JP5828647B2 - Method for thermal stabilization of diethylzinc and diethylzinc composition - Google Patents

Method for thermal stabilization of diethylzinc and diethylzinc composition Download PDF

Info

Publication number
JP5828647B2
JP5828647B2 JP2011044386A JP2011044386A JP5828647B2 JP 5828647 B2 JP5828647 B2 JP 5828647B2 JP 2011044386 A JP2011044386 A JP 2011044386A JP 2011044386 A JP2011044386 A JP 2011044386A JP 5828647 B2 JP5828647 B2 JP 5828647B2
Authority
JP
Japan
Prior art keywords
diethylzinc
diethyl zinc
carbon
compound
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011044386A
Other languages
Japanese (ja)
Other versions
JP2012180308A (en
Inventor
健一 羽賀
健一 羽賀
豊田 浩司
浩司 豊田
孝一郎 稲葉
孝一郎 稲葉
静夫 富安
静夫 富安
功一 徳留
功一 徳留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Finechem Corp
Original Assignee
Tosoh Finechem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011044386A priority Critical patent/JP5828647B2/en
Application filed by Tosoh Finechem Corp filed Critical Tosoh Finechem Corp
Priority to US13/989,660 priority patent/US9156857B2/en
Priority to PCT/JP2011/007019 priority patent/WO2012081254A1/en
Priority to CN201180059954.4A priority patent/CN103261206B/en
Priority to KR1020137015319A priority patent/KR101910210B1/en
Priority to EP11848322.1A priority patent/EP2653474B1/en
Priority to TW100146838A priority patent/TWI532746B/en
Publication of JP2012180308A publication Critical patent/JP2012180308A/en
Application granted granted Critical
Publication of JP5828647B2 publication Critical patent/JP5828647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、熱安定性に優れたジエチル亜鉛組成物、熱安定化方法および熱安定化用化合物に関する。 The present invention relates to a diethylzinc composition excellent in thermal stability, a thermal stabilization method, and a thermal stabilization compound.

ジエチル亜鉛は、従来、ポリエチレンオキシド、ポリプロピレンオキシド等の重合触媒用途や、医薬、機能性材料等の中間体等の製造において有機合成の反応試薬として用いられており、極めて有用な工業材料として知られている。   Diethyl zinc is conventionally used as a reaction reagent for organic synthesis in polymerization catalyst applications such as polyethylene oxide and polypropylene oxide, and in the production of intermediates such as pharmaceuticals and functional materials, and is known as an extremely useful industrial material. ing.

また近年、原料にジエチル亜鉛と酸化剤として水蒸気を使用してMOCVD(Metal Organic Chemical Vapor Deposition)法と呼ばれる手法等により酸化亜鉛薄膜を形成する方法が検討されている。このMOCVD法により得られた酸化亜鉛薄膜は、CIGS太陽電池のバッファ層、透明導電膜、色素増感太陽電池の電極膜、薄膜Si太陽電池の中間層、透明導電膜等の太陽電池における各種機能膜、光触媒膜、紫外線カット膜、赤外線反射膜、帯電防止膜等の各種機能膜、化合物半導体発光素子、薄膜トランジスタ等の電子デバイス等に使用され、幅広い用途を持つ。 In recent years, a method of forming a zinc oxide thin film by a technique called MOCVD (Metal Organic Chemical Vapor Deposition) method using diethyl zinc as raw materials and water vapor as an oxidizing agent has been studied. The zinc oxide thin film obtained by this MOCVD method has various functions in solar cells such as CIGS solar cell buffer layer, transparent conductive film, dye-sensitized solar cell electrode film, thin-film Si solar cell intermediate layer, and transparent conductive film. It is used in various functional films such as films, photocatalytic films, ultraviolet cut films, infrared reflective films, and antistatic films, compound semiconductor light emitting devices, electronic devices such as thin film transistors, etc., and has a wide range of uses.

ジエチル亜鉛は、熱を加えると徐々に分解して金属亜鉛粒子が析出することが知られている(例えば非特許文献1参照)。そのため、ジエチル亜鉛の取り扱い等においては、熱分解で生成した金属亜鉛粒子の析出による製品純度の低下、貯蔵容器の汚染、製造設備配管の閉塞等の問題があった。   It is known that diethyl zinc is gradually decomposed and metal zinc particles are deposited when heat is applied (for example, see Non-Patent Document 1). Therefore, handling of diethyl zinc has problems such as a decrease in product purity due to precipitation of metal zinc particles generated by pyrolysis, contamination of storage containers, and blockage of manufacturing equipment piping.

上記の熱分解で生成した金属亜鉛粒子の析出に関する問題を解決する方法として、例えば、アントラセン、アセナフテン、アセナフチレン等の化合物を添加してジエチル亜鉛を安定化した組成物とするような方法が知られている(例えば特許文献1〜3参照)。   As a method for solving the above-mentioned problem relating to the precipitation of metal zinc particles generated by pyrolysis, for example, a method of adding a compound such as anthracene, acenaphthene, or acenaphthylene to obtain a composition in which diethyl zinc is stabilized is known. (For example, refer to Patent Documents 1 to 3).

米国特許第4385003号明細書U.S. Pat. No. 4,385,003 米国特許第4402880号明細書U.S. Pat. No. 4,402,880 米国特許第4407758号明細書U.S. Pat. No. 4,407,758

Yasuo Kuniya et Al.,Applied Organometallic Chemistry、5巻,337〜347頁,1991年発行Yasuo Kuniya et al. , Applied Organometallic Chemistry, 5, 337-347, published in 1991

特許文献1〜3に開示されるように、アントラセン、アセナフテン、アセナフチレンを添加してもジエチル亜鉛を十分に安定化することができず、より熱安定性に優れたジエチル亜鉛が求められる。 As disclosed in Patent Documents 1 to 3, even if anthracene, acenaphthene, and acenaphthylene are added, diethylzinc cannot be sufficiently stabilized, and diethylzinc having higher thermal stability is required.

一方、ジエチル亜鉛は、MOCVD法による酸化亜鉛薄膜等の製造の原料として重要であり、その使用時においては、一般に、窒素、アルゴン、ヘリウム等のキャリアガスを供給容器に充填したジエチル亜鉛に流通させて、キャリアガス中にジエチル亜鉛を飽和蒸気ガスとして存在させることで製膜装置等の外部装置に供給する方法が一般に用いられている。
これまでジエチル亜鉛の添加剤として知られている、アントラセン、アセナフテン、アセナフチレンといった化合物は、それらの沸点が、342℃(アントラセン)、279℃(アセナフテン)、265〜275℃(アセナフチレン)と、いずれの化合物も118℃の沸点を有するジエチル亜鉛に比べて沸点が高いことから、ジエチル亜鉛中にアントラセン、アセナフテン、アセナフチレンを添加することで安定化したジエチル亜鉛組成物を用いて、上記の方法でジエチル亜鉛を長期間外部装置等に供給すると、添加したアントラセン、アセナフテン、アセナフチレンといった化合物が供給容器内に供給途中で残っているジエチル亜鉛中に蓄積していくという課題がある。
On the other hand, diethyl zinc is important as a raw material for the production of zinc oxide thin films by MOCVD, and in use, generally, carrier gas such as nitrogen, argon or helium is circulated through diethyl zinc filled in a supply container. In general, a method in which diethyl zinc is present in a carrier gas as a saturated vapor gas to supply it to an external device such as a film forming apparatus is generally used.
Compounds such as anthracene, acenaphthene, and acenaphthylene, which have been known as additives for diethyl zinc, have boiling points of 342 ° C. (anthracene), 279 ° C. (acenaphthene), 265-275 ° C. (acenaphthylene), Since the compound also has a higher boiling point than diethyl zinc having a boiling point of 118 ° C., the diethyl zinc composition stabilized by adding anthracene, acenaphthene, and acenaphthylene to diethyl zinc is used in the above manner. Is supplied to an external device or the like for a long period of time, there is a problem that the added anthracene, acenaphthene, acenaphthylene and other compounds accumulate in the diethylzinc remaining in the supply container.

即ち本発明は、重合触媒や有機合成試薬およびMOCVD法等による酸化亜鉛薄膜製造原料や等に使用されるジエチル亜鉛の熱安定性を向上させ、長期間取り扱っても金属亜鉛粒子が析出しない熱安定性に優れたジエチル亜鉛組成物を提供することを目的とする。さらに、MOCVD法等、窒素、アルゴン、ヘリウム等のキャリアガスをジエチル亜鉛組成物に流通させてジエチル亜鉛を飽和蒸気ガスとして外部装置に供給する方法での使用において、長期間の上記の供給で、供給容器内に供給途中で残っているジエチル亜鉛中に、添加した化合物が蓄積することを低減することを目的とする。 In other words, the present invention improves the thermal stability of diethyl zinc used for a raw material for producing a zinc oxide thin film by a polymerization catalyst, an organic synthesis reagent, MOCVD method, etc., and does not precipitate metallic zinc particles even when handled for a long time. It aims at providing the diethyl zinc composition excellent in property. Furthermore, in the above-mentioned supply over a long period of time in use in a method in which a carrier gas such as nitrogen, argon, helium, etc. is circulated through the diethylzinc composition and diethylzinc is supplied to the external device as a saturated vapor gas, The object is to reduce the accumulation of the added compound in diethylzinc remaining in the middle of the supply in the supply container.

本発明者は上記課題を解決すべく鋭意研究開発を行った結果、ある特定の炭素−炭素2重結合を有する化合物をジエチル亜鉛(CAS No.557-20-0)に共存させた組成物とすることで熱安定性が著しく向上することを見出し、さらに、前記の特定の炭素−炭素2重結合を有する化合物の沸点がジエチル亜鉛に近いものを、共存させる化合物として選択することで、MOCVD法等、窒素、アルゴン、ヘリウム等のキャリアガスをジエチル亜鉛組成物に流通させてジエチル亜鉛を飽和蒸気ガスとして外部装置に供給する方法での使用において、長期間の上記の供給で、供給容器内に供給途中で残っているジエチル亜鉛中に、添加した化合物が蓄積することを低減することが可能となり、本発明を完成させた。 As a result of intensive research and development to solve the above problems, the present inventor has found that a compound having a specific carbon-carbon double bond coexisted in diethyl zinc (CAS No. 557-20-0) and The thermal stability is remarkably improved, and the compound having a specific carbon-carbon double bond having a boiling point close to that of diethyl zinc is selected as a coexisting compound. In the use in a method in which a carrier gas such as nitrogen, argon, helium, etc. is circulated in the diethylzinc composition and diethylzinc is supplied to the external device as a saturated vapor gas, It was possible to reduce the accumulation of the added compound in the diethylzinc remaining during the supply, and the present invention was completed.

本発明に係るジエチル亜鉛組成物の熱安定化の方法は、添加物として下記一般式(1)の炭素−炭素2重結合を有する化合物を用い、ジエチル亜鉛への添加物の添加率が50ppm〜20wt%で添加した。 The method for thermal stabilization of the diethylzinc composition according to the present invention uses a compound having a carbon-carbon double bond represented by the following general formula (1) as an additive, and the additive rate of the additive to diethylzinc is 50 ppm to Added at 20 wt%.

本発明に係るジエチル亜鉛組成物の熱安定化の方法は、添加物として下記一般式(2)の炭素−炭素2重結合を有する化合物を用い、ジエチル亜鉛への添加物の添加率が50ppm〜20wt%で添加した。 The method of thermal stabilization of the diethylzinc composition according to the present invention uses a compound having a carbon-carbon double bond of the following general formula (2) as an additive, and the additive rate of the additive to diethylzinc is 50 ppm to Added at 20 wt%.

Figure 0005828647
Figure 0005828647

式(2)中、nは1から4の整数であり、Rはそれぞれ独立して、水素、炭素数1〜8の直鎖もしくは分岐したアルキル基、炭素数1〜8の直鎖もしくは分岐したアルケニル基、炭素数6〜14のアリル基、炭素数1〜8の直鎖もしくは分岐したアルコキシ基である。 In the formula (2), n is an integer of 1 to 4, and each R is independently hydrogen, a linear or branched alkyl group having 1 to 8 carbon atoms, a linear or branched group having 1 to 8 carbon atoms. An alkenyl group, an allyl group having 6 to 14 carbon atoms, and a linear or branched alkoxy group having 1 to 8 carbon atoms.

前述の一般式(1)または(2)で表される置換基であるRは、それぞれ独立に、水素やメチル基、エチル基、プロピル基、イソプロピル基、ブチル基等の炭素数1〜8の直鎖もしくは分岐したアルキル基やビニル基やプロペニル基、イソプロペニル基等の炭素数1〜8の直鎖もしくは分岐したアルケニル基、フェニル基、トルイル基等の炭素数6〜14のアリル基、メトキシ基、エトキシ基、イソプロポキシ基、フェノキシ基、等のアルコキシ基等、の種々の置換基を有していてもよい。 R, which is a substituent represented by the above general formula (1) or (2), independently has 1 to 8 carbon atoms such as hydrogen, a methyl group, an ethyl group, a propyl group, an isopropyl group, or a butyl group. Straight chain or branched alkyl group, vinyl group, propenyl group, isopropenyl group, etc., straight chain or branched alkenyl group having 1-8 carbon atoms, phenyl group, toluyl group, etc., C6-C14 allyl group, methoxy It may have various substituents such as an alkoxy group such as a group, an ethoxy group, an isopropoxy group, and a phenoxy group.

前述の一般式(1)の化合物の炭素―炭素2重結合を有する化合物は環状の炭化水素を中心骨格として有しており、環状の炭化水素の中心骨格は、例えば、n=1のとき、1,3-シクロヘキサジエン、n=2のとき、1、3−シクロへプタジエン、n=3のとき、1,3-シクロオクタジエン、n=4のとき、1,3−シクロノナジエンである。従って、本発明の化合物はそれら環状の炭化水素の中心骨格を有し、その骨格に水素または置換基Rを有する化合物である。すなわち、本発明の化合物は、1,3-シクロヘキサジエン、1,3−シクロへプタジエン、1,3-シクロオクタジエン、1,3−シクロノナジエンおよびそれらの側鎖が置換基Rに置換された化合物である。なお、置換基の位置によっては前述の2重結合の位置を表す接頭数字は1,3−から2,4−や3,5−または4,6−となる場合があるが、一般式(1)の構造が含まれていればよい。 The compound having a carbon-carbon double bond of the compound represented by the general formula (1) has a cyclic hydrocarbon as a central skeleton, and the central skeleton of the cyclic hydrocarbon is, for example, when n = 1, 1,3-cyclohexadiene, when n = 2, 1,3-cycloheptadiene, when n = 3, 1,3-cyclooctadiene, when n = 4, 1,3-cyclononadiene. Therefore, the compound of the present invention is a compound having a central skeleton of the cyclic hydrocarbon and having hydrogen or a substituent R in the skeleton. That is, the compound of the present invention is a compound in which 1,3-cyclohexadiene, 1,3-cycloheptadiene, 1,3-cyclooctadiene, 1,3-cyclononadiene, and their side chains are substituted with a substituent R It is. Depending on the position of the substituent, the prefix number indicating the position of the above-described double bond may be from 1,3- to 2,4-, 3,5-, or 4,6-, but the general formula (1 ) Structure may be included.

同様に、前述の一般式(2)の化合物の炭素―炭素2重結合を有する化合物は環状の炭化水素を中心骨格として有しており、環状の炭化水素の中心骨格は、例えば、n=1のとき、1,4-シクロヘキサジエン、n=2のとき、1,4−シクロへプタジエン、n=3のとき、1,4-シクロオクタジエン、n=4のとき、1,4−シクロノナジエンである。従って、本発明の化合物はそれら環状の炭化水素の中心骨格を有し、その骨格に水素または置換基Rを有する化合物である。すなわち、本発明の化合物は、1,4-シクロヘキサジエン、1,4−シクロへプタジエン、1,4-シクロオクタジエン、1,4−シクロノナジエンおよびそれらの側鎖が置換基Rに置換された化合物である。なお、置換基の位置によっては前述の2重結合の位置を表す接頭数字は1,4−から2,5−や3,6―となる場合があるが、一般式(1)の構造が含まれていればよい。 Similarly, the compound having a carbon-carbon double bond of the compound of the general formula (2) has a cyclic hydrocarbon as a central skeleton, and the central skeleton of the cyclic hydrocarbon is, for example, n = 1. 1,4-cyclohexadiene when n = 2, 1,4-cycloheptadiene when n = 2, 1,4-cyclooctadiene when n = 3, 1,4-cyclononadiene when n = 4 is there. Therefore, the compound of the present invention is a compound having a central skeleton of the cyclic hydrocarbon and having hydrogen or a substituent R in the skeleton. That is, the compound of the present invention is a compound in which 1,4-cyclohexadiene, 1,4-cycloheptadiene, 1,4-cyclooctadiene, 1,4-cyclononadiene and their side chains are substituted with a substituent R It is. Depending on the position of the substituent, the prefix number indicating the position of the above-mentioned double bond may be 1,4-to 2,5- or 3,6--, but includes the structure of the general formula (1) It only has to be done.

前述の一般式(1)または(2)で表される炭素−炭素2重結合を有する化合物として、例えば、1,3-シクロヘキサジエン、1,4―シクロヘキサジエン、1―メチル―1,4―シクロヘキサジエン、2−メチルー1,4−シクロヘキサジエン、3−メチルー1,4−シクロヘキサジエン、4−メチルー1,4−シクロヘキサジエン、5−メチルー1,4−シクロヘキサジエン、1−メチル−1,3−シクロヘキサジエン、3−メチル−1,3−シクロヘキサジエン、4−メチル−1,3−シクロヘキサジエン、5−メチル−1,3−シクロヘキサジエン、2−メチル−1,3−シクロヘキサジエン、2,4―ジメチル−1,4-ヘキサジエン、1,1−ジメチル−2,5-ヘキサジエン、1,3−ジメチル−1,3−シクロヘキサジエン、2−メチル−1,3−シクロヘプタジエン、5,5−ジメチル−1,4−シクロヘキサジエン、1,2−ジメチル−1,3−シクロヘキサジエン、1−エチル−1,4−シクロヘキサジエン、α―テルピネン、γ―テルピネン、1,3,5,5―テトラメチル―1,3―シクロヘキサジエン、1,3,5,―トリメチル―1,4―シクロヘキサジエン、1,3−シクロヘプタジエン、1,4−シクロヘプタジエン、2−メチル−1,3−シクロヘプタジエン、1,3−シクロオクタジエン、1,4−シクロオクタジエン、1,3−シクロノナジエン等の化合物を挙げることが出来る。   Examples of the compound having a carbon-carbon double bond represented by the above general formula (1) or (2) include 1,3-cyclohexadiene, 1,4-cyclohexadiene, 1-methyl-1,4- Cyclohexadiene, 2-methyl-1,4-cyclohexadiene, 3-methyl-1,4-cyclohexadiene, 4-methyl-1,4-cyclohexadiene, 5-methyl-1,4-cyclohexadiene, 1-methyl-1,3 -Cyclohexadiene, 3-methyl-1,3-cyclohexadiene, 4-methyl-1,3-cyclohexadiene, 5-methyl-1,3-cyclohexadiene, 2-methyl-1,3-cyclohexadiene, 2, 4-dimethyl-1,4-hexadiene, 1,1-dimethyl-2,5-hexadiene, 1,3-dimethyl-1,3-cyclohexadiene, -Methyl-1,3-cycloheptadiene, 5,5-dimethyl-1,4-cyclohexadiene, 1,2-dimethyl-1,3-cyclohexadiene, 1-ethyl-1,4-cyclohexadiene, α- Terpinene, γ-terpinene, 1,3,5,5-tetramethyl-1,3-cyclohexadiene, 1,3,5-trimethyl-1,4-cyclohexadiene, 1,3-cycloheptadiene, 1, Examples include 4-cycloheptadiene, 2-methyl-1,3-cycloheptadiene, 1,3-cyclooctadiene, 1,4-cyclooctadiene, 1,3-cyclononadiene, and the like.

これらの一般式(1)または(2)で表される炭素−炭素2重結合を有する化合物のなかでも、例えば、1―メチル―1,4―シクロヘキサジエン(CAS No.4313-57-9)等の置換基Rが水素や炭素数が3以下であるメチル基、エチル基、イソプロピル基、イソプロペニル基等から構成される化合物で総炭素数が6〜10、好ましくは、総炭素数7〜9である本発明の化合物は、室温で液体であり、ジエチル亜鉛の沸点である118℃に近い沸点を有することから、MOCVD法等、窒素、アルゴン、ヘリウム等のキャリアガスをジエチル亜鉛組成物に流通させてジエチル亜鉛を飽和蒸気ガスとして外部装置に供給する方法での使用においては、長期間の上記の供給で、供給容器内に供給途中で残っているジエチル亜鉛中に、添加した化合物が極端に蓄積することを低減することが可能であり、適度な濃度でジエチル亜鉛中に共存させることが可能となる。   Among these compounds having a carbon-carbon double bond represented by the general formula (1) or (2), for example, 1-methyl-1,4-cyclohexadiene (CAS No. 4313-57-9) The substituent R such as hydrogen is a compound composed of hydrogen, a methyl group having 3 or less carbon atoms, an ethyl group, an isopropyl group, an isopropenyl group, and the like. The total carbon number is 6 to 10, preferably 7 to 9 is a liquid at room temperature and has a boiling point close to 118 ° C. which is the boiling point of diethyl zinc. Therefore, a carrier gas such as nitrogen, argon or helium is added to the diethyl zinc composition by MOCVD or the like. In use in the method of supplying diethylzinc as a saturated vapor gas to the external device through circulation, the compound added to the diethylzinc remaining in the supply container in the supply container for a long time as described above It is possible to reduce to excessively accumulate, it is possible to coexist in diethylzinc at moderate concentrations.

本発明に用いられる添加物は、単独の添加で充分な効果が得られるが、複数を混合して用いても差し支えない。   The additive used in the present invention can provide a sufficient effect when added alone, but a plurality of additives may be used in combination.

ここで、本発明の一般式(1)または(2)で表される炭素−炭素2重結合を有する化合物の添加量は、ジエチル亜鉛の性能が維持され、熱安定化効果が得られる範囲であれば、特に制限は無いが、通常、ジエチル亜鉛に対して、50ppm〜20wt%、好ましくは100ppm〜10wt%,より好ましくは200ppm〜5wt%であれば,熱安定性に優れたジエチル亜鉛組成物を得ることができる。   Here, the amount of the compound having a carbon-carbon double bond represented by the general formula (1) or (2) of the present invention is within a range in which the performance of diethyl zinc is maintained and a thermal stabilization effect is obtained. If there is no particular limitation, it is usually 50 ppm to 20 wt%, preferably 100 ppm to 10 wt%, more preferably 200 ppm to 5 wt%, based on diethyl zinc. Can be obtained.

本発明の一般式(1)または(2)で表される炭素−炭素2重結合を有する化合物の添加量が、少なすぎると熱安定性向上の充分な効果が得られない場合があったり、多すぎると添加量を増加した効果が得られない場合もあるので、熱安定性の所望の効果を得るための適量を添加することが望ましい。 If the amount of the compound having a carbon-carbon double bond represented by the general formula (1) or (2) of the present invention is too small, a sufficient effect of improving thermal stability may not be obtained, If the amount is too large, the effect of increasing the amount added may not be obtained, so it is desirable to add an appropriate amount for obtaining the desired effect of thermal stability.

本発明に使用されるジエチル亜鉛は、ポリエチレンオキシド、ポリプロピレンオキシド等の重合触媒用途や、医薬、機能性材料等の中間体等の製造において有機合成の反応試薬として用いられている一般に工業材料として知られているものを用いることが出来る。   Diethyl zinc used in the present invention is generally known as an industrial material used as a reaction reagent for organic synthesis in polymerization catalyst applications such as polyethylene oxide and polypropylene oxide, and in the production of intermediates such as pharmaceuticals and functional materials. What is being used can be used.

また、本発明においては、MOCVD法等により酸化亜鉛薄膜を形成する方法で使用され、CIGS太陽電池のバッファ層、透明導電膜、色素増感太陽電池の電極膜、薄膜Si太陽電池の中間層、透明導電膜等の太陽電池における各種機能膜、光触媒膜、紫外線カット膜、赤外線反射膜、帯電防止膜等の各種機能膜、化合物半導体発光素子、薄膜トランジスタ等の電子デバイス等に使用されるような、工業材料よりも高純度のジエチル亜鉛も用いることが出来る。   In the present invention, it is used in a method of forming a zinc oxide thin film by MOCVD or the like, and includes a buffer layer for CIGS solar cells, a transparent conductive film, an electrode film for dye-sensitized solar cells, an intermediate layer for thin-film Si solar cells, Various functional films in solar cells such as transparent conductive films, photocatalytic films, ultraviolet cut films, infrared reflective films, various functional films such as antistatic films, compound semiconductor light emitting devices, electronic devices such as thin film transistors, etc. Diethyl zinc having a purity higher than that of industrial materials can also be used.

本発明のジエチル亜鉛組成物の調製においては、ジエチル亜鉛と本発明の一般式(1)または(2)で表される炭素−炭素2重結合を有する化合物である添加物とを混合すればよく、例えば、ジエチル亜鉛に前述の添加物を添加する等、添加の方法においては特に制限は無い。
例えば、保存安定性の向上を目的する場合においては、あらかじめ、ジエチル亜鉛に添加物を添加する方法を用いることが出来る。
In preparing the diethylzinc composition of the present invention, diethylzinc and an additive which is a compound having a carbon-carbon double bond represented by the general formula (1) or (2) of the present invention may be mixed. For example, there are no particular restrictions on the method of addition, such as adding the aforementioned additives to diethyl zinc.
For example, in order to improve storage stability, a method of adding an additive to diethyl zinc in advance can be used.

また、例えば、反応等に使用する場合、使用の直前にジエチル亜鉛に添加物を添加することも可能である。 Further, for example, when used for a reaction or the like, an additive can be added to diethyl zinc immediately before use.

また、本発明のジエチル亜鉛組成物の調製の温度においては、ジエチル亜鉛の熱分解の影響が少ない70℃以下が望ましい。通常、−20℃〜35℃で本発明の組成物の調製を行なうことが出来る。また、圧力についても、特に制限は無いが、反応等、特殊な場合を除いては、通常、0.1013MPaなど、大気圧付近でジエチル亜鉛と本発明の組成物の調製を行なうことが出来る。   In addition, the temperature for preparing the diethylzinc composition of the present invention is preferably 70 ° C. or less, which is less affected by the thermal decomposition of diethylzinc. Usually, the composition of the present invention can be prepared at -20 ° C to 35 ° C. Also, the pressure is not particularly limited. Except for special cases such as reaction, diethylzinc and the composition of the present invention can be usually prepared near atmospheric pressure, such as 0.1013 MPa.

本発明のジエチル亜鉛組成物の保管・運搬容器、貯蔵タンク、配管等の設備における使用機材、使用雰囲気はジエチル亜鉛に用いているものをそのまま転用可能である。例えば、前述の使用機材の材質はSUS、炭素鋼、チタン、ハステロイ等の金属や、テフロン、フッ素系ゴム等の樹脂等を用いることができる。また、使用雰囲気は、窒素、ヘリウム、アルゴン等の不活性ガス等がジエチル亜鉛と同様に用いることができる。   The equipment used and the atmosphere used in equipment such as storage / transport containers, storage tanks, and piping for the diethyl zinc composition of the present invention can be used as they are. For example, the material of the above-mentioned equipment can be a metal such as SUS, carbon steel, titanium, or hastelloy, or a resin such as Teflon or fluorine rubber. In addition, an inert gas such as nitrogen, helium, or argon can be used in the same manner as diethyl zinc.

また、本発明のジエチル亜鉛組成物は、ジエチル亜鉛の使用に際して用いることが出来る公知の溶媒に溶解して使用することが出来る。前記溶媒の例として、例えば、ペンタン、ヘキサン、ヘプタン、オクタン等の飽和炭化水素や、ベンゼン、トルエン、キシレン等の芳香族炭化水素等の炭化水素化合物、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジグライム等のエーテル系化合物等を挙げることが出来る。   The diethyl zinc composition of the present invention can be used by dissolving in a known solvent that can be used when diethyl zinc is used. Examples of the solvent include, for example, saturated hydrocarbons such as pentane, hexane, heptane and octane, hydrocarbon compounds such as aromatic hydrocarbons such as benzene, toluene and xylene, diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane and diglyme. And ether compounds such as

本発明のジエチル亜鉛組成物の用途としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等の重合触媒用途や、医薬、機能性材料等の中間体等の製造において有機合成の反応試薬としての用途や、また、MOCVD法等により酸化亜鉛薄膜を形成する方法で使用され、CIGS太陽電池のバッファ層、透明導電膜、色素増感太陽電池の電極膜、薄膜Si太陽電池の中間層、透明導電膜等の太陽電池における各種機能膜、光触媒膜、紫外線カット膜、赤外線反射膜、帯電防止膜等の各種機能膜、化合物半導体発光素子、薄膜トランジスタ等の電子デバイス等に使用されるような酸化物形成用途や、ZnS等、II−VI族の電子デバイス用薄膜形成用途等、これまでジエチル亜鉛が使用されている用途と同様のものを挙げることが出来る。   Examples of the use of the diethylzinc composition of the present invention include use as a polymerization catalyst such as polyethylene oxide and polypropylene oxide, use as a reaction reagent for organic synthesis in the production of intermediates such as pharmaceuticals and functional materials, , Used in a method of forming a zinc oxide thin film by MOCVD method, etc., and CIGS solar cell buffer layer, transparent conductive film, dye-sensitized solar cell electrode film, thin film Si solar cell intermediate layer, transparent conductive film, etc. Various functional films such as various functional films, photocatalytic films, ultraviolet cut films, infrared reflective films, antistatic films, etc. in batteries, oxide forming applications such as compound semiconductor light emitting devices, electronic devices such as thin film transistors, etc., ZnS List the same applications where diethyl zinc has been used so far, such as thin film formation applications for II-VI electronic devices. Can.

本発明の本発明の一般式(1)または(2)で表される炭素−炭素2重結合を有する化合物を添加したジエチル亜鉛組成物は、熱安定性に優れ、ジエチル亜鉛が熱分解することにより発生する金属亜鉛粒子の析出が極めて少ない。その結果、製品純度の低下,貯蔵容器の汚染、製造設備配管の閉塞等の問題を防ぐことが可能となる。また、特に、MOCVD法等、窒素、アルゴン、ヘリウム等のキャリアガスをジエチル亜鉛に流通させてジエチル亜鉛の飽和蒸気ガスとして外部装置に供給する方法での使用において、ジエチル亜鉛組成物中に添加した本発明の化合物の沸点とジエチル亜鉛の沸点とが近いことから、長期間の上記の供給において、長期間の上記の供給で、供給容器内に供給途中で残っているジエチル亜鉛組成物中に、添加した本発明の化合物が蓄積することを低減することが出来る。   The diethylzinc composition to which the compound having a carbon-carbon double bond represented by the general formula (1) or (2) of the present invention is added is excellent in thermal stability, and diethylzinc is thermally decomposed. There is very little precipitation of the metal zinc particle which generate | occur | produces. As a result, it is possible to prevent problems such as a decrease in product purity, contamination of storage containers, and blockage of manufacturing equipment piping. In addition, especially in use in a method of supplying a carrier gas such as nitrogen, argon, helium or the like as a saturated vapor gas of diethyl zinc to an external device such as MOCVD, etc., it was added to the diethyl zinc composition. Since the boiling point of the compound of the present invention and the boiling point of diethyl zinc are close, in the above-mentioned supply for a long time, in the diethyl zinc composition remaining in the supply container in the supply container for a long time, Accumulation of the added compound of the present invention can be reduced.

以下に本発明を実施例によってさらに詳細に説明するが、これらの実施例は本発明を限定するものではない。   EXAMPLES The present invention will be described in more detail with reference to examples below, but these examples do not limit the present invention.

[測定機器]
DSC測定は、DSC6200(セイコーインスツルメンツ株式会社製)を用いて行なった。
[measuring equipment]
DSC measurement was performed using DSC6200 (manufactured by Seiko Instruments Inc.).

[ジエチル亜鉛組成物の調製]
ジエチル亜鉛(東ソー・ファインケム株式会社製)と、1―メチル―1,4―シクロヘキサジエン(CAS No.4313-57-9)(市販試薬)とを窒素雰囲気下、室温において所定の濃度でガラス容器に秤量した。添加物をジエチル亜鉛に溶解して、ジエチル亜鉛組成物を調製した。
[Preparation of diethyl zinc composition]
Diethyl zinc (manufactured by Tosoh Finechem Co., Ltd.) and 1-methyl-1,4-cyclohexadiene (CAS No.4313-57-9) (commercially available reagent) in a glass container at a predetermined concentration at room temperature under a nitrogen atmosphere Weighed out. The additive was dissolved in diethyl zinc to prepare a diethyl zinc composition.

ジエチル亜鉛への添加物の添加率(重量%)は、以下の式で定義したものを用いた。
添加物の添加率(重量%)=(添加物重量/(添加物重量+ジエチル亜鉛重量))×100
The addition rate (wt%) of the additive to diethyl zinc was defined by the following formula.
Addition rate of additive (% by weight) = (additive weight / (additive weight + diethyl zinc weight)) × 100

前述の方法で調製したジエチル亜鉛組成物について、DSC測定(示差走査熱量測定:Differential Scanning Calorimetry)を行ない、添加物の熱安定性効果を評価した。   DSC measurement (Differential Scanning Calorimetry) was performed about the diethyl zinc composition prepared by the above-mentioned method, and the thermal stability effect of the additive was evaluated.

[参考例1]
[ジエチル亜鉛のDSC測定による熱安定性試験]
窒素雰囲気下、ジエチル亜鉛を、SUS製DSCセルに秤収して密閉した。得られたサンプルについてDSC測定を、30〜450℃を測定温度範囲として10℃/分の昇温速度で熱分析測定を行なった。それぞれのサンプルの分解温度は、DSC測定の初期発熱温度で観測される。添加物を添加していないジエチル亜鉛のみのサンプルの初期発熱温度を表1に示す。
[Reference Example 1]
[Thermal stability test by DSC measurement of diethyl zinc]
Diethyl zinc was weighed and sealed in a SUS DSC cell under a nitrogen atmosphere. The obtained sample was subjected to DSC measurement, and thermal analysis measurement was performed at a temperature increase rate of 10 ° C./min with a temperature range of 30 to 450 ° C. The decomposition temperature of each sample is observed at the initial exothermic temperature of DSC measurement. Table 1 shows the initial exothermic temperature of a sample containing only diethyl zinc with no additive added.

[実施例1]
[ジエチル亜鉛組成物のDSC測定による熱安定性試験]
参考例1と同様にして、窒素雰囲気下、本発明の添加物である、1―メチル―1,4―シクロヘキサジエン(CAS No.4313-57-9)(市販試薬)を添加したジエチル亜鉛組成物を、SUS製DSCセルに秤収して密閉した。得られたサンプルについてDSC測定を、30〜450℃を測定温度範囲として10℃/分の昇温速度で参考例1と同様の熱分析測定を行なった。各サンプルの初期発熱温度を表1に示す。
本発明の添加物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度は、参考例で得られたジエチル亜鉛のみのサンプルの初期発熱温度よりも高く、本発明の組成物は、ジエチル亜鉛のみのサンプルよりも分解の開始温度が高い。本結果より添加物を添加したジエチル亜鉛組成物の高い熱安定性が確認された。また、本発明の添加物である、1―メチル―1,4―シクロヘキサジエンの沸点は115℃とジエチル亜鉛の沸点である118℃に近く、MOCVD法等、窒素、アルゴン、ヘリウム等のキャリアガスをジエチル亜鉛に流通させてジエチル亜鉛の飽和蒸気ガスとして外部装置に供給する方法での使用において、長期間の上記の供給で、供給容器内に供給途中で残っているジエチル亜鉛組成物中に、添加物として使用する化合物が蓄積する問題点が軽減される。
[Example 1]
[Thermal stability test of diethyl zinc composition by DSC measurement]
Diethyl zinc composition to which 1-methyl-1,4-cyclohexadiene (CAS No. 4313-57-9) (commercial reagent), which is an additive of the present invention, was added in the same manner as in Reference Example 1 The material was weighed and sealed in a SUS DSC cell. The obtained sample was subjected to DSC measurement, and the same thermal analysis measurement as in Reference Example 1 was carried out at a rate of temperature increase of 10 ° C./min with a temperature range of 30 to 450 ° C. Table 1 shows the initial heat generation temperature of each sample.
The initial exothermic temperature of the sample of the diethylzinc composition to which the additive of the present invention was added was higher than the initial exothermic temperature of the sample of only diethylzinc obtained in the reference example, and the composition of the present invention was composed of only diethylzinc. The decomposition start temperature is higher than that of the sample. From this result, the high thermal stability of the diethyl zinc composition to which the additive was added was confirmed. In addition, the boiling point of 1-methyl-1,4-cyclohexadiene, which is an additive of the present invention, is close to 115 ° C. and 118 ° C. which is the boiling point of diethyl zinc, and carrier gases such as MOCVD method, nitrogen, argon, helium, etc. In the use in the method of supplying the external device as a saturated vapor gas of diethyl zinc by circulating through the zinc zinc, in the diethyl zinc composition remaining in the supply container in the supply container for a long time, The problem of accumulation of compounds used as additives is reduced.

[比較例1〜3]
実施例1と同様にして、特許文献1〜3に記載の添加物であるアントラセン、アセナフテン、アセナフチレンを添加したジエチル亜鉛組成物について同様の検討を行った。それぞれのサンプルの初期発熱温度を表1に示す。
これらのサンプルは、本発明の化合物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度よりも低く、既存の添加物の添加した組成物は本発明の組成物よりも熱安定性が劣っていた。
また、前述の添加物の沸点は、342℃(アントラセン)、279℃(アセナフテン)、265〜275℃(アセナフチレン)とジエチル亜鉛の沸点である118℃よりも高く、MOCVD法等、窒素、アルゴン、ヘリウム等のキャリアガスをジエチル亜鉛に流通させてジエチル亜鉛の飽和蒸気ガスとして外部装置に供給する方法での使用において、長期間の上記の供給で、供給容器内に供給途中で残っているジエチル亜鉛組成物中に、これらの化合物が蓄積する問題点が発生する。
[Comparative Examples 1-3]
In the same manner as in Example 1, the same study was performed on a diethyl zinc composition to which anthracene, acenaphthene, and acenaphthylene, which are additives described in Patent Documents 1 to 3, were added. Table 1 shows the initial heat generation temperature of each sample.
These samples were lower than the initial exothermic temperature of the sample of the diethyl zinc composition to which the compound of the present invention was added, and the composition to which the existing additive was added was inferior in thermal stability to the composition of the present invention. .
The boiling point of the aforementioned additives is 342 ° C. (anthracene), 279 ° C. (acenaphthene), 265 to 275 ° C. (acenaphthylene) and higher than 118 ° C. which is the boiling point of diethylzinc. In the method of supplying a carrier gas such as helium to diethyl zinc as a saturated vapor gas of diethyl zinc and supplying it to an external device, diethyl zinc remaining in the supply container in the supply container after the above supply for a long period of time Problems arise in the accumulation of these compounds in the composition.

[実施例2〜4]
本発明の添加物である、1―メチル―1,4―シクロヘキサジエン(CAS No.4313-57-9)(市販試薬)の添加濃度を変えて、実施例1と同様の熱分析測定を行なった。各サンプルの初期発熱温度を表1に示す。
本発明の化合物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度は、化合物の添加濃度を低くしても参考例で得られたジエチル亜鉛のみのサンプルの初期発熱温度よりも高く、本発明の組成物は、ジエチル亜鉛のみのサンプルよりも分解の開始温度が高い。本結果より添加物を添加したジエチル亜鉛組成物の高い熱安定性が確認された。
[Examples 2 to 4]
The same thermal analysis measurement as in Example 1 was performed by changing the addition concentration of 1-methyl-1,4-cyclohexadiene (CAS No.4313-57-9) (commercially available reagent) which is an additive of the present invention. It was. Table 1 shows the initial heat generation temperature of each sample.
The initial exothermic temperature of the sample of the diethylzinc composition to which the compound of the present invention was added was higher than the initial exothermic temperature of the sample of only diethylzinc obtained in the Reference Example even if the concentration of the compound added was lowered. The composition has a higher decomposition onset temperature than the diethylzinc only sample. From this result, the high thermal stability of the diethyl zinc composition to which the additive was added was confirmed.

[比較例4〜6]
実施例3と同様にして、特許文献1〜3に記載の添加物であるアントラセン、アセナフテン、アセナフチレンを添加したジエチル亜鉛組成物について同様の検討を行った。それぞれのサンプルの初期発熱温度を表1に示す。
これらのサンプルは、本発明の化合物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度よりも低く、既存の添加物の添加した組成物は本発明の組成物よりも熱安定性が劣っていた。
[Comparative Examples 4 to 6]
In the same manner as in Example 3, the same study was performed on a diethyl zinc composition to which anthracene, acenaphthene, and acenaphthylene, which are additives described in Patent Documents 1 to 3, were added. Table 1 shows the initial heat generation temperature of each sample.
These samples were lower than the initial exothermic temperature of the sample of the diethyl zinc composition to which the compound of the present invention was added, and the composition to which the existing additive was added was inferior in thermal stability to the composition of the present invention. .

[実施例5〜8]
本発明の添加物の具体例として、1,4―シクロヘキサジエン(CAS No.628-41-1)、α―テルピネン(CAS No.99-86-5)、γ―テルピネンCAS No.99-85-4)、1,3,5,5―テトラメチル―1,3―シクロヘキサジエン(CAS No. 4724-89-4)(すべて市販試薬)をそれぞれ用いてジエチル亜鉛組成物を調製し、実施例1と同様の熱分析測定を行なった。各サンプルの初期発熱温度を表1に示す。
[Examples 5 to 8]
Specific examples of the additive of the present invention include 1,4-cyclohexadiene (CAS No. 628-41-1), α-terpinene (CAS No. 99-86-5), γ-terpinene CAS No. 99-85. -4), 1,3,5,5-tetramethyl-1,3-cyclohexadiene (CAS No. 4724-89-4) (all commercially available reagents), respectively, were used to prepare diethylzinc compositions. Thermal analysis measurement similar to 1 was performed. Table 1 shows the initial heat generation temperature of each sample.

本発明の添加物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度は、参考例で得られたジエチル亜鉛のみのサンプルの初期発熱温度よりも高く、本発明の組成物は、ジエチル亜鉛のみのサンプルよりも分解の開始温度が高い。本結果より添加物を添加したジエチル亜鉛組成物の高い熱安定性が確認された。
また、これら本発明の化合物は、公知の化合物よりも沸点が低いため、MOCVD法等、窒素、アルゴン、ヘリウム等のキャリアガスをジエチル亜鉛に流通させてジエチル亜鉛の飽和蒸気ガスとして外部装置に供給する方法での使用において、長期間の上記の供給で、供給容器内に供給途中で残っているジエチル亜鉛組成物中に、添加物として使用する化合物が蓄積する問題点が軽減される。
The initial exothermic temperature of the sample of the diethylzinc composition to which the additive of the present invention was added was higher than the initial exothermic temperature of the sample of only diethylzinc obtained in the reference example, and the composition of the present invention was composed of only diethylzinc. The decomposition start temperature is higher than that of the sample. From this result, the high thermal stability of the diethyl zinc composition to which the additive was added was confirmed.
In addition, since the boiling point of these compounds of the present invention is lower than that of known compounds, a carrier gas such as MOCVD method, nitrogen, argon, helium, etc. is circulated through diethyl zinc and supplied to an external device as a saturated vapor gas of diethyl zinc. In the use in the method, the problem that the compound used as an additive accumulates in the diethyl zinc composition remaining in the supply container in the supply container by the above-mentioned supply for a long time is reduced.

Figure 0005828647
Figure 0005828647

Claims (11)

ジエチル亜鉛の熱安定性を向上させる方法として、添加物として下記一般式(1)の炭素−炭素2重結合を有する化合物を用い、ジエチル亜鉛への添加物の添加率が50ppm〜20wt%で添加することを特徴とする、ジエチル亜鉛の熱安定化の方法。
Figure 0005828647

式(1)中、nは1から4の整数であり、Rはそれぞれ独立して、水素、炭素数1〜8の直鎖もしくは分岐したアルキル基、炭素数1〜8の直鎖もしくは分岐したアルケニル基、炭素数6〜14のアリル基、炭素数1〜8の直鎖もしくは分岐したアルコキシ基である。
As a method for improving the thermal stability of diethyl zinc, a compound having a carbon-carbon double bond represented by the following general formula (1) is used as an additive, and the additive is added to diethyl zinc at an addition rate of 50 ppm to 20 wt%. A method for thermal stabilization of diethylzinc, characterized by:
Figure 0005828647

In formula (1), n is an integer of 1 to 4, and each R is independently hydrogen, a linear or branched alkyl group having 1 to 8 carbon atoms, or a linear or branched group having 1 to 8 carbon atoms. An alkenyl group, an allyl group having 6 to 14 carbon atoms, and a linear or branched alkoxy group having 1 to 8 carbon atoms.
ジエチル亜鉛の熱安定性を向上させる方法として、添加物として下記一般式(2)の炭素−炭素2重結合を有する化合物を用い、ジエチル亜鉛への添加物の添加率が50ppm〜20wt%で添加することを特徴とする、ジエチル亜鉛の熱安定化の方法。
Figure 0005828647

式(2)中、nは1から4の整数であり、Rはそれぞれ独立して、水素、炭素数1〜8の直鎖もしくは分岐したアルキル基、炭素数1〜8の直鎖もしくは分岐したアルケニル基、炭素数6〜14のアリル基、炭素数1〜8の直鎖もしくは分岐したアルコキシ基である。
As a method for improving the thermal stability of diethyl zinc, a compound having a carbon-carbon double bond represented by the following general formula (2) is used as an additive, and the additive is added to diethyl zinc at an addition rate of 50 ppm to 20 wt%. A method for thermal stabilization of diethylzinc, characterized by:
Figure 0005828647

In the formula (2), n is an integer of 1 to 4, and each R is independently hydrogen, a linear or branched alkyl group having 1 to 8 carbon atoms, a linear or branched group having 1 to 8 carbon atoms. An alkenyl group, an allyl group having 6 to 14 carbon atoms, and a linear or branched alkoxy group having 1 to 8 carbon atoms.
一般式(1)または(2)で表される炭素−炭素2重結合を有する化合物において、置換基Rが水素や炭素数が3以下であるアルキル基またはアルケニル基から構成される化合物で総炭素数が6〜10である、請求項1または請求項2に記載のジエチル亜鉛の熱安定化の方法。   In the compound having a carbon-carbon double bond represented by the general formula (1) or (2), the substituent R is a compound composed of hydrogen or an alkyl group or an alkenyl group having 3 or less carbon atoms, and the total carbon The method for thermal stabilization of diethylzinc according to claim 1 or 2, wherein the number is 6 to 10. 請求項1〜請求項3のいずれかに記載のジエチル亜鉛の熱安定化の方法を用いて成るジエチル亜鉛組成物の製造方法 The manufacturing method of the diethyl zinc composition formed using the method of the thermal stabilization of the diethyl zinc in any one of Claims 1-3. 請求項1〜3のいずれかに記載のジエチル亜鉛の安定化方法において、ジエチル亜鉛に熱安定性に効果のある添加物とは異なる種類の炭素数5〜25の飽和及び/または不飽和炭化水素及び炭素数6〜30の芳香族炭化水素化合物あるいはエーテル系化合物がジエチル亜鉛に共存することを特徴とするジエチル亜鉛の熱安定化の方法。   The method for stabilizing diethylzinc according to any one of claims 1 to 3, wherein the saturated and / or unsaturated hydrocarbon having 5 to 25 carbon atoms is different from the additive having an effect on the thermal stability of diethylzinc. And a method of thermally stabilizing diethylzinc, characterized in that an aromatic hydrocarbon compound or an ether compound having 6 to 30 carbon atoms coexists in diethylzinc. 請求項4に記載のジエチル亜鉛組成物の製造方法において、ジエチル亜鉛組成物を構成する添加物とは異なる種類の炭素数5〜25の飽和及び/または不飽和炭化水素及び炭素数6〜30の芳香族炭化水素化合物あるいはエーテル系化合物が共存することを特徴とするジエチル亜鉛組成物の製造方法The method for producing a diethylzinc composition according to claim 4, wherein the saturated and / or unsaturated hydrocarbon having 5 to 25 carbon atoms and the 6 to 30 carbon atoms of a different type from the additive constituting the diethylzinc composition. A method for producing a diethylzinc composition, wherein an aromatic hydrocarbon compound or an ether compound coexists. ジエチル亜鉛と、添加物として請求項1に記載された一般式(1)で表される炭素−炭素2重結合を有する化合物とからなる組成物であって、前記添加物の添加率が50ppm〜20wt%であるジエチル亜鉛組成物   A composition comprising diethyl zinc and a compound having a carbon-carbon double bond represented by the general formula (1) described in claim 1 as an additive, wherein the additive has an addition rate of 50 ppm to Diethyl zinc composition which is 20 wt% 一般式(1)で表される炭素−炭素2重結合を有する化合物において、置換基Rが水素や炭素数が3以下であるアルキル基またはアルケニル基から構成される化合物で総炭素数が6〜10である、請求項7に記載のジエチル亜鉛組成物。   In the compound having a carbon-carbon double bond represented by the general formula (1), the substituent R is a compound composed of hydrogen, an alkyl group or an alkenyl group having 3 or less carbon atoms, and a total carbon number of 6 to 6. The diethylzinc composition of claim 7, which is 10. ジエチル亜鉛に添加物として請求項2に記載された一般式(2)で表される炭素−炭素2重結合を有する化合物が添加された、ジエチル亜鉛と添加物とからなるジエチル亜鉛組成物。   A diethyl zinc composition comprising diethyl zinc and an additive, wherein a compound having a carbon-carbon double bond represented by the general formula (2) described in claim 2 is added to diethyl zinc as an additive. 一般式(2)で表される炭素−炭素2重結合を有する化合物において、置換基Rが水素や炭素数が3以下であるアルキル基またはアルケニル基から構成される化合物で総炭素数が6〜10である、請求項9に記載のジエチル亜鉛組成物。   In the compound having a carbon-carbon double bond represented by the general formula (2), the substituent R is a compound composed of hydrogen or an alkyl group or an alkenyl group having 3 or less carbon atoms, and a total carbon number of 6 to 10. The diethylzinc composition of claim 9, which is 10. ジエチル亜鉛への添加物の添加率が50ppm〜20wt%である、請求項9および10に記載のジエチル亜鉛組成物。






The diethyl zinc composition of Claim 9 and 10 whose addition rate of the additive to diethyl zinc is 50 ppm-20 wt%.






JP2011044386A 2010-12-17 2011-03-01 Method for thermal stabilization of diethylzinc and diethylzinc composition Active JP5828647B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2011044386A JP5828647B2 (en) 2011-03-01 2011-03-01 Method for thermal stabilization of diethylzinc and diethylzinc composition
PCT/JP2011/007019 WO2012081254A1 (en) 2010-12-17 2011-12-15 Diethyl zinc composition, method for thermal stabilization and compound for thermal stabilization
CN201180059954.4A CN103261206B (en) 2010-12-17 2011-12-15 Diethyl zinc composition, thermostabilization method and thermostabilization compound
KR1020137015319A KR101910210B1 (en) 2010-12-17 2011-12-15 Diethyl zinc composition, method for thermal stabilization and compound for thermal stabilization
US13/989,660 US9156857B2 (en) 2010-12-17 2011-12-15 Diethylzinc composition, method for heat stabilization, and compound for heat stabilization
EP11848322.1A EP2653474B1 (en) 2010-12-17 2011-12-15 Diethyl zinc composition, method for thermal stabilization and compound for thermal stabilization
TW100146838A TWI532746B (en) 2010-12-17 2011-12-16 A diethyl zinc composition, a heat stabilizing method, and a heat stabilizing compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011044386A JP5828647B2 (en) 2011-03-01 2011-03-01 Method for thermal stabilization of diethylzinc and diethylzinc composition

Publications (2)

Publication Number Publication Date
JP2012180308A JP2012180308A (en) 2012-09-20
JP5828647B2 true JP5828647B2 (en) 2015-12-09

Family

ID=47011815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011044386A Active JP5828647B2 (en) 2010-12-17 2011-03-01 Method for thermal stabilization of diethylzinc and diethylzinc composition

Country Status (1)

Country Link
JP (1) JP5828647B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3967629A (en) * 1973-10-01 1976-07-06 International Flavors & Fragrances Inc. Bicyclic fragrance materials and processes therefor
US4402880A (en) * 1981-10-30 1983-09-06 Stauffer Chemical Company Dialkylzinc compositions having improved thermal stability
US4385003A (en) * 1981-10-30 1983-05-24 Stauffer Chemical Company Dialkylzinc composition having improved thermal stability
US4407758A (en) * 1981-10-30 1983-10-04 Stauffer Chemical Company Dialkylzinc compositions having improved thermal stability
GB9305806D0 (en) * 1993-03-20 1993-05-05 Glaxo Spa Chemical compounds
JP2003300993A (en) * 2002-04-05 2003-10-21 Tosoh Corp New zero-valent ruthenium complex and method for producing the same

Also Published As

Publication number Publication date
JP2012180308A (en) 2012-09-20

Similar Documents

Publication Publication Date Title
Popov et al. Atomic layer deposition of PbI2 thin films
CN102482113B (en) The zinc-oxide film manufacture composition of doping or undoped and use its manufacture method of zinc-oxide film
Park et al. Chemical vapor deposition of indium selenide and gallium selenide thin films from mixed alkyl/dialkylselenophosphorylamides
Ashraf et al. MOCVD of vertically aligned ZnO nanowires using bidentate ether adducts of dimethylzinc
Bacic et al. Designing Stability into Thermally Reactive Plumbylenes
JP5752356B2 (en) Method for thermal stabilization of diethylzinc and diethylzinc composition
US9018125B2 (en) Diethylzinc composition, method for heat stabilization, and compound for heat stabilization
JP5828647B2 (en) Method for thermal stabilization of diethylzinc and diethylzinc composition
US10570514B2 (en) Process for the generation of metallic films
JP5828646B2 (en) Method for thermal stabilization of diethylzinc and diethylzinc composition
WO2012081254A1 (en) Diethyl zinc composition, method for thermal stabilization and compound for thermal stabilization
Johnson et al. Inorganic and organozinc fluorocarboxylates: Synthesis, structure and materials chemistry
JP5603711B2 (en) Diethyl zinc composition, method for thermal stabilization of diethyl zinc, compound for improving thermal stability of diethyl zinc
JP5775672B2 (en) Diethylzinc composition, thermal stabilization method and thermal stabilization compound
JP5752369B2 (en) Diethyl zinc composition, method for thermal stabilization of diethyl zinc, compound for improving thermal stability of diethyl zinc
JP5641717B2 (en) Composition for producing doped zinc oxide thin film and method for producing doped zinc oxide thin film using the same
JPWO2010032673A1 (en) Nickel-containing film forming material and method for producing nickel-containing film
JP2012087015A (en) Composition for producing zinc oxide thin film and method for producing zinc oxide thin film using composition for producing doped zinc oxide thin film, antistatic thin film produced by the method, ultraviolet ray cut thin film, and transparent electrode thin film
JP5756272B2 (en) Composition for producing zinc oxide thin film and composition for producing doped zinc oxide thin film
JP2015163560A (en) Composition for producing porous zinc oxide thin film and composition for producing porous doped zinc oxide thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151020

R150 Certificate of patent or registration of utility model

Ref document number: 5828647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250