * 1988-11-15 1994-05-11 オ−クマ株式会社 Cutting control method for numerically controlled lathe
JP2518457B2 (en) * 1990-07-05 1996-07-24 三菱電機株式会社 How to synchronize the feed axis of the lathe
JP2670955B2 (en) * 1991-12-27 1997-10-29 中村留精密工業株式会社 Axial force control device and operation control method for headstock of lathe
JPH05212653A (en) * 1992-02-03 1993-08-24 Jatco Corp Numerically controlled lathe
JP2002219601A (en) * 2001-01-24 2002-08-06 Horibe Tekkosho:Kk Work chucking method for machine tool
JP2005022016A (en) * 2003-06-30 2005-01-27 Musashi Seimitsu Ind Co Ltd Method and device for machining workpiece

Also Published As

Publication number Publication date
JP2012196748A (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP4137386B2 (en) Method for controlling numerically controlled machine tool and numerically controlled machine tool
JP5506945B2 (en) Numerical control method and numerical control device for machine tool
JP4879091B2 (en) Method for controlling numerically controlled machine tool and numerically controlled machine tool
JP2009517233A (en) Method for reducing vibration of machine elements or workpieces
JP6407810B2 (en) Machining system that adjusts machining tool rotation speed and workpiece feed speed
JP5855840B2 (en) 2-spindle facing NC lathe and vibration isolation method
JP2020170365A (en) Numerical control device
JP6842146B2 (en) How to correct machine tool machining errors
CN109759901B (en) Milling flutter control method based on asymmetric rigidity regulation of spindle system
JP6756601B2 (en) Control device and control method for machine tools with C-axis function
JP2006150504A (en) Machining device capable of predicting/preventing chattering oscillation and method for predicting/preventing chattering oscillation used for the same
JP3119308B2 (en) Machining center
JPH1190769A (en) Accelerating/decelerating controller and method for machine tool
KR102010590B1 (en) Spindle clamping and unclamping automatic control device and method thereof
WO2013046736A1 (en) Gib fastening state assessment method and device
JP2021111026A (en) Machine tool machining control method
JP3265961B2 (en) Work movement control device
WO2006068083A1 (en) Working device
JP5266020B2 (en) Machine tool and error correction method in machine tool
JP7448738B1 (en) Control device and control method for industrial machinery
JP6544921B2 (en) Two-spindle facing lathe with torsional strain correction means
US20200159191A1 (en) Parameter setting device, system, and parameter setting method
JPH10333752A (en) Positioning control method and device therefor and processing program storage medium
JP7100491B2 (en) Machining load reproduction jig and machine tool machining load measurement method
JP2835768B6 (en) Anti-vibration processing method for two spindle facing lathe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151210

R150 Certificate of patent or registration of utility model

Ref document number: 5855840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250