JP5850191B1 - 光学系および撮像システム - Google Patents

光学系および撮像システム Download PDF

Info

Publication number
JP5850191B1
JP5850191B1 JP2015051241A JP2015051241A JP5850191B1 JP 5850191 B1 JP5850191 B1 JP 5850191B1 JP 2015051241 A JP2015051241 A JP 2015051241A JP 2015051241 A JP2015051241 A JP 2015051241A JP 5850191 B1 JP5850191 B1 JP 5850191B1
Authority
JP
Japan
Prior art keywords
lens
optical system
angle
lens group
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015051241A
Other languages
English (en)
Other versions
JP2016170352A (ja
Inventor
佐藤 裕之
裕之 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2015051241A priority Critical patent/JP5850191B1/ja
Application granted granted Critical
Publication of JP5850191B1 publication Critical patent/JP5850191B1/ja
Publication of JP2016170352A publication Critical patent/JP2016170352A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

【課題】全長が長くなることを抑制した光学系および撮像システムを提供する。【解決手段】物体側から順に負の焦点距離をもつ第1レンズ群と、絞りと、正の焦点距離をもつ第2レンズ群と、を含む光学系であって、第1レンズ群は、光軸が同一、かつ、凸面が物体側に向いた2枚の負メニスカスレンズを含み、2枚の負メニスカスレンズは、屈折率が1.8以上である。【選択図】図1

Description

本発明は、光学系および撮像システムに関する。
近年、180度を超える画角を持つ広角レンズ(いわゆる、魚眼レンズ)を有する撮像システムが、広範囲を撮影するために用いられている。魚眼レンズでは、全画角が180度を超える入射角に対応するために、一般的な射影方式(正射影)ではなく、立体射影方式または等距離射影方式が採用されている。
このような180度を超える画角に対応し、等距離射影方式を採用した撮像システムとして、負の屈折力を有する前群と、絞りと、正の屈折力を有する後群と、を有し、前群は、少なくとも3枚の負メニスカスレンズを有し、前群および後群は、正レンズと負レンズとの接合レンズを有する撮像システムが提案されている(特許文献1参照)。
しかしながら、特許文献1に記載された撮像システムは、空間的な占有が大きい負の屈折力を有するメニスカスレンズを3枚搭載しているので、全長が長くなるという問題点があった。
本発明は、上記に鑑みてなされたものであって、全長が長くなることを抑制した光学系および撮像システムを提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、物体側から順に負の焦点距離をもつ第1レンズ群と、絞りと、正の焦点距離をもつ第2レンズ群と、を含む光学系であって、前記第1レンズ群は、光軸が同一、かつ、凸面が前記物体側に向いた2枚のみの負メニスカスレンズを含み、2枚の前記負メニスカスレンズのうち、前記物体側の負メニスカスレンズは、両面が球面であり、像側の負メニスカスレンズは、両面が光軸上および光軸外に入射した光線それぞれに基づく収差を補正する非球面であり、前記第1レンズ群および前記第2レンズ群は、全画角が180度を超え、2枚の前記負メニスカスレンズは、前記第1レンズ群内に入射瞳を有し、前記物体側の負メニスカスレンズに入射する各画角の光線の前記入射瞳に対する角度が13度以下となるように屈折率1.8以上とし、かつ、Fナンバを2としたことを特徴とする。
本発明によれば、全長が長くなることを抑制することができる。
図1は、第1の実施の形態に係る撮像システムの全体構成図である。 図2は、第1の実施の形態に係る撮像システムにおける光軸および最大画角の主光線を示す図である。 図3は、各射影方式における画角に対する像高の変化量を示すグラフである。 図4は、第1の実施の形態に係る撮像システムの画角に対する像高の変化量と、等距離射影方式の理想の像高の変化量とを示すグラフである。 図5は、第1の実施の形態に係る撮像システムの画角に対する周辺光量比を示すグラフである。 図6は、第1の実施の形態に係る撮像システムの球面収差を示すグラフである。 図7は、第1の実施の形態に係る撮像システムの非点収差を示すグラフである。 図8は、第1の実施の形態に係る撮像システムのコマ収差を示すグラフである。 図9は、第1の実施の形態に係る撮像システムのMTFの特性を示すグラフである。 図10は、第2の実施の形態に係る撮像システムの全体構成図である。 図11は、第3の実施の形態に係る撮像システムの全体構成図である。
以下に、図面を参照しながら、本発明に係る光学系および撮像システムの実施の形態を詳細に説明する。また、以下の実施の形態によって本発明が限定されるものではなく、以下の実施の形態における構成要素には、当業者が容易に想到できるもの、実質的に同一のもの、およびいわゆる均等の範囲のものが含まれる。さらに、以下の実施の形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換、変更および組み合わせを行うことができる。
[第1の実施の形態]
(撮像システムの全体構成)
図1は、第1の実施の形態に係る撮像システムの全体構成図である。図1を参照しながら、本実施の形態に係る撮像システム1の全体構成について説明する。
図1に示すように、本実施の形態に係る撮像システム1は、光学系10と、カバーガラスCGと、イメージセンサIS(撮像素子)と、を備えている。光学系10は、180度を超える画角に対応した広角レンズ(いわゆる、魚眼レンズ)であり、等距離射影方式が採用されている。ここで、等距離射影方式とは、像高(イメージセンサISにより撮像される撮像画像の画像中からの高さ)をy、光学系10の焦点距離をf、半画角をθとした場合に、y=f・θの関係を有する方式である。すなわち、像高yは、半画角θ(入射角)に比例する。光学系10は、前群2(第1レンズ群)と、絞り4と、後群3(第2レンズ群)と、を備えている。撮像システム1は、物体側から像側に向かって、前群2、絞り4、後群3、カバーガラスCG、およびイメージセンサISの順に直列に並んで構成されている。
前群2は、光学系10の物体側に配置されたレンズ群である。また、前群2は、全体として負の屈折力で、180度を超える広画角の光線を取り込む。前群2は、物体側から像側に向かって、レンズL1、レンズL2、平行平面板PPの順に直列に並んで構成されている。
レンズL1は、ガラス材料で構成された両面が球面の負メニスカスレンズである。レンズL2は、ガラス材料で構成された両面が非球面の負メニスカスレンズである。平行平面板PPは、光軸に対して垂直な平行な平面を有し、ガラス材料の屈折率を有する光学部材である。
絞り4は、前群2に入射する光の量を自在に調整する開口絞りである。絞り4は、後述するレンズL3の物体側の面(面L3R1)の近傍に配置されている。
後群3は、光学系10の像側に配置されたレンズ群である。後群3は、全体として正の屈折力で、主に撮像画像の収差を補正する。後群3は、物体側から像側に向かって、レンズL3、レンズL4、レンズL5、レンズL6、レンズL7の順に直列に並んで構成されている。
レンズL3は、ガラス材料で構成された両面が球面の両凸レンズである。レンズL4は、ガラス材料で構成された両面が非球面の両凸レンズである。レンズL5は、ガラス材料で構成された両面が球面の両凸レンズである。レンズL6は、ガラス材料で構成された両面が球面の両凹レンズである。レンズL5およびレンズL6は、レンズ面(後述の面L5R2および面L6R1)で貼り合わされた接合レンズを形成している。レンズL7は、ガラス材料で構成された両面が非球面の両凸レンズである。
カバーガラスCGは、像側に位置するイメージセンサISを保護するカバー部材である。イメージセンサISは、光学系10に入射した光を電気信号に変換することにより被写体を撮像して画像を生成する。イメージセンサISは、例えば、CCD(Charge−Coupled Device)センサまたはCMOS(Complementary Metal Oxide Semiconductor)センサ等の固体撮像素子で実現される。
また、図1は、レンズ等の配置およびレンズ等の面も示す。レンズL1、L2、平行平面板PP、およびレンズL3〜L7は、各々の光軸が一致した光軸OA上に直列に並んで配置されている。レンズL1〜L7の物体側のレンズ面を、それぞれ面L1R1、L2R1、L3R1、L4R1、L5R1、L6R1、およびL7R1とする。また、レンズL1〜L7の像側のレンズ面を、それぞれ面L1R2、L2R2、L3R2、L4R2、L5R2、L6R2、およびL7R2とする。
平行平面板PPおよびカバーガラスCGの物体側の面を、それぞれ、面PPR1および面CGR1とする。また、平行平面板PPおよびカバーガラスCGの像側の面を、それぞれ、面PPR2および面CGR2とする。
次に、上述の各光学部材についての設計データ(レンズデータ)の一例を示す。
Figure 0005850191
表1における面番号「1」〜「6」および「8」〜「18」は、それぞれ、図1に示す面L1R1、L1R2、L2R1、L2R2、PPR1、PPR2、L3R1、L3R2、L4R1、L4R2、L5R1、L6R1(L5R2)、L6R2、L7R1、L7R2、CGR1、およびCGR2に対応する。また、タイプが「非球面」に対応する曲率半径は、近軸曲率半径を示している。また、屈折率は、ナトリウムD線に対する屈折率を示している。さらに、長さの次元を有する量の単位は、[mm]である。
(光学系の各要素の機能)
図2は、第1の実施の形態に係る撮像システムにおける光軸および最大画角の主光線を示す図である。図3は、各射影方式における画角に対する像高の変化量を示すグラフである。図4は、第1の実施の形態に係る撮像システムの画角に対する像高の変化量と、等距離射影方式の理想の像高の変化量とを示すグラフである。図5は、第1の実施の形態に係る撮像システムの画角に対する周辺光量比を示すグラフである。図2〜5を参照しながら、本実施の形態に係る撮像システム1の光学系10の各要素の機能について説明する。
上述のように、本実施の形態に係る光学系10は、180度を超える画角に対応してイメージセンサISに撮像させるために、等距離射影方式を採用している。ここで、図3に、各射影方式における画角(半画角)に対する像高の変化量を示す。図3に示すように、等距離射影方式は、y=f・θの関係があるので、像高yは、半画角θに比例し、グラフは直線となる。
また、中心射影方式は、通常のレンズに採用される方式であり、y=f・tanθの関係がある。中心射影方式は、画角が大きくなるとイメージセンサに収まらなくなり、イメージセンサに収まる最大の画角が製品固有の画角の限界となる。
また、正射影方式は、y=f・sinθの関係がある。正射影方式は、撮像画像の中心と周辺とで明るさが一様なため、周辺光量の低下が生じない。
また、立体射影方式は、y=2f・tan(θ/2)の関係がある。立体射影方式では、撮像画像の中心に比べて周辺の像が拡大される。立体射影方式は、太陽または月が地平線に近づくにつれて大きく見える心理的な特徴を抑えているので、人の眼に近い方式である。
そして、等立体角射影方式は、y=2f・sin(θ/2)の関係がある。等立体射影方式は、像の面積が立体角に比例するため立体角の測定が可能である。
上述のように、本実施の形態に係る光学系10は、等距離射影方式を採用している。図4に、上述のレンズデータに基づいた半画角に対する像高の変化量と、等距離射影方式の理想の像高の変化量とを示す。光学系10のレンズデータに基づいた半画角に対する像高の変化量のグラフは、等距離射影方式の理想の像高の変化量のグラフに近似している。これによって、すべての画角の画素数がイメージセンサIS上で同じ画素数となるため、撮像画像の中心部および周辺部の解像感を均一にし、かつ、周辺の画角まで高解像にすることができる。
前群2は、180度を超える広画角の光線を取り込んで屈曲させる必要があるので、全体で負の屈折力を有する。すなわち、前群2は、負の焦点距離を形成するために、負メニスカスレンズを有する。ここで、光線を屈曲させるためにメニスカスレンズの枚数を重ねた場合、光学系10の全長が長くなる。また、光学系10の全長を短くするために、複数のメニスカスレンズの間隔を詰めた場合、機械的に組み付けの限界がある。そこで、本実施の形態では、前群2は、負メニスカスレンズを2枚(レンズL1、L2)有するものとしている。
また、撮像システム1が所定の明るさを確保するために、光学系10の焦点距離を小さく(Fナンバを小さく)する必要がある。ここで、レンズの厚さを無視する場合の屈折率、レンズ面の曲率半径、および焦点距離の理論式を以下の式(1)に示す。
Figure 0005850191
式(1)によると、焦点距離fを小さくするためには、例えば、前群2が有するメニスカスレンズの曲率半径を小さくする方法がある。しかし、負メニスカスレンズの凹形状の部分は、製造工程の形状測定で、測定子を凹形状の接線に対して所定の角度以下(例えば、60度以下)にする制約がある。そこで、本実施の形態では、前群2が有する負メニスカスレンズの屈折率nを大きくすることにより、焦点距離fを小さくしている。例えば、上述の表1に示すように、前群2のレンズL1、L2の屈折率を1.8以上にすることが望ましい。これによって、焦点距離を小さく抑えて、Fナンバの値も2.0程度に抑えることができ、撮像画像の明るさを確保することができる。また、前群2の負メニスカスレンズの屈折率を1.8以上とすることによって、負メニスカスレンズの枚数を2枚とすることができ、かつ、各レンズを薄く、レンズ径も小さくすることができる。これによって、光学系10の全長を短くすることができる。さらに、光学系10に対する最大画角も190度以上とすることができる。
また、前群2は、両面が非球面の負メニスカスレンズであるレンズL2を有する。これによって、レンズL2は、光軸OA上(以下、単に軸上という)、および光軸OA外(以下、単に軸外という)の光線が集光されていない状態なので、軸上および軸外の光線に基づく撮像画像の収差の補正のための非球面の形成が容易になる。すなわち、レンズL2上で軸上および軸外を通過する光線に基づく撮像画像について別々に補正しやすくなる。例えば、レンズL2を曲率が一様な球面レンズとした場合、軸上または軸外のどちらかに対してしか補正することができず、残存する収差については、後群3で補正しなければならない。その場合、後群3のレンズの枚数の増加、または、後群3の全長の延長が必要になる。このことからも、光学系10では、画角ごとに発生する収差を、光線が集光する前の前群2内で収差の補正をしておくことが望ましい。
なお、前群2のレンズL2は、両面が非球面の負メニスカスレンズとしたが、これに限定されるものではない。すなわち、レンズL2の面L2R1または面L2R2のうちいずれかの面を非球面としてもよい。ただし、両面を非球面とするレンズの方が製造しやすいという利点がある。また、前群2のレンズL2を、非球面の負メニスカスレンズとしたが、レンズL1、または、レンズL1およびL2の双方を、非球面の負メニスカスレンズとしてもよい。これによって、上述の効果を得ることができる。ただし、レンズL1は最も物体側に配置されるレンズであるため、レンズ面の損傷を受けやすいので、レンズL2に形成することが望ましい。
また、本実施の形態の光学系10は、図2に示すように、前群2の平行平面板PPの中に入射瞳位置を有する。ここで、入射瞳位置を含み、光軸OAと垂直な平面を、入射瞳面20とする。また、光学系10に対する最大画角の光線のうち、絞り4の中心を通る光線を主光線30とする。一般に、レンズに入射する光の照度は、入射前と入射後とで下記の式(2)で示されるコサイン4乗則の関係がある。
Figure 0005850191
入射瞳面20から射出する光の照度は、式(2)に従って、入射瞳面20に入射する光の照度と比較して低下する。ここで、図2に示す式(2)の入射角Aは、式(2)の入射角θに対応する。例えば、前群2のレンズL1、L2が存在しない場合、70度以上の入射角Aにより入射した光の光量は、式(2)により、ほぼ0となる。しかし、本実施の形態に係る光学系10は、前群2のレンズL1、L2によって、入射角Aを13度以下に抑制することができる。これによって、光学系10に入射する周辺光線(例えば、図2に示す主光線30)に基づく周辺光量の低下を抑制することができる。例えば、本実施の形態に係る撮像システム1においては、図5に示すように、レンズの中心の光量に対する周辺光量の比である周辺光量比の低下を抑制することができ、その他の要因(ビネッティング、瞳収差および色収差)等を考慮しても実用上問題の無い周辺光量を担保することができる。
また、本実施の形態に係る光学系10は、後群3において、ガラス球面の両凸レンズであるレンズL3、および、ガラス非球面の両凸レンズであるレンズL4を有している。このレンズL3、L4は、入射する光に対して、球面収差および軸上色収差を補正している。さらに、レンズL3、L4は、上述の前群2においてFナンバを低い値に抑えたことにより発生するコマ収差を補正している。
なお、レンズL3およびレンズL4は、いずれも正の焦点距離を有する両凸レンズであるため、理論的には、1枚の両凸レンズで代用することが可能である。しかし、実際上は、1枚の両凸レンズとすると、曲率半径が非常に小さくなり、レンズのコバが製造限界を超え、さらに、レンズとしての感度も高くなり、結果として、光学系全体の性能が低下することになる。そこで、本実施の形態に係る光学系10では、上述の理由からレンズL3、L4の2枚のレンズとすることによって、パワーを分散するものとしている。
また、本実施の形態に係る光学系10では、レンズL4を非球面レンズとしている。これによって、各画角の光線の収差を均一に補正している。このように、絞り4に近い位置のレンズ(図1では、レンズL4)を非球面レンズとすることによって、絞り4を通過した光線のすべてが入射しやすくなる。さらに、収差の補正をしやすくなる。なお、レンズL4が、両面が非球面の両凸レンズとしたが、これに限定されない。すなわち、レンズL4の面L4R1または面L4R2のうちいずれかの面を非球面としてもよい。ただし、両面を非球面とするレンズの方が製造しやすいという利点がある。また、レンズL3、または、レンズL3およびL4の双方を、非球面の両凸レンズとしてもよい。これによって、上述の効果を得ることができる。
また、本実施の形態に係る光学系10は、ガラス非球面の両凸レンズであるレンズL7を有している。レンズ7は、後群3のレンズの中でイメージセンサISに最も近い位置にある。ここで、レンズL7は、絞り4から離れた位置に配置されているので、軸上および軸外の画角の主光線の通過位置が異なる。レンズ7は、レンズL2と同様に、軸上および軸外の光線に基づく撮像画像の収差の補正、およびイメージセンサISへの入射角度の補正のための非球面の形成が容易になる。例えば、一般的に使用されるイメージセンサ(撮像素子)は、入射角10度程度を想定してマイクロレンズが配置されているので、その入射角に合せて、イメージセンサから射出するレンズの射出角を決定する必要がある。これは、レンズ(図1ではレンズL7に相当)からの射出角と、イメージセンサへの入射角とが大きく乖離した場合、最終的に得られる撮像画像では、周辺光量が低下してしまう等の問題が発生するためである。しかし、上述のように、レンズL7は、軸上および軸外の光線に基づく撮像画像の収差の補正、およびイメージセンサISへの入射角度の補正のための非球面の形成が容易であるので、この問題の発生を抑制することができる。
なお、レンズL7は、収差およびイメージセンサISへの入射角を補正するが、これに限定されず、収差またはイメージセンサISの入射角の少なくともいずれかを補正してもよい。
図6は、第1の実施の形態に係る撮像システムの球面収差を示すグラフである。図7は、第1の実施の形態に係る撮像システムの非点収差を示すグラフである。図8は、第1の実施の形態に係る撮像システムのコマ収差を示すグラフである。図9は、第1の実施の形態に係る撮像システムのMTFの特性を示すグラフである。図6〜9を参照しながら、本実施の形態に係る撮像システム1が有する収差等について説明する。
図6に示す球面収差を示すグラフは、横軸が球面収差[mm]を示し、縦軸が光学系10に入射する光線の入射高さを示す。
図7に示す非点収差を示すグラフは、横軸が収差(縦収差)[mm]を示し、縦軸が光学系10に入射する光線の入射角(画角)を示す。「S」のグラフは、それぞれの画角で入射する光線のうち、サジタル面上の光線についての非点収差を示す。また、「T」のグラフは、それぞれの画角で入射する光線のうち、タンジェンシャル(メリディオナル)面上の光線についての非点収差を示す。
図8に示すコマ収差を示すグラフは、光学系10へ入射する画角が0[deg]、30[deg]、60[deg]、および90[deg]の場合のそれぞれのコマ収差を示す。横軸が光学系10に入射する入射高(「py」がイメージセンサISのy方向を示し、「px」がイメージセンサISのx方向を示す)を示し、縦軸が横収差(「ey」がy方向の横収差を示し、「ex」がx方向の横収差を示す)[mm]を示す。
図9に示すMTFの特性を示すグラフは、横軸が空間周波数[mm−1]を示し、縦軸がMTFを示す。MTFの特性は、値が「1.0」に近づくほど光学性能が高いことになるが、光学系には、持ち得ることができる解像力の限界がある。この限界を図9の「回折限界」のグラフで示しており、空間周波数が高いほどMTFの性能が落ちる。また、MTFの特性のグラフは、「回折限界」のグラフに近づくほど光学性能が高いことになる。図9では、光学系10に入射する画角が30[deg]、60[deg]、および90[deg]の場合のそれぞれのMTFの特性のグラフで、「S」または「T」に属している。このうち、「S」のグラフは、それぞれの画角で入射する光線のうち、サジタル面上の光線についてのMTFの特性を示す。そして、「T」のグラフは、それぞれの画角で入射する光線のうち、タンジェンシャル(メリディオナル)面上の光線についてのMTFの特性を示す。
図6〜9に示すように、本実施の形態に係る魚眼レンズとしての光学系10の光学性能が極めて高い。
以上のように、本実施の形態の光学系10は、絞り4に対して物体側に、2枚の負メニスカスレンズを有し、各メニスカスレンズの屈折率を1.8以上にする。これによって、焦点距離を小さく抑え、Fナンバの値も2.0程度に抑えるので、撮像画像の明るさを確保することができる。また、負メニスカスレンズの屈折率を1.8以上としているので、負メニスカスレンズの枚数を2枚とすることができ、かつ、各レンズを薄く、レンズ径も小さくし、そして、光学系10の全長を短くすることができる。さらに、光学系10に対する最大画角も190度以上とすることができる。
また、本実施の形態に係る光学系10は、絞り4に対して物体側である前群2のレンズのうち、非球面の負メニスカスレンズを有するものとしている。絞り4に対して物体側では、軸上および軸外の光線が集光されていない状態なので、軸上および軸外の光線に基づく撮像画像の収差の補正のための非球面の形成が容易になる。すなわち、負メニスカスレンズの非球面上で軸上および軸外を通過する光線に基づく撮像画像について別々に補正しやすくなる。
また、本実施の形態に係る光学系10は、前群2のレンズL1、L2を有することによって、入射角Aを13度以下に抑制することができる。これによって、レンズの中心の光量に対する周辺光量の比である周辺光量比の低下を抑制することができ、その他の要因(ビネッティング、瞳収差および色収差)等を考慮しても実用上問題の無い周辺光量を担保することができる。
また、本実施の形態に係る光学系10は、魚眼レンズを実現する等距離射影方式を採用している。これによって、すべての画角の画素数がイメージセンサIS上で同じ画素数となるため、撮像画像の中心部および周辺部の解像感を均一にし、かつ、周辺の画角まで高解像になる。
[第2の実施の形態]
本実施の形態に係る撮像システム1aについて、第1の実施の形態に係る撮像システム1と相違する点を中心に説明する。
(撮像システムの全体構成)
図10は、第2の実施の形態に係る撮像システムの全体構成図である。図10を参照しながら、本実施の形態に係る撮像システム1aの全体構成について説明する。
図10に示すように、本実施の形態に係る撮像システム1aは、光学系10aと、カバーガラスCGと、イメージセンサISと、を備えている。光学系10aは、第1の実施の形態に係る光学系10と同様に、魚眼レンズを構成するために、等距離射影方式が採用されている。光学系10aは、前群2a(第1レンズ群)と、絞り4と、後群3a(第2レンズ群)と、を備えている。後群3aの構成は、第1の実施の形態の後群3と同様の構成である。
前群2aは、光学系10aの物体側に配置されたレンズ群である。前群2は、全体として負の屈折力で、180度を超える広画角の光線を取り込む。前群2aは、物体側から像側に向かって、レンズL1、レンズL2、直角プリズムPSの順に直列に並んで構成されている。
直角プリズムPSは、斜面部にアルミニウムのコーティングにより反射膜が形成されたミラー面MSを有する。直角プリズムPSは、ミラー面MSによって、前群2aからの光線を後群3aに向かって内部反射させる。すなわち、光学系10aの光軸OA1は、直角プリズムPSのミラー面MSにおいて90度屈曲され、後群3aを通りイメージセンサISへ向かうことになる。これによって、光学系10aの前群2aのレンズL1の物体側のレンズ面からの厚さTを薄くすることができる。よって、例えば、車載カメラまたは監視カメラ等のように、車のフレーム内、または壁の内部に撮像システムを埋め込む必要がある場合、本実施の形態に係る撮像システム1aの構成であれば埋め込むことが可能となる。
なお、一般的には、図10に示す厚さTをより短くするためには、レンズの枚数を減らす、間隔を詰める、明るさを暗くする、または、イメージセンサのサイズを小さくする等の方法がある。しかし、レンズの枚数を減らすこと、および間隔を詰めることは、光学性能を落とし、レンズの感度が高くなる状態を招来する。光学系は、緩やかに光線を曲げることにより収差の発生、およびレンズの感度を抑えることができるためである。また、明るさを暗くしたり、イメージセンサのサイズを小さくしたりすることは、光学仕様の変更なので、撮像システムのコンセプト自体を変更しなければならない。これに対し、本実施の形態に係る撮像システム1aでは、直角プリズムPSにより光軸OA1を90度屈曲させることにより、厚さTを薄くする。これにより、撮像画像の明るさを確保し、周辺の画角まで高解像の状態を維持することができ、第1の実施の形態に係る撮像システム1と同様の光学性能を維持できる。
[第3の実施の形態]
本実施の形態に係る撮像システム1bについて、第1の実施の形態に係る撮像システム1と相違する点を中心に説明する。
(撮像システムの全体構成)
図11は、第3の実施の形態に係る撮像システムの全体構成図である。図11を参照しながら、本実施の形態に係る撮像システム1bの全体構成について説明する。
図11に示すように、本実施の形態に係る撮像システム1bは、光学系10bと、カバーガラスCGbと、イメージセンサISb(撮像素子)と、光学系10cと、カバーガラスCGcと、イメージセンサISc(撮像素子)と、を備えている。光学系10b、10cは、共に、第1の実施の形態に係る光学系10と同様に、魚眼レンズを構成するために、等距離射影方式が採用されている。光学系10bは、前群となるレンズ群(第1レンズ群)と、絞り4bと、後群となるレンズ群(第2レンズ群)と、を備えている。光学系10cは、前群となるレンズ群(第1レンズ群)と、絞り4cと、後群となるレンズ群(第2レンズ群)と、を備えている。
光学系10bの前群となるレンズ群は、光学系10bの物体側に配置されている。このレンズ群は、全体として負の屈折力で、180度を超える広画角の光線を取り込む。このレンズ群は、物体側から像側に向かって、レンズL1b、レンズL2b、直角プリズムPSbの順に直列に並んで構成されている。
直角プリズムPSbは、斜面部にアルミニウムのコーティングにより反射膜が形成されたミラー面MSbを有する。直角プリズムPSbは、ミラー面MSbによって、前群となるレンズ群からの光線を後群となるレンズ群に向かって内部反射させる。すなわち、光学系10bの光軸OA2bは、直角プリズムPSbのミラー面MSbにおいて90度屈曲され、後群となるレンズ群を通りイメージセンサISbへ向かうことになる。
光学系10bの後群となるレンズ群は、光学系10bの像側に配置されている。このレンズ群は、全体として正の屈折力で、主に撮像画像の収差を補正する。このレンズ群は、物体側から像側に向かって、レンズL3b、レンズL4b、レンズL5b、レンズL6b、レンズL7bの順に直列に並んで構成されている。このレンズ群の構成および機能は、第1の実施の形態の後群3の構成および機能と同様である。
光学系10cの前群となるレンズ群は、光学系10cの物体側に配置されている。このレンズ群は、全体として負の屈折力で、180度を超える広画角の光線を取り込む。このレンズ群は、物体側から像側に向かって、レンズL1c、レンズL2c、直角プリズムPScの順に直列に並んで構成されている。
直角プリズムPScは、斜面部にアルミニウムのコーティングにより反射膜が形成されたミラー面MScを有する。直角プリズムPScは、ミラー面MScによって、前群となるレンズ群からの光線を後群となるレンズ群に向かって内部反射させる。すなわち、光学系10cの光軸OA2cは、直角プリズムPScのミラー面MScにおいて90度屈曲され、後群となるレンズ群を通りイメージセンサIScへ向かうことになる。
光学系10cの後群となるレンズ群は、光学系10cの像側に配置されている。このレンズ群は、全体として正の屈折力で、主に撮像画像の収差を補正する。このレンズ群は、物体側から像側に向かって、レンズL3c、レンズL4c、レンズL5c、レンズL6c、レンズL7cの順に直列に並んで構成されている。このレンズ群の構成および機能は、第1の実施の形態の後群3の構成および機能と同様である。
また、光学系10bの直角プリズムPSbのミラー面MSbが形成された外面と、光学系10cの直角プリズムPScのミラー面MScが形成された外面とは、それぞれ接着固定されている。すなわち、第2の実施の形態に係る撮像システム1aと同一仕様の撮像システムが2つ組み合わされた構成を有するので、撮像システム1bの全体の小型化を実現し、手持ち可能なシステムを実現することができる。
また、図11に示す、光学系10b、カバーガラスCGbおよびイメージセンサISbで構成されたシステム、および、光学系10c、カバーガラスCGcおよびイメージセンサIScで構成されたシステムは、それぞれ、第1の実施の形態に係る撮像システム1と同様の光学性能を有する。したがって、光学系10bおよび光学系10cの最大画角も、それぞれ190度以上となっているので、これらが図11のように組み合わされ、上下左右360度の画像を撮像する全天球型の撮像システムを構成することができる。
1、1a、1b 撮像システム
2、2a 前群
3、3a 後群
4、4b、4c 絞り
10、10a〜10c 光学系
20 入射瞳面
30 主光線
A 入射角
CG、CGb、CGc カバーガラス
CGR1、CGR2 面
f 焦点距離
IS、ISb、ISc イメージセンサ
L1〜L7 レンズ
L1b〜L7b レンズ
L1c〜L7c レンズ
L1R1、L1R2 面
L2R1、L2R2 面
L3R1、L3R2 面
L4R1、L4R2 面
L5R1、L5R2 面
L6R1、L6R2 面
L7R1、L7R2 面
MS、MSb、MSc ミラー面
OA、OA1、OA2b、OA2c 光軸
PP 平行平面板
PPR1、PPR2 面
PS、PSb、PSc 直角プリズム
T 厚さ
特開2006−017837号公報

Claims (6)

  1. 物体側から順に負の焦点距離をもつ第1レンズ群と、絞りと、正の焦点距離をもつ第2レンズ群と、を含む光学系であって、
    前記第1レンズ群は、光軸が同一、かつ、凸面が前記物体側に向いた2枚のみの負メニスカスレンズを含み、
    2枚の前記負メニスカスレンズのうち、前記物体側の負メニスカスレンズは、両面が球面であり、像側の負メニスカスレンズは、両面が光軸上および光軸外に入射した光線それぞれに基づく収差を補正する非球面であり、
    前記第1レンズ群および前記第2レンズ群は、全画角が180度を超え、
    2枚の前記負メニスカスレンズは、前記第1レンズ群内に入射瞳を有し、前記物体側の負メニスカスレンズに入射する各画角の光線の前記入射瞳に対する角度が13度以下となるように屈折率1.8以上とし、かつ、Fナンバを2とした光学系。
  2. 前記第2レンズ群が含むレンズのうち、撮像素子に最も近い凸レンズは、収差、または前記撮像素子に対する入射角度の少なくともいずれかを補正する請求項に記載の光学系。
  3. 全画角の光線に等距離射影方式で撮像素子に入射させる請求項1または2に記載の光学系。
  4. 2枚の前記負メニスカスレンズを通過した光学系の光軸を、反射面で反射により屈曲させて、前記第2レンズ群に向けるプリズムを、さらに有する請求項1〜のいずれか一項に記載の光学系。
  5. 請求項に記載の光学系を、2つ有し、
    2つの前記光学系の前記プリズムは、それぞれ前記反射面が形成された外面で当接し、
    2つの前記光学系の前記第2レンズ群の光軸は、互いに平行であり、
    2つの前記光学系の前記第2レンズ群を構成するレンズの並び順が、互いに逆である撮像システム。
  6. 請求項1〜のいずれか一項に記載の光学系と、
    前記光学系を通過した光を電気信号に変換して撮像画像を生成する撮像素子と、
    を備えた撮像システム。
JP2015051241A 2015-03-13 2015-03-13 光学系および撮像システム Active JP5850191B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015051241A JP5850191B1 (ja) 2015-03-13 2015-03-13 光学系および撮像システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015051241A JP5850191B1 (ja) 2015-03-13 2015-03-13 光学系および撮像システム

Publications (2)

Publication Number Publication Date
JP5850191B1 true JP5850191B1 (ja) 2016-02-03
JP2016170352A JP2016170352A (ja) 2016-09-23

Family

ID=55237940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015051241A Active JP5850191B1 (ja) 2015-03-13 2015-03-13 光学系および撮像システム

Country Status (1)

Country Link
JP (1) JP5850191B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109116524A (zh) * 2018-09-30 2019-01-01 河南翊轩光电科技有限公司 一种星光级超广角高清日夜共焦光学镜头

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7081473B2 (ja) 2018-03-02 2022-06-07 株式会社リコー 撮像光学系、撮像システム及び撮像装置
JP7010749B2 (ja) * 2018-03-30 2022-01-26 京セラ株式会社 撮像レンズユニット

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114727A (ja) * 2005-09-26 2007-05-10 Konica Minolta Opto Inc ズームレンズ
JP2007163549A (ja) * 2005-12-09 2007-06-28 Konica Minolta Opto Inc 超広角撮像光学系、超広角撮像レンズ装置及び撮像装置
JP2008151832A (ja) * 2006-12-14 2008-07-03 Konica Minolta Opto Inc ズームレンズ
JP2013040992A (ja) * 2011-08-11 2013-02-28 Pentax Ricoh Imaging Co Ltd 超広角レンズ系
JP2015043108A (ja) * 2014-11-19 2015-03-05 株式会社リコー レンズ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114727A (ja) * 2005-09-26 2007-05-10 Konica Minolta Opto Inc ズームレンズ
JP2007163549A (ja) * 2005-12-09 2007-06-28 Konica Minolta Opto Inc 超広角撮像光学系、超広角撮像レンズ装置及び撮像装置
JP2008151832A (ja) * 2006-12-14 2008-07-03 Konica Minolta Opto Inc ズームレンズ
JP2013040992A (ja) * 2011-08-11 2013-02-28 Pentax Ricoh Imaging Co Ltd 超広角レンズ系
JP2015043108A (ja) * 2014-11-19 2015-03-05 株式会社リコー レンズ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109116524A (zh) * 2018-09-30 2019-01-01 河南翊轩光电科技有限公司 一种星光级超广角高清日夜共焦光学镜头

Also Published As

Publication number Publication date
JP2016170352A (ja) 2016-09-23

Similar Documents

Publication Publication Date Title
US10788652B2 (en) Imaging optical system, imaging device and imaging system
US10310230B2 (en) Photographing lens system, image capturing unit and electronic device
US10627600B2 (en) Imaging optical lens system, image capturing unit and electronic device
US11740439B2 (en) Photographing lens assembly, image capturing unit and electronic device
US10901183B2 (en) Optical photographing lens assembly, image capturing unit and electronic device
US20150015664A1 (en) Imaging system and imaging optical system
JP2019144430A (ja) 撮像レンズ
JP6634273B2 (ja) 撮像レンズおよび撮像装置
JP6550787B2 (ja) 撮像光学系およびステレオカメラ装置および車載カメラ装置
JP2018031872A (ja) 撮像レンズおよびカメラ装置および車載カメラ装置およびセンシング装置および車載用センシング装置
JP2017134235A (ja) 撮像レンズおよび撮像装置
CN102177468A (zh) 三反射镜全景相机
US11252394B2 (en) Lens apparatus and imaging apparatus including the same
TWM505614U (zh) 攝像透鏡及包括攝像透鏡的攝像裝置
JP2016218352A (ja) 光学系および撮像システム
JP2004102162A (ja) 超広角レンズ
US20200081228A1 (en) Electronic device
KR20130106107A (ko) 촬영 렌즈 광학계
KR20160112306A (ko) 초광각 렌즈 및 이를 포함한 촬영 장치
KR101729470B1 (ko) 촬영 렌즈 광학계
JP6454968B2 (ja) 撮像光学系およびステレオカメラ装置および車載カメラ装置
US10545314B1 (en) Optical assembly for a compact wide field of view digital camera with low lateral chromatic aberration
JP5850191B1 (ja) 光学系および撮像システム
US10656391B1 (en) Lens system for a camera module
KR20160059239A (ko) 촬영 렌즈 광학계

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151117

R151 Written notification of patent or utility model registration

Ref document number: 5850191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151