JP5832609B1 - レーザ媒質流路を備えたレーザ発振器 - Google Patents

レーザ媒質流路を備えたレーザ発振器 Download PDF

Info

Publication number
JP5832609B1
JP5832609B1 JP2014170702A JP2014170702A JP5832609B1 JP 5832609 B1 JP5832609 B1 JP 5832609B1 JP 2014170702 A JP2014170702 A JP 2014170702A JP 2014170702 A JP2014170702 A JP 2014170702A JP 5832609 B1 JP5832609 B1 JP 5832609B1
Authority
JP
Japan
Prior art keywords
flow path
laser medium
light guide
laser
discharge tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014170702A
Other languages
English (en)
Other versions
JP2016046435A (ja
Inventor
哲久 ▲高▼實
哲久 ▲高▼實
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FANUC Corp
Original Assignee
FANUC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FANUC Corp filed Critical FANUC Corp
Priority to JP2014170702A priority Critical patent/JP5832609B1/ja
Priority to CN201510446914.5A priority patent/CN105390915B/zh
Priority to DE102015010754.2A priority patent/DE102015010754B4/de
Priority to US14/833,479 priority patent/US9350134B2/en
Application granted granted Critical
Publication of JP5832609B1 publication Critical patent/JP5832609B1/ja
Publication of JP2016046435A publication Critical patent/JP2016046435A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/032Constructional details of gas laser discharge tubes for confinement of the discharge, e.g. by special features of the discharge constricting tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • H01S3/073Gas lasers comprising separate discharge sections in one cavity, e.g. hybrid lasers
    • H01S3/076Folded-path lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/041Arrangements for thermal management for gas lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/2232Carbon dioxide (CO2) or monoxide [CO]

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

【課題】複数の放電管内のレーザ媒質の圧力分布を一定としつつ、レーザ媒質を滞ることなく循環させることができるレーザ発振器を提供する。【解決手段】レーザ発振器10は、第1の放電管16、第2の放電管18、第1の導光管20、レーザ媒質流路22、および送風機24を備える。送風機24と第1の放電管16との間のレーザ媒質流路22の流路抵抗と、送風機24と第2の放電管18との間のレーザ媒質流路22の流路抵抗とは、互いに同じである。送風機24と第1の導光管20の第1端部20aとの間のレーザ媒質流路22の流路抵抗と、送風機24と第1の導光管20の第2端部20bとの間のレーザ媒質流路22の流路抵抗とは、互いに異なる。【選択図】図1

Description

本発明は、レーザ媒質を循環させるためのレーザ媒質流路を備えたレーザ発振器に関する。
2つの放電管の間のレーザ光路上に配置された折り返し鏡を備えるレーザ発振器において、該折り返し鏡の近傍にてレーザ媒質の流れが滞留してしまうのを防止する技術が知られている(例えば、特許文献1および2)。
特開昭63−239888号公報 特開2010−171145号公報
複数の放電管を備えるレーザ発振器において、これら放電管内のレーザ媒質の圧力分布が互いに異なってしまうと、生成されるレーザ光のレーザパワーが不安定となってしまう。したがって、複数の放電管内のレーザ媒質の圧力分布を一定としつつ、レーザ媒質を滞ることなく循環させる技術が求められている。
本発明に係るレーザ発振器は、第1の放電管および第2の放電管と、第1の放電管の第1端部と、第2の放電管の第1端部との間に配置された第1の導光管と、第1の放電管、第2の放電管、および第1の導光管の各々に流体的に連通するレーザ媒質流路と、レーザ媒質流路に設置され、該レーザ媒質流路、第1の放電管、および第2の放電管にレーザ媒質を循環させる送風機とを備える。
送風機の吐出口と第1の放電管の第1端部との間のレーザ媒質流路の流路抵抗と、吐出口と第2の放電管の第1端部との間のレーザ媒質流路の流路抵抗とは、互いに同じである。送風機の吸入口と第1の放電管の第1端部とは反対側の第2端部との間のレーザ媒質流路の流路抵抗と、吸入口と第2の放電管の第1端部とは反対側の第2端部との間のレーザ媒質流路の流路抵抗とは、互いに同じである。
吐出口と第1の導光管の第1端部との間のレーザ媒質流路の流路抵抗と、吐出口と、第1の導光管の第1端部とは反対側の第2端部との間のレーザ媒質流路の流路抵抗とは、互いに異なる。
吐出口と第1の導光管の第1端部との間のレーザ媒質流路の長さは、吐出口と第1の導光管の第2端部との間のレーザ媒質流路の長さよりも短くてもよい。吐出口と第1の導光管の第1端部との間のレーザ媒質流路は、第1の相当直径を有する部分を含み、吐出口と第1の導光管の第2端部との間のレーザ媒質流路は、第1の相当直径よりも小さな第2の相当直径を有する部分を含んでもよい。
レーザ発振器は、吐出口の下流側、および吸入口の上流側の少なくとも一方に配置され、通過するレーザ媒質から熱を除去する熱交換器をさらに備えてもよい。レーザ発振器は、第1の導光管の内部を流れるレーザ媒質の流量を調整する第1の流量調整部をさらに備えてもよい。
第1の導光管の内部を流れるレーザ媒質の流量に対する、第1の放電管および第2の放電管の内部を流れるレーザ媒質の流量の比は、10よりも大きく、且つ15よりも小さくてもよい。
レーザ発振器は、第1端部、および該第1端部とは反対側の第2端部を有する第3の放電管と、第2の放電管の第2端部と、第3の放電管の第2端部との間に配置された第2の導光管とをさらに備えてもよい。この場合において、レーザ媒質流路は、第2の導光管および第3の放電管の各々に流体的に連通してもよい。
吐出口と第3の放電管の第1端部との間のレーザ媒質流路の流路抵抗と、吐出口と第1の放電管の第1端部との間のレーザ媒質流路の流路抵抗とは、互いに同じであってもよい。吸入口と第3の放電管の第2端部との間のレーザ媒質流路の流路抵抗と、吸入口と第1の放電管の第2端部との間のレーザ媒質流路の流路抵抗とは、互いに同じであってもよい。
吸入口と第2の導光管の第1端部との間のレーザ媒質流路の流路抵抗と、吸入口と第2の導光管の第1端部とは反対側の第2端部との間のレーザ媒質流路の流路抵抗とは、互いに異なってもよい。
吸入口と第2の導光管の第1端部との間のレーザ媒質流路の長さは、吸入口と第2の導光管の第2端部との間のレーザ媒質流路の長さよりも長くてもよい。吸入口と第2の導光管の第1端部との間のレーザ媒質流路は、第3の相当直径を有する部分を含み、吸入口と第2の導光管の第2端部との間のレーザ媒質流路は、第3の相当直径よりも大きな第4の相当直径を有する部分を含んでもよい。
第1の導光管および第2の導光管の内部を流れるレーザ媒質の流量に対する、第1の放電管、第2の放電管、および第3の放電管の内部を流れるレーザ媒質の流量の比は、10よりも大きく、且つ15よりも小さくてもよい。レーザ発振器は、第2の導光管の内部を流れるレーザ媒質の流量を調整する第2の流量調整部をさらに備えてもよい。
一実施形態に係るレーザ発振器の概略図である。 図1に示すレーザ媒質流路の等価回路を示す。 図1に示すレーザ媒質流路の一例を示す。 図1に示すレーザ媒質流路の他の例を示す。 図1に示すレーザ媒質流路のさらに他の例を示す。 他の実施形態に係るレーザ発振器の概略図である。 図6に示す絞り機構の一例を示す図であって、(a)は、絞り機構が全開となっている状態を示し、(b)は、絞り機構が半開となっている状態を示し、(c)は、絞り機構が最も閉じられている状態を示す。 導光管内を流れるレーザ媒質の流量に対する、放電管内を流れるレーザ媒質の流量の比と、生成されるレーザ光のレーザパワーと、レーザパワーの安定性との間の関係性を示すグラフである。 さらに他の実施形態に係るレーザ発振器の概略図である。 図9に示すレーザ媒質流路の等価回路を示す。 図9に示すレーザ媒質流路の他の例を示す。 さらに他の実施形態に係るレーザ発振器の概略図である。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。まず、図1を参照して、本発明の一実施形態に係るレーザ発振器10について説明する。なお、以下に説明する種々の実施形態において、同様の要素には同じ符号を付し、詳細な説明を省略する。
レーザ発振器10は、出力鏡12、リア鏡14、第1の放電管16、第2の放電管18、導光管(第1の導光管)20、レーザ媒質流路22、および送風機24を備える。出力鏡12およびリア鏡14は、導光管20を介して、互いに光学的に連結されている。
出力鏡12は、部分反射鏡(いわゆるハーフミラー)によって構成されており、リア鏡14から伝搬したレーザ光を受ける側に、凹面12aを有する。出力鏡12は、凹面12aに入射したレーザ光の一部を透過させ、外部へ出射する。
リア鏡14は、全反射鏡によって構成されており、出力鏡12から伝搬したレーザ光を受ける側に、凹面14aを有する。リア鏡14は、凹面14aに入射したレーザ光をほぼ全反射する。
第1の放電管16は、第1端部16aと、該第1端部16aとは反対側の第2端部16bとを有する中空部材である。第1の放電管16は、その第2端部16bが出力鏡12に面するように、配置されている。第1の放電管16は、石英等から構成された内周面と、放電電極(図示せず)が設置された外周面とを有する。放電電極は、放電電源(図示せず)に電気的に接続されている。
第2の放電管18は、第1の放電管16と同じ構成を備える。具体的には、第2の放電管18は、第1端部18aと、該第1端部18aとは反対側の第2端部18bとを有する中空部材である。
第2の放電管18は、その第2端部18bがリア鏡14に面するように、配置されている。第2の放電管18は、石英等から構成された内周面と、放電電極(図示せず)が設置された外周面とを有する。放電電極は、放電電源(図示せず)に電気的に接続されている。
導光管20は、第1の放電管16の第1端部16aと、第2の放電管18の第1端部18aとの間に配置されている。導光管20は、第1端部20aと、該第1端部20aとは反対側の第2端部20bとを有する中空部材である。導光管20は、出力鏡12から伝搬したレーザ光をリア鏡14に向かって導光するとともに、リア鏡14から伝搬したレーザ光を出力鏡12に向かって導光する。
具体的には、導光管20には、第1の折り返し鏡26および第2の折り返し鏡28が設置されている。第1の折り返し鏡26は、全反射鏡によって構成されており、出力鏡12から伝搬するレーザ光の光路上に、該光路に対して45°の角度だけ傾斜するように、配置されている。
第1の折り返し鏡26は、出力鏡12から伝搬したレーザ光を、第2の折り返し鏡28へ向かって反射する一方、第2の折り返し鏡28から伝搬したレーザ光を、出力鏡12へ向かって反射する。
第2の折り返し鏡28は、全反射鏡によって構成されており、第1の折り返し鏡26から伝搬するレーザ光の光路上に、該光路に対して45°の角度だけ傾斜するように、配置されている。
第2の折り返し鏡28は、第1の折り返し鏡26から伝搬するレーザ光を、リア鏡14へ向かって反射する一方、リア鏡14から伝搬するレーザ光を、第1の折り返し鏡26へ向かって反射する。
レーザ媒質流路22は、第1の放電管16、第2の放電管18、および導光管20の各々の内部と流体的に連通する管状部材であって、第1の放電管16、第2の放電管18、および導光管20内で、炭酸ガス等を含むレーザ媒質を循環させる機能を担う。
送風機24は、レーザ媒質流路22内に設置されている。送風機24は、例えば軸流型送風機であって、レーザ媒質流路22内のレーザ媒質に圧力変動を生じさせ、レーザ媒質を図1中の矢印30に示す方向へ流動させる。
以下、本実施形態に係るレーザ媒質流路22の構成について、より詳細に説明する。レーザ媒質流路22は、送風機24の吐出口24aと分岐部32との間で延在する流路34と、分岐部32と分岐部36との間で延在する流路38と、分岐部32と分岐部40との間で延在する流路42とを有する。
分岐部32、36、および40は、例えば三又のジョイント管から構成されている。分岐部32は、送風機24の吐出口24aの下流側に配置されている。流路34には、熱交換器44が設置されている。熱交換器44は、通過するレーザ媒質から熱を除去する。
分岐部36は、分岐部32の下流側、且つ、第1の放電管16と導光管20との間に配置されている。一方、分岐部40は、分岐部32の下流側、且つ、第2の放電管18と導光管20との間に配置されている。
レーザ媒質流路22は、分岐部36と導光管20の第1端部20aとの間で延在する流路46と、分岐部36と第1の放電管16の第1端部16aとの間で延在する流路48と、分岐部40と導光管20の第2端部20bとの間で延在する流路50と、分岐部40と第2の放電管18の第1端部18aとの間で延在する流路52とをさらに有する。
流路46は、導光管20の第1端部20aを介して、導光管20の内部と連通し、流路48は、第1の放電管16の第1端部16aを介して、第1の放電管16の内部と連通している。同様に、流路50は、導光管20の第2端部20bを介して、導光管20の内部と連通し、流路52は、第2の放電管18の第1端部18aを介して、第2の放電管18の内部と連通している。
レーザ媒質流路22は、送風機24の吸入口24bと分岐部54との間で延在する流路56と、分岐部54と分岐部58との間で延在する流路60と、分岐部54と分岐部62との間で延在する流路64とをさらに有する。
分岐部54、58、および62は、上述の分岐部32、36、および40と同様に、三又のジョイント管等から構成される。分岐部54は、送風機24の吸入口24bの上流側に配置されている。流路56には、熱交換器66が設置されている。熱交換器66は、上述の熱交換器44と同様に、通過するレーザ媒質から熱を除去する。
分岐部58は、分岐部54の上流側、且つ、第1の放電管16と出力鏡12との間に配置されている。一方、分岐部62は、分岐部54の上流側、且つ、第2の放電管18とリア鏡14との間に配置されている。
レーザ媒質流路22は、分岐部58と第1の放電管16の第2端部16bとの間で延在する流路68と、分岐部58と出力鏡12との間で延在する流路70と、分岐部62と第2の放電管18の第2端部18bとの間で延在する流路72と、分岐部62とリア鏡14との間で延在する流路74とをさらに有する。
流路68は、第1の放電管16の第2端部16bを介して、第1の放電管16の内部と連通する。また、流路72は、第2の放電管18の第2端部18bを介して、第2の放電管18の内部と連通している。
次に、図1を参照して、レーザ発振器10の機能について説明する。レーザ光を生成する場合、第1の放電管16の放電電極、および第2の放電管18の放電電極に、放電電源(図示せず)から電力が供給され、第1の放電管16および第2の放電管18の内部で放電が発生される。
この放電によって、第1の放電管16および第2の放電管18の内部に供給されたレーザ媒質が励起され、レーザ光が生成される。第1の放電管16および第2の放電管18にて生成されたレーザ光は、出力鏡12、導光管20、およびリア鏡14の間で光共振によって増幅し、出力鏡12から外部へ出射される。
生成するレーザ光のレーザパワーが大きくなると、レーザ媒質がレーザ光によって熱せられて、レーザ媒質の温度が高くなる。レーザ媒質の温度が高くなると、レーザ光がレーザ媒質に吸入され易くなり、レーザパワーが不安定になる場合がある。
したがって、第1の放電管16および第2の放電管18内にレーザ媒質を安定して供給し、且つ、レーザ媒質の温度が過度に高くなるのを防止するために、送風機24およびレーザ媒質流路22は、第1の放電管16、第2の放電管18、および導光管20内で、レーザ媒質を循環させる。
次に、図1および図2を参照して、レーザ媒質流路22の流路抵抗について説明する。図2は、レーザ媒質流路22を構成する各流路の流路抵抗を示した等価回路の図である。図2に示されている流路抵抗RXXは、図1の流路XXの流路抵抗に対応している。例えば、図1の流路34の流路抵抗は、図2の流路抵抗R34として示されている。
送風機24の吐出口24aと、導光管20の第1端部20aとは、流路34、38および46を介して、流体的に連結されている。したがって、送風機24の吐出口24aと導光管20の第1端部20aとの間のレーザ媒質流路22の流路抵抗Rは、流路34の流路抵抗R34、流路38の流路抵抗R38、および流路46の流路抵抗R46に依存することになる。
一方、送風機24の吐出口24aと、導光管20の第2端部20bとは、流路34、42、および50を介して、流体的に連結されている。したがって、送風機24の吐出口24aと導光管20の第2端部20bとの間のレーザ媒質流路22の流路抵抗Rは、流路34の流路抵抗R34、流路42の流路抵抗R42、および流路50の流路抵抗R50に依存することになる。
ここで、本実施形態に係るレーザ媒質流路22は、導光管20内にてレーザ媒質の流れを発生させるために、流路抵抗Rと流路抵抗Rとが互いに異なるように、構成されている。具体的には、流路抵抗R46と流路抵抗R50とが互いに同じであり、且つ、流路抵抗R38が流路抵抗R42よりも小さくなるように、流路46、50、38、および42が構成されている。
この構成によれば、導光管20の第1端部20aにおけるレーザ媒質圧力のほうが、導光管20の第2端部20bにおけるレーザ媒質圧力よりも高くなるので、導光管20の内部で第1端部20aから第2端部20bへ向かうレーザ媒質の流れを生成することができる。
一般的に、流路の流路抵抗は、流路の長さ、流路の内周面の摩擦抵抗に比例する一方、流路の断面積(相当直径)に反比例する。したがって、流路38および42の長さ、流路38および42の内周面の表面粗さ、または、流路38および42の相当直径を調整することによって、流路抵抗R38と流路抵抗R42とを互いに異ならせることができる。
一例として、図3に、流路38の長さが、流路42の長さよりも短く設定されている実施例を示す。この構成によれば、流路抵抗R38が流路抵抗R42よりも小さくなるので、流路抵抗Rを、流路抵抗Rよりも小さくすることができる。
また、他の例として、図4に、流路38の相当直径が、流路42の相当直径よりも大きく設定されている実施例を示す。この構成によれば、流路抵抗R38が流路抵抗R42よりも小さくなるので、流路抵抗Rを、流路抵抗Rよりも小さくすることができる。
また、さらに他の例として、図5に、流路38と流路42とが互いに異なる表面粗さを有する実施例を示す。図5中の領域Aには、流路38の拡大断面図を示し、図5中の領域Bには、流路42の拡大断面図を示している。
この実施例においては、流路38は、図5の領域Aに示すように、滑らかな内周面38aを有する一方、流路42は、図5の領域Bに示すように、凹凸形状が形成された内周面42aを有する。この構成によれば、流路抵抗R38が流路抵抗R42よりも小さくなるので、流路抵抗Rを、流路抵抗Rよりも小さくすることができる。
再度、図1および図2を参照して、送風機24の吐出口24aと、第1の放電管16の第1端部16aとは、流路34、38、および48を介して、流体的に連結されている。したがって、送風機24の吐出口24aと第1の放電管16の第1端部16aとの間のレーザ媒質流路22の流路抵抗Rは、流路34の流路抵抗R34、流路38の流路抵抗R38、および流路48の流路抵抗R48に依存することになる。
一方、送風機24の吐出口24aと、第2の放電管18の第1端部18aとは、流路34、42、および52を介して、流体的に連結されている。したがって、送風機24の吐出口24aと第2の放電管18の第1端部18aとの間のレーザ媒質流路22の流路抵抗Rは、流路34の流路抵抗R34、流路42の流路抵抗R42、および流路52の流路抵抗R52に依存することになる。
ここで、本実施形態に係るレーザ媒質流路22は、流路抵抗Rと流路抵抗Rとが互いに同じとなるように、構成されている。上述したように、流路抵抗R38は、流路抵抗R42よりも小さくなるように設定されている。したがって、流路抵抗Rと流路抵抗Rとを互いに同じとするために、流路抵抗R48が流路抵抗R52よりも大きくなるように、流路48および流路52は、構成される。
例えば、流路48の長さが、流路52の長さよりも長くなるように構成されてもよい。代替的には、流路48の相当直径が、流路52の相当直径よりも小さくなるように構成されてもよいし、または、流路48の内周面の表面粗さが、流路52の内周面よりも粗くなるように構成されてもよい。
一方、送風機24の吸入口24bと、第1の放電管16の第2端部16bとは、流路56、60、および68を介して、流体的に連結されている。したがって、送風機24の吸入口24bと第1の放電管16の第2端部16bとの間のレーザ媒質流路22の流路抵抗Rは、流路56の流路抵抗R56、流路60の流路抵抗R60、および流路68の流路抵抗R68に依存する。
また、送風機24の吸入口24bと、第2の放電管18の第2端部18bとは、流路56、64、および72を介して、流体的に連結されている。したがって、送風機24の吸入口24bと第2の放電管18の第2端部18bとの間のレーザ媒質流路22の流路抵抗Rは、流路56の流路抵抗R56、流路64の流路抵抗R64、および流路72の流路抵抗R72に依存する。
ここで、本実施形態に係るレーザ媒質流路22は、流路抵抗Rと流路抵抗Rとが互いに同じとなるように、構成されている。例えば、流路60および68は、それぞれ、流路64および72と同一の管から構成される。この場合、流路抵抗Rと流路抵抗Rとを、容易に同じとすることができる。
このように、本実施形態に係るレーザ媒質流路22は、流路抵抗Rと流路抵抗Rとが互いに同じとなり、且つ、流路抵抗Rと流路抵抗Rとが互いに同じとなるように、構成されている。
この構成によれば、第1の放電管16の第1端部16aにおける、レーザ媒質の圧力と、第2の放電管18の第1端部18aにおける、レーザ媒質の圧力とを互いに同じとすることができる。これとともに、第1の放電管16の第2端部16bにおける、レーザ媒質の圧力と、第2の放電管18の第2端部18bにおける、レーザ媒質の圧力とを互いに同じとすることができる。
これにより、第1の放電管16および第2の放電管18の圧力分布を同じとすることができるので、第1の放電管16および第2の放電管18において、均一な放電を発生できる。したがって、第1の放電管16および第2の放電管18にて、均一なレーザ光を生成できる。
次に、レーザ媒質流路22におけるレーザ媒質の流れについて説明する。送風機24から吐出されたレーザ媒質は、流路34を通過し、熱交換器44を経て、分岐部32に到達する。そして、レーザ媒質は、分岐部32にて、流路38と流路42とに分流される。
流路38へ流入したレーザ媒質は、流路38内を通過して、分岐部36に到達する。一方、分岐部32から流路42へ流入したレーザ媒質は、流路42内を通過した後、分岐部40に到達する。
上述したように、本実施形態においては、流路抵抗Rと流路抵抗Rとの差によって、分岐部36から導光管20へ向かう流れが生じる。したがって、分岐部36に到達したレーザ媒質は、該分岐部36にて、流路46と流路48とに分流される。流路46内に流入したレーザ媒質は、第1端部20aから導光管20の内部に流入し、導光管20内を通過する。
導光管20内を通過したレーザ媒質は、第2端部20bから流路50内に流入し、該流路50内を通過して、分岐部40へ至る。一方、流路48内へ流入したレーザ媒質は、第1端部16aを経て第1の放電管16内に流入する。
一方、分岐部32から流路42へ流入したレーザ媒質は、流路42内を通過した後、分岐部40に到達し、該分岐部40にて、流路50を流れてきたレーザ媒質と合流する。合流したレーザ媒質は、流路52を通過して、第1端部18aから第2の放電管18の内部へ流入する。
第1の放電管16を通過したレーザ媒質は、第2端部16bから流路68内へ流入し、該流路68内を通過して、分岐部58に至る。そして、分岐部58にて流路60と流路70とに分流される。流路60に流入したレーザ媒質は、流路60内を通過して、分岐部54に到達する。
一方、第2の放電管18を通過したレーザ媒質は、第2端部18bから流路72内へ流入し、該流路72内を通過して、分岐部62に至る。そして、分岐部62にて流路64と流路74とに分流される。
流路64に流入したレーザ媒質は、流路64内を通過して、分岐部54に到達し、流路60内を流れてきたレーザ媒質と合流し、流路56内へ流入する。流路56内へ流入したレーザ媒質は、流路56を通過し、熱交換器66を経て、送風機24の吸入口24bに到達する。
本実施形態によれば、流路抵抗R、R、R、R、R、およびRを上記関係性を満たすように設定することによって、第1の放電管16および第2の放電管18の圧力分布を同じとなるように維持しつつ、導光管20内にレーザ媒質の流れを生成することができる。
これにより、導光管20の内部におけるレーザ媒質の滞留を防止してレーザ媒質の熱を効果的に除去することができ、且つ、第1の放電管16および第2の放電管18の放電も均一とすることができる。その結果、安定したレーザパワーを有するレーザ光を生成できる。
次に、図6を参照して、他の実施形態に係るレーザ発振器80について説明する。レーザ発振器80は、出力鏡12、リア鏡14、第1の放電管16、第2の放電管18、導光管20、レーザ媒質流路22、送風機24、制御部82、第1の放電電源84、第2の放電電源86、および絞り機構88を備える。
第1の放電電源84は、第1の放電管16に設けられた放電電極に電力を供給する。第2の放電電源86は、第2の放電管18に設けられた放電電極に電力を供給する。制御部82は、第1の放電電源84および第2の放電電源86に電力指令を送り、第1の放電管16および第2の放電管18へ供給される電力を制御する。
絞り機構88は、導光管20の内部に設置され、導光管20の内部空間の一部を、開閉可能に遮蔽する。絞り機構88として、例えば、カメラに用いられる虹彩絞り機構を応用できる。
このような絞り機構88の一例を、図7に示す。絞り機構88は、導光管20の周方向に整列する複数の羽根88aを含む。これらの羽根88aは、周方向に回転しつつ、径方向内側に向かって移動するように、動作される。
これら羽根88aの動作により、図7(a)〜図7(c)に示すように、複数の羽根88aの内縁によって画定される開口88bが、拡大または縮小される。これにより、導光管20の内部にてレーザ媒質が通過可能な部分の面積を変化させることができる。なお、開口88bが最も縮小されたときにおいても、複数の羽根88aが導光管20内を伝搬するレーザ光に干渉しないように、絞り機構88は、構成される。
制御部82は、絞り機構88の動作を制御する。絞り機構88は、制御部82からの指令に応じて羽根88aを動作させ、導光管20の内部空間のうちの一部を遮蔽する。これにより、導光管20の内部を流れるレーザ媒質の流量を調整することができる。このように、本実施形態においては、制御部82および絞り機構88は、導光管20の内部を流れるレーザ媒質の流量を調整する流量調整部として機能する。
次に、図6〜図8を参照して、本実施形態に係るレーザ発振器80の機能について説明する。制御部82は、使用者から指令レーザパワーを受け付けると、第1の放電電源84および第2の放電電源86に電力指令を送り、第1の放電管16および第2の放電管18にて生成されるレーザ光のレーザパワーを、指令レーザパワーに一致するように制御する。
また、制御部82は、送風機24を動作させて、レーザ媒質流路22を介して、第1の放電管16、第2の放電管18、および導光管20の内部にて、レーザ媒質を循環させる。ここで、本実施形態においては、制御部82は、第1の放電電源84および第2の放電電源86への電力指令に応じて、絞り機構88を制御する。
例えば、制御部82が、小さい電力の電力指令を第1の放電電源84および第2の放電電源86へ送信しているときは、第1の放電電源84および第2の放電電源86にて生成されるレーザ光のレーザパワーは小さい。
この場合、導光管20内のレーザ媒質が発熱しておらず、レーザ媒質によるレーザ光の吸収も少ないので、導光管20内を流れるレーザ媒質の流量が小さくても、生成されるレーザ光のレーザパワーは安定する。
したがって、制御部82は、導光管20のレーザ媒質の流量を小さくすべく、絞り機構88を制御して、開口88bを縮小させる。これにより、第1の放電管16および第2の放電管18に流れるレーザ媒質の流量を増やし、放電からレーザへのエネルギー変換効率を向上させることができる。
その一方で、制御部82が、大きい電力の電力指令を第1の放電電源84および第2の放電電源86へ送信しているときは、第1の放電電源84および第2の放電電源86にて生成されるレーザ光のレーザパワーが大きい。
この場合、生成されたレーザ光によって導光管20内を流れるレーザ媒質が発熱し、レーザ媒質によるレーザ光の吸収が多くなるので、上述したように、生成されるレーザ光のレーザパワーが不安定となってしまう。
したがって、制御部82は、導光管20のレーザ媒質の流量を増やすべく、絞り機構88を制御して、開口88bを拡大させる。これにより、導光管20に流れるレーザ媒質の流量を増やし、生成されるレーザ光のレーザパワーを安定させることができる。
ここで、導光管20内を流れるレーザ媒質の流量Fに対する、第1の放電管16および第2の放電管18内を流れるレーザ媒質の流量Fの流量比F/Fは、10<F/F<15の範囲となるように制御されることが好ましい。
これについて、図8を参照して説明する。上述したように、導光管20内を流れるレーザ媒質の流量を過度に小さくしてしまうと、導光管20内でレーザ媒質が滞留し、レーザ媒質の熱の除去が適切に実行できないことから、生成されるレーザ光のレーザパワーの安定性が低下する。
その一方で、導光管20内を流れるレーザガスの流量を過度に増やしてしまうと、レーザ媒質流路22全体としての流路抵抗が増えてしまうことから、第1の放電管16および第2の放電管18内を流れるレーザ媒質の流量が減り、これにより、生成されるレーザ光のレーザパワーが低下してしまう。
このように、生成されるレーザ光のレーザパワーの大きさと、レーザパワーの安定性とは、第1の放電管16および第2の放電管18内を流れるレーザ媒質の流量、および導光管20内を流れるレーザ媒質の流量の流量比に依存し、且つ、互いに反比例の関係となっている。
図8は、第1の放電管16および第2の放電管18内を流れるレーザ媒質の流量Fと、導光管20内を流れるレーザ媒質の流量Fとの流量比F/Fと、生成されるレーザ光のレーザパワーおよびレーザパワーの安定性との間の関係性を示すグラフである。図8中の実線90は、レーザパワーを示し、点線92は、レーザパワーの安定性を示す。
図8に示すように、生成されるレーザ光のレーザパワーは、流量比F/Fが大きくなるにつれて徐々に増加し、流量比F/Fが所定の値以上となると飽和する。一方、レーザパワー安定性は、流量比F/Fが小さい領域では飽和し、流量比F/Fが所定の値を越えて大きくなるにつれて、徐々に減少する。
そして、図8によれば、流量比F/Fが、10<F/F<15の範囲にあるとき、生成されるレーザ光のレーザパワーと、レーザパワー安定性とがともに高い値となっていることが明らかである。
そこで、本実施形態においては、図8に示す関係性に基づいて、流量比F/Fは、10<F/F<15の範囲となるように制御される。例えば、制御部82は、10<F/F<15の範囲となるように、絞り機構88を制御して、流量Fを調整する。その結果、高いレーザパワーのレーザ光を、良好な安定性を実現しつつ、生成することができる。
なお、本実施形態においては、絞り機構88を制御することによって、流量比F/Fを調整する場合について述べた。しかしながら、絞り機構88のような要素を用いることなく、10<F/F<15となるようにレーザ媒質流路22を作り込むことも可能である。
何故ならば、流量比FおよびFは、流路抵抗R、R、R、R、R、およびRに依存して変化し、且つ、上述したように、流路抵抗は、各流路の長さ、相当直径、または流路内周面の表面粗さを変えることによって調整できるからである。
次に、図9を参照して、さらに他の実施形態に係るレーザ発振器100について説明する。レーザ発振器100は、出力鏡12、リア鏡14、第1の放電管16、第2の放電管18、第3の放電管102、第1の導光管20、第2の導光管104、レーザ媒質流路106、および送風機24を備える。
第3の放電管102は、第1の放電管16および第2の放電管18と同じ構成を備えている。具体的には、第3の放電管102は、第1端部102aと、該第1端部102aとは反対側の第2端部102bとを有する中空部材であって、その第1端部102aがリア鏡14に面するように配置されている。
第2の導光管104は、上述の第1の導光管20と同じ構成を備えており、第2の放電管18の第2端部18bと、第3の放電管102の第2端部102bとの間に配置されている。具体的には、第2の導光管104は、第1端部104aと、該第1端部104aとは反対側の第2端部104bとを有する中空部材である。
第2の導光管104は、第2の放電管18から伝搬したレーザ光をリア鏡14に向かって導光する一方、リア鏡14から伝搬したレーザ光を第2の放電管18に向かって導光する。第2の導光管104には、第1の折り返し鏡108および第2の折り返し鏡110が設置されている。
第1の折り返し鏡108および第2の折り返し鏡110は、上述の第1の折り返し鏡26および第2の折り返し鏡28と同様に、レーザ光の光路上に、該光路に対して45°の角度だけ傾斜するように、配置されている。
本実施形態に係るレーザ媒質流路106は、上述のレーザ媒質流路22と、以下の構成において相違する。具体的には、レーザ媒質流路106は、上述の分岐部32の代わりに、四又の分岐部32’を有しており、該分岐部32’に、上述の流路34、38、および42が接続されている。また、レーザ媒質流路106は、上述の分岐部54の代わりに、四又の分岐部54’を有しており、該分岐部54’に、上述の流路56、60、および64が接続されている。
レーザ媒質流路106は、分岐部32’と分岐部112との間で延在する流路114と、分岐部112とリア鏡14との間で延在する流路116と、分岐部112と第3の放電管102の第1端部102aとの間で延在する流路118とをさらに有する。
分岐部112は、分岐部32’の下流側、且つ、第3の放電管102とリア鏡14との間に配置されている。流路118は、第3の放電管102の第1端部102aを介して、第3の放電管102の内部と連通している。
また、レーザ媒質流路106は、分岐部54’と分岐部120との間で延在する流路122と、分岐部120と第3の放電管102の第2端部102bとの間で延在する流路124と、分岐部120と第2の導光管104の第1端部104aとの間で延在する流路126とをさらに有する。
分岐部120は、分岐部54’の上流側、且つ、第3の放電管102と第2の導光管104との間に配置されている。流路124は、第3の放電管102の第2端部102bを介して、第3の放電管102の内部と連通している。
また、流路126は、第2の導光管104の第1端部104aを介して、第2の導光管104の内部と連通している。一方、流路74は、分岐部62から延びて、第2の導光管104の第2端部104bに接続されており、第2の導光管104の内部と連通している。
次に、図9および図10を参照して、レーザ媒質流路106の流路抵抗について説明する。図10は、図2に対応する図であって、レーザ媒質流路106の各流路の流路抵抗を示した等価回路の図である。図2と同様に、図10に示されている流路抵抗RXXは、図9の流路XXの流路抵抗に対応している。
送風機24の吸入口24bと、第2の導光管104の第1端部104aとは、流路56、122、および126を介して、流体的に連結されている。したがって、送風機24の吸入口24bと第2の導光管104の第1端部104aとの間のレーザ媒質流路106の流体抵抗Rは、流路56の流路抵抗R56、流路122の流路抵抗R122、および流路126の流路抵抗R126に依存する。
一方、送風機24の吸入口24bと、第2の導光管104の第2端部104bとは、流路56、64、および74を介して、流体的に連結されている。したがって、送風機24の吸入口24bと第2の導光管104の第2端部104bとの間のレーザ媒質流路106の流路抵抗Rは、流路56の流路抵抗R56、流路64の流路抵抗R64、および流路74の流路抵抗R74に依存することになる。
ここで、本実施形態に係るレーザ媒質流路106は、第2の導光管104内にてレーザ媒質の流れを発生させるために、流路抵抗Rと流路抵抗Rとが互いに異なるように、構成されている。具体的には、流路抵抗R74と流路抵抗R126とが互いに同じであり、且つ、流路抵抗R64が流路抵抗R122よりも小さくなるように、流路74、126、64、および122が構成されている。
この構成によれば、第2の導光管104の第1端部104aにおけるレーザ媒質圧力のほうが、第2端部104bにおけるレーザ媒質圧力よりも高くなり、これにより、第2の導光管104の第1端部104aから第2端部104bへ向かうレーザ媒質の流れを発生させることができる。
流路抵抗Rを、流路抵抗Rよりも小さくするために、例えば、流路64の長さが、流路122の長さよりも短く設定されてもよいし、または、流路64の相当直径が、流路122の相当直径よりも大きく設定されてもよい。
一方、送風機24の吐出口24aと、第3の放電管102の第1端部102aとは、流路34、114、および118を介して、流体的に連結されている。したがって、送風機24の吐出口24aと第3の放電管102の第1端部102aとの間のレーザ媒質流路106の流路抵抗Rは、流路34の流路抵抗R34、流路114の流路抵抗R114、および流路118の流路抵抗R118に依存する。
ここで、本実施形態に係るレーザ媒質流路106は、流路抵抗R、R、およびRが互いに同じとなるように、構成されている。具体的には、流路抵抗Rが、流路抵抗R、Rと同じとなるように、流路114および118の長さ、内周面の表面粗さ、または相当直径が調整される。
一方、送風機24の吸入口24bと、第3の放電管102の第2端部102bとは、流路56、122、および124を介して、流体的に連結されている。したがって送風機24の吸入口24bと第3の放電管102の第2端部102bとの間のレーザ媒質流路106の流路抵抗Rは、流路56の流路抵抗R56、流路122の流路抵抗R122、および流路124の流路抵抗R124に依存する。
ここで、本実施形態に係るレーザ媒質流路106は、流路抵抗R、R、およびRが互いに同じとなるように、構成されている。例えば、流路122が流路64よりも長くなるように構成されている場合、流路抵抗Rと流路抵抗Rとを同じとするために、流路72の相当直径は、流路124の相当直径よりも小さくなるように構成されてもよい。
このように、本実施形態に係るレーザ媒質流路106は、流路抵抗R、R、およびRが互いに同じとなり、且つ、流路抵抗R、R、およびRとが互いに同じとなるように、構成されている。この構成によれば、第1の放電管16の第1端部16a、第2の放電管18の第1端部18a、および第3の放電管102の第1端部102aにおける、レーザ媒質の圧力を互いに同じとすることができる。
これとともに、第1の放電管16の第2端部16b、第2の放電管18の第2端部18b、および第3の放電管102の第2端部102bにおける、レーザ媒質の圧力を互いに同じとすることができる。これにより、第1の放電管16、第2の放電管18、第3の放電管におけるレーザ媒質の圧力分布を、同じにすることができる。
次に、図9および図10を参照して、レーザ媒質流路106におけるレーザ媒質の流れについて説明する。なお、第1の放電管16、第2の放電管18、および第1の導光管20を循環するレーザ媒質の流れは、図1に示す実施形態と同様のため、詳細な説明は省略する。
分岐部32’から流路114へ流入したレーザ媒質は、流路114内を通過した後、分岐部112に到達し、該分岐部112にて、流路116と流路118とに分流する。流路118に流入したレーザ媒質は、該流路118内を通過して、第1端部102aから第3の放電管102の内部へ流入する。
第3の放電管102を通過したレーザ媒質は、第2端部102bから流路124内へ流入し、該流路124内を通過して、分岐部120に至る。上述したように、本実施形態においては、流路抵抗Rと流路抵抗Rとの差によって、分岐部120から第2の導光管104へ向かう流れが生じる。
このため、レーザ媒質は、分岐部120にて流路122と流路126とに分流される。流路126内に流入したレーザ媒質は、第1端部104aから第2の導光管104の内部に流入し、第2の導光管104内を流れる。
そして、レーザ媒質は、第2端部104bから流路74内に流入し、該流路74を経て分岐部62へ至る。そして、レーザ媒質は、分岐部62にて、流路72内を流れてきたレーザ媒質と合流し、流路64内へ流入する。
一方、分岐部120から流路122へ流入したレーザ媒質は、流路122内を通過した後、分岐部54’に到達し、該分岐部54’にて、流路60および64を流れてきたレーザ媒質と合流する。
本実施形態によれば、流路抵抗R〜Rを、上記関係性を満たすように設定することによって、第1の放電管16、第2の放電管18、および第3の放電管102の圧力分布を同じに維持しつつ、第1の導光管20および第2の導光管104内にレーザ媒質の流れを生成することができる。
これにより、第1の導光管20および第2の導光管104の内部におけるレーザ媒質の滞留を防止してレーザ媒質の熱を効果的に除去することができ、且つ、第1の放電管16、第2の放電管18、および第3の放電管102の放電も均一とすることができる。その結果、安定したレーザパワーのレーザ光を生成できる。
なお、流体抵抗RとRとを異ならせるために、種々の流路の形態を適用可能である。図11に、図9に示すレーザ媒質流路106の変形例を示す。図11に示す実施形態においては、図9に示す流路64を廃止し、分岐部62から分岐部58まで延びる流路130と、分岐部62から分岐部120まで延びる流路132とが設けられている。
この場合、レーザ媒質が分岐部62から分岐部54’まで流れるためには、分岐部62から、流路130、分岐部58、および流路60を経て、分岐部54’に至る経路か、または、分岐部62から、流路132、分岐部120、および流路122を経て、分岐部54’に至る経路を辿ることになる。
したがって、分岐部120と分岐部54’との間の流路122は、分岐部62と分岐部54’との間の流路(すなわち、流路130+流路60、または、流路132+流路122)よりも短くなるので、流体抵抗Rは、流体抵抗Rよりも小さくなる。この場合、レーザ媒質は、第2の導光管104の第2端部104bから第1端部104aへ向かって流れることになる。
なお、図9に示す実施形態において、流路122を廃止し、分岐部120から分岐部62まで延びる流路と、分岐部120から分岐部58まで延びる流路とが設けられてもよい。この場合、分岐部120と分岐部54’との間の流路は、分岐部62と分岐部54’との間の流路64よりも長くなるので、流体抵抗Rは、流体抵抗Rよりも大きくなる。
次に、図12を参照して、さらに他の実施形態に係るレーザ発振器140について説明する。レーザ発振器140は、上述のレーザ発振器100と同様に、出力鏡12、リア鏡14、第1の放電管16、第2の放電管18、第3の放電管102、第1の導光管20、第2の導光管104、レーザ媒質流路106、および送風機24を備える。
また、レーザ発振器140は、制御部142、第1の放電電源84、第2の放電電源86、第3の放電電源144、第1の絞り機構88、および第2の絞り機構146をさらに備える。
第3の放電電源144は、第3の放電管102に設けられた放電電極に電力を供給する。制御部142は、第1の放電電源84、第2の放電電源86、および第3の放電電源144に電力指令を送り、第1の放電管16、第2の放電管18、および第3の放電管102へ供給される電力を制御する。
第2の絞り機構146は、図7に示す第1の絞り機構88と同様の構成を備えており、第2の導光管104の内部に設置されている。第2の絞り機構146は、制御部142からの指令に応じて、第2の導光管104の内部空間のうちの一部を、開閉可能に遮蔽する。
これにより、第2の導光管104の内部を流れるレーザ媒質の流量を調整することができる。このように、本実施形態においては、制御部142および第1の絞り機構88は、第1の導光管20の内部を流れるレーザ媒質の流量を調整する第1の流量調整部として機能する一方、制御部142および第2の絞り機構146は、第2の導光管104の内部を流れるレーザ媒質の流量を調整する第2の流量調整部として機能する。
次に、本実施形態に係るレーザ発振器140の機能について説明する。制御部142は、第1の放電電源84、第2の放電電源86、および第3の放電電源144への電力指令に応じて、第1の絞り機構88および第2の絞り機構146を制御する。
例えば、制御部142は、小さい電力の電力指令を第1の放電電源84、第2の放電電源86、および第3の放電電源144へ送信しているときは、第1の導光管20および第2の導光管104のレーザ媒質の流量を小さくすべく、第1の絞り機構88および第2の絞り機構146の各々の開口88bを縮小させる。
これにより、第1の放電管16、第2の放電管18、および第3の放電管102に流れるレーザ媒質の流量を増やし、放電からレーザへのエネルギー変換効率を向上させることができる。
その一方で、制御部142は、大きい電力の電力指令を第1の放電電源84、第2の放電電源86、および第3の放電電源144へ送信しているときは、第1の導光管20および第2の導光管104のレーザ媒質の流量を増やすべく、第1の絞り機構88および第2の絞り機構146の各々の開口88bを拡大させる。これにより、第1の絞り機構88および第2の絞り機構146に流れるレーザ媒質の流量を増やし、生成されるレーザ光のレーザパワーを安定させることができる。
好ましくは、第1の導光管20および第2の導光管内を流れるレーザ媒質の流量Fに対する、第1の放電管16、第2の放電管18、および第3の放電電源144内を流れるレーザ媒質の流量Fの比F/Fは、10<F/F<15の範囲となるように制御される。このように制御することによって、図8を参照して説明したように、高いレーザパワーのレーザ光を、良好な安定性を実現しつつ、生成することができる。
以上、発明の実施形態を通じて本発明を説明したが、上述の実施形態は、特許請求の範囲に係る発明を限定するものではない。また、本発明の実施形態の中で説明されている特徴を組み合わせた形態も本発明の技術的範囲に含まれ得る。しかしながら、これら特徴の組み合わせの全てが、発明の解決手段に必須であるとは限らない。さらに、上述の実施形態に、多様な変更または改良を加えることが可能であることも当業者に明らかである。
10,80,100,140 レーザ発振器
16,18,102 放電管
20,104 導光管
22,106 レーザ媒質流路
24 送風機
44,66 熱交換器

Claims (11)

  1. レーザ発振器であって、
    第1の放電管および第2の放電管と、
    前記第1の放電管の第1端部と、前記第2の放電管の第1端部との間に配置された第1の導光管と、
    前記第1の放電管、前記第2の放電管、および前記第1の導光管の各々に流体的に連通するレーザ媒質流路と、
    前記レーザ媒質流路に設置され、該レーザ媒質流路、前記第1の放電管、および前記第2の放電管にレーザ媒質を循環させる送風機と、を備え、
    前記送風機の吐出口と前記第1の放電管の第1端部との間の前記レーザ媒質流路の流路抵抗と、前記吐出口と前記第2の放電管の第1端部との間の前記レーザ媒質流路の流路抵抗とは、互いに同じであり、
    前記送風機の吸入口と前記第1の放電管の前記第1端部とは反対側の第2端部との間の前記レーザ媒質流路の流路抵抗と、前記吸入口と前記第2の放電管の前記第1端部とは反対側の第2端部との間の前記レーザ媒質流路の流路抵抗とは、互いに同じであり、
    前記吐出口と前記第1の導光管の第1端部との間の前記レーザ媒質流路の流路抵抗と、前記吐出口と前記第1の導光管の前記第1端部とは反対側の第2端部との間の前記レーザ媒質流路の流路抵抗とは、互いに異なる、レーザ発振器。
  2. 前記吐出口と前記第1の導光管の第1端部との間の前記レーザ媒質流路の長さは、前記吐出口と前記第1の導光管の第2端部との間の前記レーザ媒質流路の長さよりも短い、請求項1に記載のレーザ発振器。
  3. 前記吐出口と前記第1の導光管の第1端部との間の前記レーザ媒質流路は、第1の相当直径を有する部分を含み、
    前記吐出口と前記第1の導光管の第2端部との間の前記レーザ媒質流路は、前記第1の相当直径よりも小さな第2の相当直径を有する部分を含む、請求項1または2に記載のレーザ発振器。
  4. 前記吐出口の下流側、および前記吸入口の上流側の少なくとも一方に配置され、通過する前記レーザ媒質から熱を除去する熱交換器をさらに備える、請求項1〜3のいずれか1項に記載のレーザ発振器。
  5. 前記第1の導光管の内部を流れる前記レーザ媒質の流量を調整する第1の流量調整部をさらに備える、請求項1〜4のいずれか1項に記載のレーザ発振器。
  6. 前記第1の導光管の内部を流れる前記レーザ媒質の流量に対する、前記第1の放電管および前記第2の放電管の内部を流れる前記レーザ媒質の流量の比は、10よりも大きく、且つ15よりも小さい、請求項1〜5のいずれか1項に記載のレーザ発振器。
  7. 第1端部、および該第1端部とは反対側の第2端部を有する第3の放電管と、
    前記第2の放電管の第2端部と、前記第3の放電管の第2端部との間に配置された第2の導光管と、をさらに備え、
    前記レーザ媒質流路は、前記第2の導光管および前記第3の放電管の各々に流体的に連通し、
    前記吐出口と前記第3の放電管の第1端部との間の前記レーザ媒質流路の流路抵抗と、前記吐出口と前記第1の放電管の第1端部との間の前記レーザ媒質流路の流路抵抗とは、互いに同じであり、
    前記吸入口と前記第3の放電管の第2端部との間の前記レーザ媒質流路の流路抵抗と、前記吸入口と前記第1の放電管の第2端部との間の前記レーザ媒質流路の流路抵抗とは、互いに同じであり、
    前記吸入口と前記第2の導光管の第1端部との間の前記レーザ媒質流路の流路抵抗と、前記吸入口と前記第2の導光管の前記第1端部とは反対側の第2端部との間の前記レーザ媒質流路の流路抵抗とは、互いに異なる、請求項1〜5のいずれか1項に記載のレーザ発振器。
  8. 前記吸入口と前記第2の導光管の第1端部との間の前記レーザ媒質流路の長さは、前記吸入口と前記第2の導光管の第2端部との間の前記レーザ媒質流路の長さよりも長い、請求項7に記載のレーザ発振器。
  9. 前記吸入口と前記第2の導光管の第1端部との間の前記レーザ媒質流路は、第3の相当直径を有する部分を含み、
    前記吸入口と前記第2の導光管の第2端部との間の前記レーザ媒質流路は、前記第3の相当直径よりも大きな第4の相当直径を有する部分を含む、請求項7または8に記載のレーザ発振器。
  10. 前記第1の導光管および前記第2の導光管の内部を流れる前記レーザ媒質の流量に対する、前記第1の放電管、前記第2の放電管、および前記第3の放電管の内部を流れる前記レーザ媒質の流量の比は、10よりも大きく、且つ15よりも小さい、請求項7〜9のいずれか1項に記載のレーザ発振器。
  11. 前記第2の導光管の内部を流れる前記レーザ媒質の流量を調整する第2の流量調整部をさらに備える、請求項7〜10のいずれか1項に記載のレーザ発振器。
JP2014170702A 2014-08-25 2014-08-25 レーザ媒質流路を備えたレーザ発振器 Active JP5832609B1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014170702A JP5832609B1 (ja) 2014-08-25 2014-08-25 レーザ媒質流路を備えたレーザ発振器
CN201510446914.5A CN105390915B (zh) 2014-08-25 2015-07-27 具备激光媒介物流道的激光振荡器
DE102015010754.2A DE102015010754B4 (de) 2014-08-25 2015-08-18 Mit Lasermedium-Strömungsweg ausgestatteter Laseroszillator
US14/833,479 US9350134B2 (en) 2014-08-25 2015-08-24 Laser oscillator provided with laser medium flow path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014170702A JP5832609B1 (ja) 2014-08-25 2014-08-25 レーザ媒質流路を備えたレーザ発振器

Publications (2)

Publication Number Publication Date
JP5832609B1 true JP5832609B1 (ja) 2015-12-16
JP2016046435A JP2016046435A (ja) 2016-04-04

Family

ID=54874311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014170702A Active JP5832609B1 (ja) 2014-08-25 2014-08-25 レーザ媒質流路を備えたレーザ発振器

Country Status (4)

Country Link
US (1) US9350134B2 (ja)
JP (1) JP5832609B1 (ja)
CN (1) CN105390915B (ja)
DE (1) DE102015010754B4 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107046218A (zh) * 2016-02-08 2017-08-15 发那科株式会社 激光振荡装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110683A (ja) * 1986-10-28 1988-05-16 Mitsubishi Electric Corp ガスレ−ザ発振器
JPS6428878A (en) * 1987-07-23 1989-01-31 Amada Co Ltd Output mirror fixing equipment for high speed axial flow type gas laser oscillator
JPH01204486A (ja) * 1988-02-09 1989-08-17 Fanuc Ltd レーザ発振装置
JPH0444283A (ja) * 1990-06-07 1992-02-14 Fanuc Ltd レーザ発振装置
JP2010171145A (ja) * 2009-01-21 2010-08-05 Fanuc Ltd ガスレーザ発振器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028159B2 (ja) 1982-04-20 1985-07-03 持田製薬株式会社 レ−ザ−発振管用co酸化装置
JPS59136983A (ja) 1983-01-26 1984-08-06 Hitachi Ltd ガスレ−ザ発生装置
JPH0666487B2 (ja) 1986-11-06 1994-08-24 三菱電機株式会社 ガスレ−ザ発振器
JP2007029972A (ja) * 2005-07-25 2007-02-08 Fanuc Ltd レーザ加工装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110683A (ja) * 1986-10-28 1988-05-16 Mitsubishi Electric Corp ガスレ−ザ発振器
JPS6428878A (en) * 1987-07-23 1989-01-31 Amada Co Ltd Output mirror fixing equipment for high speed axial flow type gas laser oscillator
JPH01204486A (ja) * 1988-02-09 1989-08-17 Fanuc Ltd レーザ発振装置
JPH0444283A (ja) * 1990-06-07 1992-02-14 Fanuc Ltd レーザ発振装置
JP2010171145A (ja) * 2009-01-21 2010-08-05 Fanuc Ltd ガスレーザ発振器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107046218A (zh) * 2016-02-08 2017-08-15 发那科株式会社 激光振荡装置
CN107046218B (zh) * 2016-02-08 2022-05-10 发那科株式会社 激光振荡装置

Also Published As

Publication number Publication date
US20160056602A1 (en) 2016-02-25
CN105390915B (zh) 2016-12-14
US9350134B2 (en) 2016-05-24
DE102015010754B4 (de) 2018-08-23
CN105390915A (zh) 2016-03-09
DE102015010754A1 (de) 2016-02-25
JP2016046435A (ja) 2016-04-04

Similar Documents

Publication Publication Date Title
US8742379B2 (en) Window unit, window device, laser apparatus, and extreme ultraviolet light generation system
JP2008169840A (ja) シンブル、スリーブ並びに燃焼器アセンブリの冷却法
WO2015085958A1 (zh) 一种回流方式冷却的高稳定性二氧化碳激光器
US9882339B2 (en) Laser oscillation device having laser medium circulating tube
JP5832609B1 (ja) レーザ媒質流路を備えたレーザ発振器
JP2020008668A (ja) 光コネクタ及び伝送装置
JP5554259B2 (ja) レキュペレータ
CN108092128A (zh) 长光程拉曼激光器
KR101607848B1 (ko) 자체 냉각기능을 가지는 볼텍스 튜브
CN108291751B (zh) 热声能量转换系统
JP5037540B2 (ja) ガスレーザ発振器
JP2008185297A (ja) 給湯用熱交換器
CN210038231U (zh) 光纤传输机构及液冷组件
WO2023054329A1 (ja) 光コネクタ
KR20190128548A (ko) 레큐퍼레이터 및 라디언트 튜브식 가열 장치
JP2017133832A (ja) 光計測用チャンバ及び光計測装置
US6580742B1 (en) Laser oscillating apparatus
JP2003506904A (ja) ガスレーザ
WO2023054466A1 (ja) 光コネクタ
JPS63110683A (ja) ガスレ−ザ発振器
JP2001185785A (ja) 固体レーザ装置
JP2013247260A (ja) ガスレーザ発振装置
JP2001156365A (ja) 色素レーザ装置
JP3785876B2 (ja) レーザ発振装置
WO2016148165A1 (ja) レーザアレイデバイス

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151027

R150 Certificate of patent or registration of utility model

Ref document number: 5832609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150