JP4741272B2 - Dynamic load measuring device - Google Patents

Dynamic load measuring device Download PDF

Info

Publication number
JP4741272B2
JP4741272B2 JP2005108179A JP2005108179A JP4741272B2 JP 4741272 B2 JP4741272 B2 JP 4741272B2 JP 2005108179 A JP2005108179 A JP 2005108179A JP 2005108179 A JP2005108179 A JP 2005108179A JP 4741272 B2 JP4741272 B2 JP 4741272B2
Authority
JP
Japan
Prior art keywords
load
detection unit
load detection
dynamic
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005108179A
Other languages
Japanese (ja)
Other versions
JP2006284514A (en
Inventor
朗弘 上西
博司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005108179A priority Critical patent/JP4741272B2/en
Publication of JP2006284514A publication Critical patent/JP2006284514A/en
Application granted granted Critical
Publication of JP4741272B2 publication Critical patent/JP4741272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、自動車構造を代表とする衝撃吸収部材の特性評価に必須の動的荷重の計測装置に関する。   The present invention relates to a dynamic load measuring device essential for evaluating characteristics of an impact absorbing member typified by an automobile structure.

近年、自動車業界では、衝突時の乗員への傷害を低減しうる車体構造の開発が急務の課題となっている。このような車体構造は複数の部材から構成されているが、車体の衝突変形挙動を最適化するためには個々の部材あるいはそのいくつかを組み合せた構造の変形特性を知ることが極めて重要である。   In recent years, in the automobile industry, the development of a vehicle body structure that can reduce injury to passengers during a collision has become an urgent issue. Such a vehicle body structure is composed of a plurality of members, but in order to optimize the collision deformation behavior of the vehicle body, it is extremely important to know the deformation characteristics of the individual members or a combination of some of them. .

これまで部材の変形特性は準静的な方法により行われることが多かった。具体的には大型の圧縮試験機等を用いて部材を低速で変形させることにより、その特性評価が行われてきた。しかしながら、実際の衝突変形は高速で変形が起こるものであり、準静的な荷重負荷での挙動とは差がある。特に、自動車で多く使用される薄板構造において重要な座屈は荷重負荷が動的か準静的かによって挙動が異なることが知られている。これに鑑みて動的な変形特性を把握するためには落重試験が行われることが多い。これは固定した部材に対して、上部から落錘を衝突させて動的な変形を起こさせると言うものである。   Until now, deformation characteristics of members have often been performed by a quasi-static method. Specifically, the characteristics have been evaluated by deforming the member at a low speed using a large compression tester or the like. However, the actual collision deformation occurs at a high speed and is different from the behavior under a quasi-static load. In particular, it is known that buckling, which is important in a thin plate structure often used in automobiles, behaves differently depending on whether the load is dynamic or quasi-static. In view of this, drop weight tests are often performed to grasp dynamic deformation characteristics. This is to cause dynamic deformation by causing a falling weight to collide with the fixed member from above.

このような手段を用いることにより、変形については実際の衝突時のものに近付くが、実際には部材の衝撃変形時の吸収エネルギーを評価する必要がある。吸収エネルギーの評価には部材の圧潰距離と、その時の圧潰荷重の計測が必要である。動的な試験の場合にはこの圧潰荷重の計測が非常に難しい。一般に通常の準静的な試験で使われるロードセルで動的な荷重を計測しようとする場合、測定中に衝撃弾性波がロードセル中を反射・伝播するため測定荷重にこの伝播に起因した振動が重畳してしまい、真の荷重計測が出来ない。   By using such means, the deformation comes close to that at the time of actual collision, but actually it is necessary to evaluate the absorbed energy at the time of impact deformation of the member. In order to evaluate the absorbed energy, it is necessary to measure the crushing distance of the member and the crushing load at that time. In the case of a dynamic test, measurement of this crushing load is very difficult. In general, when trying to measure a dynamic load with a load cell used in a normal quasi-static test, the shock elastic wave reflects and propagates through the load cell during measurement, so vibration caused by this propagation is superimposed on the measured load. As a result, true load measurement cannot be performed.

このような動的な荷重の計測方法については、材料の応力−ひずみ関係を計測するための方法としていくつかの提案がなされている。例えば、非特許文献1などにあるように、細長い弾性棒で衝撃弾性波を棒の長手方向に逃がすことにより、試験変形時の荷重のみを計測すること可能にする、いわゆるKolsky法が高速変形の試験法として知られている。しかしながらこの試験法は材料の応力−ひずみ関係を計測するために考案されたものであり、部材の動的試験で必要とされる長い計測時間や大荷重に対応しようとすると試験装置は巨大なものとなり、現実的には試験装置の構成が不可能であり、また実現したとしても精度の維持管理が難しく、精度の高いデータを得るためには深い経験と知識が必要とされる。   With respect to such a dynamic load measuring method, several proposals have been made as methods for measuring the stress-strain relationship of materials. For example, as described in Non-Patent Document 1, etc., the so-called Kolsky method, which makes it possible to measure only the load at the time of test deformation by allowing a shock elastic wave to escape in the longitudinal direction of the rod with an elongated elastic rod, is a high-speed deformation method. Known as a test method. However, this test method was devised to measure the stress-strain relationship of materials, and the test equipment is huge when trying to cope with the long measurement time and large loads required for dynamic testing of members. In reality, it is impossible to configure the test apparatus, and even if it is realized, it is difficult to maintain and manage accuracy, and deep experience and knowledge are required to obtain highly accurate data.

一方、特許文献1に示されているように、ブロック状の基部の上に突設した小突起部に、基部からの応力波の伝播および透過を遮断するための絶縁手段で構成される衝撃試験装置が開示されている。この装置では基部に比べて小さい小突起部で荷重の計測を行うが、この際小突起部中を伝播する応力波の影響がなく、絶縁手段が基部と外部の応力波の伝播および透過を遮断することにより高ひずみ速度で計測が可能となることが示されている。しかしながら、一般に応力波の伝播を防ぐための絶縁手段の選択は難しく、その具体的な方法は開示されていない。また本発明で対象とする部材のような材料試験片より大きな荷重を発生するものに関しては何ら技術開示がなされていない。
特開平10−30980号公報 SAE TECHNICAL PAPER #960019(1996年10月発行、発行所:Society of Automotive Engineer)
On the other hand, as shown in Patent Document 1, an impact test composed of an insulating means for blocking the propagation and transmission of stress waves from the base to a small protrusion protruding on the block-like base An apparatus is disclosed. This device measures the load with a small protrusion smaller than the base, but there is no influence of stress waves propagating through the small protrusion, and the insulating means blocks the propagation and transmission of stress waves between the base and the outside. It is shown that measurement can be performed at a high strain rate. However, it is generally difficult to select an insulating means for preventing the propagation of stress waves, and no specific method is disclosed. In addition, there is no technical disclosure regarding a member that generates a larger load than a material test piece such as a member to be used in the present invention.
Japanese Patent Laid-Open No. 10-30980 SAE TECHNICICAL PAPER # 960019 (issued in October 1996, Publisher: Society of Automotive Engineer)

本発明は、自動車構造を代表とする衝撃吸収部材の動的な変形特性の測定において、試験体の荷重計測を精度高く行う方法を簡便に提供する装置に関するものである。ここに試験体とは単一または複数の部材により構成された構造を言う。   The present invention relates to an apparatus that simply provides a method for accurately measuring a load of a test specimen in measurement of dynamic deformation characteristics of a shock absorbing member typified by an automobile structure. Here, the test specimen refers to a structure constituted by a single member or a plurality of members.

本発明者らは、試験実行時の応力波の伝播特性に注目して検討を行い、測定したい荷重のできるだけ近くに荷重検出部を配置すること、部材から荷重検出部、および荷重検出部を支持する支持構造につながる部分の断面積を適正に配置することにより、比較的簡便な手段で動的な荷重の計測が可能であることを見出した。本発明の要旨とするところは以下のとおりである。
(1)試験体の動的変形特性を測定する装置であって、動的荷重の作用開始点と荷重検出部の支持構造が直線的に配置され、かつ、作用開始点、試験体、荷重検出部、及び、荷重検出部と隣接する、荷重検出部の支持構造がこの順に配置され、かつ、荷重検出部が円柱状であり、その直径D(mm)と、長さL(mm)の比が、0.3≦L/D≦3を満たし、30mm≦L≦300mm、80mm≦Dであり、かつ、5×(荷重検出部の断面積)<(荷重検出部と隣接する、荷重検出部の支持構造の断面積)を満たすことを特徴とする動的荷重計測装置。
(2)試験体の動的変形特性を測定する装置であって、動的荷重の作用開始点と荷重検出部の支持構造が直線的に配置され、かつ、作用開始点、試験体、試験体の支持部、荷重検出部、及び、荷重検出部と隣接する、荷重検出部の支持構造がこの順に配置され、かつ、荷重検出部が円柱状であり、その直径D(mm)と、長さL(mm)の比が、0.3≦L/D≦3を満たし、30mm≦L≦300mm、80mm≦Dであり、かつ、5×(荷重検出部の断面積)<(荷重検出部と隣接する、試験体の支持部の断面積)、(荷重検出部の断面積)<(荷重検出部と隣接する、荷重検出部の支持構造の断面積)を満たすことを特徴とする動的荷重計測装置。
(3)更に、荷重検出部と、荷重検出部と隣接する、荷重検出部の支持構造を一体化したことを特徴とする(1)又は(2)に記載の動的荷重計測装置。
(4)更に、荷重検出部と隣接する、試験体の支持部、荷重検出部、及び、荷重検出部と隣接する、荷重検出部の支持構造を一体化したことを特徴とする(2)記載の動的荷重計測装置。
(5)落錘を落下させ試験体に衝突させる落重試験において、試験体、荷重検出部、及び、荷重検出部と隣接する、荷重検出部の支持構造が一体化され、水平面に固定され不動であることを特徴とする(1)、(2)、(3)又は(4)に記載の動的荷重計測装置。
(6)試験体を水平方向に運動させて、垂直の剛体壁に衝突させる試験において、試験体、荷重検出部、及び、荷重検出部と隣接する、荷重検出部の支持構造が一体化され、水平方向に可動であることを特徴とする(1)、(2)、(3)又は(4)記載の動的荷重計測装置。
The present inventors have studied paying attention to the propagation characteristics of stress waves during test execution, placing the load detection unit as close as possible to the load to be measured, and supporting the load detection unit and the load detection unit from the member. It has been found that by appropriately arranging the cross-sectional area of the portion connected to the supporting structure, dynamic load can be measured by a relatively simple means. The gist of the present invention is as follows.
(1) A device for measuring the dynamic deformation characteristics of a test body, in which the action start point of a dynamic load and the support structure of the load detection unit are linearly arranged, and the action start point, the test body, and the load detection The support structure of the load detector adjacent to the load detector and the load detector is arranged in this order, and the load detector is cylindrical, and the ratio of the diameter D (mm) to the length L (mm) Satisfying 0.3 ≦ L / D ≦ 3, 30 mm ≦ L ≦ 300 mm , 80 mm ≦ D , and 5 × (the cross-sectional area of the load detector ) <(the load detector adjacent to the load detector) A dynamic load measuring device characterized by satisfying the cross-sectional area of the support structure.
(2) A device for measuring the dynamic deformation characteristics of a test body, in which an action starting point of a dynamic load and a support structure of a load detection unit are linearly arranged, and the action starting point, the test body, and the test body The support structure of the load detection section adjacent to the load detection section , the load detection section, and the load detection section is arranged in this order, and the load detection section is cylindrical, and its diameter D (mm) and length The ratio of L (mm) satisfies 0.3 ≦ L / D ≦ 3, 30 mm ≦ L ≦ 300 mm , 80 mm ≦ D , and 5 × (the cross-sectional area of the load detection unit ) <(the load detection unit and adjacent, the cross-sectional area of the support portion of the specimen), the dynamic load and satisfies the (cross-sectional area of the load detection portion) <(adjacent to the load detection unit, the cross-sectional area of the support structure of the load detecting unit) Measuring device.
(3) The dynamic load measuring device according to (1) or (2) , wherein the load detecting unit and the support structure of the load detecting unit adjacent to the load detecting unit are integrated.
(4) Furthermore, the support structure of the test body adjacent to the load detection section, the load detection section, and the support structure of the load detection section adjacent to the load detection section are integrated. Dynamic load measuring device.
(5) In a drop weight test in which a falling weight is dropped and collides with a test body, the test body, the load detection section, and the load detection section support structure adjacent to the load detection section are integrated, fixed to a horizontal plane and fixed. The dynamic load measuring device according to (1), (2), (3) or (4), characterized in that
(6) In the test in which the test body is moved in the horizontal direction and collides with the vertical rigid wall, the support structure for the load detection section adjacent to the test body, the load detection section, and the load detection section is integrated. The dynamic load measuring device according to (1), (2), (3) or (4), which is movable in a horizontal direction.

本発明に基づいて高精度な動的荷重を計測し、自動車全体設計または部材設計時に信頼性の高い動的変形挙動を提供し、設計にかかる試行錯誤を減らし、かかる時間を短縮することができる。また近年導入が進む衝突シミュレーション結果を本試験装置により得た信頼性の高い実験結果により検証することが容易となり、シミュレーション技術の適用拡大に役立てることができる。また、従来の試験方法に比べて、低コストで試験精度を大幅に高めることができる。   Based on the present invention, high-precision dynamic load can be measured, and reliable dynamic deformation behavior can be provided at the time of overall vehicle design or component design, trial and error in design can be reduced, and the time taken can be shortened. . In addition, it is easy to verify the results of collision simulations that have been introduced in recent years with highly reliable experimental results obtained by this test apparatus, which can be used to expand the application of simulation technology. In addition, the test accuracy can be greatly increased at a lower cost than the conventional test method.

本発明者らは、まずこれまでの高速変形の試験方法を鋭意検討した。その結果、高精度の試験結果が得られるKolsky法と、簡便であるが精度の劣る油圧サーボ方式との違いの一つは荷重計測の位置にあることに思い至った。これを解消するにはまず試験体の近くで荷重計測を行う必要がある。特許文献1に開示される方法においては、荷重計測を試験片近くで行っているが、荷重計測用小突起部の内部での応力波伝播の影響を受けないようにするためには、その大きさを制限する必要があり、従って今回対象としている部材の動的荷重の計測には適さない。また、この方法ではブロック状の基部と外部との間に何らかの絶縁手段が必要であった。   First, the present inventors diligently studied the conventional high-speed deformation testing method. As a result, it came to mind that one of the differences between the Kolsky method, which provides highly accurate test results, and the hydraulic servo method, which is simple but inaccurate, is in the position of load measurement. To solve this problem, it is first necessary to measure the load near the specimen. In the method disclosed in Patent Document 1, the load measurement is performed near the test piece. However, in order to avoid the influence of the stress wave propagation inside the small protrusion for load measurement, the size is large. Therefore, it is not suitable for measuring the dynamic load of the target member. In addition, this method requires some insulating means between the block-shaped base and the outside.

通常の変形速度で試験を行う場合は試験速度に比べて試験片および試験機内を伝播する応力波の伝播速度は十分に大きいため、直列につながる荷重伝達経路のどの断面で荷重を測定してもその値は一定となる。しかし今問題にしている動的変形では、応力波の伝播速度が十分大きいとは言えず、応力波の伝播を考慮しなければ正確な荷重計測はできない。通常のロードセルで荷重計測を行うと正規の波形に重畳して振動が観測されるが、これは試験装置内を伝播する応力波の影響である。   When testing at normal deformation speed, the propagation speed of the stress wave propagating through the test piece and the test machine is sufficiently large compared to the test speed, so no matter which section of the load transmission path connected in series is measured, Its value is constant. However, in the dynamic deformation which is now a problem, it cannot be said that the propagation speed of the stress wave is sufficiently high, and accurate load measurement cannot be performed without considering the propagation of the stress wave. When load measurement is performed with a normal load cell, vibration is observed superimposed on a normal waveform, which is due to the influence of stress waves propagating in the test apparatus.

動的な試験を行った場合、まず応力波は試験体内部で反射・干渉し、試験体内部の変形を均一化する。さらに荷重検出部に応力波が伝播するが、高速での高精度な荷重計測を行うためには、応力波ノイズの原因となる内部での反射・干渉を早期に飽和させることが必要である。そのため、荷重検出部の軸方向長さを短くする必要がある。これは応力波が荷重検出部全体を伝播するのに必要な時間を低減するためである。   When a dynamic test is performed, first, stress waves are reflected and interfered inside the specimen, and the deformation inside the specimen is made uniform. Further, although the stress wave propagates to the load detection unit, it is necessary to saturate the internal reflection / interference that causes stress wave noise at an early stage in order to perform high-speed and high-accuracy load measurement. Therefore, it is necessary to shorten the axial length of the load detection unit. This is to reduce the time required for the stress wave to propagate through the entire load detector.

本発明者らが上記の内容を考慮してさらに検討を進めた結果、荷重検出部の形状および寸法と試験体から荷重検出部およびそれを支持する構造の間の断面積変化が計測精度に大きく影響することが分かってきた。これらを適正に設計し、配置することにより高精度な動的荷重の計測が可能であることを見出した。以下、それぞれについて図1を用いながら説明する。   As a result of further investigations by the present inventors in consideration of the above contents, the change in cross-sectional area between the shape and dimensions of the load detection unit and the load detection unit and the structure supporting it from the test body is greatly increased in measurement accuracy. It has been found to affect. It was found that the dynamic load can be measured with high accuracy by designing and arranging them appropriately. Each will be described below with reference to FIG.

まず、試験体周辺の配置であるが、動的変形を起こしている試験体のいずれの端で荷重を検出してもその値は原理的には変らない。しかしながら、動的荷重の作用点で荷重を計測した場合には動的荷重を負荷する構造(図1では落錘)と試験体との間で、接触と離脱が繰り返されるため測定される荷重が遥動してしまう。それに対して、試験体を挟んで動的荷重の作用点の反対側ではこのような接触と離脱の繰り返しが起こらないため、安定した荷重計測が可能である。そこで本発明では動的荷重の作用点の反対側に荷重検出部を設置すること、すなわち、動的荷重の作用開始点、試験体、荷重検出部、荷重検出部の支持構造の順に配置することとした。また、これらの構造は直線的に配置する必要がある。これは直線的な配置でない時には試験体の動的変形時に曲げのモーメントが発生し、本来測定したい軸方向の荷重が不正な値となることや、荷重検出部を壊すことがないようにするために必要である。   First, regarding the arrangement around the specimen, the value does not change in principle even if a load is detected at either end of the specimen that is undergoing dynamic deformation. However, when the load is measured at the point of application of the dynamic load, the load to be measured is measured because contact and detachment are repeated between the structure that loads the dynamic load (falling weight in FIG. 1) and the specimen. It will move a lot. On the other hand, since such contact and separation are not repeated on the opposite side of the point of action of the dynamic load across the specimen, stable load measurement is possible. Therefore, in the present invention, the load detection unit is installed on the opposite side of the dynamic load application point, that is, the dynamic load operation start point, the test body, the load detection unit, and the load detection unit support structure are arranged in this order. It was. Moreover, these structures need to be arranged linearly. This is to prevent a bending moment from being generated during dynamic deformation of the specimen when it is not linearly arranged, so that the axial load that is originally intended to be measured is not an incorrect value or the load detector is not damaged. Is necessary.

次に、荷重検出部は円柱状であり、その断面を同じくする部分の長さL(mm)と、直径D(mm)の比L/Dの範囲を0.3以上3以下とする。荷重検出部の形状は、表面に貼付したひずみゲージにより荷重を計測するために、断面内の荷重分布が均一である必要があるため円柱状である必要がある。また、L/Dが0.3より小さくなると荷重検出部の応力が断面内で不均一となりひずみゲージにより測定した表面ひずみから算出した荷重と実際の荷重の差が大きくなる。また、3より大きくなると前述のように荷重検出部内部での応力波の飽和が起こりにくくなるので、上記の範囲と規定する。   Next, the load detection unit is cylindrical, and the range of the ratio L / D between the length L (mm) of the part having the same cross section and the diameter D (mm) is set to 0.3 or more and 3 or less. The shape of the load detection unit needs to be cylindrical because the load distribution in the cross section needs to be uniform in order to measure the load with a strain gauge attached to the surface. Moreover, when L / D becomes smaller than 0.3, the stress of the load detecting portion becomes non-uniform in the cross section, and the difference between the load calculated from the surface strain measured by the strain gauge and the actual load increases. Further, if it exceeds 3, it becomes difficult to cause stress wave saturation inside the load detection section as described above, so the above range is specified.

またもう一つの重要な点は荷重検出部とその支持構造の断面積の配置である。本発明者らの鋭意検討の結果、断面積が大の領域から小の領域に進行する場合には、断面積大の領域で応力波の伝播の乱れの影響が非常に大きいが、小から大の領域に進行する場合、小の領域ではその乱れの影響をほとんど受けないということが判明した。荷重検出部においては正確な計測のために伝播してゆく応力波の乱れを避ける必要があり、荷重検出部の断面積は小の領域に属する必要がある。一方、荷重検出部内の応力波の飽和を早期に行わせるためには支持構造との間で断面積変化が大きくすることが望ましい。これら二つの条件を勘案して(荷重検出部の断面積)<(荷重検出部の支持構造の断面積)とした。   Another important point is the arrangement of the cross-sectional areas of the load detector and its support structure. As a result of the diligent study by the present inventors, when the cross-sectional area advances from a large area to a small area, the influence of the disturbance of stress wave propagation is very large in the large cross-sectional area, but the small to large When proceeding to the area, it was found that the small area is hardly affected by the disturbance. In the load detection unit, it is necessary to avoid the disturbance of the stress wave propagating for accurate measurement, and the cross-sectional area of the load detection unit needs to belong to a small region. On the other hand, it is desirable to increase the cross-sectional area change with the support structure in order to quickly saturate the stress wave in the load detector. Taking these two conditions into consideration, (the cross-sectional area of the load detection unit) <(the cross-sectional area of the support structure of the load detection unit).

前記(2)に係る本発明では、図5に示すように、動的荷重の作用開始点とその支持構造を直線的に配置する。これは前述と同様に荷重検出部に曲げのモーメントが加わり、不正な計測値となることや、荷重検出部の破壊を防ぐためである。   In this invention which concerns on said (2), as shown in FIG. 5, the action | operation start point of a dynamic load and its support structure are arrange | positioned linearly. This is because a bending moment is applied to the load detection unit in the same manner as described above, resulting in an illegal measurement value and preventing the load detection unit from being broken.

また、動的荷重の作用開始点、試験体、試験体の支持部、荷重検出部、荷重検出部の支持構造をこの順に配置する。これにより、作用開始点と試験体を挟んで反対側で荷重計測を行い、作用開始点での試験体と動的荷重の負荷機構(図5では落錘)の接触、離脱の影響を避け、安定した荷重計測を行うことができる。   Further, the action start point of the dynamic load, the test body, the support part of the test body, the load detection part, and the support structure of the load detection part are arranged in this order. As a result, load measurement is performed on the opposite side across the action starting point and the test body, avoiding the influence of contact and separation between the test body and the dynamic load loading mechanism (falling weight in FIG. 5) at the action starting point, Stable load measurement can be performed.

次に、試験を行おうとする試験体を支持、固定する必要がある場合に、 (荷重検出部の断面積)<(試験体の支持部の断面積)、(荷重検出部の断面積)<(荷重検出部の支持構造の断面積)を満たす試験体の支持部を設置することを規定している。   Next, when it is necessary to support and fix the test specimen to be tested, (cross-sectional area of the load detection section) <(cross-sectional area of the support section of the test specimen), (cross-sectional area of the load detection section) < It stipulates that the support part of the test body that satisfies (the cross-sectional area of the support structure of the load detection part) be installed.

これは荷重を高精度に計測するために円柱状の荷重検出部の長さLおよび直径Dはできるだけ小さくする方が良いが、その場合荷重検出部に設置できる試験体の寸法が限られてしまう。比較的大きな試験体の動的荷重を計測する場合には荷重検出部の寸法を大きくするのではなく、試験体の支持部を設けることが望ましく、その際その支持部の断面積は荷重検出部に応力波の乱れをもたらさないように(荷重検出部の断面積)<(試験体の支持部の断面積)である必要がある。また試験体を動的に変形させる場合に試験体の円柱状の荷重検出部への接触部が著しく不均一となる場合にも緩衝部として(荷重検出部の断面積)<(試験体の支持部の断面積)を満たす支持部を設けることが望ましい。これにより荷重検出部には断面内で軸方向に均一な荷重がかけることができる。   In order to measure the load with high accuracy, it is better to make the length L and the diameter D of the cylindrical load detection unit as small as possible, but in that case, the size of the test body that can be installed in the load detection unit is limited. . When measuring the dynamic load of a relatively large specimen, it is desirable not to increase the size of the load detector, but to provide a support for the specimen, in which case the cross-sectional area of the support is the load detector. It is necessary that (the cross-sectional area of the load detection portion) <(the cross-sectional area of the support portion of the test body) so as not to cause disturbance of the stress wave. In addition, when the specimen is dynamically deformed, the buffer part (cross-sectional area of the load detector) <(support of the specimen) is also used when the contact portion of the specimen with the cylindrical load detector becomes extremely uneven. It is desirable to provide a support portion that satisfies the sectional area of the portion. As a result, a uniform load can be applied to the load detector in the axial direction within the cross section.

また上記(1)に係る発明と同様に(荷重検出部の断面積)<(荷重検出部の支持構造の断面積)とする。これは、支持構造との間で断面積変化を大きくし、荷重検出部内の応力波の飽和を早期に行わせるという条件と、応力波が小から大の領域に進行する場合、小の領域ではその乱れの影響をほとんど受けないということから荷重検出部を小の領域に属させるという二つの条件を勘案したものである。   Further, similarly to the invention according to (1), (the cross-sectional area of the load detection unit) <(the cross-sectional area of the support structure of the load detection unit). This is because the change in the cross-sectional area between the support structure and the load wave detector is saturated early and the stress wave progresses from a small area to a large area. Two conditions that the load detection unit belongs to a small area are taken into consideration because it is hardly affected by the disturbance.

荷重検出部の長さLと直径Dの比L/Dの限定理由は上記(1)に係る発明と同様である。   The reason for limiting the ratio L / D between the length L and the diameter D of the load detection unit is the same as that of the invention according to the above (1).

前記(3)に係る本発明では、荷重検出部と荷重検出部の支持構造を一体化している。これは荷重検出部と荷重検出部の支持構造との間で想定外の応力波の反射が起こることを防止するためであり、荷重検出部と荷重検出部の支持構造を一体で製作するか、機械的な固定あるいは溶接することが望ましい。   In this invention which concerns on said (3), the support structure of a load detection part and a load detection part is integrated. This is to prevent unexpected reflection of stress waves between the load detection unit and the load detection unit support structure, and whether the load detection unit and the load detection unit support structure are manufactured integrally, Mechanical fixation or welding is desirable.

前記(4)に係る本発明では、試験体の支持部と荷重検出部と荷重検出部の支持構造を一体化している。これは荷重検出部と荷重検出部の支持構造および試験体の支持部との間で想定外の応力波の反射が起こることを防止するためであり、試験体の支持部、荷重検出部と荷重検出部の支持構造を一体で製作するか、機械的な固定あるいは溶接することが望ましい。   In this invention which concerns on said (4), the support part of a test body, the load detection part, and the support structure of a load detection part are integrated. This is to prevent unexpected stress wave reflections between the load detector, the load detector support structure, and the test specimen support, and the test specimen support, load detector, and load. It is desirable to manufacture the support structure of the detection unit integrally, or to mechanically fix or weld it.

前記(5)に係る本発明では、落重試験のように試験体を不動として動的試験を行う場合に、試験体に動的荷重を与えられる作用開始点から、試験体、荷重検出部、荷重検出部の支持構造がこの順に並んでおり、かつ、試験体、荷重検出部、支持構造が一体で固定され、不動であることを好適としている。これは作用開始点近傍で動的荷重を計測すると荷重負荷の揺動の影響を受けやすいことから、この構造により作用開始点から試験体を挟んだ反対側で荷重を計測することができるので、高精度な動的荷重の計測が可能であるためである。   In the present invention according to the above (5), when performing a dynamic test with the test body stationary as in the drop weight test, from the action starting point at which a dynamic load is applied to the test body, the test body, the load detection unit, It is preferable that the support structure of the load detection unit is arranged in this order, and the test body, the load detection unit, and the support structure are fixed integrally and are immovable. This is because when a dynamic load is measured near the action start point, it is easily affected by the fluctuation of the load load, so this structure allows the load to be measured on the opposite side of the specimen from the action start point. This is because high-precision dynamic load measurement is possible.

前記(6)に係る本発明では、台車試験のように試験体を可動として動的試験を行う場合に、試験体に動的荷重を与えられる作用開始点から、試験体、荷重検出部、荷重検出部の支持構造がこの順に並んでおり、かつ、試験体、荷重検出部、荷重検出部の支持構造が一体で固定され、可動であることを好適としている。これは(5)同様、作用開始点近傍で動的荷重を計測すると荷重負荷の揺動の影響を受けやすいことから、この構造により、作用開始点から試験体を挟んだ反対側で荷重を計測することができるので、高精度な動的荷重の計測が可能であるためである。   In this invention which concerns on said (6), when performing a dynamic test by making a test body movable like a bogie test, from a starting point which gives a dynamic load to a test body, a test body, a load detection part, a load It is preferable that the support structure of the detection unit is arranged in this order, and the support structure of the test body, the load detection unit, and the load detection unit is integrally fixed and movable. This is the same as (5). When dynamic load is measured in the vicinity of the action start point, it is easily affected by fluctuations in the load, so this structure measures the load on the opposite side of the specimen from the action start point. This is because the dynamic load can be measured with high accuracy.

以上の記述は試験装置を構成する各部が同等材質、すなわち弾性率および密度が同程度であることを前提に記述してきたが、各部の材料が異なる場合には断面積だけではなく、音響インピーダンスをあわせて考慮する必要がある。音響インピーダンスは材料の密度と応力波(=弾性波)伝播速度の積であらわされる。従って異種の材料を用いる場合には断面積に関する記述を(断面積)×(密度)×(応力波伝播速度)の値に置換することで本発明を利用することができる。   The above description has been made on the assumption that each part constituting the test apparatus is of the same material, that is, the elastic modulus and the density are the same, but when the material of each part is different, not only the cross-sectional area but also the acoustic impedance is set. It is necessary to consider together. The acoustic impedance is expressed by the product of the material density and the stress wave (= elastic wave) propagation velocity. Therefore, when different types of materials are used, the present invention can be used by replacing the description of the cross-sectional area with the value of (cross-sectional area) × (density) × (stress wave propagation velocity).

荷重検出部の長さLは200mm以下、望ましくは100mm以下とするのが好ましい。これは応力波の伝播に対してLとDとの比だけでなく、応力波の伝播速度に対するLの長さの絶対値が問題となるからである。またDは想定される最大荷重から決定する。具体的には応力検出部の材料の降伏応力に断面積をかけたものが最大荷重以下となるようにする。望ましくはこの計算値が試験最大荷重の50%以上であれば尚良い。   The length L of the load detection part is 200 mm or less, preferably 100 mm or less. This is because not only the ratio of L and D with respect to the propagation of the stress wave, but also the absolute value of the length of L with respect to the propagation speed of the stress wave becomes a problem. D is determined from the assumed maximum load. Specifically, the material obtained by multiplying the yield stress of the material of the stress detection section by the cross-sectional area is set to be equal to or less than the maximum load. Desirably, this calculated value is 50% or more of the maximum test load.

以下に実例を挙げながら、本発明の技術内容について説明する。
図1に使用した装置の模式図を示す。落錘5により動的な試験体の軸圧潰試験を行った。落錘5の重量は800kgで落下高さは2mとした。また試験体1の変位として落錘5の変位を下部に設置したレーザー式変位計により計測したものを用いた。落錘5についての条件は同等であるが、比較例として従来型ロードセルを用いた試験も行った。今回は試験体1として板厚2mmの590MPa級鋼板を用いて70mm角の角筒で長さ300mmとしたものを用いた。図2に本発明の荷重計測装置の模式図を示す。本発明の荷重計測装置では円柱状の荷重検出部3の弾性ひずみから荷重を計測するが、その弾性ひずみを検出する手段としては荷重検出部3の軸方向の中央部に貼付したひずみゲージを用いた。これは今回のすべての実験に共通している。
The technical contents of the present invention will be described below with examples.
The schematic diagram of the apparatus used for FIG. 1 is shown. A dynamic test specimen was subjected to an axial crush test using the falling weight 5. The weight of the falling weight 5 was 800 kg, and the falling height was 2 m. Moreover, what measured the displacement of the falling weight 5 with the laser type displacement meter installed in the lower part as the displacement of the test body 1 was used. Although the conditions for the falling weight 5 were the same, a test using a conventional load cell was also performed as a comparative example. In this example, a 590 MPa class steel plate having a thickness of 2 mm was used as the test body 1 and a 70 mm square tube having a length of 300 mm was used. FIG. 2 shows a schematic diagram of the load measuring apparatus of the present invention. In the load measuring apparatus of the present invention, the load is measured from the elastic strain of the cylindrical load detecting unit 3. As a means for detecting the elastic strain, a strain gauge attached to the central portion in the axial direction of the load detecting unit 3 is used. It was. This is common to all experiments.

表1に測定を行った条件とその結果を示す。図3に表1のNo.3の条件で試験を行った結果を示す。また同時に比較例として従来型ロードセルを用いた試験結果も示す。従来型ロードセルの値が応力波ノイズを含んで不正確な値となっているのに対して、本発明の荷重計測装置では高精度な計測が可能であった。本検討ではさらに荷重検出装置の寸法の影響を把握するため、同じ条件で落重試験を行い、種々の荷重計測装置を用いて試験を行った。No.8に示すようにL/Dが4.0で(1)に係る本発明の上限を越える場合には、測定時間内での荷重検出部の応力波の飽和が十分ではなく、図3に示した従来型ロードセル測定波形に類似した若干の応力波ノイズが見られた。またNo.1のようにL/Dが0.25で(1)に係る本発明の下限を下回る場合、応力波ノイズの問題はないものの、測定しようとする荷重が小さい場合に荷重検出部の断面内で弾性変形が一様でなく、低荷重での測定荷重が実際の荷重よりも小さな値となった。その他の条件では良好な測定を行うことが出来た。またNo.9は荷重検出部の支持部の断面積を小さくして試験を行ったものであるが、測定波形に振動が見られ精度の高い荷重計測は行えなかった。   Table 1 shows the measurement conditions and the results. In FIG. The result of having performed the test on condition 3 is shown. At the same time, a test result using a conventional load cell is shown as a comparative example. While the value of the conventional load cell is an inaccurate value including stress wave noise, the load measuring device of the present invention can measure with high accuracy. In this study, in order to grasp the influence of the dimensions of the load detection device, a drop weight test was performed under the same conditions, and tests were performed using various load measurement devices. No. As shown in FIG. 8, when L / D is 4.0 and exceeds the upper limit of the present invention according to (1), saturation of the stress wave in the load detection part within the measurement time is not sufficient, and the result is shown in FIG. Some stress wave noise similar to the conventional load cell measurement waveform was observed. No. When L / D is 0.25 and lower than the lower limit of the present invention according to (1) as in 1, there is no problem of stress wave noise, but when the load to be measured is small, within the cross section of the load detector The elastic deformation was not uniform, and the measured load at a low load was smaller than the actual load. Good measurement was possible under other conditions. No. No. 9 was tested by reducing the cross-sectional area of the support portion of the load detection unit, but vibration was observed in the measurement waveform and load measurement with high accuracy could not be performed.

Figure 0004741272
Figure 0004741272

実施例1と同様の落重試験機を用いて行ったが、図4に示すように比較的大きな断面のハット型部材を試験体として用いて、試験体の支持部を備えた荷重計測装置により試験を行った。試験装置の模式図を図5に示す。落錘は800kgとし、落下高さは2mとした。本発明の荷重計測装置の模式図を図6に示す。またハット部材は板厚2mmの590MPa級鋼板を用いて製作し、長さ300mmとした。ハット部と背板はスポット溶接により接合した。その際、スポット溶接間隔は45mmとした。   The same drop weight testing machine as in Example 1 was used. However, as shown in FIG. 4, a hat-shaped member having a relatively large cross section was used as a test body, and a load measuring device equipped with a support portion for the test body was used. A test was conducted. A schematic diagram of the test apparatus is shown in FIG. The falling weight was 800 kg and the falling height was 2 m. A schematic diagram of the load measuring apparatus of the present invention is shown in FIG. The hat member was manufactured using a 590 MPa class steel plate having a thickness of 2 mm and had a length of 300 mm. The hat part and the back plate were joined by spot welding. At that time, the spot welding interval was 45 mm.

表2に測定を行った条件とその結果を示す。図7にNo.12の条件で試験を行った結果を示す。また同時に比較例として従来型ロードセルを用いた試験結果も示す。従来型ロードセルの値が応力波ノイズを含んで不正確な値となっているのに対して、試験体の支持部を含む場合でも本発明の荷重計測装置では高精度な計測が可能であった。荷重検出部の寸法の比L/Dが0.3を下回る場合と、3を上回る場合には実施例1と同様試験結果に不具合が見られた。それを除くと試験体の支持部がある場合でも本発明の荷重計測装置は良好な試験結果が得られることが分かった。   Table 2 shows the measurement conditions and the results. In FIG. The result of having performed the test on 12 conditions is shown. At the same time, a test result using a conventional load cell is shown as a comparative example. While the value of the conventional load cell is an inaccurate value including stress wave noise, the load measuring device of the present invention can measure with high accuracy even when the support portion of the test body is included. . When the ratio L / D of the dimension of the load detection part is less than 0.3 and when it exceeds 3, the test results are inferior as in Example 1. Except for this, it has been found that the load measuring device of the present invention can provide good test results even when there is a support for the test specimen.

Figure 0004741272
Figure 0004741272

図8に台車試験の模式図を示す。試験体は実施例2と同じものを用いた(図4)。試験体および荷重計測装置は180kgのハンマー9に固定され、このハンマー9はレール10に沿って可動である。このハンマー9に荷重計測装置(試験体の支持部8、荷重検出部3、荷重検出部の支持構造4)および試験体1を図8に示すように固定し、ハンマー9を含めて初速10m/sにて射出し剛体壁に衝突させた。この際、剛体壁側にも試験体の支持部8を持つ荷重計測装置(試験体の支持部8、荷重検出部3、荷重検出部の支持構造4)を取り付けた。試験体側および剛体壁側の荷重検出装置は寸法が同じものを使用し、荷重検出部LおよびDをそれぞれ40mm、85mmとした(L/D=0.47)。また、試験体の支持部8および荷重検出部の支持構造4には200角で厚さ50mmの形状のものを用いた。   FIG. 8 shows a schematic diagram of the cart test. The specimen used was the same as in Example 2 (FIG. 4). The test body and the load measuring device are fixed to a 180 kg hammer 9, and the hammer 9 is movable along the rail 10. The load measuring device (the test piece support portion 8, the load detection portion 3, the load detection portion support structure 4) and the test piece 1 are fixed to the hammer 9 as shown in FIG. Injected at s and collided with the rigid wall. At this time, the load measuring device (the test body support section 8, the load detection section 3, and the load detection section support structure 4) having the test body support section 8 was also attached to the rigid wall side. The load detectors on the test body side and the rigid wall side have the same dimensions, and the load detectors L and D are 40 mm and 85 mm, respectively (L / D = 0.47). Further, the support portion 8 of the test body and the support structure 4 of the load detection portion were 200 square and 50 mm thick.

図9に試験結果を示す。いずれの荷重計測装置でも良好な試験結果が得られているが、剛体壁側に設置した荷重計測装置は荷重負荷の揺動の影響を受け若干の振動が見られる。このように試験体への動的荷重の作用点の近傍ではこのような遥動の影響を受けやすいため、試験体を挟んだ反対側で荷重計測をすることが望ましい。   FIG. 9 shows the test results. Although good test results have been obtained with any of the load measuring devices, the load measuring device installed on the rigid wall side is affected by the fluctuation of the load load and shows some vibration. Thus, in the vicinity of the point of action of the dynamic load on the test body, it is easy to be affected by such swinging, so it is desirable to measure the load on the opposite side across the test body.

落重試験装置の模式図を示す。A schematic diagram of a drop weight test device is shown. 本発明例の荷重計測装置の模式図を示す。The schematic diagram of the load measuring device of the example of the present invention is shown. 本発明例と比較例による測定結果を示す。The measurement result by the example of this invention and a comparative example is shown. 実験に用いた部材の断面形状を示す。The cross-sectional shape of the member used for experiment is shown. 試験体の支持部を含む落重試験装置の模式図を示す。The schematic diagram of the drop weight test apparatus containing the support part of a test body is shown. 試験体の支持部を含む本発明例の荷重計測装置の模式図を示す。The schematic diagram of the load measuring device of the example of this invention containing the support part of a test body is shown. 本発明例による測定結果を示す。The measurement result by the example of this invention is shown. 台車試験装置の模式図を示す。The schematic diagram of a trolley | bogie test apparatus is shown. 本発明例による測定結果を示す。The measurement result by the example of this invention is shown.

符号の説明Explanation of symbols

1 試験体
2 動的荷重の作用開始点
3 荷重検出部
4 荷重検出部の支持構造
5 落錘
6 変位計
7 ひずみゲージ貼付位置を示す
8 試験体の支持部
9 ハンマー
10 レール
DESCRIPTION OF SYMBOLS 1 Test body 2 Action start point of dynamic load 3 Load detection part 4 Support structure of load detection part 5 Falling weight 6 Displacement meter 8 Strain gauge attaching position 8 Test specimen support part 9 Hammer 10 Rail

Claims (6)

試験体の動的変形特性を測定する装置であって、動的荷重の作用開始点と荷重検出部の支持構造が直線的に配置され、かつ、作用開始点、試験体、荷重検出部、及び、荷重検出部と隣接する、荷重検出部の支持構造がこの順に配置され、かつ、荷重検出部が円柱状であり、その直径D(mm)と、長さL(mm)の比が、0.3≦L/D≦3を満たし、30mm≦L≦300mm、80mm≦Dであり、かつ、5×(荷重検出部の断面積)<(荷重検出部と隣接する、荷重検出部の支持構造の断面積)を満たすことを特徴とする動的荷重計測装置。 An apparatus for measuring dynamic deformation characteristics of a test body, wherein an action start point of a dynamic load and a support structure of a load detection unit are linearly arranged, and an action start point, a test body, a load detection unit, and The load detection unit support structure adjacent to the load detection unit is arranged in this order, and the load detection unit is cylindrical, and the ratio of the diameter D (mm) to the length L (mm) is 0. 3 ≦ L / D ≦ 3, 30 mm ≦ L ≦ 300 mm , 80 mm ≦ D , and 5 × (the cross-sectional area of the load detection unit ) <(the load detection unit adjacent to the load detection unit) Dynamic cross-sectional area). 試験体の動的変形特性を測定する装置であって、動的荷重の作用開始点と荷重検出部の支持構造が直線的に配置され、かつ、作用開始点、試験体、試験体の支持部、荷重検出部、及び、荷重検出部と隣接する、荷重検出部の支持構造がこの順に配置され、かつ、荷重検出部が円柱状であり、その直径D(mm)と、長さL(mm)の比が、0.3≦L/D≦3を満たし、30mm≦L≦300mm、80mm≦Dであり、かつ、5×(荷重検出部の断面積)<(荷重検出部と隣接する、試験体の支持部の断面積)、(荷重検出部の断面積)<(荷重検出部と隣接する、荷重検出部の支持構造の断面積)を満たすことを特徴とする動的荷重計測装置。 A device for measuring the dynamic deformation characteristics of a test body, in which an action starting point of a dynamic load and a support structure of a load detection unit are linearly arranged, and the action starting point, the test body, and a support part of the test body The load detection unit and the load detection unit support structure adjacent to the load detection unit are arranged in this order, and the load detection unit is cylindrical, and its diameter D (mm) and length L (mm) ) Satisfies the following condition: 0.3 ≦ L / D ≦ 3, 30 mm ≦ L ≦ 300 mm , 80 mm ≦ D , and 5 × (the cross-sectional area of the load detection unit ) <( adjacent to the load detection unit, A dynamic load measuring device satisfying the following condition: (cross-sectional area of supporting part of test specimen), (cross-sectional area of load detecting part) <(cross-sectional area of supporting structure of load detecting part adjacent to load detecting part). 更に、荷重検出部と、荷重検出部と隣接する、荷重検出部の支持構造を一体化したことを特徴とする請求項1又は2記載の動的荷重計測装置。 3. The dynamic load measuring device according to claim 1, further comprising a load detecting unit and a support structure for the load detecting unit which are adjacent to the load detecting unit. 更に、荷重検出部と隣接する、試験体の支持部、荷重検出部、及び、荷重検出部と隣接する、荷重検出部の支持構造を一体化したことを特徴とする請求項2記載の動的荷重計測装置。 3. The dynamic detecting device according to claim 2, further comprising: a supporting portion of the test body adjacent to the load detecting portion, a load detecting portion, and a supporting structure of the load detecting portion adjacent to the load detecting portion. Load measuring device. 落錘を落下させ試験体に衝突させる落重試験において、試験体、荷重検出部、及び、荷重検出部と隣接する、荷重検出部の支持構造が一体化され、水平面に固定され不動であることを特徴とする請求項1、2、3又は4に記載の動的荷重計測装置。 In the drop test where the falling weight is dropped and collides with the test body, the test body, the load detection unit, and the load detection unit support structure adjacent to the load detection unit are integrated, fixed to a horizontal plane and fixed. The dynamic load measuring device according to claim 1, 2, 3, or 4. 試験体を水平方向に運動させて、垂直の剛体壁に衝突させる試験において、試験体、荷重検出部、及び、荷重検出部と隣接する、荷重検出部の支持構造が一体化され、水平方向に可動であることを特徴とする請求項1、2、3又は4記載の動的荷重計測装置。 In a test in which the test body is moved in the horizontal direction and collides with a vertical rigid wall, the test body, the load detection unit, and the load detection unit support structure adjacent to the load detection unit are integrated in the horizontal direction. 5. The dynamic load measuring device according to claim 1, 2, 3 or 4, which is movable.
JP2005108179A 2005-04-05 2005-04-05 Dynamic load measuring device Active JP4741272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005108179A JP4741272B2 (en) 2005-04-05 2005-04-05 Dynamic load measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005108179A JP4741272B2 (en) 2005-04-05 2005-04-05 Dynamic load measuring device

Publications (2)

Publication Number Publication Date
JP2006284514A JP2006284514A (en) 2006-10-19
JP4741272B2 true JP4741272B2 (en) 2011-08-03

Family

ID=37406580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005108179A Active JP4741272B2 (en) 2005-04-05 2005-04-05 Dynamic load measuring device

Country Status (1)

Country Link
JP (1) JP4741272B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011022140A (en) * 2009-06-18 2011-02-03 Nihon Univ Load test method and damage detection method
JP5218447B2 (en) * 2010-02-22 2013-06-26 新日鐵住金株式会社 High-precision tensile load or compression load measuring device
JP5845012B2 (en) * 2011-07-12 2016-01-20 新日鐵住金株式会社 Load measuring device for impact load measurement and collision load measuring method
JP5655727B2 (en) * 2011-07-12 2015-01-21 新日鐵住金株式会社 Load measuring device
CN102818931A (en) * 2012-07-11 2012-12-12 宁波大学 Piezoresistive effect measuring device of material under impact state
JP6561802B2 (en) * 2015-11-27 2019-08-21 日本製鉄株式会社 Dynamic load measuring device and correction program
CN105784524A (en) * 2016-05-09 2016-07-20 吉林大学 Rubber material mechanical property testing device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601539A (en) * 1983-06-17 1985-01-07 Agency Of Ind Science & Technol Test-piece supporting method for impact tensile test
JPH03146843A (en) * 1989-10-31 1991-06-21 Murata Mfg Co Ltd Impact fracture test method for electronic parts
JPH0543055U (en) * 1991-11-14 1993-06-11 三菱重工業株式会社 High speed impact test equipment
JPH06123663A (en) * 1992-10-13 1994-05-06 Nissan Motor Co Ltd Measuring method of dynamic load
JPH1030980A (en) * 1996-07-15 1998-02-03 Shinji Tanimura Shock tester
JPH10197431A (en) * 1997-01-10 1998-07-31 Ishikawajima Harima Heavy Ind Co Ltd Structure for material testing device
JPH10318894A (en) * 1997-05-19 1998-12-04 Kobe Steel Ltd Measuring method and test piece for high-speed tensile test
JP2000304668A (en) * 1999-04-22 2000-11-02 Sony Corp Method and apparatus for measurement of drop shock
JP2001059803A (en) * 1999-06-18 2001-03-06 Shinji Tanimura Material tester, jig set for tensile test used therein and material testing method using the same
JP2004219222A (en) * 2003-01-14 2004-08-05 Shimadzu Corp Load cell for measuring load, and material testing machine
JP2004333477A (en) * 2003-05-07 2004-11-25 Brabender Ohg Method and instrument for measuring plasticity of material such as ceramic raw material and compound

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601539A (en) * 1983-06-17 1985-01-07 Agency Of Ind Science & Technol Test-piece supporting method for impact tensile test
JPH03146843A (en) * 1989-10-31 1991-06-21 Murata Mfg Co Ltd Impact fracture test method for electronic parts
JPH0543055U (en) * 1991-11-14 1993-06-11 三菱重工業株式会社 High speed impact test equipment
JPH06123663A (en) * 1992-10-13 1994-05-06 Nissan Motor Co Ltd Measuring method of dynamic load
JPH1030980A (en) * 1996-07-15 1998-02-03 Shinji Tanimura Shock tester
JPH10197431A (en) * 1997-01-10 1998-07-31 Ishikawajima Harima Heavy Ind Co Ltd Structure for material testing device
JPH10318894A (en) * 1997-05-19 1998-12-04 Kobe Steel Ltd Measuring method and test piece for high-speed tensile test
JP2000304668A (en) * 1999-04-22 2000-11-02 Sony Corp Method and apparatus for measurement of drop shock
JP2001059803A (en) * 1999-06-18 2001-03-06 Shinji Tanimura Material tester, jig set for tensile test used therein and material testing method using the same
JP2004219222A (en) * 2003-01-14 2004-08-05 Shimadzu Corp Load cell for measuring load, and material testing machine
JP2004333477A (en) * 2003-05-07 2004-11-25 Brabender Ohg Method and instrument for measuring plasticity of material such as ceramic raw material and compound

Also Published As

Publication number Publication date
JP2006284514A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4741272B2 (en) Dynamic load measuring device
JP4621060B2 (en) High-precision tensile or compression testing equipment over a wide range of strain rates including high-speed deformation
Shin et al. Impact tensile behaviors of 9% nickel steel at low temperature
JP2009031193A (en) Impact tensile stress measurement method
CN101354284B (en) Method for testing resonance frequency of high range piezoresistance acceleration sensor
JP4830913B2 (en) Dynamic tensile test method and apparatus
CN111077030A (en) Device and method for testing dynamic mechanical properties of concrete under high strain rate
Bi et al. Wayside testing methods for high-frequency vertical wheel-rail impact forces and its applicability
JP6620780B2 (en) Dynamic crush test apparatus and dynamic crush test method
CN108414178A (en) Percussion mechanism with pooling feature and its application process
JP4869618B2 (en) High-precision tensile or compressive load measuring device with a wide range of strain rates including high-speed deformation
JP3938757B2 (en) Method and apparatus for precise measurement of tensile or compressive stress during high-speed deformation
JP4741273B2 (en) Dynamic load measuring device
JP2004506877A (en) Impact test equipment
Hou et al. Failure Mechanism of Brass with Three V‐Notches Characterized by Acoustic Emission in In Situ Three‐Point Bending Tests
JP5845012B2 (en) Load measuring device for impact load measurement and collision load measuring method
JP5218447B2 (en) High-precision tensile load or compression load measuring device
JP4620956B2 (en) High-precision tensile or compressive load measuring device for strain rate of high-speed deformation
JPH1030980A (en) Shock tester
JPH11326114A (en) Impact load recording device
JP2013092390A (en) Method and apparatus for measuring impact load
CN106198051B (en) A kind of rear overhang sets the dynamic impulsion device of assembly
JP5655727B2 (en) Load measuring device
TAKEI et al. Evaluation method for air pressure variation and station facility member deterioration caused by high-speed train passage in stations
KR102534938B1 (en) Shock drop table test device for simulating dynamic shear force on jointed rocks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110506

R151 Written notification of patent or utility model registration

Ref document number: 4741272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350