JP5655727B2 - Load measuring device - Google Patents

Load measuring device Download PDF

Info

Publication number
JP5655727B2
JP5655727B2 JP2011153546A JP2011153546A JP5655727B2 JP 5655727 B2 JP5655727 B2 JP 5655727B2 JP 2011153546 A JP2011153546 A JP 2011153546A JP 2011153546 A JP2011153546 A JP 2011153546A JP 5655727 B2 JP5655727 B2 JP 5655727B2
Authority
JP
Japan
Prior art keywords
load
contact
support
cross
load measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011153546A
Other languages
Japanese (ja)
Other versions
JP2013019770A (en
Inventor
智史 広瀬
智史 広瀬
水村 正昭
正昭 水村
俊二 樋渡
俊二 樋渡
野村 成彦
成彦 野村
上西 朗弘
朗弘 上西
佐藤 浩一
浩一 佐藤
和田 学
学 和田
徹 江上
徹 江上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011153546A priority Critical patent/JP5655727B2/en
Publication of JP2013019770A publication Critical patent/JP2013019770A/en
Application granted granted Critical
Publication of JP5655727B2 publication Critical patent/JP5655727B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

本発明は、荷重計測装置に関するものであり、特に自動車構造を代表とする衝撃吸収部材の特性評価に必須の高速変形を含む広範囲の変形速度における引張荷重または圧縮荷重の計測に適した荷重計測装置に関する。   The present invention relates to a load measuring device, and in particular, a load measuring device suitable for measuring a tensile load or a compressive load in a wide range of deformation speeds including high-speed deformation essential for characteristic evaluation of an impact absorbing member typified by an automobile structure. About.

自動車業界では、衝突時の乗員への傷害を低減しうる車体構造の開発が急務の課題となっており、車体の衝突変形挙動を最適化するためには、個々の部材やそれらの組合せ構造の変形特性を把握することが極めて重要である。
そのため、従来においては、大型の圧縮試験機等を用いて部材を低速で変形させるという準静的な方法で該部材の特性評価が行われてきた。
In the automotive industry, the development of a vehicle body structure that can reduce injury to passengers during a collision is an urgent issue, and in order to optimize the collision deformation behavior of the vehicle body, individual members and their combined structures It is extremely important to understand the deformation characteristics.
Therefore, conventionally, characteristic evaluation of the member has been performed by a quasi-static method in which the member is deformed at a low speed using a large compression tester or the like.

ところが、実際の衝突変形は高速で変形が起こるものであり、準静的な荷重負荷での挙動とは差がある。特に、自動車で多く使用される薄板構造において重要な座屈は、荷重負荷が動的か準静的かによって挙動が異なることが知られている。
このため、動的な変形特性を把握するために落重試験、即ち、固定した部材に対して、上部から落錘を衝突させて動的な変形を起こさせる試験を行って、実際の衝突時の変形に近づけるようにしていた。
However, actual collision deformation occurs at high speed, which is different from behavior under quasi-static load. In particular, it is known that buckling, which is important in a thin plate structure often used in automobiles, behaves differently depending on whether the load is dynamic or quasi-static.
For this reason, in order to grasp the dynamic deformation characteristics, a drop weight test, that is, a test that causes a drop weight to collide with a fixed member from the top to cause a dynamic deformation is performed. It was trying to be close to the deformation.

しかしながら、特性評価には部材の衝撃変形時の吸収エネルギーを評価する必要があるため、吸収エネルギーの評価には部材の圧潰距離と、その時の圧潰荷重の計測が必要となるが、このような動的な試験においては、この圧潰荷重の計測が非常に難しいのが実情であった。
即ち、通常の準静的な試験で使われるロードセルで動的な荷重を計測した場合、計測中に衝撃弾性波がロードセル中を反射・伝播して、この衝撃弾性波の伝播に起因した荷重の振動が発生・重畳するため、該衝撃弾性波が計測荷重の計測に影響を与え、これにより真の荷重計測が出来ないという問題があった。
However, since it is necessary to evaluate the absorbed energy at the time of impact deformation of the member for characteristic evaluation, the evaluation of the absorbed energy requires measurement of the crush distance of the member and the crushing load at that time. In a typical test, it was actually difficult to measure the crush load.
That is, when a dynamic load is measured with a load cell used in a normal quasi-static test, the impact elastic wave reflects and propagates through the load cell during measurement, and the load due to the propagation of the impact elastic wave is reduced. Since vibration is generated and superimposed, there is a problem that the impact elastic wave affects the measurement of the measurement load, thereby preventing a true load measurement.

上述のような動的な荷重の計測方法については、材料の応力−ひずみ関係を計測するため、例えば特許文献1に、試験体の動的変形特性を計測する際に動的荷重の作用開始点とその支持構造が直線的に配置されるような装置において、作用開始点、試験体、荷重検出部、荷重検出部の支持構造がこの順に配置されており、かつ、荷重検出部が円柱状であり、その直径D(mm)と、長さL(mm)の比が、0.3≦L/D≦3を満たし、かつ、(荷重検出部の断面積)<(荷重検出部の支持構造の断面積)を満たす荷重計測装置が示されている。また、試験体の支持が必要な場合には、作用開始点、試験体、試験体の支持部、荷重検出部、支持構造がこの順に配置され、さらに、(荷重検出部の断面積)<(試験体の支持部の断面積)の条件を満たす荷重計測装置が記載されている。   Regarding the dynamic load measuring method as described above, in order to measure the stress-strain relationship of the material, for example, in Patent Document 1, when the dynamic deformation characteristics of the test specimen are measured, the action starting point of the dynamic load is measured. In the apparatus in which the support structure is linearly arranged, the action starting point, the test body, the load detection unit, the load detection unit support structure are arranged in this order, and the load detection unit is cylindrical. Yes, the ratio of the diameter D (mm) to the length L (mm) satisfies 0.3 ≦ L / D ≦ 3, and (the cross-sectional area of the load detection unit) <(the support structure of the load detection unit) A cross-sectional area) is shown. In addition, when it is necessary to support the test body, the action starting point, the test body, the support section of the test body, the load detection section, and the support structure are arranged in this order, and (cross-sectional area of the load detection section) <( A load measuring device that satisfies the condition of the cross-sectional area of the support portion of the test body is described.

上記特許文献1に記載された荷重計測装置は、動的な荷重の検出であっても比較的精度よく行うことができるが、荷重の検出を行う荷重検出部に偏心荷重が作用するような場合には、該荷重検出部に複雑な曲げモーメントが発生する。特に、近年増大している複雑な構造体に対する試験の場合、引張荷重または圧縮荷重がどの位置に作用するかが特定できない場合も多いため、荷重検出部に偏心荷重が作用する可能性が高い。   The load measuring device described in Patent Document 1 can perform a relatively accurate load detection even when a dynamic load is detected, but an eccentric load acts on a load detection unit that detects a load. In this case, a complicated bending moment is generated in the load detection unit. In particular, in the case of a test on a complex structure that has been increasing in recent years, it is often impossible to specify at which position the tensile load or the compressive load acts, and therefore there is a high possibility that an eccentric load acts on the load detection unit.

このとき、この特許文献1に記載された荷重計測装置においても、荷重検出部の軸線方向に作用する荷重を測定することは一応可能であるものの、偏心荷重が作用した場合には上述のように荷重検出部に複雑な曲げモーメントが発生するため、その曲げモーメントの影響を受けて正確な荷重計測を行うことができないことが考えられる。また、荷重検出部に貼り付けるひずみゲージの位置によって測定精度が変化しやすいという問題も存在する。さらには、偏心荷重によって荷重検出部の一部に応力が集中し、該荷重検出部の一部が集中的に変形してしまうことがあるため、本来弾性変形のみを前提としている荷重検出部に塑性変形が生じてしまう可能性があり、やはり正確な荷重計測ができないことが考えられる。   At this time, even in the load measuring device described in Patent Document 1, it is possible to measure the load acting in the axial direction of the load detection unit, but when an eccentric load is applied, as described above. Since a complicated bending moment is generated in the load detector, it is considered that accurate load measurement cannot be performed due to the influence of the bending moment. There is also a problem that the measurement accuracy is likely to change depending on the position of the strain gauge attached to the load detection unit. Furthermore, since stress concentrates on a part of the load detection unit due to the eccentric load, and part of the load detection unit may be intensively deformed, the load detection unit that is originally supposed to be elastically deformed is used. There is a possibility that plastic deformation may occur, and it is considered that accurate load measurement cannot be performed.

特開2006−284514号公報JP 2006-284514 A

本発明の技術的課題は、高速変形を含む広範囲の変形速度における高精度引張荷重又は圧縮荷重を計測するに際して、たとえ偏心荷重が作用しても荷重を正確に計測することができる荷重計測装置を提供することにある。   The technical problem of the present invention is to provide a load measuring device capable of accurately measuring a load even when an eccentric load is applied when measuring a high-precision tensile load or compressive load in a wide range of deformation speeds including high-speed deformation. It is to provide.

上記課題を解決するため、本発明の荷重計測装置は、引張荷重又は圧縮荷重を計測する柱状の荷重検出部と、該荷重検出部の軸線方向の一端側に設けられて引張荷重又は圧縮荷重を作用させる接触部及び他端側に設けられた支持部とを有する荷重計測部材と、上記荷重計測部材を、該荷重計測部材と非接触で上記荷重検出部の軸線周りに覆う筒部と、上記筒部の内周面と上記荷重計測部材の接触部及び支持部における該筒部の内周面との対向面との間に介在させた、接触部及び支持部を筒部内に保持する球状又は円柱状の複数の転動子とを備え、
上記転動子は、前記接触部及び支持部の各外周面と点接触して、引張荷重又は圧縮荷重により変位した接触部と支持部とを、筒部の内周面に沿って荷重検出部の軸線方向に案内する方向に転動自在に配設され、上記荷重計測部材は、上記荷重検出部が円柱状に形成されていると共に、上記接触部及び支持部における荷重検出部の軸線と直交する断面の断面積が、荷重検出部における該軸線と直交する断面の断面積よりも大きく形成されていることを特徴とするものである。
In order to solve the above problems, a load measuring device according to the present invention is provided with a columnar load detection unit for measuring a tensile load or a compressive load, and one end side in the axial direction of the load detection unit. A load measuring member having a contact portion to be actuated and a support portion provided on the other end side, a cylinder portion covering the load measuring member around the axis of the load detecting portion in a non-contact manner with the load measuring member, and A spherical shape that holds the contact part and the support part in the cylinder part interposed between the inner peripheral surface of the cylinder part and the contact part and the support part of the load measuring member facing the inner peripheral surface of the cylinder part. A plurality of cylindrical rolling elements,
The above-mentioned rolling element is in point contact with each outer peripheral surface of the contact portion and the support portion, and the contact portion and the support portion displaced by the tensile load or the compressive load are arranged along the inner peripheral surface of the cylindrical portion. The load measuring member is arranged so that the load detecting member is formed in a cylindrical shape, and is orthogonal to the axis of the load detecting portion in the contact portion and the support portion. The cross-sectional area of the cross section is larger than the cross-sectional area of the cross section orthogonal to the axis in the load detection unit .

本発明においては、上記のように、上記荷重計測部材は、上記荷重検出部が円柱状に形成されていると共に、上記接触部及び支持部における荷重検出部の軸線と直交する断面の断面積が、荷重検出部における該軸線と直交する断面の断面積よりも大きく形成されており、しかも上記転動子は、前記接触部及び支持部の各外周面と点接触するものとしている
そのため、各荷重計測部材の荷重検出部内における応力波の反射・干渉を促進させることができるため、計測すべき荷重に係る荷重検出部内での応力波の早期の飽和を図り、また該荷重検出部における応力波の伝播の乱れの影響を排除することが可能となる。したがって、自動車構造を代表とする衝撃吸収部材の特性評価に必須の高速変形を含む広範囲の変形速度における引張荷重または圧縮荷重の計測をより高精度に行うことができる。
In the present invention, as described above, the load measuring member has the load detecting portion formed in a columnar shape, and the cross-sectional area of the cross section orthogonal to the axis of the load detecting portion in the contact portion and the support portion. is formed larger than the cross-sectional area of a cross section orthogonal to the axial line of the load detecting unit, yet the rolling elements, it is assumed that contact each outer peripheral surface and the point of the contact portion and the support portion.
Therefore, since reflection / interference of stress waves in the load detection unit of each load measurement member can be promoted, early saturation of the stress wave in the load detection unit related to the load to be measured is achieved, and the load detection unit It becomes possible to eliminate the influence of the disturbance of the propagation of the stress wave in the. Therefore, it is possible to measure the tensile load or the compressive load in a wide range of deformation speeds including high-speed deformation essential for the characteristic evaluation of the shock absorbing member represented by the automobile structure with higher accuracy.

また、本発明においては、上記荷重計測部材は、上記荷重検出部と、上記接触部と支持部とのうち少なくとも一方とが、一体に形成されているものとすることができる。
さらに、本発明においては、上記転動子は、前記接触部及び前記支持部の素材とは異なる密度の素材を用いて形成することができる。
そしてまた本発明の荷重計測装置は、衝撃荷重測定用の荷重計測装置とすることができる。
In the present invention, the load measuring member may be formed integrally with the load detection unit and at least one of the contact unit and the support unit.
Furthermore, in the present invention, the rolling element can be formed using a material having a density different from that of the material of the contact part and the support part .
In addition, the load measuring device of the present invention can be a load measuring device for measuring impact loads.

本発明によれば、荷重計測部材を、筒部で該荷重計測部材と非接触で荷重検出部の軸線周りに覆うと共に、筒部と上記荷重計測部材の接触部及び支持部との間に複数の転動子を介在させ、該転動子により、引張荷重又は圧縮荷重によって変位した接触部・支持部を、筒部の内周面に沿って荷重検出部の軸線方向に案内させる構成としたため、接触部や支持部に偏心荷重が作用したとしても、接触部全体あるいは支持部全体を、これらの態勢を維持しながら荷重検出部の軸線方向に変位させることができる。
これにより、荷重検出部に複雑な曲げモーメントが発生することが抑えられるため、引張荷重又は圧縮荷重を高精度で計測することができる。
さらに、接触部及び支持部が変位する方向が荷重検出部の軸線方向に限定されたことにより、荷重検出部の偏心荷重に起因する変形の集中が抑えられるため、該荷重検出部の塑性変形が防止される。
According to the present invention, the load measuring member is covered around the axis of the load detecting unit in a non-contact manner with the load measuring member at the cylindrical portion, and a plurality of load measuring members are provided between the cylindrical portion and the contact portion and the support portion of the load measuring member. The contact portion / support portion displaced by a tensile load or a compressive load is guided along the inner peripheral surface of the cylindrical portion in the axial direction of the load detecting portion. Even if an eccentric load is applied to the contact portion or the support portion, the entire contact portion or the entire support portion can be displaced in the axial direction of the load detection portion while maintaining these postures.
Thereby, since it is suppressed that a complicated bending moment generate | occur | produces in a load detection part, a tensile load or a compressive load can be measured with high precision.
Furthermore, since the direction in which the contact portion and the support portion are displaced is limited to the axial direction of the load detection portion, the concentration of deformation due to the eccentric load of the load detection portion is suppressed, so that the plastic deformation of the load detection portion is prevented. Is prevented.

本発明に係る荷重計測装置を模式的に示す平面図である。It is a top view which shows typically the load measuring device which concerns on this invention. 同断面図である。FIG. 荷重検出部の荷重の上昇過程を説明する説明図である。It is explanatory drawing explaining the raise process of the load of a load detection part. 接触部に荷重が作用した場合における荷重計測装置の動きを模式的に示す断面図である。It is sectional drawing which shows typically a motion of the load measuring device when a load acts on a contact part. 転動子による応力波の反射を説明する図である。It is a figure explaining reflection of the stress wave by a rolling element. 本発明に係る荷重計測装置と従来の荷重計測装置とについての、測定結果を比較したグラフである。It is the graph which compared the measurement result about the load measuring device which concerns on this invention, and the conventional load measuring device.

図1及び図2は本発明の荷重計測装置の一実施の形態を示すもので、この実施の形態の荷重計測装置は、引張荷重又は圧縮荷重を計測する柱状の荷重検出部2を備えた荷重計測部材1と、該荷重計測部材1を荷重検出部2の軸線周りに覆う筒部3と、該筒部と接触部及び支持部との間に介在させた複数の転動子4とを備えている。   1 and 2 show an embodiment of a load measuring device according to the present invention. The load measuring device of this embodiment is a load provided with a columnar load detector 2 for measuring a tensile load or a compressive load. The measuring member 1, the cylinder part 3 which covers this load measurement member 1 around the axis line of the load detection part 2, and the some rolling element 4 interposed between this cylinder part, a contact part, and a support part are provided. ing.

上記荷重計測部材1は、円柱状に形成された上記荷重検出部2と、該荷重検出部2の軸線方向の一端側に設けられた、引張荷重又は圧縮荷重を作用させる接触面5aを有する接触部5、及び荷重検出部の他端側に設けられた支持部6とを有するものである。
この実施の形態においては、荷重検出部2をその軸線が鉛直方向に延びた構成とすると共に、該荷重検出部2の上端側を接触部5、下端側を支持部6として、上記接触面5aが接触部5の上面側に上方向きに設けられたものとしている。したがって、荷重計測部材1は、全体として、荷重検出部2がこれら接触部5の下面側と支持部6の上面側との間に挟まれた態様となっている。
The load measuring member 1 has a contact having a load surface 2a formed in a columnar shape and a contact surface 5a provided on one end side in the axial direction of the load detector 2 for applying a tensile load or a compressive load. It has the part 5 and the support part 6 provided in the other end side of the load detection part.
In this embodiment, the load detection unit 2 is configured such that its axis extends in the vertical direction, and the contact surface 5a is configured with the upper end side of the load detection unit 2 as the contact portion 5 and the lower end side as the support portion 6. Is provided upward on the upper surface side of the contact portion 5. Therefore, the load measuring member 1 has a mode in which the load detection unit 2 is sandwiched between the lower surface side of the contact unit 5 and the upper surface side of the support unit 6 as a whole.

上記荷重検出部2の外周面には、図示しないひずみゲージが貼付けられていて、このひずみゲージにより測定した表面ひずみから荷重を算出することができるようになっている。この荷重検出部2を中実の円柱状としているのは、断面内の荷重分布を均一とするためであり、これにより、ひずみゲージによる荷重計測の精度が高められる。
この点について詳しく説明すると、該荷重検出部に偏心荷重が作用した際に、該荷重検出部の一部に応力が集中した場合には、その部分において局所的な変形が生じやすく、しかも、その変形は圧縮変形やせん断変形が入り混じった複雑な変形となる。後で詳述する応力波は、伝播する物体の変形によって速度が変化することから、荷重検出部にこのような複雑な変形が生じた場合には、該荷重検出部を伝播速度の異なる応力波が時間差をもって通過することになる。そして、このような応力波の時間差は荷重検出時にはノイズとしてあらわれるため、結果として高精度の荷重計測が阻害される可能性がある。
そのため、この実施の形態においては、荷重検出部を中実の円柱状として、断面内の荷重分布を均一とすることにより局所的な変形集中を防いで極力単純な変形が生じるようにし、これにより、荷重検出部内における応力波の速度の変化を防止して該応力波が時間差をもって通過することを防ぎ、荷重検出時のノイズを排除するようにしている。
なお、荷重検出部2の軸線方向長さは、ひずみゲージの貼付けができる範囲内において、できるだけ短い方が望ましく、これにより、荷重計測の際に荷重検出部2全体に応力波が伝播する時間を低減することができるため、後述する応力波の荷重検出部2での早期飽和を一層促進させることができる。
A strain gauge (not shown) is affixed to the outer peripheral surface of the load detector 2, and the load can be calculated from the surface strain measured by the strain gauge. The reason why the load detection unit 2 is a solid cylinder is to make the load distribution in the cross section uniform, thereby improving the accuracy of load measurement using a strain gauge.
This point will be described in detail. When an eccentric load is applied to the load detection unit, if stress is concentrated on a part of the load detection unit, local deformation is likely to occur in the part, and The deformation is a complex deformation in which compression deformation and shear deformation are mixed. Since stress waves, which will be described in detail later, change in speed due to deformation of a propagating object, when such a complicated deformation occurs in the load detection unit, the load detection unit is subjected to stress waves having different propagation speeds. Will pass with a time difference. Such a time difference between stress waves appears as noise at the time of load detection, and as a result, highly accurate load measurement may be hindered.
For this reason, in this embodiment, the load detector is a solid cylindrical shape, and the load distribution in the cross section is made uniform to prevent local deformation concentration, thereby causing simple deformation as much as possible. The change of the speed of the stress wave in the load detection unit is prevented, the stress wave is prevented from passing with a time difference, and noise at the time of load detection is eliminated.
The length in the axial direction of the load detector 2 is preferably as short as possible within the range where the strain gauge can be attached. This allows time for the stress wave to propagate throughout the load detector 2 during load measurement. Since it can reduce, the early saturation in the load detection part 2 of the stress wave mentioned later can be promoted further.

また、上記荷重計測部材1は、上記荷重検出部2と上記接触部5及び支持部6とが、削り出し等の適当な手段によって相互に一体に形成されている。
これら荷重検出部2と接触部5及び支持部6とを一体に形成するのは、荷重計測部材1内、つまり荷重検出部2と接触部5及び支持部6との接合部分において、応力波伝播に伴う振動の発生を抑えるためであり、これにより、荷重計測時にこの振動によるノイズが発生するのを防止して荷重計測の高精度化を図っている。
さらに、荷重検出部2及び接触部5並びに支持部6は、全体として高ヤング率の金属素材、例えば鉄等によって構成されていて、荷重計測部材1における後述する応力波の伝播速度を可及的に早めることができるようにしている。
In the load measuring member 1, the load detection unit 2, the contact unit 5, and the support unit 6 are integrally formed with each other by appropriate means such as shaving.
The load detection unit 2, the contact unit 5, and the support unit 6 are integrally formed in the load measuring member 1, that is, at the joint between the load detection unit 2, the contact unit 5, and the support unit 6. This prevents the occurrence of noise due to the vibration during load measurement, thereby improving the accuracy of load measurement.
Furthermore, the load detection unit 2, the contact unit 5, and the support unit 6 are made of a metal material having a high Young's modulus, such as iron, as a whole, and the stress wave propagation speed described later in the load measuring member 1 is made as much as possible. To be able to speed up.

ところで、この荷重計測部材1においては、上記接触部5及び支持部6が、図1及び図2に示すように、それぞれ同形同大の円柱状に形成されていて、いずれも、荷重検出部2の軸線と直交する断面(この場合、水平断面)の断面積At,Asが、荷重検出部2における該軸線と直交する断面の断面積Akよりも大きく設定されている。したがって、荷重計測部材1における荷重検出部及び接触部並びに支持部の各水平断面の断面積Ak,At,Asの大きさの関係は、At=As>Akとなる。
ここで、接触部5及び支持部6における荷重検出部2の軸線と直交する断面の断面積At,Asを、荷重検出部2における軸線と直交する断面の断面積Akよりも大きく形成したのは、荷重検出部2における応力波の飽和をより早期に完了させるためである。
以下、この点について具体的に説明する。
By the way, in this load measuring member 1, the said contact part 5 and the support part 6 are each formed in the column shape of the same shape and the same size as shown in FIG.1 and FIG.2, and both are load detection parts. The cross-sectional areas At and As of the cross section orthogonal to the axis 2 (in this case, the horizontal cross section) are set to be larger than the cross-sectional area Ak of the cross section orthogonal to the axis of the load detector 2. Therefore, the relationship among the sizes of the cross-sectional areas Ak, At, As of the horizontal cross sections of the load detection part, the contact part, and the support part in the load measuring member 1 is At = As> Ak.
Here, the cross-sectional areas At and As of the cross section orthogonal to the axis of the load detection unit 2 in the contact part 5 and the support part 6 are formed larger than the cross-sectional area Ak of the cross section orthogonal to the axis of the load detection unit 2. This is because the saturation of the stress wave in the load detection unit 2 is completed earlier.
Hereinafter, this point will be specifically described.

試験体に衝撃荷重が加わる場合、試験体に高速変形が生じるが、このときに試験体に負荷される引張荷重または圧縮荷重f、すなわち荷重計測部材1に生じる荷重は、図3に示すように段階的に上昇してΔt時間経過後に100%の荷重Fに到達するように計測される。これは、応力波が荷重検出部2を伝わる際に該荷重検出部2の端面で反射や、荷重検出部2内での応力波同士の干渉等を繰り返し、徐々に飽和するためである。
動的な試験を行った場合、応力波はまず荷重検出部2の内部で反射・干渉し、内部の変形を均一化する。そのとき、高速での高精度な荷重計測を行うためには、応力波ノイズの原因となる荷重検出部2内での反射・干渉を早期に飽和させることが必要である。
When an impact load is applied to the test body, high-speed deformation occurs in the test body. At this time, the tensile load or compression load f applied to the test body, that is, the load generated in the load measuring member 1 is as shown in FIG. It is measured so as to rise stepwise and reach a load F of 100% after lapse of Δt time. This is because when the stress wave is transmitted through the load detection unit 2, reflection on the end face of the load detection unit 2, interference of stress waves in the load detection unit 2, and the like are repeated, and the stress wave is gradually saturated.
When a dynamic test is performed, the stress wave is first reflected and interfered inside the load detection unit 2 to make the internal deformation uniform. At that time, in order to perform high-speed and high-accuracy load measurement, it is necessary to quickly saturate reflection / interference in the load detector 2 that causes stress wave noise.

したがって、試験体の高速変形時の荷重を正確に計測するためには、荷重検出部2内での応力波の反射・干渉を早期に飽和させて、荷重が不安定になる上記Δtの時間を短くすることが肝要である。
この点に鑑み、発明者らは、計測される荷重の複数の段差部分に注目し、これらの段差部分に相当する荷重を本来計測すべき荷重Fに対して相対的に増加させることにより、荷重検出部2に伝わる荷重を早期に荷重Fに到達させ、Δtの時間を短くすることができるとの知見を得た。
Therefore, in order to accurately measure the load at the time of high-speed deformation of the test body, the time Δt at which the load becomes unstable is obtained by saturating the reflection / interference of the stress wave in the load detector 2 at an early stage. It is important to shorten it.
In view of this point, the inventors pay attention to a plurality of step portions of the load to be measured, and increase the load corresponding to these step portions relative to the load F to be measured, thereby increasing the load. It was found that the load transmitted to the detector 2 can reach the load F at an early stage and the time Δt can be shortened.

そして、段差に相当する荷重を荷重Fに対して相対的に増加させるためには、荷重検出部2における応力波の反射率の増大を図り、該応力波を早期に飽和させることが効果的であることを発明者らは見出した。
また、応力波は断面積が小の領域から大の領域に進行する際に反射率が高くなり、反射が増大すること、及び応力波は断面積が大の領域から小の領域に進行する場合には、該断面積大の領域においては応力波の伝播の乱れの影響が非常に大きいが、小から大の領域に進行する場合、小の領域においては応力波の伝播の乱れの影響をほとんど受けないこともわかった。さらに、断面積の差が大きいほど、応力波の反射率が大きいことを見出した。
In order to increase the load corresponding to the step relative to the load F, it is effective to increase the reflectance of the stress wave in the load detection unit 2 and saturate the stress wave early. The inventors have found that there is.
Also, when the stress wave travels from a small area to a large area, the reflectivity increases and the reflection increases, and when the stress wave travels from a large area to a small area However, in the area of the large cross-sectional area, the influence of the disturbance of stress wave propagation is very large, but when the process proceeds from the small area to the large area, the influence of the disturbance of stress wave propagation is hardly affected in the small area. I knew I would n’t. Furthermore, it has been found that the greater the difference in cross-sectional area, the greater the stress wave reflectance.

そのため、この実施の形態においては、荷重検出部2の水平断面の断面積を、接触部5及び支持部6の水平断面の各断面積よりも小さくしている。
これにより、荷重検出部2における応力波の反射の増大・促進、干渉の促進を図り、該応力波を早期に飽和させることができ、さらには荷重検出部2における応力波の伝播の乱れの影響をほとんど排除することができるため、結果として、上記Δtの時間が短くなり、荷重検出部2でのより高精度な荷重計測が可能となる。
Therefore, in this embodiment, the cross-sectional area of the horizontal cross section of the load detection unit 2 is made smaller than the cross-sectional areas of the horizontal cross sections of the contact unit 5 and the support unit 6.
As a result, it is possible to increase / promote reflection of stress waves in the load detection unit 2 and to promote interference, to saturate the stress waves early, and to influence the disturbance of propagation of stress waves in the load detection unit 2 As a result, the time Δt is shortened, and the load detection unit 2 can perform load measurement with higher accuracy.

一方、上記筒部3は、上記荷重計測部材1の接触部5及び支持部6よりも大径の平面視略円形状の内周面を有し、且つ荷重計測部材1全体の高さ、つまり荷重計測部材1における荷重検出部の軸線方向の長さとほぼ同じ高さを有する、荷重検出部の軸線方向に(この実施の形態の場合、鉛直方向)に直線的に延びる円筒状のもので、剛性に優れた鉄等の金属で形成されている。
この筒部3は、内周面側の平面視形状が、上記接触部5及び支持部6の平面視形状である円形と同心円状に形成されており、荷重計測部材1を、該荷重計測部材1と非接触状態で中空内に収容している。したがって、筒部3は、該筒部3の内周面と上記接触部5及び支持部6の外周面との間に相互に非接触な空間を介して、接触部5及び支持部6の外周面に沿うように荷重計測部材1の外周面を覆う構成となっている。
On the other hand, the cylindrical portion 3 has a substantially circular inner peripheral surface in plan view having a larger diameter than the contact portion 5 and the support portion 6 of the load measuring member 1, and the height of the entire load measuring member 1, that is, A cylindrical member that has a height substantially the same as the axial length of the load detector in the load measuring member 1 and that extends linearly in the axial direction of the load detector (in the vertical direction in this embodiment), It is made of metal such as iron with excellent rigidity.
The cylindrical portion 3 is formed such that a plan view shape on the inner peripheral surface side is concentric with a circle which is a plan view shape of the contact portion 5 and the support portion 6, and the load measuring member 1 is connected to the load measuring member 1. 1 is accommodated in the hollow in a non-contact state. Therefore, the cylindrical portion 3 has the outer periphery of the contact portion 5 and the support portion 6 through a space that is not in contact with each other between the inner peripheral surface of the cylindrical portion 3 and the outer peripheral surface of the contact portion 5 and the support portion 6. The outer peripheral surface of the load measuring member 1 is covered along the surface.

また、上記転動子4は、上記筒部3の内周面と上記荷重計測部材1の接触部5及び支持部6における該筒部3の内周面との対向面(つまり接触部5及び支持部6の外周面)との間の空間に介在させたもので、接触部5・支持部6の各外周面と筒部3の内周面とにそれぞれに当接して荷重計測部材1全体を筒部3内に保持している。
そして、この転動子4は、筒部3内の特定の位置において荷重検出部2の軸線方向に転動自在となっており、これにより、引張荷重又は圧縮荷重が作用した際に、その荷重によって変位した接触部5・支持部6を、筒部3の内周面に沿って荷重検出部2の軸線方向に案内するようになっている。
Further, the rolling element 4 has an opposing surface (that is, the contact portion 5 and the contact portion 5 of the cylindrical portion 3 and the inner peripheral surface of the cylindrical portion 3 in the support portion 6 of the load measuring member 1). Between the contact portion 5 and the support portion 6 and the inner peripheral surface of the cylindrical portion 3, respectively, and the load measuring member 1 as a whole. Is held in the cylindrical portion 3.
And this rolling element 4 can roll in the axial direction of the load detection part 2 in the specific position in the cylinder part 3, Thereby, when a tensile load or a compressive load acts, the load The contact portion 5 and the support portion 6 displaced by the above are guided in the axial direction of the load detecting portion 2 along the inner peripheral surface of the cylindrical portion 3.

この実施の形態においては、図1及び図2に示すように、転動子4として金属により形成された球形のものを採用し、各転動子4を接触部5・支持部6の各外周面と点接触させると共に、筒部3の内周面において接触部5・支持部6を鉛直方向に案内する方向に転動自在となるように構成しており、これにより、図4に示すように、荷重が作用した場合に、これら接触部5全体あるいは支持部6全体を、初期の態勢を保ったままで鉛直方向に案内することができるようにしている。なお、図4中の白抜きの矢印は荷重を示す。   In this embodiment, as shown in FIG. 1 and FIG. 2, spherical elements formed of metal are adopted as the rolling elements 4, and each rolling element 4 is connected to each outer periphery of the contact portion 5 and the support portion 6. In addition to making point contact with the surface, it is configured to be able to roll in the direction in which the contact portion 5 and the support portion 6 are guided in the vertical direction on the inner peripheral surface of the cylindrical portion 3, and as a result, as shown in FIG. 4. In addition, when a load is applied, the entire contact portion 5 or the entire support portion 6 can be guided in the vertical direction while maintaining the initial posture. In addition, the white arrow in FIG. 4 shows a load.

ここで、転動子4として球形のものを採用したのは、図5に示すように、転動子4と接触部5・支持部6との接触範囲を極力小さくして該接触部5・支持部6からの応力波の反射率を大きくし、接触部5・支持部6に作用した荷重を外部に逃がすことなくできるだけ反射させるためである(図5中の矢印は応力波の方向を示す。)。これにより、接触部5・支持部6に作用した荷重に伴う応力波の減衰を可及的に抑え、荷重検出部2における応力波の早期飽和及び真の荷重の高精度な検出を図ることができるようにしている。
なお、転動子を形成する金属素材としては、応力波の反射率の関係から、接触部・支持部の素材とは異なる密度の素材を用いることが好ましく、例えば、接触部・支持部が鉄である場合には転動子としてアルミ等の素材を用いることができる。しかしながら、転動子は必ずしも接触部・支持部と密度が異なる素材を採用する必要はなく、適宜選択することができる。
Here, the spherical element is adopted as the rolling element 4, as shown in FIG. 5, by reducing the contact range between the rolling element 4 and the contact part 5 / support part 6 as much as possible. This is to increase the reflectance of the stress wave from the support part 6 and reflect the load acting on the contact part 5 and the support part 6 as much as possible without escaping to the outside (the arrow in FIG. 5 indicates the direction of the stress wave). .) Thereby, it is possible to suppress the attenuation of the stress wave due to the load acting on the contact portion 5 and the support portion 6 as much as possible, and to achieve early detection of the stress wave and high accuracy detection of the true load in the load detection unit 2. I can do it.
In addition, it is preferable to use a material having a density different from the material of the contact portion / support portion from the relationship of the stress wave reflectivity as the metal material forming the rotator. In this case, a material such as aluminum can be used as the rotator. However, it is not always necessary to use a material having a density different from that of the contact portion / support portion, and the rolling element can be selected as appropriate.

また、この実施の形態においては、上記転動子4は、図1に示すように、筒部3と接触部5との間、筒部3と支持部6との間にそれぞれに対して8個ずつ介在させ、且つ各転動子4は荷重計測部材1を挟んで相対する位置に等間隔で配設しており、これにより接触部5全体あるいは支持部6全体を荷重検出部2の軸線方向に安定的に変位させることができるようにしている。
さらに、各転動子4は、図2に示すように、接触部・支持部に荷重が作用していない状態において接触部・支持部の各中段付近に接触する高さに配設している。
In this embodiment, as shown in FIG. 1, the rolling element 4 is provided between the cylindrical portion 3 and the contact portion 5 and between the cylindrical portion 3 and the support portion 6. Each of the rolling elements 4 is disposed at equal intervals on the opposite sides of the load measuring member 1 so that the entire contact portion 5 or the entire support portion 6 is connected to the axis of the load detection portion 2. It can be stably displaced in the direction.
Further, as shown in FIG. 2, each rolling element 4 is disposed at a height that makes contact with each middle stage of the contact portion / support portion when no load is applied to the contact portion / support portion. .

ところで、上記筒部3の内周面には、上記各転動子4を該筒部3と接触部5・支持部6との間に保持する溝7が、荷重検出部2の軸線方向周り、つまり筒部3の周方向にそれぞれ形成されていて、各転動子4が筒部3の内周面において荷重検出部2の軸線方向に移動しないようにしている。
これにより、各転動子4は、荷重により接触部5あるいは支持部6が荷重検出部2の軸線方向に変位した場合であっても、その変位に追随して移動することなくその場で転動し、接触部5や支持部6を筒部3の内周面に沿って荷重検出部2の軸線方向により安定的に案内することができるようにしている。
Meanwhile, a groove 7 that holds each of the rolling elements 4 between the cylindrical portion 3 and the contact portion 5 and the support portion 6 is formed around the axial direction of the load detecting portion 2 on the inner peripheral surface of the cylindrical portion 3. That is, each of the rolling elements 4 is formed in the circumferential direction of the cylindrical portion 3 so that it does not move in the axial direction of the load detecting portion 2 on the inner peripheral surface of the cylindrical portion 3.
As a result, even when the contact portion 5 or the support portion 6 is displaced in the axial direction of the load detection portion 2 due to the load, each of the rolling elements 4 rolls on the spot without moving following the displacement. The contact part 5 and the support part 6 can be stably guided along the inner peripheral surface of the cylinder part 3 in the axial direction of the load detection part 2.

上記構成を有する荷重計測装置は、支持部6を剛体に固定した上で、上記接触部5の接触面5aに試験体を衝突させたり、あるいは接触面5a上に試験体を載置して該試験体に対して落錘等により衝撃を加えたりするなどして該接触部5に圧縮荷重又は引張荷重を作用させ、荷重検出部2によりその荷重を計測する。   In the load measuring device having the above-described configuration, the support portion 6 is fixed to a rigid body, and the test body is made to collide with the contact surface 5a of the contact portion 5 or the test body is placed on the contact surface 5a. A compressive load or a tensile load is applied to the contact portion 5 by applying an impact to the test body with a falling weight or the like, and the load is measured by the load detection portion 2.

このとき、荷重計測部材1は、筒部3により荷重検出部2の軸線周りに非接触の状態で覆われていると共に、筒部3と上記荷重計測部材1の接触部5及び支持部6との間に複数の転動子4を介在させ、該転動子4により、引張荷重又は圧縮荷重により変位した接触部5及び支持部6を、筒部3の内周面に沿って荷重検出部2の軸線方向に案内させる構成としたため、接触部5や支持部6に偏心荷重が作用して変位したとしても、その変位する方向を筒部3及び転動子4が荷重検出部の軸線方向(この場合、鉛直方向)に矯正する。
これにより、接触部5全体あるいは支持部6全体を、当初の態勢を維持しながら荷重検出部2の軸線方向に変位させることができるため、荷重検出部2に複雑な曲げモーメントが発生することが抑えられ、該荷重検出部2において、荷重検出部2の軸線方向の引張荷重又は圧縮荷重を高精度で計測することができる。
さらに、接触部5及び支持部6が変位する方向が荷重検出部2の軸線方向に限定されたことにより、荷重検出部2の偏心荷重に起因する変形の集中が抑えられるため、該荷重検出部2の塑性変形も防止されることとなる。
At this time, the load measuring member 1 is covered in a non-contact state around the axis of the load detecting unit 2 by the cylindrical portion 3, and the cylindrical portion 3, the contact portion 5 and the support portion 6 of the load measuring member 1, and the like. A plurality of rolling elements 4 are interposed between the contact parts 5 and the support parts 6 displaced by the tensile load or the compressive load by the rolling elements 4 along the inner peripheral surface of the cylindrical part 3. 2, even if an eccentric load is applied to the contact portion 5 or the support portion 6 to be displaced, the cylindrical portion 3 and the rolling element 4 are in the axial direction of the load detection portion. Correct in this case (vertical direction).
As a result, the entire contact portion 5 or the entire support portion 6 can be displaced in the axial direction of the load detection portion 2 while maintaining the initial posture, and therefore a complicated bending moment may be generated in the load detection portion 2. Thus, the load detecting unit 2 can measure the tensile load or the compressive load in the axial direction of the load detecting unit 2 with high accuracy.
Furthermore, since the direction in which the contact portion 5 and the support portion 6 are displaced is limited to the axial direction of the load detection portion 2, the concentration of deformation due to the eccentric load of the load detection portion 2 can be suppressed. 2 plastic deformation is also prevented.

また、各荷重計測部材1の荷重検出部2及び接触部5並びに支持部6を一体に形成し、且つ荷重検出部2における軸線と直交する断面の断面積よりも、接触部5及び支持部6における荷重検出部2の軸線と直交する断面の断面積を大きく形成したため、各荷重計測部材1の荷重検出部2内における応力波の反射・干渉を促進させることができる。これにより、計測すべき本来の荷重に係る荷重検出部2内での応力波の早期の飽和を図ることができ、この結果、高速変形を含む広範囲の変形速度における引張荷重または圧縮荷重の計測をより高精度で行うことが可能となる。
さらに、荷重計測部材1は、荷重検出部2の断面積を接触部5及び支持部6の各断面積よりもきわめて小さくすることにより荷重計測の精度を一層向上させることができるが、上記筒部3及び転動子4の作用により、変位した接触部5や支持部6を荷重検出部2の軸線方向に安定的に案内させることができるため、荷重検出部2の断面積を可及的に小さくしても該荷重検出部2に対する偏心荷重による曲げモーメントの影響が抑えられ、これにより、きわめて高い測定精度の実現及びその精度の安定的な維持を図ることができる。
In addition, the load detection unit 2, the contact unit 5, and the support unit 6 of each load measuring member 1 are integrally formed, and the contact unit 5 and the support unit 6 are larger than the cross-sectional area of the cross section perpendicular to the axis of the load detection unit 2. Since the cross-sectional area of the cross section orthogonal to the axis of the load detection unit 2 is formed large, reflection / interference of stress waves in the load detection unit 2 of each load measuring member 1 can be promoted. As a result, it is possible to achieve early saturation of the stress wave in the load detection unit 2 related to the original load to be measured. As a result, the tensile load or the compressive load can be measured in a wide range of deformation speeds including high-speed deformation. It becomes possible to carry out with higher accuracy.
Further, the load measuring member 1 can further improve the accuracy of the load measurement by making the cross-sectional area of the load detecting unit 2 extremely smaller than the cross-sectional areas of the contact unit 5 and the support unit 6. 3 and the rolling element 4, the displaced contact portion 5 and support portion 6 can be stably guided in the axial direction of the load detection portion 2, so that the cross-sectional area of the load detection portion 2 is made as much as possible. Even if it is made smaller, the influence of the bending moment due to the eccentric load on the load detection unit 2 can be suppressed, and thereby, extremely high measurement accuracy can be realized and the accuracy can be stably maintained.

上記実施の形態においては、荷重計測部材1の接触部5及び支持部6を円柱状のものとしているが、これらの接触部及び支持部は、平面視略矩形状の立方体状等の各種形状とすることができる。この場合においては、筒部は、例えば荷重計測部材の接触部及び支持部を平面視略矩形状の立方体状としたときには、該荷重計測部材と非接触で且つ接触部及び支持部の外周面に沿うような内周面を有する四角筒状とする等、荷重計測部材の接触部及び支持部の平面視形状に適応させた内周面を備えたものとすることが肝要である。
なお、荷重検出部については、複雑な構造体に対する試験の場合等、偏心荷重が作用する可能性がある場合であっても高精度の荷重計測ができるようにするため、接触部及び支持部の形状に関わらず、断面内の荷重分布が均一となる中実の円柱状とすることが望ましい。
In the above-described embodiment, the contact portion 5 and the support portion 6 of the load measuring member 1 are made cylindrical, but these contact portions and the support portion have various shapes such as a substantially rectangular shape in a plan view. can do. In this case, for example, when the contact portion and the support portion of the load measurement member are formed in a substantially rectangular cubic shape in plan view, the tube portion is not in contact with the load measurement member and is provided on the outer peripheral surface of the contact portion and the support portion. It is important to provide an inner peripheral surface adapted to the shape of the contact portion and the support portion of the load measuring member in plan view, such as a rectangular tube shape having an inner peripheral surface that conforms.
For the load detection unit, in order to enable highly accurate load measurement even when there is a possibility that an eccentric load may act, such as in the case of a test on a complex structure, Regardless of the shape, it is desirable to have a solid cylindrical shape with uniform load distribution in the cross section.

また、上記実施の形態においては、荷重検出部2におけるその軸線と直交する断面の断面積よりも、接触部5及び支持部6の荷重検出部2の軸線と直交する断面の断面積を大きくしているが、荷重検出部、接触部及び支持部の各断面積については適宜設定することができる。ただし、上記実施の形態において詳述したように、荷重検出部の断面積を接触部及び支持部の各断面積よりも小さくした場合の方がより高精度の荷重測定ができる。   Moreover, in the said embodiment, the cross-sectional area of the cross section orthogonal to the axis line of the load detection part 2 of the contact part 5 and the support part 6 is made larger than the cross-sectional area of the cross section orthogonal to the axis line in the load detection part 2. However, the cross-sectional areas of the load detection unit, the contact unit, and the support unit can be set as appropriate. However, as described in detail in the above embodiment, more accurate load measurement can be performed when the cross-sectional area of the load detection unit is smaller than the cross-sectional areas of the contact part and the support part.

さらに、上記実施の形態においては、荷重測定部材1について、荷重計測部材1全体、即ち荷重検出部2及び接触部5並びに支持部6を一体に形成したものをとしているが、荷重計測部材は、接触部と支持部とのうち少なくとも一方が荷重検出部と一体に形成されているものとすることができる。
なお、上記実施の形態では、この荷重計測装置1を構成する荷重検出部2及び接触部5並びに支持部6については、いずれも同等材質、すなわち弾性率および密度が同程度のもので形成しているが、各部の材料が異なる場合、荷重の計測に際しては、断面積だけではなく、音響インピーダンスをあわせて考慮する必要がある。音響インピーダンスは材料の密度と応力波(=弾性波)伝播速度の積であらわされるため、異種の材料を用いる場合には、断面積に密度及び応力波伝播速度を乗じて考えることが肝要である。この場合において、各部に使用する材質についてはヤング率が高い素材を用いるのが好ましい。
Furthermore, in the said embodiment, although it is set as the thing which formed the load measurement member 1 whole, ie, the load detection part 2, the contact part 5, and the support part 6, integrally about the load measurement member 1, At least one of the contact portion and the support portion may be formed integrally with the load detection portion.
In the above embodiment, the load detector 2, the contact portion 5, and the support portion 6 constituting the load measuring device 1 are all made of the same material, that is, having the same elastic modulus and density. However, when the material of each part is different, it is necessary to consider not only the cross-sectional area but also the acoustic impedance when measuring the load. Since acoustic impedance is expressed by the product of material density and stress wave (= elastic wave) propagation velocity, it is important to consider the cross-sectional area multiplied by the density and stress wave propagation velocity when using different materials. . In this case, it is preferable to use a material having a high Young's modulus for the material used for each part.

また、上記実施の形態においては、転動子4として球状のものを用いているが、球状以外にも、例えば円柱状のものを用いて、引張荷重又は圧縮荷重により変位した接触部及び支持部を、筒部の内周面に沿って荷重検出部の軸線方向に案内する方向に転動自在に配設してもよい。さらには、球状のものと円柱状のものを併用してもよい。
なお、この転動子としては、変位した接触部及び支持部を筒部の内周面に沿って荷重検出部の軸線方向に案内する方向に転動自在に配設できるものであればどのような形状のものでもよいが、この場合においては、その転動子と接触部・支持部との接触範囲は応力波の反射率の関係上、極力小さくすることが好ましい。
Moreover, in the said embodiment, although the spherical thing is used as the rolling element 4, the contact part and support part which were displaced by the tensile load or the compressive load other than spherical shape, for example using a cylindrical thing May be arranged so as to be rollable in the direction of guiding in the axial direction of the load detecting portion along the inner peripheral surface of the cylindrical portion. Furthermore, you may use a spherical thing and a cylindrical thing together.
Any rolling element can be used as long as it can be arranged so as to roll freely in the direction in which the displaced contact part and support part are guided along the inner peripheral surface of the cylinder part in the axial direction of the load detection part. In this case, it is preferable that the contact range between the rolling element and the contact portion / support portion be as small as possible in view of the reflectance of the stress wave.

上記実施の形態では、転動子4を、接触部5と筒部3との間、支持部6と筒部3との間それぞれに8個ずつ介在させたものとなっているが、接触部及び支持部を安定的に案内することができれば、転動子の数は任意の数とすることができる。また、接触部と筒部との間の転動子の数と、支持部と筒部との間の転動子の数とを異なるものとしてもよい。
さらに、上記実施の形態においては、各転動子4の配置を、荷重計測部材1を挟んで相対する位置に等間隔で配設しているが、変位した接触部及び支持部を筒部の内周面に沿って荷重検出部の軸線方向に安定的且つ確実に案内することができれば、どのような配置で設けてもよい。
In the above embodiment, eight rolling elements 4 are interposed between the contact portion 5 and the cylindrical portion 3 and between the support portion 6 and the cylindrical portion 3, respectively. As long as the support portion can be stably guided, the number of rolling elements can be set to an arbitrary number. Further, the number of rolling elements between the contact portion and the cylindrical portion may be different from the number of rolling elements between the support portion and the cylindrical portion.
Further, in the above-described embodiment, the arrangement of the respective rolling elements 4 is arranged at equal intervals on the opposite sides of the load measuring member 1, but the displaced contact portion and support portion are arranged on the cylindrical portion. As long as it can be stably and reliably guided along the inner peripheral surface in the axial direction of the load detection unit, it may be provided in any arrangement.

本発明の効果を確認するため、上記実施の形態において説明した荷重計測装置(以下、「本発明例」という。)と、比較例として本発明のような筒部及び転動子を備えていない荷重計測装置(以下、「比較例」という。)ついて、それぞれの接触部に高速の衝突物を衝突させることによる性能の比較実験を行った。
衝突物は球状であり重量は2kg、衝突速度は35km/hであった。
また、比較例のものは、荷重検出部及び接触部並びに支持部を、水平断面の断面積が相互にほぼ同じ大きさの、平面視略正方形状の四角柱状(立方体状)とした。
なお、衝突物の衝突位置は、本発明例は接触部の接触面上における外周縁寄りの位置、比較例は、接触部の接触面上の角部分とした。
In order to confirm the effect of the present invention, the load measuring device described in the above embodiment (hereinafter referred to as “the present invention example”) and the cylinder portion and the rolling element as in the present invention are not provided as a comparative example. For the load measuring device (hereinafter referred to as “comparative example”), a performance comparison experiment was performed by causing a high-speed collision object to collide with each contact portion.
The collision object was spherical, the weight was 2 kg, and the collision speed was 35 km / h.
Moreover, the thing of the comparative example made the load detection part, the contact part, and the support part into the square pillar shape (cubic shape) of the substantially square shape of planar view with the cross-sectional area of a horizontal cross section substantially the mutually same magnitude | size.
The collision position of the colliding object was a position near the outer peripheral edge on the contact surface of the contact portion in the present invention example, and a corner portion on the contact surface of the contact portion in the comparative example.

この実験において、まず、衝突物が衝突した際の不釣り合い力(荷重検出部と接触部との境界で生じる断面力と、荷重検出部と支持部との境界で生じる断面力の差)を評価した。
この結果、図6に示すように、本発明例での不釣り合い力は、全体的に比較例よりも低く、本発明例の装置は比較例の装置よりも瞬時に釣り合い状態を満足し、荷重計測装置として優れることが確認された。
なお、図6においては、横軸は衝突後の経過時間、縦軸は断面力の差である。
In this experiment, first, the unbalance force when a collision object collides (the difference between the cross-sectional force generated at the boundary between the load detection part and the contact part and the cross-sectional force generated at the boundary between the load detection part and the support part) was evaluated. did.
As a result, as shown in FIG. 6, the unbalance force in the example of the present invention is generally lower than that of the comparative example, and the device of the example of the present invention satisfies the balanced state instantly than the device of the comparative example. It was confirmed that it is excellent as a measuring device.
In FIG. 6, the horizontal axis represents the elapsed time after the collision, and the vertical axis represents the difference in cross-sectional force.

さらに、本発明例の場合は、各荷重検出部に塑性変形は生じなかったが、比較例の場合は、荷重検出部と接触部との結合部分で変形の局所化が進み、塑性変形が発生していた。
このように、接触部に偏心荷重が作用し、従来においては荷重検出部に大きな曲げモーメントが発生するような場合であっても、本発明の荷重計測装置は塑性変形が生じず、また高精度の荷重測定を行うことができることが実証された。
Further, in the case of the present invention example, plastic deformation did not occur in each load detection part, but in the case of the comparative example, the localization of the deformation progressed at the joint part between the load detection part and the contact part, and plastic deformation occurred. Was.
As described above, even when an eccentric load acts on the contact portion and a large bending moment is generated in the load detecting portion in the past, the load measuring device of the present invention does not cause plastic deformation and has high accuracy. It was proved that the load measurement can be performed.

1 荷重計測部材
2 荷重検出部
3 筒部
4 転動子
5 接触部
6 支持部
Ak 荷重検出部の断面積
At 接触部の断面積
As 支持部の断面積
DESCRIPTION OF SYMBOLS 1 Load measuring member 2 Load detection part 3 Cylinder part 4 Roller 5 Contact part 6 Support part Ak Sectional area of load detection part At Sectional area of contact part As Sectional area of support part

Claims (4)

引張荷重又は圧縮荷重を計測する柱状の荷重検出部と、該荷重検出部の軸線方向の一端側に設けられて引張荷重又は圧縮荷重を作用させる接触部及び他端側に設けられた支持部とを有する荷重計測部材と、
上記荷重計測部材を、該荷重計測部材と非接触で上記荷重検出部の軸線周りに覆う筒部と、
上記筒部の内周面と上記荷重計測部材の接触部及び支持部における該筒部の内周面との対向面との間に介在させた、接触部及び支持部を筒部内に保持する球状又は円柱状の複数の転動子とを備え、
上記転動子は、前記接触部及び支持部の各外周面と点接触して、引張荷重又は圧縮荷重により変位した接触部と支持部とを、筒部の内周面に沿って荷重検出部の軸線方向に案内する方向に転動自在に配設され
上記荷重計測部材は、上記荷重検出部が円柱状に形成されていると共に、上記接触部及び支持部における荷重検出部の軸線と直交する断面の断面積が、荷重検出部における該軸線と直交する断面の断面積よりも大きく形成されていることを特徴とする荷重計測装置。
A columnar load detector for measuring a tensile load or a compressive load; a contact portion provided on one end side in the axial direction of the load detector to apply a tensile load or a compressive load; and a support portion provided on the other end side. A load measuring member having
A cylindrical portion that covers the load measuring member around the axis of the load detecting portion in a non-contact manner with the load measuring member;
A spherical shape that holds the contact portion and the support portion in the cylindrical portion interposed between the inner peripheral surface of the cylindrical portion and the contact portion and the support portion of the load measuring member facing the inner peripheral surface of the cylindrical portion. Or a plurality of cylindrical rolling elements,
The above-mentioned rolling element is in point contact with each outer peripheral surface of the contact portion and the support portion, and the contact portion and the support portion displaced by the tensile load or the compressive load are arranged along the inner peripheral surface of the cylindrical portion. rollably disposed in a direction for guiding in the axial direction of,
In the load measuring member, the load detecting portion is formed in a columnar shape, and a cross-sectional area of a cross section orthogonal to the axis of the load detecting portion in the contact portion and the support portion is orthogonal to the axis in the load detecting portion. A load measuring device having a cross-sectional area larger than that of the cross section .
上記荷重計測部材は、上記荷重検出部と、上記接触部と支持部とのうち少なくとも一方とが、一体に形成されていることを特徴とする請求項1に記載の荷重計測装置。 The load measuring device according to claim 1, wherein the load measuring member is formed integrally with the load detecting unit and at least one of the contact unit and the support unit. 上記転動子は、前記接触部及び前記支持部の素材とは異なる密度の素材を用いて形成されていることを特徴とする請求項1、請求項2のいずれかに記載の荷重計測装置。 The rolling element is claimed in claim 1, characterized in that it is formed by using a material different densities and material of the contact portion and the support portion, the load measuring device according to claim 2. 衝撃荷重測定用の荷重計測装置であることを特徴とする請求項1〜請求項3のいずれかに記載の荷重計測装置。  4. The load measuring device according to claim 1, wherein the load measuring device is a load measuring device for measuring an impact load.
JP2011153546A 2011-07-12 2011-07-12 Load measuring device Active JP5655727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011153546A JP5655727B2 (en) 2011-07-12 2011-07-12 Load measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011153546A JP5655727B2 (en) 2011-07-12 2011-07-12 Load measuring device

Publications (2)

Publication Number Publication Date
JP2013019770A JP2013019770A (en) 2013-01-31
JP5655727B2 true JP5655727B2 (en) 2015-01-21

Family

ID=47691349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011153546A Active JP5655727B2 (en) 2011-07-12 2011-07-12 Load measuring device

Country Status (1)

Country Link
JP (1) JP5655727B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122987A (en) * 1996-10-17 1998-05-15 Toyota Motor Corp Load detecting device
JP2003004554A (en) * 2001-06-21 2003-01-08 Yokogawa Electric Corp Load detecting apparatus and positioning apparatus
JP2003166589A (en) * 2001-11-30 2003-06-13 Ohbayashi Corp Sliding guide member of one axis isolation system
JP4741272B2 (en) * 2005-04-05 2011-08-03 新日本製鐵株式会社 Dynamic load measuring device
JP5140853B2 (en) * 2007-05-31 2013-02-13 本田技研工業株式会社 Axial load measuring device
JP2009156269A (en) * 2007-12-25 2009-07-16 Ntn Corp Bearing device for wheel

Also Published As

Publication number Publication date
JP2013019770A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
Tarigopula et al. Axial crushing of thin-walled high-strength steel sections
JP4741272B2 (en) Dynamic load measuring device
JP4621060B2 (en) High-precision tensile or compression testing equipment over a wide range of strain rates including high-speed deformation
Gillich et al. The relations between deflection, stored energy and natural frequencies, with application in damage detection
JP4830913B2 (en) Dynamic tensile test method and apparatus
Matsui et al. Development of JAMA—JARI pedestrian headform impactor in compliance with ISO and IHRA standards
JP5655727B2 (en) Load measuring device
JP2018189393A (en) Dynamic crush test device and dynamic crush test method
JP5845012B2 (en) Load measuring device for impact load measurement and collision load measuring method
Adachi et al. New diagnostic method for evaluating penetration strength of rubber sheet by measuring electromagnetic induction
Huang et al. Bending hinge characteristic of thin-walled square tubes
JP5218447B2 (en) High-precision tensile load or compression load measuring device
JP2002131176A (en) Impact buckling test apparatus
Pavlovic et al. Investigating the crash-box-structure’s ability to absorb energy
Fyllingen et al. Robustness study on the behaviour of top-hat thin-walled high-strength steel sections subjected to axial crushing
Choi et al. A laboratory procedure for measuring the dispersion characteristics of loaded tires
Gaudilliere et al. Investigations in high speed blanking: cutting forces and microscopic observations
JP2013092390A (en) Method and apparatus for measuring impact load
JP4741273B2 (en) Dynamic load measuring device
Wang et al. Lateral crushing of circular rings under wedge impact
JPH11510261A (en) Structural test equipment or improvement method thereof
Zhu et al. An experimental study of the saturated impulse for metal plates under slamming
JP7138832B2 (en) Impact application device and inspection method
JP6729222B2 (en) Energy absorbing device and seismic isolation structure
KR100516335B1 (en) The buckling mode measuring equipment without touching

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141110

R151 Written notification of patent or utility model registration

Ref document number: 5655727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350