JP5841015B2 - Impact tool - Google Patents

Impact tool Download PDF

Info

Publication number
JP5841015B2
JP5841015B2 JP2012140949A JP2012140949A JP5841015B2 JP 5841015 B2 JP5841015 B2 JP 5841015B2 JP 2012140949 A JP2012140949 A JP 2012140949A JP 2012140949 A JP2012140949 A JP 2012140949A JP 5841015 B2 JP5841015 B2 JP 5841015B2
Authority
JP
Japan
Prior art keywords
chamber
valve
valve body
oil
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012140949A
Other languages
Japanese (ja)
Other versions
JP2014004647A (en
Inventor
祐司 森田
祐司 森田
誠一郎 丹
誠一郎 丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pneumatic Manufacturing Co Ltd
Original Assignee
Nippon Pneumatic Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pneumatic Manufacturing Co Ltd filed Critical Nippon Pneumatic Manufacturing Co Ltd
Priority to JP2012140949A priority Critical patent/JP5841015B2/en
Publication of JP2014004647A publication Critical patent/JP2014004647A/en
Application granted granted Critical
Publication of JP5841015B2 publication Critical patent/JP5841015B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、コンクリート構造物の解体、岩石の破砕、岩盤の掘削等に用いられる油圧ブレーカ等の衝撃動工具に関する。   The present invention relates to an impact moving tool such as a hydraulic breaker used for dismantling a concrete structure, crushing a rock, excavating a rock, or the like.

シリンダ内に大径部を有するピストンをスライド自在に嵌合し、そのピストンの大径部の上側に上室を設け、かつ、大径部の下側に下室を設け、その下室内に圧油を供給してピストンを上昇させ、その上昇行程においてピストンの上側に形成されたガス室内の高圧ガスを圧縮してエネルギを蓄積し、上記ガスの膨張によるエネルギによりピストンを下降させて下方のチゼルの上端を打撃するようにした衝撃動工具においては、ピストンの昇降動に連動して切換弁を作動させ、その切換弁によってピストンの昇降動を制御するようにしている。   A piston having a large-diameter portion is slidably fitted in the cylinder, an upper chamber is provided above the large-diameter portion of the piston, and a lower chamber is provided below the large-diameter portion. Oil is supplied to raise the piston, and in the upward stroke, the high-pressure gas in the gas chamber formed on the upper side of the piston is compressed to store energy, and the piston is lowered by the energy of the gas expansion to lower the chisel. In the impact moving tool that strikes the upper end of the piston, the switching valve is operated in conjunction with the lifting and lowering movement of the piston, and the lifting and lowering movement of the piston is controlled by the switching valve.

衝撃動工具に採用される切換弁には、特許文献1に記載されたように、弁体が丸軸状とされて外周に環状溝が形成され、その弁体の昇降動により環状溝を軸方向に変位させて作動油の流路を切り換えるようにしたスプールタイプのものと、特許文献2に記載されたように、内側に作動油を流動させるようにした筒状タイプのものとが存在する。   As described in Patent Document 1, the switching valve employed in the impact tool has a round shaft shape with an annular groove formed on the outer periphery, and the annular groove is pivoted by the up-and-down movement of the valve body. There are a spool type that is displaced in the direction to switch the flow path of the hydraulic oil, and a cylindrical type that is made to flow the hydraulic oil inward as described in Patent Document 2. .

実公昭61−2224号公報Japanese Utility Model Publication No. 61-2224 特開2003−71744号公報Japanese Patent Laid-Open No. 2003-71744

ところで、特許文献1に記載された切換弁においては、弁体の上昇停止状態で給油口からの作動油を下室に導入する環状溝や下降停止状態で給油口からの作動油を上室に導入する環状溝等の複数の環状溝を弁体の軸方向に間隔をおいて設ける必要があるため、流路を十分に確保するためには、切換弁の全長が長くなって大型化し、重量も重くなり、切換弁の制御がしにくくなるという不都合がある。   By the way, in the switching valve described in Patent Document 1, the working oil from the oil supply port is introduced into the upper chamber in the annular groove for introducing the hydraulic oil from the oil supply port into the lower chamber when the valve body is in the stopped state and the lower chamber. Since it is necessary to provide a plurality of annular grooves such as annular grooves to be introduced at intervals in the axial direction of the valve body, in order to secure a sufficient flow path, the total length of the switching valve becomes longer and larger, and the weight There is an inconvenience that the switching valve becomes difficult to control.

また、ピストンが下降する打撃行程時、下室から上室あるいは排油口に作動油が流れる際、作動油は弁体に形成された環状溝に沿って流れて、その環状溝により流量が制限されるため、流動抵抗が大きくなって作動油のスムーズな流れが阻害され、ピストンの打撃効率が低下する。その打撃効率の向上を図るため、弁体の径を大きくして環状溝を深く形成し、かつ、ストロークを長くすると、弁体が長大となって重量も重くなり、弁体の動きにスムーズさを欠き、弁体の制御が困難となる。   Also, during the stroke when the piston descends, when hydraulic fluid flows from the lower chamber to the upper chamber or the oil outlet, the hydraulic fluid flows along an annular groove formed in the valve body, and the flow rate is limited by the annular groove. Therefore, the flow resistance is increased, the smooth flow of the hydraulic oil is hindered, and the impact efficiency of the piston is lowered. In order to improve the impact efficiency, if the diameter of the valve body is increased to form a deep annular groove and the stroke is made longer, the valve body becomes longer and heavier and the valve body moves smoothly. This makes it difficult to control the valve body.

また、弁体の摺動に支障をきたさないように、溝部の加工精度を高める必要があるため、製作にも手数がかかる。   In addition, since it is necessary to increase the processing accuracy of the groove so as not to hinder the sliding of the valve body, it takes time to manufacture.

一方、特許文献2に記載された切換弁においては、ピスト打撃行程時に、下室の作動油が弁体の下端開口から内部に流入して頂部に形成された複数の小径孔から上室に流れることになり、その時の流路を十分に確保して作動油の流動性を高めるために、弁体の内径を大きくする必要がある。その内径の大径化によって外径も大きくなるため、弁体が大きく重くなると共に、油漏れが発生し易くなり、弁体の作動が不安定になって作動不良が起こり易くなり、衝撃動工具の作動効率が低下するという不都合が生じる。   On the other hand, in the switching valve described in Patent Document 2, hydraulic oil in the lower chamber flows into the inside from the lower end opening of the valve body and flows into the upper chamber from a plurality of small-diameter holes formed at the top during the piston stroke. Therefore, it is necessary to increase the inner diameter of the valve body in order to secure a sufficient flow path at that time and to improve the fluidity of the hydraulic oil. As the inner diameter increases, the outer diameter also increases, making the valve body heavier and heavier, more likely to cause oil leakage, unstable operation of the valve body, and failure to occur. Inconvenience occurs in that the operating efficiency of the apparatus decreases.

また、チゼル打撃直後、ピストンに負荷される反動によって上室から下室に作動油が勢いよく流れる際、その作動油は弁体の頂部から小径孔を通って内部を下向きに流動するため、弁体に押下げ力が負荷されて作動が不安定となり、ピストンの制御に影響を与え、ムラ打ちを引き起こす可能性がある。   Also, when hydraulic fluid flows from the upper chamber to the lower chamber vigorously due to the reaction applied to the piston immediately after hitting the chisel, the hydraulic fluid flows downward through the small diameter hole from the top of the valve body, so the valve A pressing force is applied to the body and the operation becomes unstable, which affects the control of the piston and may cause unevenness.

この発明の課題は、切換弁における弁体の軸方向長さのコンパクト化および小径化を図る状態で十分な作動油の管路を確保することができるようにした衝撃動工具を提供することである。   An object of the present invention is to provide an impact moving tool capable of securing a sufficient hydraulic fluid conduit in a state where the axial length of the valve body in the switching valve is reduced in size and reduced in diameter. is there.

上記の課題を解決するため、この発明においては、シリンダの下端部内にチゼルの上端部をスライド自在に挿入し、シリンダの内部には、大径部を有するチゼル打撃用のスライド可能なピストンを組込み、前記シリンダの内周には、前記大径部の上面側に上室と、大径部の下面側に下室と、ピストンの上端面側に高圧ガスが封入されたガス室を設け、前記シリンダには、前記上室と下室を連通する連通路と、その連通路の上側に連続する弁室とを設け、その弁室内に前記連通路の開閉制御用の弁体をスライド自在に組み込み、その弁体の上部に前記弁室の上部に形成された大径室内でスライド可能な大径部を設け、前記シリンダには、前記弁体の下降位置で給油口からの圧油を連通路に導入するピストン上昇用給油路と、前記給油口からの圧油を弁室の上部に形成された弁規制室に導いて弁体の上端面に給油圧を付与する圧力付与通路と、前記ピストンの上昇行程時に前記大径室の底部に圧油を導入してピストンが上限位置に至る少し手前の状態で弁体を上昇させる弁切換制御油路と、前記弁体の下降状態で前記大径室の上部と排油口とを連通する排油通路とを設け、前記連通路が、上下方向に延び、その上端に前記弁室内を昇降する弁体の下端部が進退自在とされる縦孔部を有し、その縦孔部の上端部への弁体の下端部の進入によって上室と下室の連通が遮断される閉鎖状態とされるようにした構成を採用したのである。   In order to solve the above problems, in the present invention, the upper end portion of the chisel is slidably inserted into the lower end portion of the cylinder, and a slidable piston for hitting a chisel having a large diameter portion is incorporated inside the cylinder. An inner chamber of the cylinder is provided with an upper chamber on the upper surface side of the large-diameter portion, a lower chamber on the lower surface side of the large-diameter portion, and a gas chamber filled with high-pressure gas on the upper end surface side of the piston, The cylinder is provided with a communication passage communicating the upper chamber and the lower chamber, and a valve chamber continuous above the communication passage, and a valve body for opening / closing control of the communication passage is slidably incorporated in the valve chamber. A large-diameter portion that is slidable in a large-diameter chamber formed in the upper portion of the valve chamber is provided at an upper portion of the valve body, and the cylinder is connected with pressure oil from an oil supply port at a lowered position of the valve body. And the pressure from the oil supply port A pressure applying passage for introducing a hydraulic pressure to the upper end surface of the valve body by introducing the pressure oil into the valve regulating chamber formed in the upper portion of the valve chamber, and introducing pressure oil to the bottom of the large diameter chamber during the upward stroke of the piston A valve switching control oil passage that raises the valve body in a state slightly before the piston reaches the upper limit position, and an oil discharge passage that communicates the upper portion of the large-diameter chamber and the oil discharge port when the valve body is lowered. The communication passage extends in the vertical direction, and has a vertical hole portion at which the lower end portion of the valve body that moves up and down in the valve chamber is movable forward and backward, and the valve body is connected to the upper end portion of the vertical hole portion. A configuration was adopted in which a closed state in which communication between the upper chamber and the lower chamber was blocked by the entry of the lower end portion was adopted.

上記の構成からなる衝撃動工具において、弁体の下端部が連通路の縦孔部内に進入して下室と上室の連通を遮断する弁体の下降状態で給油口に圧油が供給されると、その圧油はピストン上昇用給油路から連通路に流れて下室に流入し、ピストンが上昇して、ガス室内の高圧ガスが圧縮される。   In the impact tool having the above-described configuration, the lower end portion of the valve body enters the vertical hole portion of the communication passage, and pressure oil is supplied to the oil supply port in a lowered state of the valve body that blocks communication between the lower chamber and the upper chamber. Then, the pressure oil flows from the piston raising oil supply passage to the communication passage and flows into the lower chamber, the piston rises, and the high-pressure gas in the gas chamber is compressed.

ピストンの上昇行程時、上記ピストンが上限位置に至る少し手前の位置まで上昇した際に、弁切換制御油路を通って大径室の下部に圧油が導入され、その圧油により弁体が上昇して、下端部が連通路の縦孔部から抜け出し、ガス室内の圧縮された高圧ガスの膨張によりピストンが下降してチゼルを打撃する。この時、下室内の圧油は、開放された連通路を介して上室に流れ込む。   During the upward stroke of the piston, when the piston rises to a position slightly before reaching the upper limit position, pressure oil is introduced into the lower portion of the large-diameter chamber through the valve switching control oil passage, and the valve body is caused by the pressure oil. Ascending, the lower end part comes out of the vertical hole part of the communication passage, the piston descends due to the expansion of the compressed high-pressure gas in the gas chamber, and hits the chisel. At this time, the pressure oil in the lower chamber flows into the upper chamber through the open communication path.

また、ピストンの下降により下室と弁切換制御油路が連通を遮断され、大径室下部への圧油の供給が遮断されると共に、大径室の下部が排油口と連通して、上室および大径室下部の圧油が排油口から排出される。また、給油口から圧力付与通路を通って弁規制室に圧油が供給されているため、弁体が下降する。その下降により、弁体の下端部が連通路の縦孔部内に侵入して連通路を閉鎖し、下室と上室の連通を遮断する。以後、上記の動作が繰り返し行なわれる。   In addition, the lower chamber and the valve switching control oil passage are blocked from communication by lowering the piston, the supply of pressure oil to the lower portion of the large-diameter chamber is shut off, and the lower portion of the large-diameter chamber communicates with the oil discharge port, The pressure oil in the upper chamber and the lower portion of the large-diameter chamber is discharged from the oil discharge port. Further, since the pressure oil is supplied from the oil supply port to the valve regulating chamber through the pressure applying passage, the valve body is lowered. Due to the lowering, the lower end portion of the valve body enters the vertical hole portion of the communication passage, closes the communication passage, and blocks communication between the lower chamber and the upper chamber. Thereafter, the above operation is repeated.

上記のように、弁体は、その昇降動によって連通路を開閉し、開放時、連通路は下室と上室を連通する状態となって下室の作動油を上室に流入させるため、弁体には、下室の作動油を上室に流入させるための環状溝等のくびれ部を形成する必要がなくなり、弁体の軸方向長さの短小化を図ることができる。   As described above, the valve body opens and closes the communication passage by its up-and-down movement, and when opened, the communication passage enters a state in which the lower chamber and the upper chamber communicate with each other, and the lower chamber hydraulic fluid flows into the upper chamber. The valve body does not need to be formed with a constricted portion such as an annular groove for allowing the hydraulic oil in the lower chamber to flow into the upper chamber, and the axial length of the valve body can be shortened.

また、下室の作動油は、バルブのくびれ部を通ることなく流路径を十分にとれるので、連通路から上室内にスムーズに流動し、弁体が作動油の流れに抵抗を与えることがないため、弁体を小径化できる。このように、弁体の短小化と小径化とによって弁体の軽量化を図る状態で作動油管路を確保することができる。   In addition, since the lower chamber hydraulic oil can have a sufficient flow path diameter without passing through the constricted portion of the valve, it smoothly flows from the communication path into the upper chamber, and the valve body does not give resistance to the flow of hydraulic oil. Therefore, the diameter of the valve body can be reduced. As described above, the hydraulic oil conduit can be secured in a state where the weight of the valve body is reduced by shortening and reducing the diameter of the valve body.

また、弁体の短小化により弁体の昇降ストロークを小さくすることができ、しかも、軽量であるため、弁体の制御を容易とすることができる。さらに、弁体の中空孔を流路とする構造と異なり弁体を小径とすることができるため、作動時の油漏れによる効率の低下を抑制し、打撃効率を向上させることができる。   In addition, since the valve body can be shortened, the lift stroke of the valve body can be reduced, and since the valve body is light, the control of the valve body can be facilitated. Further, unlike the structure in which the hollow hole of the valve body is used as a flow path, the valve body can have a small diameter, so that a reduction in efficiency due to oil leakage at the time of operation can be suppressed, and the impact efficiency can be improved.

また、ピストンがチゼルを打撃し、その反動による瞬間的なピストンの上昇によって上室の作動油が下室に向けて流れる際、弁体はまだ上昇位置にあり、その作動油は直接に連通路を通って下室に至るため、弁体の内部を通る従来タイプに比べ、弁体が作動油の流れに影響を受けることがなく、ピストンによる打撃を安定させることができる。   In addition, when the piston strikes the chisel and the hydraulic fluid in the upper chamber flows toward the lower chamber due to the momentary lift of the piston due to the reaction, the valve body is still in the raised position, and the hydraulic fluid is directly connected to the communication path. Since it passes through the lower chamber through the valve body, the valve body is not affected by the flow of hydraulic oil, and the impact of the piston can be stabilized as compared with the conventional type that passes through the inside of the valve body.

この発明に係る衝撃動工具において、ピストン上昇用給油路は、弁室の内周に形成されて給油口と連通する環状の高圧インポートと、弁体の下降状態で、その弁体に形成されたくびれ部を介して高圧インポートに連通する環状の高圧アウトポートと、その高圧アウトポートと連通路の中途を連通するバイパス路とからなるものであってもよい。この場合、弁切換制御油路は、下室と上室間におけるシリンダ内に形成されて、ピストンが上限位置に至る少し手前の位置で上記下室に連通する環状の弁制御用インポートと、その弁制御用インポートに一端が連通し、他端が弁室の上部に形成された大径室の底部に連通する弁体上昇用油路とで形成されるものとすることができる。   In the impact moving tool according to the present invention, the piston raising oil passage is formed in the valve body in the annular high-pressure import formed in the inner periphery of the valve chamber and communicating with the oil filler, and the valve body is lowered. It may be composed of an annular high-pressure out-port that communicates with the high-pressure import through the constricted portion, and a bypass that communicates the high-pressure out-port with the middle of the communication path. In this case, the valve switching control oil passage is formed in the cylinder between the lower chamber and the upper chamber, and the annular valve control import that communicates with the lower chamber at a position slightly before the piston reaches the upper limit position, The valve control import may be formed of a valve body ascending oil passage that has one end communicating with the valve control import and the other end communicating with the bottom of the large-diameter chamber formed at the top of the valve chamber.

また、ピストン上昇用給油路は、開口端が前記給油口とされる入口側通路からなるものとすることができる。この場合、弁切換制御油路は、下室と上室間におけるシリンダの内周に形成されて、ピストンが上限位置に至る少し手前の位置で下室に連通する環状の弁制御用インポートと、その弁制御用インポートの上側に間隔をおいて形成されて、ピストンの下降状態でピストンの大径部に形成されたバルブ切換用環状溝を介して弁制御用インポートに連通する弁制御用アウトポートと、上記弁制御用インポートに一端が連通し、他端が弁室の上部に形成された大径室の底部に連通する弁体上昇用油路と、弁制御用アウトポートに一端が連通し、他端が弁体に形成されたくびれ部を介して排油口に常時連通する弁体下降用油路と、弁体に形成されていて、その弁体の上昇状態で前記弁室の大径室の下部と前記連通路とを連通する通油孔とから構成されるものとすることができる。   Further, the piston raising oil supply passage may be composed of an inlet-side passage whose opening end is the oil supply port. In this case, the valve switching control oil passage is formed on the inner circumference of the cylinder between the lower chamber and the upper chamber, and the annular valve control import that communicates with the lower chamber at a position slightly before the piston reaches the upper limit position; A valve control outport that is formed on the upper side of the valve control import and that communicates with the valve control import via a valve switching annular groove formed in the large diameter portion of the piston when the piston is lowered. And one end in communication with the valve control import, and the other end in communication with the bottom of the large-diameter chamber formed at the top of the valve chamber, and one end in communication with the valve control outport. An oil passage for lowering the valve body that is always in communication with the oil discharge port via a constricted portion formed in the valve body, and a valve body that is formed in the valve body, It is comprised from the oil passage hole which connects the lower part of a diameter chamber, and the said communicating path It can be as.

ここで、弁体に形成されたくびれ部は、環状溝からなるものであってもよく、周方向に間隔をおいて形成された複数の切欠部からなるものであってもよい。複数の切欠部をくびれ部とすると、隣接する切欠部間の外周は摺動案内面を形成するため、弁室内において弁体をスムーズに昇降動させることができる。   Here, the constricted portion formed in the valve body may be formed of an annular groove, or may be formed of a plurality of cutout portions formed at intervals in the circumferential direction. When the plurality of cutout portions are constricted portions, the outer periphery between adjacent cutout portions forms a sliding guide surface, so that the valve body can be moved up and down smoothly in the valve chamber.

この発明においては、上記のように、下室と上室を連通する連通路を弁室内で昇降動される弁体により開閉し、その開放時に下室の作動油を上室に流入させるようにしたので、弁体には、下室の作動油を上室に流入させるための環状溝等のくびれ部を形成する必要がなくなり、弁体の軸方向長さの短小化を図ることができる。しかも、筒状弁体の内径を流路とする場合に比べ、下室から上室への作動油の流動時に弁体が抵抗を与えることがなく十分な流路が確保されるため、弁体を小径化でき、弁体の短小化と小径化とにより弁体の軽量化を図る状態で作動油管路を確保することができる。   In the present invention, as described above, the communication passage that communicates the lower chamber and the upper chamber is opened and closed by the valve body that is moved up and down in the valve chamber, and the hydraulic oil in the lower chamber flows into the upper chamber when the valve is opened. Therefore, it is not necessary to form a constricted portion such as an annular groove for allowing the hydraulic oil in the lower chamber to flow into the upper chamber in the valve body, and the axial length of the valve body can be shortened. In addition, compared with the case where the inner diameter of the cylindrical valve body is used as the flow path, the valve body does not give resistance when the hydraulic oil flows from the lower chamber to the upper chamber, and a sufficient flow path is secured. The hydraulic oil line can be secured in a state where the weight of the valve body is reduced by shortening and reducing the diameter of the valve body.

さらに、環状溝や内径流路を介さずに、直接連通路にて上室と下室を繋ぐことにより、油は瞬時に移動するので、ピストン下降時の抵抗がなくなり、打撃がスムーズに行われる。また、弁体部を収容するシリンダ自体も小型化でき、衝撃動工具自体の軽量化も図ることができる。   Furthermore, the oil moves instantaneously by connecting the upper chamber and the lower chamber through the direct communication path without going through the annular groove and the inner diameter flow path, so the resistance when the piston descends is eliminated and the hitting is performed smoothly. . In addition, the cylinder itself that accommodates the valve body portion can be reduced in size, and the impact moving tool itself can be reduced in weight.

この発明に係る衝撃動工具の実施の形態を示す縦断面図A longitudinal sectional view showing an embodiment of an impact tool according to the present invention 図1の切換弁部を拡大して示す断面図Sectional drawing which expands and shows the switching valve part of FIG. ピストンが上限位置まで上昇した状態を示す断面図Sectional drawing which shows the state which the piston rose to the upper limit position 切換弁の切り換わり状態を示す断面図Sectional view showing the switching state of the switching valve ピストンの下降状態を示す断面図Sectional view showing the lowered state of the piston この発明に係る衝撃動工具の他の実施の形態を示す縦断面図Longitudinal sectional view showing another embodiment of the impact tool according to the present invention 図6の切換弁部を拡大して示す断面図Sectional drawing which expands and shows the switching valve part of FIG. 切換弁の切り換わり状態を示す断面図Sectional view showing the switching state of the switching valve 弁体の他の例を示す正面図Front view showing another example of valve body 弁体のさらに他の例を示す断面図Sectional drawing which shows other example of a valve body (a)は、図10のXI−XI線に沿った断面図、(b)は、くびれ部の他の例を示す断面図(A) is sectional drawing along the XI-XI line of FIG. 10, (b) is sectional drawing which shows the other example of a constriction part.

以下、この発明の実施の形態を図面に基づいて説明する。図1および図2に示すように、シリンダ1の下端部内にはチゼル2の上部がスライド自在に嵌合され、そのチゼル2の上側においてシリンダ1内にピストン3と、そのピストン3を摺動案内するスリーブ4が組み込まれている。スリーブ4は、軸方向に位置決めされてシリンダ1の一部をなしている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIGS. 1 and 2, the upper portion of the chisel 2 is slidably fitted in the lower end portion of the cylinder 1, and the piston 3 and the piston 3 are slidably guided in the cylinder 1 above the chisel 2. A sleeve 4 is incorporated. The sleeve 4 is positioned in the axial direction and forms a part of the cylinder 1.

ピストン3は、軸方向の中央部に大径部3aを有しており、シリンダ1内には、その大径部3aの下面側に下室5と、大径部3aの上面側に上室6とが設けられている。また、シリンダ1内の上部には、ピストン3の上端面側にガス室7が設けられ、そのガス室7内に高圧ガスが封入されている。   The piston 3 has a large-diameter portion 3a in the central portion in the axial direction. In the cylinder 1, a lower chamber 5 is provided on the lower surface side of the large-diameter portion 3a, and an upper chamber is provided on the upper surface side of the large-diameter portion 3a. 6 are provided. A gas chamber 7 is provided on the upper end surface side of the piston 3 in the upper part of the cylinder 1, and high-pressure gas is sealed in the gas chamber 7.

下室5と上室6は、シリンダ1に形成された連通路8で連通している。連通路8は、上下方向に延びる縦孔部8aを有し、その縦孔部8aの上側にピストン3の昇降動を制御する切換弁10が設けられている。   The lower chamber 5 and the upper chamber 6 communicate with each other through a communication path 8 formed in the cylinder 1. The communication path 8 has a vertical hole portion 8a extending in the vertical direction, and a switching valve 10 for controlling the up and down movement of the piston 3 is provided above the vertical hole portion 8a.

切換弁10は、連通路8の縦孔部8aの上側に連続して設けられた弁室11内に弁体12を昇降自在に組込み、その弁体12の昇降動によってピストン3の昇降動を制御するようになっている。   The switching valve 10 incorporates a valve body 12 in a valve chamber 11 provided continuously above the vertical hole portion 8 a of the communication passage 8 so as to be movable up and down, and the piston 3 is moved up and down by the movement of the valve body 12. It comes to control.

弁室11は、その下端部が連通路8の上端部に連通し、その弁室11内に組み込まれた弁体12は、大径部12aを上部に有している。大径部12aは弁室11の上部に形成された大径室11a内で昇降自在とされ、その大径室11aの底面に対する大径部12aの下面の当接により、弁体12の下降位置が規制され、その弁体12の下降位置で、弁体12の下端部は連通路8内に侵入して連通路8を閉鎖するようになっている。その閉鎖によって下室5と上室6は連通が遮断される。   The lower end portion of the valve chamber 11 communicates with the upper end portion of the communication passage 8, and the valve body 12 incorporated in the valve chamber 11 has a large diameter portion 12 a at the upper portion. The large-diameter portion 12a can be raised and lowered in a large-diameter chamber 11a formed in the upper portion of the valve chamber 11, and the lowering position of the valve body 12 is brought into contact with the bottom surface of the large-diameter chamber 11a by the lower surface of the large-diameter portion 12a. The lower end portion of the valve body 12 enters the communication path 8 and closes the communication path 8 at the lowered position of the valve body 12. The communication between the lower chamber 5 and the upper chamber 6 is blocked by the closure.

また、弁体12は、大径室11aの上面に対する大径部12aの上端面の当接によって上昇位置が規制され、その弁体12の上昇位置で、弁体12の下端部は連通路8から抜け出して連通路8を開放し、下室5と上室6は連通状態に保持される。   Further, the rising position of the valve body 12 is restricted by the abutment of the upper end surface of the large diameter portion 12a with respect to the upper surface of the large diameter chamber 11a. The lower chamber 5 and the upper chamber 6 are maintained in communication with each other.

弁体12における大径部12aの上端面には、その大径部12aより小径のプランジャ12bが設けられ、そのプランジャ12bの上端部は、大径室11aの上側に設けられた弁規制室13内にスライド自在に挿入されている。   A plunger 12b having a smaller diameter than the large-diameter portion 12a is provided on the upper end surface of the large-diameter portion 12a in the valve body 12, and the upper end portion of the plunger 12b is provided in a valve regulating chamber 13 provided above the large-diameter chamber 11a. It is slidably inserted inside.

シリンダ1には、弁室11の側方に給油口14と、その給油口14の下側に排油口15が設けられている。   The cylinder 1 is provided with an oil supply port 14 on the side of the valve chamber 11 and an oil discharge port 15 on the lower side of the oil supply port 14.

また、シリンダ1には、弁体12の下降位置で給油口14からの圧油を連通路8に導入するピストン上昇用給油路Tと、給油口14からの圧油を弁規制室13に導いて弁体12の上端面に給油圧を常時付与する圧力付与通路Tと、ピストン3の上昇行程時に大径室11aの底部に圧油を導入してピストン3が上限位置に至る少し手前の状態で弁体12を上昇させる弁切換制御油路Tと、弁体12の下降状態で大径室11aの上部と排油口15とを連通する排油通路Tがそれぞれ設けられている。 Further, the cylinder 1 has a piston raising oil passage T 1 for introducing the pressure oil from the oil filler port 14 into the communication passage 8 at the lowered position of the valve body 12, and the pressure oil from the oil filler port 14 to the valve regulating chamber 13. a pressure applying passage T 2 which always impart oil supply pressure to the upper end face of the valve body 12 is guided, slightly before the piston 3 by introducing pressurized oil at the bottom of the large-diameter chamber 11a during upstroke of the piston 3 reaches the upper limit position a valve switching Goyu path T 3 to increase the valve body 12 in the state, drain oil passage T 4 communicating the oil outlet 15 and the upper large-diameter chamber 11a in lowered position of the valve body 12 is provided, respectively Yes.

ピストン上昇用給油路Tは、弁室11の内周に形成されて給油口14と連通する環状の高圧インポート21と、弁体12の下降状態で、その弁体12に形成されたくびれ部16を介して上記高圧インポート21に連通する環状の高圧アウトポート22と、その高圧アウトポート22に一端が連通し、他端が連通路8の中途に連通するバイパス路23とからなっており、上記弁体12に形成されたくびれ部16として、ここでは、環状溝からなるものが示されている。 The piston raising oil passage T 1 is formed on the inner periphery of the valve chamber 11 and communicated with the oil filler port 14. The constricted portion formed in the valve body 12 when the valve body 12 is lowered. 16, an annular high-pressure out port 22 that communicates with the high-pressure import 21 via 16, and a bypass path 23 that communicates with the high-pressure out port 22 at one end and communicates with the other end in the middle of the communication path 8. Here, as the constricted portion 16 formed in the valve body 12, a constricted portion 16 is shown.

圧力付与通路Tは、弁規制室13の内周上部に形成された環状のパイロットポート31と、そのパイロットポート31に一端が連通し、他端が給油口14に連通するパイロット孔32からなる。 The pressure applying passage T 2 are an annular pilot port 31 formed on the inner peripheral upper portion of the valve restraining chamber 13 communicates at one end to the pilot port 31, consisting of the pilot hole 32 and the other end communicates with the oil supply port 14 .

弁切換制御油路Tは、下室5と上室6間におけるシリンダ内周に形成されて、ピストン3が上限位置に至る少し手前の位置で下室5に連通する環状の弁制御用インポート41と、その弁制御用インポート41に一端が連通し、他端が弁室11の大径室11aの底部内周に形成された環状の弁制御用アウトポート42に連通する弁体上昇用油路43からなっている。 Valve switching Goyu path T 3 is formed in the inner periphery of the cylinder between the lower chamber 5 and an upper chamber 6, for import annular valve control which communicates with the lower chamber 5 at a position slightly before the piston 3 reaches to the upper limit position 41 and its valve control import 41, one end communicates with, and the other end communicates with an annular valve control outport 42 formed on the inner periphery of the bottom of the large-diameter chamber 11a of the valve chamber 11 It consists of road 43.

排油通路Tは、大径室11aの内周上部に形成された排油ポート51と、その排油ポート51に一端が連通し、他端が排油口15に連通する排油孔52からなる。 The drain oil passage T 4 has a oil discharge port 51 formed on the inner peripheral upper portion of the large diameter chamber 11a, the oil discharge hole 52 having one end to the oil discharge port 51 are communicated, and the other end communicates with the oil discharge port 15 Consists of.

連通路8には、下降位置の弁体12の下端部と対向する位置の内周に環状溝8bが形成され、その環状溝8bは排油口15と連通している。   In the communication path 8, an annular groove 8 b is formed on the inner periphery at a position facing the lower end portion of the valve body 12 in the lowered position, and the annular groove 8 b communicates with the oil discharge port 15.

実施の形態で示す衝撃動工具は上記の構造からなり、図2は、ピストン3が下降し、かつ、切換弁10の弁体12が下降して、その下端部が連通路8の縦孔部8a内に進入し、下室5と上室6の連通を遮断する状態にある。また、ピストン上昇用給油路Tの高圧インポート21と高圧アウトポート22は弁体12に形成されたくびれ部16によって連通する状態にある。 The impact moving tool shown in the embodiment has the above-described structure. FIG. 2 shows that the piston 3 is lowered, the valve body 12 of the switching valve 10 is lowered, and the lower end portion thereof is a vertical hole portion of the communication passage 8. 8a is entered, and the communication between the lower chamber 5 and the upper chamber 6 is blocked. Further, the high pressure import 21 and the high pressure out port 22 of the piston raising oil supply passage T 1 are in communication with each other through a constricted portion 16 formed in the valve body 12.

上記のような弁体12の下降状態において、給油口14に圧油が供給されると、その圧油はピストン上昇用給油路Tから連通路8に流れて下室5に流入し、ピストン3が上昇する。また、ピストン3の上昇に伴い、上室6の作動油が連通路8の上部に形成された環状溝8bを通って排油口15に流れて排出される。 In lowered position of the valve body 12 as described above, when the pressure oil is supplied to the fuel supply port 14, the pressure oil flows into the lower chamber 5 flows from the piston-increasing oil supply passage T 1 in the communication passage 8, the piston 3 rises. Further, as the piston 3 moves up, the hydraulic oil in the upper chamber 6 flows through the annular groove 8 b formed in the upper part of the communication path 8 to the oil discharge port 15 and is discharged.

上記のようなピストン3の上昇行程において、そのピストン3の上側に形成されたガス室7内の高圧ガスはさらに圧縮されてエネルギが蓄積される。   In the upward stroke of the piston 3 as described above, the high-pressure gas in the gas chamber 7 formed on the upper side of the piston 3 is further compressed to accumulate energy.

図3は、ピストン3が上限位置まで上昇した状態を示し、その上限位置に至る少し手前の位置において下室5は弁切換制御油路Tの弁制御用インポート41に連通する。その連通により、下室5の作動油が弁切換制御油路Tを通って弁室11の大径室11aの下部に流入する。この弁体12の大径部12aの下面に付与される押圧力によって弁体12が上昇し、大径室11a内の作動油は排油通路Tを通って排油口15から排出される。 3, the piston 3 is shown elevated until the upper limit position, the lower chamber 5 in position slightly before reaching the upper limit position is communicated to a valve control for import 41 Bensetsu-over Goyu path T 3. By its communication, hydraulic oil in the lower chamber 5 flows into the lower portion of the large diameter chamber 11a of the valve chamber 11 through the valve switching Goyu path T 3. The valve body 12 by a pressing force applied to the lower surface of the large diameter portion 12a of the valve element 12 rises, hydraulic fluid in the large diameter chamber 11a is and is discharged from the oil discharge port 15 through the oil discharge passage T 4 .

図4は、弁体12が上限位置まで上昇した状態を示し、その弁体12の上昇により、弁体12の下端部が連通路8の縦孔部8aから抜け出し、その連通路8の開放によって下室5は連通路8を介して排油口15に連通し、下室5は低圧状態となる。この時、ガス室7内の圧縮された高圧ガスの膨張により、ピストン3が急速に下降する。   FIG. 4 shows a state in which the valve body 12 is raised to the upper limit position, and the lower end portion of the valve body 12 is pulled out from the vertical hole portion 8a of the communication passage 8 due to the rise of the valve body 12 and the communication passage 8 is opened. The lower chamber 5 communicates with the oil discharge port 15 via the communication passage 8 and the lower chamber 5 is in a low pressure state. At this time, the piston 3 rapidly descends due to the expansion of the compressed high-pressure gas in the gas chamber 7.

ピストン3の急速な下降により、そのピストン3は、図5に示すように、チゼル2の上端を打撃する。この時、下室5の作動油の大半は連通路8を通って上室6に流れ込み、上室6が負圧になるのを防いでピストン3の下降動を円滑にする。   Due to the rapid lowering of the piston 3, the piston 3 strikes the upper end of the chisel 2 as shown in FIG. At this time, most of the hydraulic oil in the lower chamber 5 flows into the upper chamber 6 through the communication passage 8 and prevents the upper chamber 6 from becoming a negative pressure, thereby smoothly moving the piston 3 downward.

また、ピストン3の下降により、上室6は連通路8を介して排油口15にも連通し、また、弁制御用インポート41がその上室6に連通するため、大径室11aの下部は弁切換制御油路Tを介して排油口15につながることになり、給油口14から圧力付与通路Tを介して弁規制室13に供給される圧油の弁体上端面への押圧力により弁体12が下降する。その下降により、図1および図2に示すように、弁体12の下端部が連通路8内に侵入してその連通路8を閉鎖し、下室5と上室6の連通を遮断する。以後、上記の動作が繰り返し行なわれる。 Further, as the piston 3 descends, the upper chamber 6 communicates with the oil discharge port 15 via the communication passage 8 and the valve control import 41 communicates with the upper chamber 6. It will be lead to the oil discharge port 15 via the Bensetsu-over Goyu path T 3, of the valve body upper end surface of the hydraulic fluid supplied to the valve regulating chamber 13 through the pressure applying passage T 2 from the fuel supply port 14 The valve body 12 is lowered by the pressing force. As shown in FIGS. 1 and 2, the lower end of the valve body 12 enters the communication path 8 and closes the communication path 8, thereby blocking communication between the lower chamber 5 and the upper chamber 6. Thereafter, the above operation is repeated.

実施の形態で示すように、下室5と上室6を連通する連通路8の縦孔部8aを弁室11内で昇降動される弁体12の棒状の下端部により開閉し、その開放時に下室5の作動油を連通路8から上室6に流入させる構成としたので、弁体12には、下室5の作動油を上室6に流入させるための環状溝等のくびれ部を形成する必要がなくなり、弁体12の軸方向長さの短小化を図ることができる。また、中空弁体の内径を流路とするタイプに比べ、下室5から上室6への作動油の流動時に弁体12が抵抗を与えることがなく、さらに、弁体の外径を小さくできる。その弁体12の短小化と小径化とによって弁体12の軽量化を図る状態で十分な流路を持つ作動油管路を確保することができる。   As shown in the embodiment, the vertical hole portion 8a of the communication passage 8 that communicates the lower chamber 5 and the upper chamber 6 is opened and closed by the rod-like lower end portion of the valve body 12 that is moved up and down in the valve chamber 11, and the opening is opened. Since the hydraulic oil in the lower chamber 5 is sometimes allowed to flow into the upper chamber 6 from the communication passage 8, the valve body 12 has a constricted portion such as an annular groove for allowing the hydraulic oil in the lower chamber 5 to flow into the upper chamber 6. Therefore, the axial length of the valve body 12 can be shortened. In addition, the valve body 12 does not give resistance when the hydraulic oil flows from the lower chamber 5 to the upper chamber 6 as compared with the type in which the inner diameter of the hollow valve body is a flow path, and the outer diameter of the valve body is reduced. it can. By shortening and reducing the diameter of the valve body 12, it is possible to secure a hydraulic oil conduit having a sufficient flow path in a state where the weight of the valve body 12 is reduced.

また、弁体12の短小化により、その弁体12の昇降ストロークを小さくすることができ、しかも、軽量であるため、弁体12の切り換え制御を素早く確実に行うことができる。さらに、弁体12を小径とすることができるため、作動時の油漏れによる切換弁の作動不良や効率の低下を抑制し、打撃効率を向上させることができる。   In addition, the shortening of the valve body 12 can reduce the lifting stroke of the valve body 12, and since the valve body 12 is lightweight, the switching control of the valve body 12 can be performed quickly and reliably. Furthermore, since the diameter of the valve body 12 can be reduced, it is possible to suppress a malfunction of the switching valve and a decrease in efficiency due to oil leakage during operation, and to improve the impact efficiency.

ここで、ピストン3がチゼル2を打撃すると、その打撃による反動によってピストン3が急上昇し、瞬間的に上室6の作動油が下室5に向けて流れる。このときも、作動油は弁体12の内部や環状溝を通ることなく直接連通路を通って下室5に至るため、弁体12が作動油の流れに影響を受けることがなく、ピストン3による打撃を安定させることができる。   Here, when the piston 3 strikes the chisel 2, the piston 3 rapidly rises due to the reaction caused by the impact, and the hydraulic oil in the upper chamber 6 instantaneously flows toward the lower chamber 5. Also at this time, the hydraulic oil does not pass through the inside of the valve body 12 or the annular groove and directly reaches the lower chamber 5 through the communication path, so that the valve body 12 is not affected by the flow of the hydraulic oil, and the piston 3 Can be stabilized.

図6および図7は、この発明に係る衝撃動工具の他の実施の形態を示す。この実施の形態で示す衝撃動工具と図1および図2に示す衝撃動工具は、給油口14と排油口15の位置を上下逆の配置として、ピストン上昇用給油路Tを、開口端が給油口14とされる入口側通路25と連通路8のみで形成している点、および、弁切換制御油路Tを下記の構成としている点で相違している。このため、図1および図2に示す実施の形態と同一の部分には同一の符号を付して説明を省略する。 6 and 7 show another embodiment of the impact moving tool according to the present invention. Impact dynamic tool shown in impact dynamic tool and FIGS. 1 and 2 shown in this embodiment, the position of the fuel supply port 14 and the drain oil port 15 as the arrangement of the upside down, the piston rises oil supply passage T 1, the open end There points are formed only at the inlet-side passage 25 and the communication path 8 which is the fuel supply port 14, and is different in that it the valve switching Goyu path T 3 with the following configuration. For this reason, the same code | symbol is attached | subjected to the part same as embodiment shown in FIG. 1 and FIG. 2, and description is abbreviate | omitted.

図6および図7に示す実施の形態で示す弁切換制御油路Tにおいては、下室5と上室6間におけるシリンダ内周に形成されて、ピストン3が上限位置に至る少し手前の位置で下室5に連通する環状の弁制御用インポート41と、その弁制御用インポート41の上側に間隔をおいて形成されて、ピストン3の下降状態でピストン3の大径部3aに形成されたバルブ切換用環状溝45を介して弁制御用インポート41に連通する弁制御用アウトポート46と、上記弁制御用インポート41に一端が連通し、他端が大径室11a下部の弁制御用アウトポート42に連通する弁体上昇用油路47と、シリンダ内周側の弁制御用アウトポート46に一端が連通し、他端が弁体12に形成されたくびれ部16を介して排油口15に常時連通する弁体下降用油路48と、弁体12に形成され、その弁体12の上昇状態で大径室11aの下部と連通路8とを連通する通油孔49とからなっている。 In the valve switching Goyu path T 3 shown in the embodiment shown in FIGS. 6 and 7, it is formed in the cylinder inner periphery between the lower chamber 5 and the upper chamber 6, the position of just before the piston 3 reaches the upper limit position The annular valve control import 41 communicated with the lower chamber 5 and the valve control import 41 are formed on the upper side of the valve control import 41 so as to be spaced apart and formed in the large-diameter portion 3a of the piston 3 when the piston 3 is lowered. The valve control outport 46 communicates with the valve control import 41 via the valve switching annular groove 45, and one end communicates with the valve control import 41 and the other end is the valve control out of the lower part of the large-diameter chamber 11a. One end communicates with the valve body raising oil passage 47 communicating with the port 42 and the valve control outport 46 on the inner circumferential side of the cylinder, and the other end is disposed through the constricted portion 16 formed in the valve body 12. The valve body is always in communication with 15 The oil passage 48 includes an oil passage hole 49 that is formed in the valve body 12 and communicates the lower portion of the large-diameter chamber 11a and the communication passage 8 when the valve body 12 is raised.

上記の構成からなる衝撃動工具において、ピストン3および弁体12のそれぞれが下降位置にある状態において、給油口14に圧油を供給すると、その圧油は連通孔8から下室5内に流入し、ピストン3が上昇する。   In the impact tool having the above-described configuration, when pressure oil is supplied to the oil supply port 14 in a state where the piston 3 and the valve body 12 are in the lowered position, the pressure oil flows into the lower chamber 5 from the communication hole 8. Then, the piston 3 rises.

このとき、上室6の作動油は、連通路8の上部から弁室11に流入し、弁体12のくびれ部16の周囲を流動して排油口15から排出され、ピストン3はスムーズに上昇する。   At this time, the hydraulic oil in the upper chamber 6 flows into the valve chamber 11 from the upper part of the communication passage 8, flows around the constricted portion 16 of the valve body 12 and is discharged from the oil discharge port 15, and the piston 3 smoothly moves. To rise.

ピストン3が上限位置近くまで上昇すると、下室5が弁制御用インポート41と連通し、下室5の作動油は弁切換制御油路Tに流入して弁室11の大径室11aの下部内に流入し、弁体12の大径部12aの下面に押し上げ力が負荷され、弁体12が上昇する。この時、弁制御用アウトポート46はピストン3の大径部3aで弁制御用インポート41と遮断されている。 When the piston 3 is raised to near the upper limit position, the lower chamber 5 communicates with the valve control import 41, hydraulic oil in the lower chamber 5 of the large diameter chamber 11a of the valve chamber 11 flows into the Bensetsu-over Goyu path T 3 It flows into the lower part, a pushing force is applied to the lower surface of the large diameter part 12a of the valve body 12, and the valve body 12 rises. At this time, the valve control outport 46 is disconnected from the valve control import 41 at the large diameter portion 3 a of the piston 3.

図8は、弁体12が上昇した状態を示し、その弁体12の上昇により、弁体12の下端部が連通路8の縦孔部8aから抜け出して、連通路8が開放され、下室5と連通路8は連通状態に保持されて等圧状態になる。そして、ピストン3の上昇により圧縮されたガス室7内の高圧ガスの蓄圧エネルギによりピストン3が下降して、チゼル2を打撃する。   FIG. 8 shows a state in which the valve body 12 is raised, and when the valve body 12 is raised, the lower end portion of the valve body 12 comes out of the vertical hole portion 8a of the communication path 8, and the communication path 8 is opened. 5 and the communication path 8 are maintained in a communicating state and are in an equal pressure state. Then, the piston 3 descends due to the accumulated energy of the high-pressure gas in the gas chamber 7 compressed by the ascent of the piston 3 and strikes the chisel 2.

ピストン3が下降すると、下室5と弁制御用インポート41との連通が遮断されて、大径室11aへの圧油の供給が遮断され、弁体上昇用油路47が弁制御用アウトポート46を介して、排油口15に連通している弁体下降用油路48とつながる。このため、給油口14に連通する圧力付与通路Tから弁規制室13に流入する圧油により弁体12が押し下げられて下降し、図7に示すように、弁体12の下端部が連通路8内に侵入して、下室5と上室6の連通を遮断する。以後、上記の動作が繰り返し行なわれる。 When the piston 3 descends, the communication between the lower chamber 5 and the valve control import 41 is cut off, the supply of the pressure oil to the large-diameter chamber 11a is cut off, and the valve body raising oil passage 47 is connected to the valve control outport. The valve body lowering oil passage 48 communicated with the oil discharge port 15 is connected via 46. Therefore, the valve body 12 is pushed down by the pressure oil flowing from the pressure applying passage T 2 communicating with the oil supply port 14 in the valve regulating chamber 13 is lowered, as shown in FIG. 7, the lower end of the valve element 12 is communicated It enters into the passage 8 and blocks communication between the lower chamber 5 and the upper chamber 6. Thereafter, the above operation is repeated.

なお、通油孔49は、弁体上昇時の弁体12を上昇位置に保持するための油を供給する。   The oil passage hole 49 supplies oil for holding the valve body 12 in the raised position when the valve body is raised.

図9に示すように、弁体12のプランジャ12bを、大径部12aの上面を分割面として弁体12に対して分割すると、弁体12の摺動部とプランジャ12bの摺動部の同軸度を出す必要がなくなるため、弁室11および弁体12の加工を容易とすることができる。   As shown in FIG. 9, when the plunger 12b of the valve body 12 is divided with respect to the valve body 12 with the upper surface of the large-diameter portion 12a as the dividing surface, the sliding portion of the valve body 12 and the sliding portion of the plunger 12b are coaxial. Since it is not necessary to increase the degree, the processing of the valve chamber 11 and the valve body 12 can be facilitated.

図2では、弁体12のくびれ部16を環状溝としたが、図10および図11(a)に示すように、周方向に間隔をおいて形成された複数の切欠部からなるものとすることにより、隣接する切欠部16間の外周は摺動案内面17を形成するため、弁室11内において弁体をスムーズに昇降動させることができる。   In FIG. 2, the constricted portion 16 of the valve body 12 is an annular groove. However, as shown in FIGS. 10 and 11A, the constricted portion 16 includes a plurality of notches formed at intervals in the circumferential direction. As a result, the outer periphery between the adjacent notch portions 16 forms the sliding guide surface 17, so that the valve body can be moved up and down smoothly in the valve chamber 11.

ここで、切欠部からなるくびれ部16の側面は、図11(b)に示すように、凹曲面としてもよい。   Here, the side surface of the constricted portion 16 formed of the notch portion may be a concave curved surface as shown in FIG.

1 シリンダ
2 チゼル
3 ピストン
5 下室
6 上室
7 ガス室
8 連通路
8a 縦孔部
11 弁室
11a 大径室
12 弁体
12a 大径部
13 弁規制室
14 給油口
15 排油口
16 くびれ部
ピストン上昇用給油路
21 高圧インポート
22 高圧アウトポート
23 バイパス路
25 入口側通路
圧力付与通路
弁切換制御油路
41 弁制御用インポート
42 弁制御用アウトポート
43 弁体上昇用油路
45 環状溝
46 弁制御用アウトポート
47 弁体上昇用油路
48 弁体下降用油路
49 通油孔
排油通路
51 排油ポート
52 排油孔
DESCRIPTION OF SYMBOLS 1 Cylinder 2 Chisel 3 Piston 5 Lower chamber 6 Upper chamber 7 Gas chamber 8 Communication path 8a Vertical hole part 11 Valve chamber 11a Large diameter chamber 12 Valve body 12a Large diameter part 13 Valve regulation chamber 14 Oil supply port 15 Oil discharge port 16 Constriction part T 1 Piston raising oil passage 21 High pressure import 22 High pressure out port 23 Bypass passage 25 Inlet side passage T 2 Pressure applying passage T 3 Valve switching control oil passage 41 Valve control import 42 Valve control out port 43 Oil for raising valve body Passage 45 annular groove 46 valve control outport 47 valve body raising oil passage 48 valve body lowering oil passage 49 oil passage hole T 4 oil passage 51 oil drain port 52 oil passage hole

Claims (4)

シリンダの下端部内にチゼルの上端部をスライド自在に挿入し、シリンダの内部には、大径部を有するチゼル打撃用のスライド可能なピストンを組込み、前記シリンダの内周には、前記大径部の上面側に上室と、大径部の下面側に下室と、ピストンの上端面側に高圧ガスが封入されたガス室を設け、前記シリンダには、前記上室と下室を連通する連通路と、その連通路の上側に連続する弁室とを設け、その弁室内に前記連通路の開閉制御用の弁体をスライド自在に組み込み、その弁体の上部に前記弁室の上部に形成された大径室内でスライド可能な大径部を設け、前記シリンダには、前記弁体の下降位置で給油口からの圧油を連通路に導入するピストン上昇用給油路と、前記給油口からの圧油を弁室の上部に形成された弁規制室に導いて弁体の上端面に給油圧を付与する圧力付与通路と、前記ピストンの上昇行程時に前記大径室の底部に圧油を導入してピストンが上限位置に至る少し手前の状態で弁体を上昇させる弁切換制御油路と、前記弁体の下降状態で前記大径室の上部と排油口とを連通する排油通路とを設け、前記連通路が、上下方向に延び、その上端に前記弁室内を昇降する弁体の下端部が進退自在とされる縦孔部を有し、その縦孔部の上端部への弁体の下端部の進入によって上室と下室の連通が遮断される閉鎖状態とされるようにしたことを特徴とする衝撃動工具。   The upper end portion of the chisel is slidably inserted into the lower end portion of the cylinder, and a slidable piston for hitting a chisel having a large diameter portion is incorporated in the cylinder, and the large diameter portion is disposed on the inner periphery of the cylinder. An upper chamber is provided on the upper surface side, a lower chamber is provided on the lower surface side of the large-diameter portion, and a gas chamber filled with high-pressure gas is provided on the upper end surface side of the piston. The cylinder communicates with the upper chamber and the lower chamber. A communication passage and a valve chamber continuous above the communication passage are provided, and a valve body for controlling the opening and closing of the communication passage is slidably incorporated in the valve chamber, and the valve body is disposed above the valve chamber. A large-diameter portion that is slidable in the formed large-diameter chamber is provided, and the cylinder is provided with a piston raising oil passage that introduces pressure oil from the oil filler port into the communication passage at the lowered position of the valve body, and the oil filler port. The pressure oil from the valve body is led to the valve regulation chamber formed in the upper part of the valve chamber A pressure applying passage for applying a hydraulic pressure to the upper end surface, and valve switching for raising the valve body in a state just before the piston reaches the upper limit position by introducing pressure oil to the bottom of the large-diameter chamber during the upward stroke of the piston A control oil passage and an oil discharge passage that communicates the upper portion of the large-diameter chamber and the oil discharge port when the valve body is lowered are provided, the communication passage extends in the vertical direction, and the upper end of the valve chamber extends through the valve chamber. A closed state in which the lower end of the valve body that moves up and down has a vertical hole portion that can be moved forward and backward, and communication between the upper chamber and the lower chamber is blocked by the entry of the lower end portion of the valve body into the upper end portion of the vertical hole portion An impact-driven tool characterized by 前記ピストン上昇用給油路が、前記弁室の内周に形成されて給油口と連通する環状の高圧インポートと、前記弁体の下降状態で、その弁体に形成されたくびれ部を介して前記高圧インポートに連通する環状の高圧アウトポートと、その高圧アウトポートと前記連通路の中途を連通するバイパス路とからなり、
前記弁切換制御油路が、前記下室と前記上室間におけるシリンダ内周に形成されて、ピストンが上限位置に至る少し手前の位置で前記下室に連通する環状の弁制御用インポートと、その弁制御用インポートに一端が連通し、他端が弁室の上部に形成された前記大径室の底部に連通する弁体上昇用油路からなる請求項1に記載の衝撃動工具。
The piston raising oil supply passage is formed on the inner periphery of the valve chamber and communicates with the oil supply port, and in the lowered state of the valve body, the constricted portion formed in the valve body It consists of an annular high-pressure out-port that communicates with the high-pressure import, and a bypass that communicates the high-pressure out-port with the middle of the communication path.
The valve switching control oil passage is formed in a cylinder inner circumference between the lower chamber and the upper chamber, and an annular valve control import communicating with the lower chamber at a position slightly before the piston reaches the upper limit position; 2. The impact moving tool according to claim 1, comprising an oil passage for raising a valve body, one end communicating with the valve control import and the other end communicating with the bottom of the large-diameter chamber formed at the upper portion of the valve chamber.
前記ピストン上昇用給油路が、開口端が前記給油口とされる入口側通路からなり、
弁切換制御油路が、前記シリンダの、前記下室と上室間における内周に形成されて、ピストンが上限位置に至る少し手前の位置で下室に連通する環状の弁制御用インポートと、その弁制御用インポートの上側に間隔をおいて形成されて、ピストンの下降状態でピストンの大径部に形成されたバルブ切換用環状溝を介して弁制御用インポートに連通する弁制御用アウトポートと、前記弁制御用インポートに一端が連通し、他端が弁室の上部に形成された前記大径室の底部に連通する弁体上昇用油路と、前記弁制御用アウトポートに一端が連通し、他端が弁体に形成されたくびれ部を介して排油口に常時連通する弁体下降用油路と、前記弁体に形成され、その弁体の上昇状態で前記弁室の大径室の下部と前記連通路とを連通する通油孔とからなる請求項1に記載の衝撃動工具。
The piston raising oil supply path is composed of an inlet side passage whose opening end is the oil supply port,
A valve switching control oil passage is formed on the inner periphery of the cylinder between the lower chamber and the upper chamber, and an annular valve control import communicating with the lower chamber at a position slightly before the piston reaches the upper limit position; A valve control outport that is formed on the upper side of the valve control import and that communicates with the valve control import via a valve switching annular groove formed in the large diameter portion of the piston when the piston is lowered. One end of the valve control import, the other end of which communicates with the bottom of the large-diameter chamber formed at the top of the valve chamber, and one end of the valve control outport. A fluid passage for lowering the valve body, which is in communication with the other end of the valve body through a constricted portion formed in the valve body, and is formed in the valve body. It consists of an oil passage hole that communicates the lower part of the large-diameter chamber and the communication passage. Impact dynamic tool according to Motomeko 1.
前記弁体に形成されたくびれ部が、環状溝または周方向に間隔をおいて形成された複数の切欠部からなる請求項2又は3に記載の衝撃動工具。   4. The impact tool according to claim 2, wherein the constricted portion formed in the valve body includes an annular groove or a plurality of notches formed at intervals in the circumferential direction.
JP2012140949A 2012-06-22 2012-06-22 Impact tool Active JP5841015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012140949A JP5841015B2 (en) 2012-06-22 2012-06-22 Impact tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012140949A JP5841015B2 (en) 2012-06-22 2012-06-22 Impact tool

Publications (2)

Publication Number Publication Date
JP2014004647A JP2014004647A (en) 2014-01-16
JP5841015B2 true JP5841015B2 (en) 2016-01-06

Family

ID=50102865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012140949A Active JP5841015B2 (en) 2012-06-22 2012-06-22 Impact tool

Country Status (1)

Country Link
JP (1) JP5841015B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110219334A (en) * 2019-04-02 2019-09-10 台州贝力特机械有限公司 A kind of hydraulic breaking hammer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100302A (en) * 1976-02-19 1977-08-23 Konan Electric Co Hydraulic breaker
JPH0536631Y2 (en) * 1986-11-29 1993-09-16
JPH0473477U (en) * 1990-11-08 1992-06-26
JP3986803B2 (en) * 2001-11-20 2007-10-03 古河機械金属株式会社 Stroke adjustment mechanism of hydraulic striking device

Also Published As

Publication number Publication date
JP2014004647A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
WO2015092875A1 (en) Impact-driven tool
CN105026111B (en) Hydraulic hammer with coaxial accumulator and piston
CN107631064B (en) It can be used for the ratio one-way flow valves of low-load
JP5841015B2 (en) Impact tool
US2943576A (en) Oil well pump
KR20140033910A (en) Breaker valve assembly
KR20090041823A (en) Automatic control system for hydaulic braeaker
KR20170020031A (en) Double acting piston cylinder having improved cushion structure
US9840000B2 (en) Hydraulic hammer having variable stroke control
CN104481963A (en) Oil cylinder, pumping system and concrete pumping device
KR101721792B1 (en) Fluid pressure cylinder
CN214661236U (en) Multi-stage plunger oil cylinder
CN202531538U (en) Hydraulic cylinder with liquid control direct-discharge type quick-closing hydraulic piston
KR101737017B1 (en) The hydraulic device for front loader
KR100891189B1 (en) Breaker valve device
KR101490597B1 (en) Hydraulic breaker
CN108953713B (en) Flow type balance valve
KR101607596B1 (en) Hydraulic breaker having housing for valve guide
KR101948016B1 (en) Breaker main valve
CN204941454U (en) Down-hole displacement control hydraulic pressure trigger mechanism
CN108999824B (en) Energy-saving balance valve
RU200707U1 (en) ACTIVATION HYDROMECHANICAL WRENCH FOR ACTIVATION OF THE COUPLING FOR MULTI-STAGE HYDRAULIC Fracturing
JP2003071744A (en) Impact dynamic tool
CN212427311U (en) Hydraulic breaking hammer with built-in valve in upper shell
CN106968999B (en) A kind of hydraulic hammer control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150218

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151112

R150 Certificate of patent or registration of utility model

Ref document number: 5841015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350