JP5845012B2 - Load measuring device for impact load measurement and collision load measuring method - Google Patents

Load measuring device for impact load measurement and collision load measuring method Download PDF

Info

Publication number
JP5845012B2
JP5845012B2 JP2011153547A JP2011153547A JP5845012B2 JP 5845012 B2 JP5845012 B2 JP 5845012B2 JP 2011153547 A JP2011153547 A JP 2011153547A JP 2011153547 A JP2011153547 A JP 2011153547A JP 5845012 B2 JP5845012 B2 JP 5845012B2
Authority
JP
Japan
Prior art keywords
load
cross
detection unit
measuring
load measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011153547A
Other languages
Japanese (ja)
Other versions
JP2013019771A (en
Inventor
智史 広瀬
智史 広瀬
水村 正昭
正昭 水村
俊二 樋渡
俊二 樋渡
野村 成彦
成彦 野村
上西 朗弘
朗弘 上西
佐藤 浩一
浩一 佐藤
和田 学
学 和田
徹 江上
徹 江上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011153547A priority Critical patent/JP5845012B2/en
Publication of JP2013019771A publication Critical patent/JP2013019771A/en
Application granted granted Critical
Publication of JP5845012B2 publication Critical patent/JP5845012B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

本発明は、荷重計測装置に関するものであり、特に自動車構造を代表とする衝撃吸収部材の特性評価に必須の高速変形における引張荷重または圧縮荷重、すなわち衝撃荷重の計測に使用される衝撃荷重測定用荷重計測装置、およびそれを用いた衝突荷重計測方法に関する。 The present invention relates to a load measuring device, a shock load to be used in particular essential fast definitive to deformation tensile load or compressive load the car structure characterization of the impact absorbing member for a representative, that is, the measurement of the impact load The present invention relates to a measurement load measuring device and a collision load measuring method using the same .

自動車業界では、衝突時の乗員への傷害を低減しうる車体構造の開発が急務の課題となっており、車体の衝突変形挙動を最適化するためには個々の部材やそれらの組合せ構造の変形特性を把握することが極めて重要である。
そのため、従来においては、大型の圧縮試験機等を用いて部材を低速で変形させるという準静的な方法で該部材の特性評価が行われてきた。
In the automobile industry, the development of a vehicle body structure that can reduce injury to passengers during a collision is an urgent issue, and in order to optimize the collision deformation behavior of the vehicle body, deformation of individual members and their combined structures It is extremely important to understand the characteristics.
Therefore, conventionally, characteristic evaluation of the member has been performed by a quasi-static method in which the member is deformed at a low speed using a large compression tester or the like.

ところが、実際の衝突変形は高速で変形が起こるものであり、準静的な荷重負荷での挙動とは差がある。特に、自動車で多く使用される薄板構造において重要な座屈は荷重負荷が動的か準静的かによって挙動が異なることが知られている。
このため、動的な変形特性を把握するために落重試験、即ち、固定した部材に対して、上部から落錘を衝突させて動的な変形を起こさせる試験を行って、実際の衝突時の変形に近づけるようにしていた。
However, actual collision deformation occurs at high speed, which is different from behavior under quasi-static load. In particular, it is known that buckling, which is important in a thin plate structure often used in automobiles, behaves differently depending on whether the load is dynamic or quasi-static.
For this reason, in order to grasp the dynamic deformation characteristics, a drop weight test, that is, a test that causes a drop weight to collide with a fixed member from the top to cause a dynamic deformation is performed. It was trying to be close to the deformation.

しかしながら、特性評価には部材の衝撃変形時の吸収エネルギーを評価する必要があるため、吸収エネルギーの評価には部材の圧潰距離と、その時の圧潰荷重の計測が必要となるが、このような動的な試験においては、この圧潰荷重の計測が非常に難しいのが実情であった。
即ち、一般に通常の準静的な試験で使われるロードセルで動的な荷重を計測した場合、計測中に衝撃弾性波がロードセル中を反射・伝播して、この衝撃弾性波の伝播に起因した荷重の振動が発生・重畳するため、該衝撃弾性波が計測荷重の計測に影響を与え、これにより計測荷重真の荷重計測が出来ないという問題があった。
さらには、近年部材単体を対象とした試験だけでなく、複数の部材を組み合わせた構造体での衝突試験が活発化しており、部材組合せにより試験体の大きさが複雑に変化する衝突試験に対応するため、試験用の治具を個々に設計・製作しており、試験実施までに長い設計・製作期間と大きいコストがかかるという問題が出てきた。
However, since it is necessary to evaluate the absorbed energy at the time of impact deformation of the member for characteristic evaluation, the evaluation of the absorbed energy requires measurement of the crush distance of the member and the crushing load at that time. In a typical test, it was actually difficult to measure the crush load.
That is, when a dynamic load is measured with a load cell that is generally used in a normal quasi-static test, the impact elastic wave reflects and propagates through the load cell during measurement, and the load resulting from the propagation of the impact elastic wave Therefore, there is a problem in that the impact elastic wave affects the measurement of the measurement load, which makes it impossible to measure the true load of the measurement load.
Furthermore, in recent years, not only tests for individual parts but also collision tests with structures that combine multiple parts have become active, and support for collision tests in which the size of the specimen changes in a complex manner depending on the combination of parts. Therefore, the test jigs are individually designed and manufactured, and there is a problem that a long design and manufacturing period and a large cost are required until the test is performed.

上述のような動的な荷重の計測方法については、材料の応力−ひずみ関係を計測するため、例えば特許文献1には、試験体の動的変形特性を計測する際に、動的荷重の作用開始点とその支持構造が直線的に配置されるような装置において、作用開始点、試験体、荷重検出部、荷重検出部の支持構造がこの順に配置されており、かつ、荷重検出部が円柱状であり、その直径D(mm)と、長さL(mm)の比が、0.3≦L/D≦3を満たし、かつ、(荷重検出部の断面積)<(荷重検出部の支持構造の断面積)を満たす荷重計測装置が示されている。また、試験体の支持が必要な場合には、作用開始点、試験体、試験体の支持部、荷重検出部、支持構造がこの順に配置され、さらに、(荷重検出部の断面積)<(試験体の支持部の断面積)の条件を満たす荷重計測装置が記載されている。   Regarding the dynamic load measuring method as described above, in order to measure the stress-strain relationship of the material, for example, Patent Document 1 discloses the action of the dynamic load when measuring the dynamic deformation characteristics of the specimen. In an apparatus in which the start point and its support structure are arranged linearly, the support start point, test body, load detection unit, load detection unit support structure are arranged in this order, and the load detection unit is a circle. It is columnar, and the ratio of the diameter D (mm) to the length L (mm) satisfies 0.3 ≦ L / D ≦ 3, and (the cross-sectional area of the load detection unit) <(the load detection unit A load measuring device satisfying the cross-sectional area of the support structure is shown. In addition, when it is necessary to support the test body, the action starting point, the test body, the support section of the test body, the load detection section, and the support structure are arranged in this order, and (cross-sectional area of the load detection section) <( A load measuring device that satisfies the condition of the cross-sectional area of the support portion of the test body is described.

上記特許文献1に記載された荷重計測装置は、動的な荷重の検出であっても精度よく行うことができるが、荷重の検出を行う荷重検出部は1つだけ設けられているため、該荷重検出部に偏心荷重が作用した場合には複雑な曲げモーメントが発生することになる。特に、近年増大している複雑な構造体に対する試験の場合、引張荷重または圧縮荷重がどの位置に作用するかが特定できない場合も多いため、荷重検出部に偏心荷重が作用する可能性が高い。   Although the load measuring apparatus described in Patent Document 1 can accurately perform dynamic load detection, since only one load detection unit that detects a load is provided, When an eccentric load is applied to the load detection unit, a complicated bending moment is generated. In particular, in the case of a test on a complex structure that has been increasing in recent years, it is often impossible to specify at which position the tensile load or the compressive load acts, and therefore there is a high possibility that an eccentric load acts on the load detection unit.

このとき、この特許文献1に記載された荷重計測装置においても、荷重検出部の軸線方向に作用する荷重を測定することは一応は可能であるものの、偏心荷重が作用した場合には上述のように荷重検出部には複雑な曲げモーメントが発生するため、その曲げモーメントの影響を受けて正確な荷重計測を行うことができないことが考えられる。また、荷重検出部に貼り付けるひずみゲージの位置によって測定精度が変化しやすいという問題も存在する。さらには、偏心荷重によって荷重検出部の一部に応力が集中し、該荷重検出部の一部に集中的に変形してしまうことがあるため、本来弾性変形のみを前提としている荷重検出部に塑性変形が生じてしまう可能性があり、やはり正確な荷重計測ができないことが考えられる。   At this time, even in the load measuring apparatus described in Patent Document 1, it is possible to measure the load acting in the axial direction of the load detection unit, but when an eccentric load is applied, as described above. In addition, since a complicated bending moment is generated in the load detection unit, it is considered that accurate load measurement cannot be performed due to the influence of the bending moment. There is also a problem that the measurement accuracy is likely to change depending on the position of the strain gauge attached to the load detection unit. Furthermore, since stress concentrates on a part of the load detection unit due to the eccentric load and may be intensively deformed on a part of the load detection unit, the load detection unit is supposed to be elastic deformation originally. There is a possibility that plastic deformation may occur, and it is considered that accurate load measurement cannot be performed.

特開2006−284514号公報JP 2006-284514 A

本発明の技術的課題は、高速変形における高精度引張荷重または圧縮荷重、すなわち衝撃荷重を計測するに際して、たとえ偏心荷重が作用しても荷重を正確に計測することができ、かつ部材単体から複数部材の組合せである構造体まで広範囲の規模の衝突試験で荷重測定装置に関する治具の設計・製作の時間的・金銭的コストを軽減できる衝撃荷重測定用荷重計測装置、及びそれを用いた衝突荷重計測方法を提供することにある。 The technical problem of the present invention, high-speed high-precision definitive to deformation tensile load or compressive load, i.e. when measuring the impact load, can also accurately measure the load acts even eccentric load, and members alone Load measuring device for impact load measurement that can reduce the time and money costs of designing and manufacturing jigs for load measuring devices in a wide range of impact tests from structures to combinations of multiple members , and using the same It is to provide a collision load measuring method .

上記課題を解決するため、本発明の衝撃荷重測定用荷重計測装置は、引張荷重又は圧縮荷重を計測する円柱状の荷重検出部、及び該荷重検出部の軸線方向の両端部にそれぞれ設けられた一対の保持部を有し、これら一対の保持部と上記荷重検出部とが一体に、且つ一対の保持部における荷重検出部の軸線と直交する断面の断面積が、荷重検出部における該軸線と直交する断面の断面積よりも大きく形成された複数の荷重計測部材と、各荷重計測部材の一方側の保持部が密着してボルトにより連結された、引張荷重又は圧縮荷重を作用させる単一の接触部材と、各荷重計測部材の他方側の保持部が密着してボルトにより連結された単一の支持部材とを備え、前記各荷重計測部材、接触部材及び支持部材が、それぞれ鉄のヤング率以上のヤング率の素材からなり、上記複数の荷重計測部材は、上記接触部材と支持部材との間に、各荷重検出部の軸線方向が相互に平行となるように並列に配設されていて、上記接触部材及び支持部材は、上記荷重計測部材の荷重検出部の軸線と直交する断面の断面積が、各荷重検出部における該軸線と大きく形成されており、かつ上記各荷重計測部材の一方側の保持部及び他方側の保持部が、それぞれ隣接する荷重計測部材の保持部同士を互いに密着させた状態で配置されていることを特徴とするものである。
また本発明の衝撃荷重測定用荷重計測装置は、上記保持部を、平面視多角形の角柱状とすることができる。
さらに本発明の衝突荷重計測方法は、引張荷重又は圧縮荷重を計測する円柱状の荷重検出部、及び該荷重検出部の軸線方向の両端部にそれぞれ設けられた一対の保持部を有し、これら一対の保持部と上記荷重検出部とが一体に、且つ一対の保持部における荷重検出部の軸線と直交する断面の断面積が、荷重検出部における該軸線と直交する断面の断面積よりも大きく形成された複数の荷重計測部材と、各荷重計測部材の一方側の保持部が密着してボルトにより連結された、引張荷重又は圧縮荷重を作用させる単一の接触部材と、各荷重計測部材の他方側の保持部が密着してボルトにより連結された単一の支持部材とを備え、前記各荷重計測部材、接触部材及び支持部材が、それぞれ鉄のヤング率以上のヤング率の素材からなり、上記複数の荷重計測部材は、上記接触部材と支持部材との間に、各荷重検出部の軸線方向が相互に平行となるように並列に配設されていて、上記接触部材及び支持部材は、上記荷重計測部材の荷重検出部の軸線と直交する断面の断面積が、各荷重検出部における該軸線と直交する断面の断面積よりも大きく形成されており、かつ上記各荷重計測部材の一方側の保持部及び他方側の保持部が、それぞれ隣接する荷重計測部材の保持部同士を互いに密着させた状態で配置されている荷重計測装置を用いて、前記接触部材に加わる衝突荷重を測定することを特徴とするものである。
In order to solve the above-described problems, the load measuring device for measuring an impact load according to the present invention is provided at each of a cylindrical load detecting unit for measuring a tensile load or a compressive load, and both ends in the axial direction of the load detecting unit. A pair of holding portions, the pair of holding portions and the load detection portion are integrated, and the cross-sectional area of the cross section perpendicular to the axis of the load detection portion of the pair of holding portions is the axis of the load detection portion. A plurality of load measuring members formed larger than the cross-sectional area of the orthogonal cross section, and a holding part on one side of each load measuring member are in close contact with each other, and are connected by bolts , to apply a tensile load or a compressive load. A contact member and a single support member in which the other holding portion of each load measuring member is in close contact and connected by a bolt , and each of the load measuring member, the contact member, and the support member is an iron Young's modulus. Young's modulus above Made from the material, the plurality of load measuring member, between the contact member and the support member, the axial direction of the load detection unit is being arranged in parallel so as to be parallel to each other, the contact member and The support member is formed such that a cross-sectional area of a cross section perpendicular to the axis of the load detection unit of the load measurement member is larger than the axis of each load detection unit, and the holding unit on one side of each of the load measurement members and The holding parts on the other side are arranged in a state where the holding parts of the adjacent load measuring members are in close contact with each other.
Moreover, the load measuring device for impact load measurement of this invention can make the said holding | maintenance part polygonal prism shape of planar view.
Furthermore, the collision load measuring method of the present invention has a cylindrical load detecting unit for measuring a tensile load or a compressive load, and a pair of holding units respectively provided at both ends in the axial direction of the load detecting unit. The pair of holding portions and the load detection portion are integrated, and the cross-sectional area of the cross section orthogonal to the axis of the load detection portion of the pair of holding portions is larger than the cross-sectional area of the cross section orthogonal to the axis of the load detection portion. A plurality of formed load measuring members, a single contact member for applying a tensile load or a compressive load, in which a holding portion on one side of each load measuring member is in close contact and connected by a bolt , and each load measuring member The holding part on the other side is in close contact with a single support member connected by a bolt , and each load measuring member, contact member and support member are each made of a material having a Young's modulus equal to or higher than the Young's modulus of iron, Multiple loads above The measurement member is arranged in parallel between the contact member and the support member so that the axial directions of the load detection units are parallel to each other, and the contact member and the support member are the load measurement member. The cross-sectional area of the cross section orthogonal to the axis of the load detecting section is larger than the cross-sectional area of the cross section orthogonal to the axis of each load detecting section, and the holding section on one side of each of the load measuring members, The other holding part measures a collision load applied to the contact member using a load measuring device arranged in a state where the holding parts of the adjacent load measuring members are in close contact with each other. Is.

本発明によれば、荷重検出部を備えた複数の荷重計測部材を、上記接触部材と支持部材との間に、各荷重検出部の軸線方向が相互に平行となるように並列に配設したため、接触部材に偏心荷重が作用したとしても、曲げモーメントの影響が小さい該偏心荷重の作用位置の直下あるいはその近傍の荷重計測部材の荷重検出部によりその荷重を高精度で計測することができる。また、各荷重計測部材は、一対の保持部における荷重検出部の軸線と直交する断面の断面積が、荷重検出部における該軸線と直交する断面の断面積よりも大きく形成されているため、接触部材に偏心荷重が作用した場合には、各荷重計測部材の荷重検出部は各々弾性変形し、また他の荷重計測部材の荷重検出部に接触等によって干渉することもないため、従来のように、偏心荷重に起因する変形の集中による塑性変形が防止される。   According to the present invention, a plurality of load measuring members provided with a load detection unit are arranged in parallel between the contact member and the support member so that the axial directions of the load detection units are parallel to each other. Even if an eccentric load is applied to the contact member, the load can be measured with high accuracy by the load detection unit of the load measuring member directly under or near the position where the eccentric load is less affected by the bending moment. In addition, each load measuring member is formed so that the cross-sectional area of the cross section orthogonal to the axis of the load detection section in the pair of holding sections is larger than the cross-sectional area of the cross section orthogonal to the axis of the load detection section. When an eccentric load is applied to a member, the load detectors of each load measuring member are elastically deformed and do not interfere with the load detectors of other load measuring members due to contact or the like. Further, plastic deformation due to the concentration of deformation due to the eccentric load is prevented.

さらに、各荷重計測部材の一対の保持部と上記荷重検出部とを一体に形成し、且つ荷重検出部における該軸線と直交する断面の断面積よりも、一対の保持部及び接触部材並びに支持部材における荷重検出部の軸線と直交する断面の断面積を大きく形成したため、各荷重計測部材の荷重検出部内における応力波の反射・干渉を促進させることができる。これにより、計測すべき荷重に係る荷重検出部内での応力波の早期の飽和を図り、また該荷重検出部における応力波の伝播の乱れの影響を排除することができる。この結果、自動車構造を代表とする衝撃吸収部材の特性評価に必須の高速変形を含む広範囲の変形速度における高精度引張荷重または圧縮荷重の計測を行うことが可能となる。
また、水平断面の断面積の小さい荷重検出部を有する荷重計測部材を1ユニットとした集合体として全体が構成されているため、大規模な構造体での試験でも、ユニットを増やしていくだけで対応でき、複雑な治具の設計・製作による時間的・金銭的コストを大幅に軽減することができる。
Further, the pair of holding portions of each load measuring member and the load detecting portion are integrally formed, and the pair of holding portions, the contact member, and the supporting member are formed from a cross-sectional area of the cross section perpendicular to the axis of the load detecting portion. Since the cross-sectional area of the cross section orthogonal to the axis of the load detecting portion in FIG. 2 is formed, reflection / interference of stress waves in the load detecting portion of each load measuring member can be promoted. Thereby, early saturation of the stress wave in the load detection unit related to the load to be measured can be achieved, and the influence of the disturbance of the propagation of the stress wave in the load detection unit can be eliminated. As a result, it becomes possible to measure a high-precision tensile load or compressive load in a wide range of deformation speeds including high-speed deformation that is essential for characteristic evaluation of impact absorbing members typified by automobile structures.
In addition, the entire structure is configured as a unit consisting of a load measuring member with a load detector with a small cross-sectional area in the horizontal section, so even a large-scale structure test can be handled by simply increasing the number of units. This can greatly reduce the time and money costs due to the design and production of complex jigs.

本発明に係る荷重計測装置を模式的に示す正面図である。It is a front view which shows typically the load measuring device which concerns on this invention. 同平面図である。It is the same top view. 本発明において用いる荷重計測部材を模式的に示す(a)正面図、(b)A−A断面図である。It is (a) front view and (b) AA sectional view showing typically a load measuring member used in the present invention. 荷重検出部の荷重の上昇過程を説明する説明図である。It is explanatory drawing explaining the raise process of the load of a load detection part. 実施例の各荷重計測装置の説明図である。It is explanatory drawing of each load measuring device of an Example. 本発明に係る荷重計測装置と従来の荷重計測装置とについての、測定結果を比較したグラフである。It is the graph which compared the measurement result about the load measuring device which concerns on this invention, and the conventional load measuring device.

図1〜図3は本発明の荷重計測装置の一実施の形態を示すもので、この実施の形態の荷重計測装置は、鉛直方向に延びる荷重検出部4を備えた複数の荷重計測部材1と、試験体を接触させて引張荷重又は圧縮荷重を作用させる単一の接触部材2と、試験時に剛体等に固定されて上記荷重計測部材を支持する単一の支持部材3とを備えている。
そして、上記複数の荷重計測部材1は、上記接触部材2と支持部材3との間に、各荷重検出部4の軸線が相互に平行となるように並列に配設されていて、全体として全部の荷重計測部材1が接触部材2と支持部材3との間に挟まれた状態で保持された構成となっている。
1 to 3 show an embodiment of a load measuring device according to the present invention. The load measuring device according to this embodiment includes a plurality of load measuring members 1 each including a load detecting unit 4 extending in a vertical direction. , A single contact member 2 that makes the test body contact and applies a tensile load or a compressive load, and a single support member 3 that is fixed to a rigid body or the like and supports the load measuring member at the time of the test.
The plurality of load measuring members 1 are arranged in parallel between the contact member 2 and the support member 3 so that the axes of the load detection units 4 are parallel to each other, and as a whole, The load measuring member 1 is held in a state of being sandwiched between the contact member 2 and the support member 3.

この実施の形態においては、荷重計測部材1の上部側に上記接触部材2が、下部側に上記支持部材3がそれぞれ配設されている。
また、この実施の形態の荷重計測装置は、図1及び図2に示すように、荷重計測部材1を、平面視において横方向に6列、縦(奥行き方向)に6列ずつ計36個を並べた構成となっており、結果として、荷重計測装置全体としては、36個の荷重検出部4を備えた構成となっている
なお、この実施の形態の荷重計測装置を構成する上記接触部材2及び支持部材3、並びに各荷重計測部材1(つまり、荷重検出部4、及び後述する上部側保持部5・下部側保持部6)については、いずれも同等材質、すなわち弾性率および密度が同程度のもので形成されている。
In this embodiment, the contact member 2 is disposed on the upper side of the load measuring member 1 and the support member 3 is disposed on the lower side.
In addition, as shown in FIGS. 1 and 2, the load measuring device according to this embodiment includes a total of 36 load measuring members 1 each having six rows in the horizontal direction and six rows in the vertical (depth direction) in plan view. As a result, the load measuring apparatus as a whole has a structure including 36 load detection units 4. Note that the contact member 2 constituting the load measuring apparatus of this embodiment is described above. The supporting member 3 and each load measuring member 1 (that is, the load detecting unit 4 and the upper side holding unit 5 and the lower side holding unit 6 described later) are all equivalent materials, that is, having the same elastic modulus and density. Is formed of things.

上記各荷重計測部材1は、図3に示すように、鉛直方向に立ち上がる中実の円柱状に形成された単一の上記荷重検出部4と、該荷重検出部4の軸線方向の両端部、即ち荷重検出部の上下両端部にそれぞれ設けられた、上下一対の保持部である上部側保持部5及び下部側保持部6とをそれぞれ備えている。したがって、各荷重計測部材1は、全体として荷重検出部4がこれら上部側保持部5と下部側保持部6との間に挟まれ、且つ荷重検出部4の軸線が上下方向に延びたものとなっている。   As shown in FIG. 3, each of the load measuring members 1 includes a single load detecting unit 4 formed in a solid columnar shape rising in the vertical direction, and both end portions in the axial direction of the load detecting unit 4, In other words, the upper and lower holding parts 5 and 6 are provided as a pair of upper and lower holding parts respectively provided at both upper and lower ends of the load detection part. Therefore, each load measuring member 1 is configured such that the load detecting unit 4 is sandwiched between the upper side holding unit 5 and the lower side holding unit 6 as a whole, and the axis of the load detecting unit 4 extends in the vertical direction. It has become.

上記荷重検出部4の外周面には、図示しないひずみゲージが貼付けられていて、このひずみゲージにより測定した表面ひずみから荷重検出を算出することができるようになっている。ここで、この荷重検出部4を中実の円柱状としているのは、断面内の荷重分布を均一とするためであり、この結果、ひずみゲージによる荷重計測の精度が高められる。
この点について詳しく説明すると、例えば荷重検出部を角柱状とした場合には、該荷重検出部に偏心荷重が作用した際に、応力が角隅部に集中して該角隅部に局所的な変形が生じやすく、また、その変形も圧縮変形やせん断変形が入り混じった複雑な変形となる。後で詳述する応力波は、伝播する物体の変形によって速度が変化することから、荷重検出部にこのような複雑な変形が生じた場合には、該荷重検出部を伝播速度の異なる応力波が時間差をもって通過することになる。そして、このような応力波の時間差は荷重検出時にはノイズとしてあらわれるため、結果として高精度の荷重計測が阻害されることとなる。さらに、応力が角隅部等に局部的に集中すると、この種の荷重検出部としてはあってはならない塑性変形が生じる可能性が非常に高くなる。したがって、角柱状等の局所的な変形を生じ易い形状のものは、荷重検出部としてはきわめて不適であるといえる。
そのため、本発明においては、荷重検出部を中実の円柱状として、断面内の荷重分布を均一とすることにより局所的な変形集中を防いで極力単純な変形が生じるようにし、これにより、荷重検出部内における応力波の速度の変化を防止して該応力波が時間差をもって通過することを防ぎ、荷重検出時のノイズを排除するようにしている。
なお、荷重検出部4の軸線方向長さは、ひずみゲージの貼付けができる範囲内において、できるだけ短い方が望ましく、これにより、荷重計測の際に荷重検出部4全体に応力波が伝播する時間を低減することができるため、後述する上記応力波の荷重検出部4での早期飽和を一層促進させることができる。
A strain gauge (not shown) is affixed to the outer peripheral surface of the load detection unit 4, and load detection can be calculated from the surface strain measured by the strain gauge. Here, the reason why the load detection unit 4 is a solid column is to make the load distribution in the cross section uniform, and as a result, the accuracy of load measurement using a strain gauge is enhanced.
This point will be described in detail. For example, when the load detection unit is in the shape of a prism, when an eccentric load is applied to the load detection unit, stress concentrates on the corner and is locally applied to the corner. Deformation is likely to occur, and the deformation is a complex deformation in which compression deformation and shear deformation are mixed. Since stress waves, which will be described in detail later, change in speed due to deformation of a propagating object, when such a complicated deformation occurs in the load detection unit, the load detection unit is subjected to stress waves having different propagation speeds. Will pass with a time difference. Such a time difference between stress waves appears as noise during load detection, and as a result, highly accurate load measurement is hindered. Furthermore, if the stress is concentrated locally at the corners or the like, there is a very high possibility that plastic deformation, which should not be a load detection unit of this type, will occur. Accordingly, it can be said that a shape that easily causes local deformation such as a prismatic shape is extremely unsuitable as a load detection unit.
Therefore, in the present invention, the load detection unit is a solid columnar shape, and the load distribution in the cross section is made uniform so that local deformation concentration is prevented and simple deformation is generated as much as possible. The change of the velocity of the stress wave in the detection unit is prevented, the stress wave is prevented from passing with a time difference, and noise at the time of load detection is eliminated.
The length in the axial direction of the load detector 4 is preferably as short as possible within the range where the strain gauge can be attached. This allows time for the stress wave to propagate throughout the load detector 4 during load measurement. Since it can reduce, the early saturation in the load detection part 4 of the said stress wave mentioned later can be promoted further.

さらに、上記上部側保持部5及び下部側保持部6は、この実施の形態においては、鉛直方向に立ち上がった平面視略正方形状の立方体状にそれぞれ形成されて、相互に同形のものとなっている。そして、上記接触部材2と支持部材3との間において、隣接する荷重計測部材の上部側保持部5同士、下部側保持部6同士がそれぞれ密着した状態で配置されている。
したがって、上記接触部材2と支持部材3との間にある6列×6列、計36個の荷重計測部材1は、これらの荷重計測部材1すべての上部側保持部5、下部側保持部6の集合によって、平面視略正方形状の上下端面を形成するように並べられた格好となっている。
Further, in the present embodiment, the upper side holding part 5 and the lower side holding part 6 are each formed in a substantially square cubic shape in plan view rising in the vertical direction, and have the same shape. Yes. And between the said contact member 2 and the support member 3, it arrange | positions in the state which the upper side holding | maintenance parts 5 of the adjacent load measuring members and the lower side holding | maintenance parts 6 contact | adhered, respectively.
Therefore, a total of 36 load measuring members 1 in 6 rows × 6 rows between the contact member 2 and the support member 3 are the upper side holding portion 5 and the lower side holding portion 6 of all these load measuring members 1. In this manner, the upper and lower end surfaces are arranged in a substantially square shape in plan view.

また、上記荷重計測部材1は、削り出し等によって上記荷重検出部4と上部側保持部5及び下部側保持部6とが一体に形成され、いずれの荷重計測部材1も相互に同形同大のものとなっている。これら荷重検出部4と上部側保持部5及び下部側保持部6とを一体に形成するのは、荷重計測手段1内、つまり荷重検出部4と上部側保持部5及び下部側保持部6との接合部分において、応力波伝播に伴う振動の発生を抑えるためであり、これにより、荷重計測時にこの振動によるノイズが発生するのを防止して荷重計測の高精度化を図っている。
さらに、この荷重計測部材1、つまり荷重検出部及び上部側保持部5並びに下部側保持部6は、全体として高ヤング率の素材、例えば鉄等によって構成されていて、荷重計測部材後述する応力波の伝播速度を可及的に早めることができるようにしている。
また、図1に示すように、上部側及び下部側保持部5,6の各水平断面、即ち荷重検出部4の軸線と直交する断面の断面積Ah,Ahは、荷重検出部4の水平断面、即ち該荷重検出部4の軸線と直交する断面の断面積Akよりも大きく形成されている。
Further, in the load measuring member 1, the load detecting portion 4, the upper side holding portion 5 and the lower side holding portion 6 are integrally formed by cutting or the like, and all the load measuring members 1 have the same shape and the same size. Has become. The load detection unit 4 and the upper side holding unit 5 and the lower side holding unit 6 are integrally formed in the load measuring means 1, that is, the load detection unit 4, the upper side holding unit 5 and the lower side holding unit 6 In order to suppress the generation of vibrations due to the propagation of stress waves at the joint portion, the generation of noise due to the vibrations during load measurement is prevented, thereby improving the accuracy of load measurement.
Furthermore, the load measuring member 1, that is, the load detecting unit and the upper side holding unit 5 and the lower side holding unit 6 are made of a material having a high Young's modulus as a whole, for example, iron or the like. The propagation speed of can be increased as much as possible.
Further, as shown in FIG. 1, the horizontal cross sections Ah 1 and Ah 2 of the horizontal cross sections of the upper side and lower side holding parts 5 and 6, that is, the cross sections orthogonal to the axis of the load detection part 4, The horizontal cross section is formed larger than the cross sectional area Ak of the cross section orthogonal to the axis of the load detection unit 4.

上記接触部材2は、平面視略正方形状の板体状(立方体状)に形成されたもので、上面側が上記試験体を接触させる接触面となっている一方、下面側には上記荷重計測部材1が収容・固定されている。
この接触部材2は、その板面が、上記荷重計測部材1すべての上部側保持部5の集合によって形成された平面視略正方形状の上端面とほぼ同じ、もしくは若干大きい大きさを有していて、下面側にすべての荷重計測部材1の上部側保持部5がはみ出すことなく収まるようになっている。
また、上記接触部材2と各荷重計測部材1とは、該接触部材2を貫通して荷重計測部材1の上部側保持部5にまで達する着脱自在のボルト(図示せず)により連結されており、これにより、ボルト固定時には接触部材2の下面と各荷重計測部材1の上部側保持部5の上端面とが密着した状態で位置不動に相互に連結されることとなる。
The contact member 2 is formed in a plate shape (cubic shape) having a substantially square shape in plan view, and the upper surface side is a contact surface that contacts the test body, while the lower surface side has the load measuring member. 1 is accommodated and fixed.
The plate surface of the contact member 2 is substantially the same as or slightly larger than the upper end surface of the substantially square shape in plan view formed by the assembly of the upper side holding portions 5 of all the load measuring members 1. Thus, the upper side holding portions 5 of all the load measuring members 1 are accommodated on the lower surface side without protruding.
The contact member 2 and each load measuring member 1 are connected by a detachable bolt (not shown) that penetrates the contact member 2 and reaches the upper holding portion 5 of the load measuring member 1. As a result, when the bolt is fixed, the lower surface of the contact member 2 and the upper end surface of the upper side holding portion 5 of each load measuring member 1 are in close contact with each other in a fixed state.

上記支持部材3は、上記接触部材2とほぼ同形の平面視略正方形状の板体状(立方体状)に形成されたもので、上面側に上記荷重計測部材1が載置・固定されている。
この支持部材3は、その板面が、上記荷重計測部材1すべての下部側保持部6の集合によって形成された平面視略正方形状の下端面とほぼ同じ、もしくは若干大きい大きさ(この実施の形態の場合、接触部材2と同じ大きさ)を有していて、下面側にすべての荷重計測部材1の下部側保持部6がはみ出すことなく収まるようになっている。
また、この支持部材3と各荷重計測部材1とは、該支持部材3を貫通して荷重計測部材1の下部側保持部6にまで達する着脱ボルト(図示せず)により連結されており、これにより、ボルト固定時には支持部材3の上面と各荷重計測部材1の下部側保持部6の下端面とが密着した状態で位置不動に相互に連結されることとなる。
The support member 3 is formed in a substantially square plate shape (cubic shape) in plan view that is substantially the same shape as the contact member 2, and the load measuring member 1 is placed and fixed on the upper surface side. .
The plate surface of the support member 3 is substantially the same as or slightly larger than the lower end surface of the substantially square shape in plan view formed by the assembly of the lower side holding portions 6 of all the load measuring members 1 (this embodiment In the case of the form, it has the same size as the contact member 2), and the lower side holding portions 6 of all the load measuring members 1 are accommodated on the lower surface side without protruding.
The support member 3 and each load measuring member 1 are connected by a detachable bolt (not shown) that penetrates the support member 3 and reaches the lower side holding portion 6 of the load measuring member 1. Thus, when the bolt is fixed, the upper surface of the support member 3 and the lower end surface of the lower side holding portion 6 of each load measuring member 1 are connected to each other in a stationary manner in a state where they are in close contact with each other.

ところで、上記接触部材2及び支持部材3は、各水平断面、即ち上記荷重計測部材1の荷重検出部4の軸線と直交する各断面の断面積As,Asが、各荷重検出部4の水平断面、即ち各荷重検出部4における該軸線と直交する断面の断面積Akよりも大きく形成されている。
また、接触部材2及び支持部材3の水平断面の断面積As,Asは、この荷重計測装置の構成上、上記各荷重計測部材1単体の上部側及び下部側保持部5,6の水平断面の断面積Ah,Ahよりも大きくなっている。
したがって、これら接触部材2及び支持部材3、各荷重計測部材1の上部側及び下部側保持部5,6、荷重検出部4の各水平断面の断面積As,As,As,As,Akの大きさの関係は、As=As>Ah=Ah>Akとなり、As,AsはAkに比べ極めて大きくなっている。
By the way, the contact member 2 and the support member 3 have the horizontal cross sections, that is, the cross-sectional areas As 1 and As 2 of each cross section orthogonal to the axis of the load detection unit 4 of the load measurement member 1, respectively. It is formed larger than the horizontal cross section, that is, the cross sectional area Ak of the cross section perpendicular to the axis of each load detection unit 4.
Further, the horizontal cross-sectional areas As 1 and As 2 of the contact member 2 and the support member 3 are horizontal to the upper and lower side holding portions 5 and 6 of the load measuring member 1 alone due to the configuration of the load measuring device. The cross-sectional areas Ah 1 and Ah 2 of the cross section are larger.
Therefore, the cross-sectional areas As 1 , As 2 , As 1 , As 2 of the horizontal cross sections of the contact member 2 and the support member 3, the upper and lower holding parts 5, 6 of each load measuring member 1, and the load detection part 4. , Ak are in a relationship of As 1 = As 2 > Ah 1 = Ah 2 > Ak, and As 1 and As 2 are much larger than Ak.

ここで、接触部材2及び支持部材3、各荷重計測部材1の上部側及び下部側保持部5,6、荷重検出部4の各水平断面の断面積の大きさの関係を、As=As>Ah=Ah>Akとしたのは、荷重検出部1における応力波の飽和をより早期に完了させるためである。
以下、この点について具体的に説明する。
Here, the relationship between the size of the cross-sectional area of each horizontal cross section of the contact member 2 and the support member 3, the upper side and lower side holding portions 5 and 6 of each load measuring member 1, and the load detection unit 4 is As 1 = As. The reason why 2 > Ah 1 = Ah 2 > Ak is to complete saturation of stress waves in the load detection unit 1 earlier.
Hereinafter, this point will be specifically described.

試験体に衝撃荷重が加わる場合、試験体に高速変形が生じるが、このときに試験体に負荷される引張荷重または圧縮荷重f、すなわち荷重計測部材に生じる荷重は、図4に示すように段階的に上昇してΔt時間経過後に100%の荷重Fに到達するように計測される。これは、応力波が荷重検出部4を伝わる際に該荷重検出部4の端面で反射や、荷重検出部4内での応力波同士の干渉等を繰り返し、徐々に飽和するためである。
動的な試験を行った場合、応力波はまず荷重検出部4の内部で反射・干渉し、内部の変形を均一化する。そのとき、高速での高精度な荷重計測を行うためには、応力波ノイズの原因となる荷重検出部4内での反射・干渉を早期に飽和させることが必要である。
When an impact load is applied to the test body, high-speed deformation occurs in the test body. At this time, the tensile load or the compression load f applied to the test body, that is, the load generated on the load measuring member is a step as shown in FIG. It is measured so that the load F reaches 100% after elapse of Δt time. This is because when the stress wave is transmitted through the load detection unit 4, reflection at the end face of the load detection unit 4, interference of stress waves in the load detection unit 4, and the like are repeated, and the stress wave is gradually saturated.
When a dynamic test is performed, the stress wave is first reflected and interfered inside the load detection unit 4 to make the internal deformation uniform. At that time, in order to perform high-speed and high-accuracy load measurement, it is necessary to saturate reflection / interference in the load detector 4 that causes stress wave noise at an early stage.

したがって、試験体の高速変形時の荷重を正確に計測するためには、荷重検出部4内での応力波の反射・干渉を早期に飽和させて、荷重が不安定になる上記Δtの時間を短くすることが肝要である。
この点に鑑み、発明者らは、計測される荷重の複数の段差部分に注目し、これらの段差部分に相当する荷重を本来計測すべき荷重Fに対して相対的に増加させることにより、荷重検出部4に伝わる荷重を早期に荷重Fに到達させ、Δtの時間を短くすることができるとの知見を得た。
Therefore, in order to accurately measure the load at the time of high-speed deformation of the specimen, the time Δt at which the load becomes unstable is obtained by saturating the reflection / interference of stress waves in the load detector 4 at an early stage. It is important to shorten it.
In view of this point, the inventors pay attention to a plurality of step portions of the load to be measured, and increase the load corresponding to these step portions relative to the load F to be measured, thereby increasing the load. It was found that the load transmitted to the detector 4 can reach the load F at an early stage and the time Δt can be shortened.

そして、段差に相当する荷重を荷重Fに対して相対的に増加させるためには、荷重検出部4における応力波の反射率の増大を図り、該応力波を早期に飽和させることが効果的であることを発明者らは見出した。
また、応力波は断面積が小の領域から大の領域に進行する際に反射率が高くなり、反射が増大すること、及び応力波は断面積が大の領域から小の領域に進行する場合には、該断面積大の領域においては応力波の伝播の乱れの影響が非常に大きいが、小から大の領域に進行する場合、小の領域においては応力波の伝播の乱れの影響をほとんど受けないこともわかった。さらに、断面積の差が大きいほど、応力波の反射率が大きいことを見出した。
In order to increase the load corresponding to the step relative to the load F, it is effective to increase the reflectance of the stress wave in the load detection unit 4 and saturate the stress wave early. The inventors have found that there is.
Also, when the stress wave travels from a small area to a large area, the reflectivity increases and the reflection increases, and when the stress wave travels from a large area to a small area However, in the area of the large cross-sectional area, the influence of the disturbance of stress wave propagation is very large, but when the process proceeds from the small area to the large area, the influence of the disturbance of stress wave propagation is hardly affected in the small area. I knew I would n’t. Furthermore, it has been found that the greater the difference in cross-sectional area, the greater the stress wave reflectance.

そのため、本発明においては、荷重検出部4の水平断面の断面積を、荷重計測部材1を構成する部材の中で最も小さくし、さらに荷重計測部材1の上部側及び下部側保持部5,6の各断面積、接触部材2及び支持部材3の各断面積の順に断面積を大きくしている。
また、この実施の形態においては、各荷重計測部材1について、隣接する荷重計測部材1の各保持部5,6の側面同士を相互に密着させると共に、各荷重計測部材1の上部側保持部5と接触部材2とを、また下部側保持部6と支持部材3とを、それぞれ互いに密着させた構成としている。これにより、上部側保持部5と接触部材2とが、また下部側保持部6と支持部材3とが、それぞれ一体化された状態となるため、荷重検出部4の上側に位置する上部側保持部5・接触部材2全体の水平断面及び荷重検出部4の下側に位置する下部側保持部6・支持部材3全体の水平断面と、各荷重検出部4の水平断面の断面積との差はより大きくなる。
これにより、荷重検出部4における応力波の反射の増大・促進、干渉の促進を図り、該応力波を早期に飽和させることができるため、結果として、上記Δtの時間が短くなり、荷重検出部4での高精度な荷重計測が可能となる。
さらには、荷重検出部4の水平断面の断面積を最も小さくしたことにより、荷重検出部4においては応力波の伝播の乱れの影響がほとんど排除され、これにより、荷重検出部4で一層高精度な荷重測定が可能となる。
Therefore, in the present invention, the cross-sectional area of the horizontal cross section of the load detector 4 is made the smallest among the members constituting the load measuring member 1, and the upper and lower side holding portions 5, 6 of the load measuring member 1 are further reduced. The cross-sectional areas are increased in the order of the cross-sectional areas of the contact member 2 and the support member 3.
Further, in this embodiment, for each load measuring member 1, the side surfaces of the holding portions 5 and 6 of the adjacent load measuring members 1 are brought into close contact with each other, and the upper side holding portion 5 of each load measuring member 1. And the contact member 2 and the lower holding part 6 and the support member 3 are in close contact with each other. Accordingly, the upper side holding portion 5 and the contact member 2 and the lower side holding portion 6 and the support member 3 are integrated with each other, so that the upper side holding portion located on the upper side of the load detecting portion 4. Difference between the horizontal cross section of the entire section 5 and the contact member 2 and the horizontal cross section of the entire lower side holding section 6 and support member 3 positioned below the load detection section 4 and the horizontal cross section of each load detection section 4 Becomes bigger.
As a result, it is possible to increase / promote reflection of stress waves in the load detection unit 4 and to promote interference, and to saturate the stress waves early. As a result, the time Δt is shortened, and the load detection unit 4 4 enables high-precision load measurement.
Furthermore, by making the cross-sectional area of the horizontal cross section of the load detection unit 4 the smallest, the load detection unit 4 almost eliminates the influence of the disturbance of the propagation of stress waves. Load measurement is possible.

上記構成を有する荷重計測装置は、支持部材3を剛体に固定した上で、上記接触部材2の接触面に試験体を衝突させたり、あるいは接触面上に試験体を載置して該試験体に対して落錘等により衝撃を加えたりするなどして該接触部材2に圧縮荷重又は引張荷重を作用させ、荷重計測部材1の荷重検出部4によりその荷重を計測する。   In the load measuring apparatus having the above configuration, the support member 3 is fixed to a rigid body, and the test body is made to collide with the contact surface of the contact member 2 or the test body is placed on the contact surface. A compressive load or a tensile load is applied to the contact member 2 by applying an impact with a falling weight or the like, and the load is measured by the load detection unit 4 of the load measuring member 1.

このとき、上記複数の荷重計測部材1は、上記接触部材2と支持部材3との間に、各荷重検出部4の軸線方向が相互に平行となるように並列に配設されているため、接触部材2のどの位置荷重が作用したとしても、つまり仮に接触部材2に偏心荷重が作用したとしても、各荷重計測部材1の荷重検出部4は、略鉛直方向に個別に弾性変形する。
そのため、曲げモーメントの影響が比較的小さい、該接触部材2における荷重の作用位置の直下あるいはその近傍に位置する荷重計測部材1の荷重検出部4によって、本来計測すべき鉛直方向の荷重を高精度で計測することができる。
しかも、荷重検出部4の水平断面の断面積は、接触部材2や上部側及び下部側保持部5,6の水平断面の断面積よりも小さいため、接触部材2に偏心荷重が作用した場合であっても、各荷重検出部4は他の荷重計測部材1の荷重検出部4に干渉することがなくそれぞれが弾性変形し、これにより、従来のような偏心荷重に起因する変形の集中による塑性変形が防止される。
At this time, since the plurality of load measuring members 1 are arranged in parallel between the contact member 2 and the support member 3 so that the axial directions of the load detection units 4 are parallel to each other, Regardless of which position load of the contact member 2 is applied, that is, even if an eccentric load is applied to the contact member 2, the load detector 4 of each load measuring member 1 is elastically deformed individually in a substantially vertical direction.
Therefore, the load in the vertical direction to be originally measured is highly accurate by the load detection unit 4 of the load measuring member 1 located immediately below or near the position of the load acting on the contact member 2 where the influence of the bending moment is relatively small. Can be measured.
Moreover, since the cross-sectional area of the horizontal cross section of the load detecting unit 4 is smaller than the cross-sectional areas of the horizontal cross sections of the contact member 2 and the upper and lower holding parts 5 and 6, an eccentric load is applied to the contact member 2. Even if it exists, each load detection part 4 does not interfere with the load detection part 4 of the other load measuring member 1, but each elastically deforms, and thereby plasticity due to concentration of deformation caused by the eccentric load as in the prior art. Deformation is prevented.

さらに、各荷重計測部材1の上部側及び下部側の一対の保持部5,6と上記荷重検出部4とを一体に形成し、且つ荷重検出部4における該軸線と直交する断面の断面積よりも、相互に密着して配置された上部側保持部5と接触部材2、下部側保持6と支持部材3の、荷重検出部4の軸線と直交する断面の断面積を大きく形成したため、各荷重計測部材1の荷重検出部4内における応力波の反射・干渉を促進させることができる。これにより、計測すべき本来の荷重に係る荷重検出部4内での応力波の早期の飽和を図ることができ、この結果、高速変形を含む広範囲の変形速度における引張荷重または圧縮荷重の計測を高精度で行うことが可能となる。   Furthermore, a pair of holding parts 5 and 6 on the upper side and lower side of each load measuring member 1 and the load detection part 4 are integrally formed, and a cross-sectional area of a cross section perpendicular to the axis of the load detection part 4 is obtained. Since the cross-sectional area of the cross section perpendicular to the axis of the load detection unit 4 of the upper side holding unit 5 and the contact member 2 and the lower side holding unit 6 and the support member 3 which are arranged in close contact with each other is greatly increased. The reflection / interference of the stress wave in the load detector 4 of the measuring member 1 can be promoted. As a result, it is possible to achieve early saturation of the stress wave in the load detection unit 4 related to the original load to be measured. As a result, the tensile load or the compressive load can be measured in a wide range of deformation speeds including high-speed deformation. It becomes possible to carry out with high precision.

上記実施の形態においては、荷重計測部材1を、平面視において横方向に6列、縦(奥行き方向)に6列ずつ、計36個を並べて敷詰めたものとしているが、配置する荷重計測部材の数については、複数であれば任意に設定することができる。例えば、試験規模や試験内容等の各種条件ごとに荷重計測手段の配置総数を調整することができ、これより試験ごとに別の荷重計測装置を準備・設計する手間を省略することができる。
また、上記実施の形態においては、全荷重計測部材1の集まりによって上部側及び下部側保持部5,6が形成する上下端面が平面視略正方形状となるように荷重計測部材1を配列しているが、この荷重計測部材の配列についても試験規模や試験内容等の各種条件に応じて任意に設定することができる。
なお、荷重計測部材の設置数や配列については、荷重検出部ができるだけ密となるように荷重計測部材を集合配置させることができるように設定することが好ましい。
In the above-described embodiment, the load measuring member 1 is composed of a total of 36 rows arranged in 6 rows in the horizontal direction and 6 rows in the vertical (depth direction) in plan view. The number of can be arbitrarily set as long as it is plural. For example, it is possible to adjust the total number of load measuring means arranged for various conditions such as the test scale and test contents, thereby eliminating the trouble of preparing and designing another load measuring device for each test.
In the above embodiment, the load measuring members 1 are arranged so that the upper and lower end surfaces formed by the upper and lower holding portions 5 and 6 are formed in a substantially square shape in plan view by the gathering of the total load measuring members 1. However, the arrangement of the load measuring members can be arbitrarily set according to various conditions such as the test scale and test contents.
Note that the number and arrangement of load measuring members are preferably set so that the load measuring members can be collectively arranged so that the load detectors are as dense as possible.

さらに、上記実施の形態では、各荷重計測部材1の一対の保持部5,6を平面視略正方形状の立方体状としているが、この一対の保持部は、必ずしも平面視略正方形状の立方体状とする必要はない。この保持部については、上記荷重検出部と一体にでき、且つこの一対の保持部における荷重検出部の軸線と直交する断面の断面積が、荷重検出部における該軸線と直交する断面の断面積よりも大きく形成されたものであれば、例えば平面視略三角形状や略五角形状、略六角形状等、平面視が任意の多角形の角柱状、あるいは円柱状等、任意の形状とすることができ、また、一方の保持部と他方の保持部とが相互に別の形状、さらには相互に異なる大きさとしてもよい。
ただし、この場合においては、隣接する荷重計測部材の上部側及び下部側保持部同士を互いに密着させた状態で配置することができるようにすることが好ましい。
Further, in the above-described embodiment, the pair of holding portions 5 and 6 of each load measuring member 1 are formed in a substantially square cubic shape in plan view. However, the pair of holding portions are not necessarily in a square shape in plan view. It is not necessary to. The holding section can be integrated with the load detection section, and the cross-sectional area of the pair of holding sections perpendicular to the axis of the load detection section is greater than the cross-sectional area of the cross-section perpendicular to the axis of the load detection section. Can be formed into an arbitrary shape such as a substantially rectangular shape in a plan view, a substantially pentagonal shape, a substantially hexagonal shape, etc. In addition, the one holding part and the other holding part may have different shapes and different sizes.
However, in this case, it is preferable that the upper side and lower side holding portions of the adjacent load measuring members can be arranged in close contact with each other.

また、上記実施の形態においては、接触部材2及び支持部材3を、それぞれ平面視略正方形状の板体状(立方体状)とし、その板面が、上記荷重計測部材1すべての上部側保持部5あるいは下部側保持部6の集合によって形成された平面視略正方形状の上端面あるいは下端面とほぼ同じ大きさとしている。しかしながら、接触部材及び支持部材は、上記荷重計測部材の荷重検出部の軸線と直交する断面の断面積が、各荷重検出部における該軸線と直交する断面の断面積よりも大きく、また全部の荷重計測部材と連結することができるものであれば、その平面視形状や大きさについては任意に設定することができる。
したがって、荷重計測部材が接触部材や支持部材の周縁からはみ出していてもよく、逆に、接触部材や支持部材の周縁部分が、荷重計測部材の集合によって形成された保持部による上下端面よりはみ出して大きくてもよい。
Moreover, in the said embodiment, the contact member 2 and the support member 3 are each made into plate shape (cubic shape) of planar shape substantially square shape, respectively, The plate surface is the upper side holding | maintenance part of all the said load measurement members 1 5 or the upper end surface or the lower end surface of the substantially square shape in plan view formed by the assembly of the lower side holding portions 6. However, in the contact member and the support member, the cross-sectional area of the cross section orthogonal to the axis of the load detection part of the load measuring member is larger than the cross-sectional area of the cross section orthogonal to the axis of each load detection part, and all the loads As long as it can be connected to the measurement member, the shape and size in plan view can be arbitrarily set.
Therefore, the load measuring member may protrude from the periphery of the contact member or the support member, and conversely, the peripheral portion of the contact member or support member protrudes from the upper and lower end surfaces of the holding portion formed by the set of load measuring members. It can be large.

なお、この実施の形態においては、この荷重計測装置を構成する接触部材2及び支持部材3、並びに各荷重計測部材1については、いずれも同等材質、すなわち弾性率および密度が同程度のもので形成しているが、接触部材、支持部材、各荷重計測部材については、異なる材質で形成してもよい。ここで、これらの部材の材料が異なる場合、荷重の計測に際しては、断面積だけではなく、音響インピーダンスをあわせて考慮する必要がある。音響インピーダンスは材料の密度と応力波(=弾性波)伝播速度の積であらわされるため、異種の材料を用いる場合には、断面積に密度及び応力波伝播速度を乗じて考えることが肝要である。
なお、各部材に使用する材質についてはヤング率が高い素材を用いるのが好ましい。
In this embodiment, the contact member 2 and the support member 3 constituting the load measuring device, and each load measuring member 1 are all made of the same material, that is, having the same elastic modulus and density. However, the contact member, the support member, and each load measuring member may be formed of different materials. Here, when the materials of these members are different, it is necessary to consider not only the cross-sectional area but also the acoustic impedance when measuring the load. Since acoustic impedance is expressed by the product of material density and stress wave (= elastic wave) propagation velocity, it is important to consider the cross-sectional area multiplied by the density and stress wave propagation velocity when using different materials. .
In addition, about the material used for each member, it is preferable to use a material with a high Young's modulus.

本発明の効果を確認するため、上記実施の形態において説明した荷重計測装置(以下、「本発明例」という。)と、比較例1として従来の荷重計測装置、つまり平面視略正方形状に形成された同形同大の直方体状の接触部材と支持部材との間に、水平断面の断面積がこれら接触部材と支持部材とほぼ同じである平面視略正方形状に形成された直方体状の荷重検出部を備えたもの、比較例2として、同様の接触部材と支持部材に加え、その間に直径が120mmの円柱状の荷重検出部を備えたものについて、それぞれの接触部材に高速の衝突物を衝突させることによる性能の比較解析を行った。
衝突物は球状であり重量は2kg、衝突速度は35km/hである。
本発明例と2つの比較例とは、接触部材及び支持部材の水平断面の断面積をほぼ同じ大きさの平面視略正方形状とし、衝突物の衝突位置を、本発明例、比較例ともに、接触部材の板面上の角部分とした。
また、本発明例においては、図5に示すように、9つの荷重計測部材を平面視略正方形状の接触部材と支持部材との間に並列的に配設したものとし、さらに、比較例2の荷重検出部の断面積は、本発明の複数の荷重検出部の断面積の総和に等しいものとした。各荷重計測装置の寸法を図5に示す(なお、図5中の寸法の単位は「mm」である。)。
In order to confirm the effect of the present invention, the load measuring device described in the above embodiment (hereinafter referred to as “example of the present invention”) and a conventional load measuring device as Comparative Example 1, that is, formed in a substantially square shape in plan view. A rectangular parallelepiped load formed between the contact member and the support member of the same shape and the same size and formed in a substantially square shape in plan view in which the cross-sectional area of the horizontal cross section is substantially the same as that of the contact member and the support member. As for Comparative Example 2, in addition to the same contact member and support member, a high-speed collision object was placed on each contact member with a cylindrical load detection unit having a diameter of 120 mm between them. A comparative analysis of performance due to collision was performed.
The collision object is spherical, has a weight of 2 kg, and the collision speed is 35 km / h.
The example of the present invention and the two comparative examples have a substantially square cross-sectional area of the horizontal cross section of the contact member and the support member, and the collision position of the collision object in both the present invention example and the comparative example, The corner portion on the plate surface of the contact member was used.
In the example of the present invention, as shown in FIG. 5, nine load measuring members are arranged in parallel between the contact member and the support member having a substantially square shape in plan view. The cross-sectional area of the load detecting section is equal to the sum of the cross-sectional areas of the plurality of load detecting sections of the present invention. The dimensions of each load measuring device are shown in FIG. 5 (note that the unit of dimensions in FIG. 5 is “mm”).

この解析において、まず、衝突物が衝突した際の不釣り合い力(本発明の場合、荷重検出部と上部側保持部との境界で生じる断面力と、荷重検出部と下部側保持部との境界で生じる断面力の差、比較例の場合、荷重検出部と接触部材との境界で生じる断面力と、荷重検出部と支持部材との境界で生じる断面力の差)を評価した。
この結果、図6に示すように、本発明例での不釣り合い力は、全体的に比較例よりも低く、本発明例の装置は比較例の装置よりも瞬時に釣り合い状態を満足し、荷重計測装置として優れることが確認された。
なお、図6においては、横軸は衝突後の経過時間、縦軸は断面力の差である。
In this analysis, first, an unbalanced force when a collision object collides (in the case of the present invention, the cross-sectional force generated at the boundary between the load detection unit and the upper side holding unit and the boundary between the load detection unit and the lower side holding unit) In the case of the comparative example, the cross-sectional force generated at the boundary between the load detection unit and the contact member and the cross-sectional force generated at the boundary between the load detection unit and the support member were evaluated.
As a result, as shown in FIG. 6, the unbalance force in the example of the present invention is generally lower than that of the comparative example, and the device of the example of the present invention satisfies the balanced state instantly than the device of the comparative example. It was confirmed that it is excellent as a measuring device.
In FIG. 6, the horizontal axis represents the elapsed time after the collision, and the vertical axis represents the difference in cross-sectional force.

さらに、本発明の場合は、各荷重検出部に塑性変形は生じなかったが、比較例2の場合は、荷重検出部と接触部材との結合部分で変形の局所化が進み、塑性変形が発生していた。
このように、接触部材に偏心荷重が作用し、従来においては荷重検出部に大きな曲げモーメントが発生するような場合であっても、本発明の荷重計測装置は塑性変形が生じず、また高精度の荷重測定を行うことができることが実証された。
Furthermore, in the case of the present invention, plastic deformation did not occur in each load detection unit, but in the case of Comparative Example 2, the localization of the deformation progressed at the joint between the load detection unit and the contact member, and plastic deformation occurred. Was.
As described above, even when an eccentric load acts on the contact member and a large bending moment is generated in the load detecting portion in the past, the load measuring device of the present invention does not cause plastic deformation and has high accuracy. It was proved that the load measurement can be performed.

1 荷重計測部材
2 接触部材
3 支持部材
4 荷重検出部
5 上部側保持部
6 下部側保持部
As 接触部材の断面積
As 支持部材の断面積
Ak 荷重検出部の断面積
Ah 上部側保持部の断面積
Ah 下部側保持部の断面積
DESCRIPTION OF SYMBOLS 1 Load measuring member 2 Contact member 3 Support member 4 Load detection part 5 Upper side holding part 6 Lower side holding part As 1 Cross sectional area of contact member As 2 Cross sectional area of support member Ak Cross section area of load detecting part Ah 1 Upper side holding Sectional area of the Ah 2 sectional area of the lower side holding part

Claims (3)

引張荷重又は圧縮荷重を計測する円柱状の荷重検出部、及び該荷重検出部の軸線方向の両端部にそれぞれ設けられた一対の保持部を有し、これら一対の保持部と上記荷重検出部とが一体に、且つ一対の保持部における荷重検出部の軸線と直交する断面の断面積が、荷重検出部における該軸線と直交する断面の断面積よりも大きく形成された複数の荷重計測部材と、
各荷重計測部材の一方側の保持部が密着してボルトにより連結された、引張荷重又は圧縮荷重を作用させる単一の接触部材と、
各荷重計測部材の他方側の保持部が密着してボルトにより連結された単一の支持部材とを備え、
前記各荷重計測部材、接触部材及び支持部材が、それぞれ鉄のヤング率以上のヤング率の素材からなり、
上記複数の荷重計測部材は、上記接触部材と支持部材との間に、各荷重検出部の軸線方向が相互に平行となるように並列に配設されていて、
上記接触部材及び支持部材は、上記荷重計測部材の荷重検出部の軸線と直交する断面の断面積が、各荷重検出部における該軸線と直交する断面の断面積よりも大きく形成されており、
かつ上記各荷重計測部材の一方側の保持部及び他方側の保持部が、それぞれ隣接する荷重計測部材の保持部同士を互いに密着させた状態で配置されていることを特徴とする、衝撃荷重測定用荷重計測装置。
A cylindrical load detection unit for measuring a tensile load or a compression load, and a pair of holding units provided at both ends in the axial direction of the load detection unit, and the pair of holding units and the load detection unit A plurality of load measuring members formed integrally and having a cross-sectional area of a cross section orthogonal to the axis of the load detection unit in the pair of holding units larger than a cross-sectional area of the cross section orthogonal to the axis of the load detection unit;
A single contact member for applying a tensile load or a compressive load, in which a holding portion on one side of each load measuring member is in close contact and connected by a bolt ,
A holding member on the other side of each load measuring member is in close contact with each other and connected by a bolt , and
Each load measuring member, contact member and support member are each made of a material having a Young's modulus equal to or higher than the Young's modulus of iron,
The plurality of load measurement members are arranged in parallel between the contact member and the support member so that the axial directions of the load detection units are parallel to each other,
The contact member and the support member are formed such that a cross-sectional area of a cross section orthogonal to the axis of the load detection unit of the load measuring member is larger than a cross-sectional area of a cross section orthogonal to the axis of each load detection unit,
The impact load measurement is characterized in that the holding part on one side and the holding part on the other side of each load measuring member are arranged in a state where the holding parts of the adjacent load measuring members are in close contact with each other. Load measuring device.
上記保持部が、平面視多角形の角柱状であることを特徴とする、請求項1に記載の衝撃荷重測定用荷重計測装置。   The load measuring device for measuring an impact load according to claim 1, wherein the holding portion has a polygonal prism shape in plan view. 引張荷重又は圧縮荷重を計測する円柱状の荷重検出部、及び該荷重検出部の軸線方向の両端部にそれぞれ設けられた一対の保持部を有し、これら一対の保持部と上記荷重検出部とが一体に、且つ一対の保持部における荷重検出部の軸線と直交する断面の断面積が、荷重検出部における該軸線と直交する断面の断面積よりも大きく形成された複数の荷重計測部材と、
各荷重計測部材の一方側の保持部が密着してボルトにより連結された、引張荷重又は圧縮荷重を作用させる単一の接触部材と、
各荷重計測部材の他方側の保持部が密着してボルトにより連結された単一の支持部材とを備え、
前記各荷重計測部材、接触部材及び支持部材が、それぞれ鉄のヤング率以上のヤング率の素材からなり、
上記複数の荷重計測部材は、上記接触部材と支持部材との間に、各荷重検出部の軸線方向が相互に平行となるように並列に配設されていて、
上記接触部材及び支持部材は、上記荷重計測部材の荷重検出部の軸線と直交する断面の断面積が、各荷重検出部における該軸線と直交する断面の断面積よりも大きく形成されており、
かつ上記各荷重計測部材の一方側の保持部及び他方側の保持部が、それぞれ隣接する荷重計測部材の保持部同士を互いに密着させた状態で配置されている荷重計測装置を用いて、前記接触部材に加わる衝突荷重を測定することを特徴とする、衝突荷重計測方法。
A cylindrical load detection unit for measuring a tensile load or a compression load, and a pair of holding units provided at both ends in the axial direction of the load detection unit, and the pair of holding units and the load detection unit A plurality of load measuring members formed integrally and having a cross-sectional area of a cross section orthogonal to the axis of the load detection unit in the pair of holding units larger than a cross-sectional area of the cross section orthogonal to the axis of the load detection unit;
A single contact member for applying a tensile load or a compressive load, in which a holding portion on one side of each load measuring member is in close contact and connected by a bolt ,
A holding member on the other side of each load measuring member is in close contact with each other and connected by a bolt , and
Each load measuring member, contact member and support member are each made of a material having a Young's modulus equal to or higher than the Young's modulus of iron,
The plurality of load measurement members are arranged in parallel between the contact member and the support member so that the axial directions of the load detection units are parallel to each other,
The contact member and the support member are formed such that a cross-sectional area of a cross section orthogonal to the axis of the load detection unit of the load measuring member is larger than a cross-sectional area of a cross section orthogonal to the axis of each load detection unit,
And using the load measuring device in which the holding part on one side and the holding part on the other side of each load measuring member are arranged in a state where the holding parts of the adjacent load measuring members are in close contact with each other. A method for measuring a collision load, characterized by measuring a collision load applied to a member.
JP2011153547A 2011-07-12 2011-07-12 Load measuring device for impact load measurement and collision load measuring method Active JP5845012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011153547A JP5845012B2 (en) 2011-07-12 2011-07-12 Load measuring device for impact load measurement and collision load measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011153547A JP5845012B2 (en) 2011-07-12 2011-07-12 Load measuring device for impact load measurement and collision load measuring method

Publications (2)

Publication Number Publication Date
JP2013019771A JP2013019771A (en) 2013-01-31
JP5845012B2 true JP5845012B2 (en) 2016-01-20

Family

ID=47691350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011153547A Active JP5845012B2 (en) 2011-07-12 2011-07-12 Load measuring device for impact load measurement and collision load measuring method

Country Status (1)

Country Link
JP (1) JP5845012B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7431585B2 (en) 2020-01-10 2024-02-15 株式会社Subaru Compression test equipment

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153134A (en) * 1982-03-09 1983-09-12 Hitachi Zosen Corp Apparatus for measuring heavy load such as steel structure
JPS60221288A (en) * 1984-04-13 1985-11-05 株式会社 富士電機総合研究所 Pressure sensing recognizing controller
JPH0617839B2 (en) * 1986-07-08 1994-03-09 株式会社共和電業 Maybe force detector and maybe force detector using the same
JPH06105194B2 (en) * 1988-10-25 1994-12-21 株式会社村田製作所 Piezoelectric pressure distribution sensor
JPH076860B2 (en) * 1990-02-23 1995-01-30 工業技術院長 Tactile sensor
JP3837207B2 (en) * 1997-07-03 2006-10-25 本田技研工業株式会社 Piezoelectric load sensor
JP2000234975A (en) * 1999-02-16 2000-08-29 Fuji Electric Co Ltd Face pressure sensor
JP2006090974A (en) * 2004-09-27 2006-04-06 Fujitsu Ltd Apparatus for measuring collision reactive force
JP4741272B2 (en) * 2005-04-05 2011-08-03 新日本製鐵株式会社 Dynamic load measuring device

Also Published As

Publication number Publication date
JP2013019771A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
JP4741272B2 (en) Dynamic load measuring device
Jia et al. Ultrasound propagation in externally stressed granular media
CN103196741B (en) A kind of non-destructive testing method of the concrete-bridge bearing capacity based on elastic modulus
US8671761B2 (en) Method of assessing bolted joint integrity
US10900934B2 (en) Acoustic black hole for sensing applications
CN101354284B (en) Method for testing resonance frequency of high range piezoresistance acceleration sensor
JP4830913B2 (en) Dynamic tensile test method and apparatus
US20200064122A1 (en) Mechanical strain amplifying transducer
JP2006284517A (en) Highly precise tension or compression tester in strain rate in wide range including high-speed deformation
CN111077030A (en) Device and method for testing dynamic mechanical properties of concrete under high strain rate
JP5845012B2 (en) Load measuring device for impact load measurement and collision load measuring method
Matsui et al. Development of JAMA—JARI pedestrian headform impactor in compliance with ISO and IHRA standards
GSCHOßMANN et al. Lamb wave excitation and detection with piezoelectric elements: Essential aspects for a reliable numerical simulation
JP6620780B2 (en) Dynamic crush test apparatus and dynamic crush test method
JP5655727B2 (en) Load measuring device
JP5218447B2 (en) High-precision tensile load or compression load measuring device
JP3938757B2 (en) Method and apparatus for precise measurement of tensile or compressive stress during high-speed deformation
JP4741273B2 (en) Dynamic load measuring device
Erdem et al. Impact effect on different sized reinforced concrete specimens
Yokoya et al. Deformation behavior of axially compressed aluminum polygonal tube
JP2002131176A (en) Impact buckling test apparatus
JP2013092390A (en) Method and apparatus for measuring impact load
Kobusch et al. Model-based analysis of the dynamic behaviour of a 250 kN shock force calibration device
JP7138832B2 (en) Impact application device and inspection method
KR100726089B1 (en) Load cell of a high speed tensile tester for reuction of the load ringing phenimenon

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150128

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150205

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151120

R150 Certificate of patent or registration of utility model

Ref document number: 5845012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350