JP2000234975A - Face pressure sensor - Google Patents

Face pressure sensor

Info

Publication number
JP2000234975A
JP2000234975A JP3698799A JP3698799A JP2000234975A JP 2000234975 A JP2000234975 A JP 2000234975A JP 3698799 A JP3698799 A JP 3698799A JP 3698799 A JP3698799 A JP 3698799A JP 2000234975 A JP2000234975 A JP 2000234975A
Authority
JP
Japan
Prior art keywords
pressure sensor
surface pressure
unit load
load cells
face pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3698799A
Other languages
Japanese (ja)
Inventor
Fumitatsu Shinno
文達 新野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3698799A priority Critical patent/JP2000234975A/en
Publication of JP2000234975A publication Critical patent/JP2000234975A/en
Pending legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a face pressure sensor whose rigidity is high, whose deformation amount with reference to compression is small, which is resistant to heat, which is flexible and which can measure the distribution of a face pressure. SOLUTION: Strain gages are pasted on side faces in central parts of quadratic prism-shaped bodies whose central parts are constricted. On the other hand, the quadratic prism-shaped bodies in which through holes in the X-direction and the Y-direction are made in their head parts and their bottom parts are arranged in a matrix shape as unit load cells 1. Thin wires 21, 22, 31, 32 and the like are passed through the through holes. Thereby, this face pressure sensor is constituted. Fig. (a) shows an example in which 2×2 pieces of the unit load cells 1 are arranged. Fig. (b) shows an example in which 4×4 pieces of the unit load cells 1 are arranged. In this manner, the face pressure sensor is constituted in such a way that the unit load cells in a plurality, whose rigidity is high are arranged in the matrix shape and that they are connected to each other by the thin wires. As a result the unit load cells are provided individually with high rigidity, and their deformation amount is small. The unit load cells are flexible as a whole. As a result, it is possible to obtain an advantage that a face pressure and the distribution of the face pressure can be measured precisely. In addition, since the face pressure sensor is resistant to heat, it can deal with a temperature change.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、金属のような剛
性の高い物体同士を接触,加圧する場合の接触面圧力分
布、および前記剛性の高い物体同士が熱変形するような
場合の接触面圧力分布変化を、同じ程度に剛性の高いセ
ンサで測定する面圧センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contact surface pressure distribution when a highly rigid object such as a metal is contacted and pressed, and a contact surface pressure when the highly rigid objects are thermally deformed. The present invention relates to a surface pressure sensor that measures a distribution change with a sensor having the same high rigidity.

【0002】[0002]

【従来の技術】この種の面圧センサの従来例として、以
下の3つのタイプのものが知られている。 (1)感圧紙 図5はその第1の例を説明するための説明図で、同
(a)は断面構造を、同(b)はその加圧時の様子を示
している。すなわち、同(a)に示す感圧紙は、厚さL
1μmのベース材(ポリエチレンテレフタル)51の上
に、5〜15μmの薬品入りマイクロカプセル52と、
カプセル内の薬品と反応すると発色する薬品53を適当
な比率で分散塗布したもの(厚さL2μm)で、全体の
厚さL(L1+L2)は100〜120μm程度であ
る。
2. Description of the Related Art The following three types are known as conventional examples of this type of surface pressure sensor. (1) Pressure Sensitive Paper FIGS. 5A and 5B are explanatory views for explaining the first example, in which FIG. 5A shows a cross-sectional structure, and FIG. That is, the pressure-sensitive paper shown in FIG.
On a base material (polyethylene terephthal) 51 of 1 μm, microcapsules 52 containing 5 to 15 μm of a medicine,
The drug 53, which develops a color when it reacts with the drug in the capsule, is dispersed and applied at an appropriate ratio (thickness L2 μm), and the total thickness L (L1 + L2) is about 100 to 120 μm.

【0003】これを荷重体55との接触境界面に挿入し
て加圧すると、図5(b)のように変形するとともに、
加圧力に応じて大きなカプセルから潰れて破壊し(破壊
したマイクロカプセルを符号54で示す)、カプセル内
部の薬品が漏出し、周囲の薬品と反応して発色する。加
圧力が大きければ小さなカプセルまで破壊し漏出する薬
品が多くなるので、発色した場合の色が濃くなる。すな
わち、加圧力によって色の濃淡が発生するので、その濃
度差から面圧を測定する。
When this is inserted into the contact boundary surface with the load body 55 and pressurized, it is deformed as shown in FIG.
The large capsule is crushed and broken according to the applied pressure (the broken microcapsule is indicated by reference numeral 54), and the medicine inside the capsule leaks and reacts with the surrounding medicine to develop color. If the applied pressure is large, the number of chemicals that break down even small capsules and leak increases, so that the color when the color develops becomes darker. That is, since shading of the color occurs due to the pressing force, the surface pressure is measured from the density difference.

【0004】(2)感圧フィルム 図6は第2の例を説明するための説明図で、同図(a)
は全体を示す斜視図である。なお、同(a)において、
61は感圧フィルム、62はX方向電極、63はY方向
電極、64は導電性粒子である。感圧フィルム61はポ
リエステルやナイロン,エポキシ,ゴムのような比較的
軟質の電気絶縁体で構成され、その上表面には電極62
が複数本互いに絶縁されて埋め込まれており、これらは
X方向に整列している。同様に、感圧フィルム61の下
表面には複数本の電極63がY方向に整列して埋め込ま
れている。また、感圧フィルム61の内部には、導電性
粒子64が埋め込まれている。
(2) Pressure-sensitive film FIG. 6 is an explanatory view for explaining a second example, and FIG.
1 is a perspective view showing the whole. In (a),
61 is a pressure-sensitive film, 62 is an X-direction electrode, 63 is a Y-direction electrode, and 64 is a conductive particle. The pressure-sensitive film 61 is made of a relatively soft electric insulator such as polyester, nylon, epoxy, or rubber, and has an electrode 62 on its upper surface.
Are embedded insulated from each other, and these are aligned in the X direction. Similarly, a plurality of electrodes 63 are embedded in the lower surface of the pressure-sensitive film 61 so as to be aligned in the Y direction. Further, conductive particles 64 are embedded in the pressure-sensitive film 61.

【0005】感圧フィルム61の断面構成を図6(b)
に示すが、電極X1,X2,…Xnと電極Y1 Y2,
…Yn(ここではYnのみ表示)に対応して、導電性粒
子64が感圧フィルム61内に埋め込まれている。そし
て、この感圧フィルム61に外力(圧力)が作用してい
ない場合は、電極Xnと電極Yn間にある導電性粒子6
4の電気抵抗は高い値を示す。ここで、図6(c)のよ
うに、荷重体65からの外力が加わると、感圧フィルム
61の変形に伴って導電性粒子群が圧縮されるため粒子
間の接触面積が増え、電極Xnと電極Yn間の電気抵抗
は低い値を示すようになる。この値の変化から外力の大
きさ、さらには外力による分布やその変化を知ることが
できる。
FIG. 6B shows a sectional structure of the pressure-sensitive film 61.
, Xn and electrodes Y1 Y2
.. Yn (here, only Yn is displayed), the conductive particles 64 are embedded in the pressure-sensitive film 61. When no external force (pressure) is acting on the pressure-sensitive film 61, the conductive particles 6 between the electrode Xn and the electrode Yn are removed.
The electric resistance of No. 4 shows a high value. Here, as shown in FIG. 6C, when an external force from the load body 65 is applied, the conductive particles are compressed along with the deformation of the pressure-sensitive film 61, so that the contact area between the particles increases, and the electrode Xn And the electrode Yn exhibits a low value. From the change in this value, it is possible to know the magnitude of the external force, and further the distribution and the change due to the external force.

【0006】(3)ロードセルを並べた面圧センサ 図7は第3の例を説明するための説明図で、同(a)は
全体を示す斜視図である。同図(a)において、71は
ロードセル、72はひずみゲージ、73は取り付けネ
ジ、74はベース板、75はネジ孔、76は起歪部を示
す。上下方向から圧縮荷重を受けるロードセル71に
は、その断面積を小さくした部分(起歪部ともいう)7
6が設けられ、ここに圧縮ひずみを検出するためのひず
みゲージ72が貼り付けられている。また、ロードセル
71の下端には取り付けネジ73が形成され、ベース板
74にはネジ孔75が加工されているので、このネジ孔
75に取り付けネジ73をねじ込むことにより、ロード
セル71がベース板74に固定される。ここでは、ロー
ドセル71間の間隙を大きくとっているが、実際はその
間隙を最小にするように並べて固定される。
(3) Surface pressure sensor in which load cells are arranged FIG. 7 is an explanatory view for explaining a third example, and FIG. 7A is a perspective view showing the whole. In FIG. 9A, reference numeral 71 denotes a load cell, 72 denotes a strain gauge, 73 denotes a mounting screw, 74 denotes a base plate, 75 denotes a screw hole, and 76 denotes a strain generating portion. The load cell 71 which receives a compressive load from the vertical direction has a portion (also referred to as a strain generating portion) 7 having a reduced cross-sectional area.
6, a strain gauge 72 for detecting a compressive strain is attached thereto. A mounting screw 73 is formed at the lower end of the load cell 71, and a screw hole 75 is formed in the base plate 74. By screwing the mounting screw 73 into the screw hole 75, the load cell 71 is attached to the base plate 74. Fixed. Here, the gap between the load cells 71 is made large, but actually, they are fixed side by side so as to minimize the gap.

【0007】図7(b)は、ひずみゲージ72で検出し
た圧縮ひずみによる電気抵抗の変化を、電圧に変換する
ためのブリッジ回路例を示す。すなわち、ブリッジの各
辺には、ひずみゲージ72とダミーゲージ77,78が
接続され、ブリッジ電源79よりゲージ電圧が供給され
る。この状態でロードセル71が圧縮荷重を受けるとひ
ずみゲージ72の抵抗が変化し、ブリッジ回路のバラン
スがくずれるので、出力電圧80が発生する。ここで
は、ブリッジの1辺にだけひずみゲージ72を接続した
が、実際は温度補正のためのダミーゲージ77に横方向
に貼り付けたひずみゲージを接続したり、感度を上げる
ためダミーゲージ78にも縦方向と横方向に貼り付けた
ひずみゲージを接続して用いることが多い。
FIG. 7B shows an example of a bridge circuit for converting a change in electrical resistance due to a compressive strain detected by the strain gauge 72 into a voltage. That is, a strain gauge 72 and dummy gauges 77 and 78 are connected to each side of the bridge, and a gauge voltage is supplied from a bridge power supply 79. When the load cell 71 receives a compressive load in this state, the resistance of the strain gauge 72 changes and the balance of the bridge circuit is lost, so that an output voltage 80 is generated. Here, the strain gauge 72 is connected to only one side of the bridge. However, in practice, a strain gauge stuck in the horizontal direction is connected to the dummy gauge 77 for temperature correction, and the dummy gauge 78 is also vertically connected to increase the sensitivity. In many cases, strain gauges attached in the horizontal and vertical directions are connected and used.

【0008】[0008]

【発明が解決しようとする課題】しかし、図5や図6に
示すものではセンサの変形量が大きく、荷重体55や6
5の変位量を小さく抑制したい場合には不向きである。
そこで、変形量を小さく抑制して面圧分布を測定したい
場合の例を図8に示す。図8(a)のように、線膨張率
の異なる金属A81と金属B82を接合した大片と、同
じく金属B83と金属A84を接合した小片を接触さ
せ、これを上押板85と下押板86で挟み、ボルト87
で締め付けたとする。そして、この状態で全体が加熱さ
れたと仮定する。
However, in the arrangement shown in FIGS. 5 and 6, the amount of deformation of the sensor is large,
It is not suitable for suppressing the displacement amount of No. 5 to a small value.
Therefore, FIG. 8 shows an example in which the surface pressure distribution is measured while suppressing the deformation amount to be small. As shown in FIG. 8A, a large piece in which metal A81 and metal B82 having different coefficients of linear expansion are joined and a small piece in which metal B83 and metal A84 are also joined are brought into contact with each other. Between the bolts 87
Suppose you tightened. Then, it is assumed that the whole is heated in this state.

【0009】大片と小片はそれぞれ線膨張率の異なる金
属を接合した構造、いわゆるバイメタル構造であり、温
度変化によって反りを発生する。金属Bに対し金属Aの
線膨張率が大きい場合は、温度上昇により図8(b)に
点線89,90で示すように変形し、接触面圧が変化す
ることになる。この面圧を測るため、図8(b)の面圧
センサ90として上記のような感圧フィルムを挟むと、
このフィルムは軟質であり熱的にも弱いので、フィルム
自身の変形量が大きく正確な面圧を測ることはできな
い。つまり、このような場合には面圧センサ自身の変形
量が小さく、かつ熱的な影響を受けないものでなければ
ならない。
The large piece and the small piece each have a structure in which metals having different coefficients of linear expansion are joined, that is, a so-called bimetal structure, and warpage occurs due to a temperature change. When the linear expansion coefficient of the metal A is larger than that of the metal B, the metal A is deformed by the temperature rise as shown by dotted lines 89 and 90 in FIG. 8B, and the contact surface pressure changes. In order to measure this surface pressure, if the above-described pressure-sensitive film is interposed as the surface pressure sensor 90 in FIG.
Since this film is soft and thermally weak, the amount of deformation of the film itself is large and it is not possible to measure an accurate surface pressure. That is, in such a case, the amount of deformation of the surface pressure sensor itself must be small and the surface pressure sensor must not be thermally affected.

【0010】また、図8(b)のように、接触面の上も
下も変形するような場合には、センサ自身が変形に馴染
んで面圧を測定する必要がある。例えば、大片91と小
片92が図8(c)のような変形をする場合、図7で説
明したようなベース板上にロードセルを並べた面圧セン
サでは、下側接触面の形状変化を考慮できないため、正
確な面圧分布を測定できない。したがって、この発明の
課題は、剛性を高くして圧縮に対する変形量を抑え、熱
的に強くかつ可撓性とすることで、上下接触面の形状変
化に馴染んで面圧分布を測定できる面圧センサを提供す
ることにある。
When the contact surface is deformed both above and below as shown in FIG. 8 (b), it is necessary for the sensor itself to adapt to the deformation and measure the surface pressure. For example, when the large piece 91 and the small piece 92 deform as shown in FIG. 8C, in the surface pressure sensor in which the load cells are arranged on the base plate as described with reference to FIG. 7, the shape change of the lower contact surface is considered. Since it is not possible, it is not possible to measure an accurate surface pressure distribution. Therefore, an object of the present invention is to increase the rigidity to suppress the amount of deformation due to compression, and to make it thermally strong and flexible, so that the surface pressure distribution that can be adapted to the shape change of the upper and lower contact surfaces can be measured. It is to provide a sensor.

【0011】[0011]

【課題を解決するための手段】請求項1の発明では、中
央部の断面積を小さくした高剛性四角柱状体の中央部に
ひずみゲージを貼り付け、その高剛性四角柱状体の頭部
および底部をそれぞれ直交2軸方向に互い違いに貫通す
る貫通孔を開けたものを単位ロードセルとして、これを
マトリックス状に配列し、前記貫通孔に細線を通して互
いに連結して構成したことを特徴としている。
According to the first aspect of the present invention, a strain gauge is attached to the center of a high-rigid square prism having a reduced cross-sectional area at the center, and a head and a bottom of the high-rigid square prism are attached. Are formed as a unit load cell in which through-holes are alternately penetrated in two orthogonal axes directions, are arranged in a matrix, and are connected to each other through thin wires in the through-holes.

【0012】上記請求項1の発明においては、前記単位
ロードセル同士が接触する四角柱状体の頭部および底部
の各接触面を、摩擦係数の小さな物質層で形成すること
ができ(請求項2の発明)、この請求項2の発明におい
ては、前記摩擦係数の小さな物質としてプラスチックま
たはセラミックスを用いることができる(請求項3の発
明)。
According to the first aspect of the present invention, the contact surfaces of the head and the bottom of the quadrangular prism contacting the unit load cells can be formed of a material layer having a small coefficient of friction. In the invention of the second aspect, plastic or ceramic can be used as the substance having a small friction coefficient (the invention of the third aspect).

【0013】上記請求項1ないし3のいずれかの発明に
おいては、前記面圧センサの端部に位置する各単位ロー
ドセルの上下端から前記貫通孔に達するネジ孔を形成
し、細線の貫通後にこのネジ孔よりねじ込んだ止めネジ
により締め付けて前記細線を固定することができる(請
求項4の発明)。この場合、止めネジの先端側にボール
を挿入するとよい。
In any one of the first to third aspects of the present invention, a screw hole is formed to reach the through hole from the upper and lower ends of each unit load cell located at the end of the surface pressure sensor. The fine wire can be fixed by tightening with a set screw screwed from the screw hole (the invention of claim 4). In this case, it is advisable to insert a ball into the tip of the set screw.

【0014】[0014]

【発明の実施の形態】図1はこの発明の実施の形態を示
す構成概要図、図2は図1で用いられるロードセルの例
を示す斜視図である。まず、図2から説明する。これは
基本(単位)となるロードセルの構造を示しており、中
央部が細くなった四角柱を基本型とする。材料として
は、金属やセラミックスなどの高剛性の物質とする。1
7は起歪部であり、ここに縦方向ひずみゲージ18と横
方向ひずみゲージ19が、図示のように貼り付けられて
いる。縦方向ひずみゲージ18は圧力を検出するための
もので、横方向ひずみゲージ19は検出感度の増大と温
度補償の機能を果たすものである。また、受圧頭部11
と受圧底部12には互いに直角方向で交差しない貫通孔
13,14および15,16がそれぞれ開けられてい
る。
FIG. 1 is a schematic structural view showing an embodiment of the present invention, and FIG. 2 is a perspective view showing an example of a load cell used in FIG. First, FIG. 2 will be described. This shows a basic (unit) load cell structure, in which a square pillar having a narrow central portion is used as a basic type. The material is a highly rigid substance such as metal or ceramics. 1
Reference numeral 7 denotes a strain generating portion, on which a longitudinal strain gauge 18 and a transverse strain gauge 19 are attached as shown in the figure. The vertical strain gauge 18 is for detecting pressure, and the horizontal strain gauge 19 is for increasing the detection sensitivity and performing the function of temperature compensation. The pressure receiving head 11
The pressure receiving bottom 12 has through holes 13, 14 and 15, 16 that do not intersect at right angles to each other.

【0015】さて、図1(a)は上記のようなロードセ
ルを2×2個配置した場合、図1(b)は4×4個配置
した場合である。図1(a)ではロードセル1を互いに
離して配置しているが、これは説明のためで、一般には
図1(b)のように互いに離さず密着させて配置する。
なお、これらの図において、21は頭部X方向細線(ワ
イヤ)、22は底部X方向ワイヤ、31は頭部Y方向ワ
イヤ、32は底部Y方向ワイヤを示し、これらによって
ロードセル1を互いに連結し、面圧センサを構成してい
る。また、ロードセルの数は2×2個や4×4個に限ら
ず、一般にはN(整数)×N個とすることができる。
FIG. 1A shows a case where 2 × 2 load cells as described above are arranged, and FIG. 1B shows a case where 4 × 4 load cells are arranged. In FIG. 1A, the load cells 1 are arranged apart from each other, but this is for the purpose of explanation. Generally, as shown in FIG.
In these figures, 21 indicates a head X-direction thin wire (wire), 22 indicates a bottom X-direction wire, 31 indicates a head Y-direction wire, and 32 indicates a bottom Y-direction wire, by which the load cells 1 are connected to each other. And a surface pressure sensor. Further, the number of load cells is not limited to 2 × 2 or 4 × 4, but can be generally N (integer) × N.

【0016】図3は熱変形による反りが発生した接触面
の面圧を、面圧センサで測定する場合の状態を示す説明
図である。実際の変形は微小であるが、説明のため極端
に大きな変形を仮定して描かれている。この状態では、
ロードセル1の上下面は全面接触とはならず、上面接触
点27と下面接触点28が発生し、ロードセル1を時計
方向に回転させようとするモーメントが発生する。する
と、ロードセル1の各底部は離れようとするので、これ
を離さないよう適当な張力を持たせて保持するようなワ
イヤの固定方法が必要となる。
FIG. 3 is an explanatory diagram showing a state in which the surface pressure of the contact surface where warpage due to thermal deformation has occurred is measured by a surface pressure sensor. The actual deformation is very small, but is illustrated assuming extremely large deformation for explanation. In this state,
The upper and lower surfaces of the load cell 1 do not come into full contact, and an upper surface contact point 27 and a lower surface contact point 28 are generated, and a moment for rotating the load cell 1 clockwise is generated. Then, since each bottom of the load cell 1 tends to separate, it is necessary to provide a method of fixing the wire so as to hold the load cell 1 with an appropriate tension so as not to separate it.

【0017】図4は上述のようなワイヤ固定方法の説明
図である。ただし、このように構成するのは、センサ外
周部にあるロードセル、従って図1(a)の場合は全
て、同(b)の場合は符号1を付した4つということに
なる。まず、ロードセル1の上下端から貫通孔13,1
5に達するネジ孔(42だけ図示している)を開ける。
次に、ワイヤ21,22を通し、その上にボール41を
入れ、例えば6角穴付き止めネジ40で締め付ける。こ
のとき、ワイヤに適当な張力を掛けながらネジ40を締
め付けることにより、図3に示す状態で面圧を測定して
も、各ロードセル1を互いに離れないようにすることが
可能となる。なお、ボール41を省略し止めネジ40だ
けで締め付けるようにしても良い。
FIG. 4 is an explanatory diagram of the wire fixing method as described above. However, such a configuration is equivalent to four load cells in the outer peripheral portion of the sensor, that is, all four in FIG. 1A and the numeral 1 in FIG. 1B. First, the through-holes 13 and 1 from the upper and lower ends of the load cell 1
Drill a screw hole (only 42 is shown) reaching 5.
Next, the wires 41 are passed through the wires 21 and 22, and the ball 41 is put thereon. At this time, by tightening the screw 40 while applying an appropriate tension to the wire, it is possible to keep the load cells 1 from separating from each other even when the surface pressure is measured in the state shown in FIG. Note that the ball 41 may be omitted, and the ball 41 may be tightened only with the set screw 40.

【0018】上記のようなセンサを、例えばヒートサイ
クル試験などで使用すると、各ロードセル間の摩擦係数
が増加し、上下方向の動きが悪くなる場合がある。そこ
で、例えば図3(b)に斜線を付して示すように、ロー
ドセルの頭部と底部の互いに接触,滑動する側面に、プ
ラスチックやセラミックス等の摩擦係数の小さな物質層
111,121(斜線参照)を形成するようにしてい
る。こうすることで上下方向に動きやすくなり、良好な
可撓性を維持することが可能となる。
When the above-described sensor is used in, for example, a heat cycle test, the coefficient of friction between the load cells increases, and the vertical movement may be deteriorated. Therefore, as shown in FIG. 3B by hatching, for example, material layers 111 and 121 having a small coefficient of friction such as plastics and ceramics (see hatched lines) are provided on the side surfaces of the head and the bottom of the load cell which contact and slide with each other. ) Is formed. By doing so, it becomes easy to move in the vertical direction, and good flexibility can be maintained.

【0019】[0019]

【発明の効果】この発明によれば、高剛性の単位ロード
セルを複数個マトリックス状に配置し、互いに細線によ
り連結して構成したので、個々には高い剛性を有するこ
とから変形量が少なく、全体的には可撓性を有するた
め、正確な面圧および面圧分布の測定が可能となる利点
が得られる。また、熱にも強いので温度変化にも対応可
能である。
According to the present invention, a plurality of high-rigidity unit load cells are arranged in a matrix and are connected to each other by thin lines, so that each has a high rigidity, so that the amount of deformation is small, and In particular, since it has flexibility, an advantage that accurate measurement of surface pressure and surface pressure distribution can be obtained is obtained. Also, since it is strong against heat, it can cope with temperature changes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】図1で用いられる単位ロードセルを示す斜視図
である。
FIG. 2 is a perspective view showing a unit load cell used in FIG.

【図3】反りが発生した場合のこの発明による面圧測定
方法説明図である。
FIG. 3 is an explanatory diagram of a surface pressure measuring method according to the present invention when warpage occurs.

【図4】この発明による細線の固定方法説明図である。FIG. 4 is an explanatory diagram of a method for fixing a thin wire according to the present invention.

【図5】第1の従来例の説明図である。FIG. 5 is an explanatory diagram of a first conventional example.

【図6】第2の従来例の説明図である。FIG. 6 is an explanatory diagram of a second conventional example.

【図7】第3の従来例の説明図である。FIG. 7 is an explanatory diagram of a third conventional example.

【図8】面圧測定が必要な理由の説明図である。FIG. 8 is an explanatory diagram of the reason why surface pressure measurement is required.

【符号の説明】[Explanation of symbols]

1…ロードセル、11…受圧頭部、12…受圧底部、1
3〜16…貫通孔、17…起歪部、18…縦方向ひずみ
ゲージ、19…横方向ひずみゲージ、21,22,3
1,32…細線(ワイヤ)、25,26…反り発生器、
27…上面接触点、28…下面接触点、111,121
…小摩擦係数の物質層、40…止めネジ、41…ボー
ル、42…ネジ孔。
1 ... load cell, 11 ... pressure receiving head, 12 ... pressure receiving bottom, 1
3-16: Through-hole, 17: Strain-generating part, 18: Vertical strain gauge, 19: Horizontal strain gauge, 21, 22, 3
1, 32 ... fine wire (wire), 25, 26 ... warp generator,
27: upper contact point, 28: lower contact point, 111, 121
... A material layer having a small coefficient of friction, 40... Set screws, 41... Balls, 42.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 中央部の断面積を小さくした高剛性四角
柱状体の中央部にひずみゲージを貼り付け、その高剛性
四角柱状体の頭部および底部をそれぞれ直交2軸方向に
互い違いに貫通する貫通孔を開けたものを単位ロードセ
ルとして、これをマトリックス状に配列し、前記貫通孔
に細線を通して互いに連結して構成したことを特徴とす
る面圧センサ。
1. A strain gauge is attached to a central portion of a high-rigidity rectangular column having a reduced cross-sectional area at a central portion, and the head and the bottom of the high-rigidity rectangular column are alternately penetrated in two orthogonal directions. A surface pressure sensor comprising: a unit load cell having a through-hole formed therein, arranged in a matrix, and connected to each other through a thin wire in the through-hole.
【請求項2】 前記単位ロードセル同士が接触する四角
柱状体の頭部および底部の各接触面を、摩擦係数の小さ
な物質層で形成することを特徴とする請求項1に記載の
面圧センサ。
2. The surface pressure sensor according to claim 1, wherein each of the contact surfaces of the head and the bottom of the quadrangular prism body with which the unit load cells contact each other is formed of a material layer having a small coefficient of friction.
【請求項3】 前記摩擦係数の小さな物質としてプラス
チックまたはセラミックスを用いることを特徴とする請
求項2に記載の面圧センサ。
3. The surface pressure sensor according to claim 2, wherein plastic or ceramic is used as the material having a small coefficient of friction.
【請求項4】 前記面圧センサの端部に位置する各単位
ロードセルの上下端から前記貫通孔に達するネジ孔を形
成し、細線の貫通後にこのネジ孔よりねじ込んだ止めネ
ジにより締め付けて前記細線を固定することを特徴とす
る請求項1ないし3のいずれかに記載の面圧センサ。
4. A screw hole reaching the through hole from the upper and lower ends of each unit load cell located at the end of the surface pressure sensor, and after passing through the fine wire, is tightened with a set screw screwed in from the screw hole. The surface pressure sensor according to claim 1, wherein the surface pressure sensor is fixed.
【請求項5】 前記止めネジと細線の間にボールを挿入
し、このボールを介して細線を固定することを特徴とす
る請求項4に記載の面圧センサ。
5. The surface pressure sensor according to claim 4, wherein a ball is inserted between the set screw and the fine wire, and the fine wire is fixed through the ball.
JP3698799A 1999-02-16 1999-02-16 Face pressure sensor Pending JP2000234975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3698799A JP2000234975A (en) 1999-02-16 1999-02-16 Face pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3698799A JP2000234975A (en) 1999-02-16 1999-02-16 Face pressure sensor

Publications (1)

Publication Number Publication Date
JP2000234975A true JP2000234975A (en) 2000-08-29

Family

ID=12485111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3698799A Pending JP2000234975A (en) 1999-02-16 1999-02-16 Face pressure sensor

Country Status (1)

Country Link
JP (1) JP2000234975A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038913A (en) * 2009-08-12 2011-02-24 Railway Technical Res Inst Measurement system for earthquake impact force and method of measurement
JP2011058912A (en) * 2009-09-09 2011-03-24 Railway Technical Res Inst System and method for measuring earthquake impactive force
JP2011058913A (en) * 2009-09-09 2011-03-24 Railway Technical Res Inst Measurement system and measurement method of earthquake impact force
JP2011094976A (en) * 2009-10-27 2011-05-12 Railway Technical Res Inst System and method for measuring earthquake impact force
JP2011094975A (en) * 2009-10-27 2011-05-12 Railway Technical Res Inst System and method for measuring earthquake impact force
JP2013019771A (en) * 2011-07-12 2013-01-31 Nippon Steel & Sumitomo Metal Load measuring device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038913A (en) * 2009-08-12 2011-02-24 Railway Technical Res Inst Measurement system for earthquake impact force and method of measurement
JP2011058912A (en) * 2009-09-09 2011-03-24 Railway Technical Res Inst System and method for measuring earthquake impactive force
JP2011058913A (en) * 2009-09-09 2011-03-24 Railway Technical Res Inst Measurement system and measurement method of earthquake impact force
JP2011094976A (en) * 2009-10-27 2011-05-12 Railway Technical Res Inst System and method for measuring earthquake impact force
JP2011094975A (en) * 2009-10-27 2011-05-12 Railway Technical Res Inst System and method for measuring earthquake impact force
JP2013019771A (en) * 2011-07-12 2013-01-31 Nippon Steel & Sumitomo Metal Load measuring device

Similar Documents

Publication Publication Date Title
KR101115418B1 (en) 6-axis sensor structure using force sensor and method of measuring force and moment therewith
US9383270B1 (en) Silicon force sensor
Mei et al. An integrated MEMS three-dimensional tactile sensor with large force range
US7726199B2 (en) Dielectrostrictive sensor for measuring deformation
JP3040816B2 (en) Operation test method in device for detecting physical quantity using change in distance between electrodes, and physical quantity detection device having function of performing this method
US7311009B2 (en) Microelectromechanical systems contact stress sensor
US5402684A (en) Multicomponent force and moment measuring arrangement
JP4987304B2 (en) Flexible contact type load measuring sensor
JP5040008B2 (en) Pressure sensor
JP2006226858A (en) Fluctuation load sensor, and tactile sensor using the same
US11248967B2 (en) Dual-use strain sensor to detect environmental information
JP2000234975A (en) Face pressure sensor
JP2016217804A (en) Multi-axis tactile sensor and method for manufacturing multi-axis tactile sensor
US3210993A (en) Electromechanical transducer utilizing poisson ratio effects
JP4269292B2 (en) 3-axis acceleration sensor
US9506823B2 (en) Bonding stress testing arrangement and method of determining stress
JPH05149773A (en) Using method of strain gage
JP2000097833A (en) Mechanical load test method for semiconductor device
CN111307340B (en) Flexible sensor for measuring two-dimensional force or fluid to solid pressure and friction force
CN111307352B (en) Flexible sensor capable of measuring friction force between fluid and solid
JPH0584870B2 (en)
JP2000162054A (en) Load distribution sensor
Heracleous et al. Scalable 4-D printed tactile sensor for the detection of shear forces in the aid of plantar measurements
JPH0663881B2 (en) Pressure sensor
JPH03249530A (en) Distribution type tactile sensor