JP5603711B2 - Diethyl zinc composition, method for thermal stabilization of diethyl zinc, compound for improving thermal stability of diethyl zinc - Google Patents

Diethyl zinc composition, method for thermal stabilization of diethyl zinc, compound for improving thermal stability of diethyl zinc Download PDF

Info

Publication number
JP5603711B2
JP5603711B2 JP2010193110A JP2010193110A JP5603711B2 JP 5603711 B2 JP5603711 B2 JP 5603711B2 JP 2010193110 A JP2010193110 A JP 2010193110A JP 2010193110 A JP2010193110 A JP 2010193110A JP 5603711 B2 JP5603711 B2 JP 5603711B2
Authority
JP
Japan
Prior art keywords
diethyl zinc
composition
additive
diethylzinc
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010193110A
Other languages
Japanese (ja)
Other versions
JP2011074069A (en
Inventor
健一 羽賀
静夫 富安
功一 徳留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Finechem Corp
Original Assignee
Tosoh Finechem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Finechem Corp filed Critical Tosoh Finechem Corp
Priority to JP2010193110A priority Critical patent/JP5603711B2/en
Publication of JP2011074069A publication Critical patent/JP2011074069A/en
Application granted granted Critical
Publication of JP5603711B2 publication Critical patent/JP5603711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、熱安定性に優れたジエチル亜鉛組成物、ジエチル亜鉛の熱安定化方法、ジエチル亜鉛の熱安定性を向上させる化合物に関する。 The present invention relates to a diethylzinc composition excellent in thermal stability, a method for thermal stabilization of diethylzinc, and a compound that improves the thermal stability of diethylzinc.

ジエチル亜鉛は、従来、ポリエチレンオキシド、ポリプロピレンオキシド等の重合触媒用途や、医薬、機能性材料等の中間体等の製造において有機合成の反応試薬として用いられており、極めて有用な工業材料として知られている。   Diethyl zinc is conventionally used as a reaction reagent for organic synthesis in polymerization catalyst applications such as polyethylene oxide and polypropylene oxide, and in the production of intermediates such as pharmaceuticals and functional materials, and is known as an extremely useful industrial material. ing.

また近年、原料にジエチル亜鉛と酸化剤として水蒸気を使用してMOCVD(Metal Organic Chemical Vapor Deposition)法と呼ばれる手法等により酸化亜鉛薄膜を形成する方法が検討されている。このMOCVD法により得られた酸化亜鉛薄膜は、CIGS太陽電池のバッファ層、透明導電膜、色素増感太陽電池の電極膜、薄膜Si太陽電池の中間層、透明導電膜等の太陽電池における各種機能膜、光触媒膜、紫外線カット膜、赤外線反射膜、帯電防止膜等の各種機能膜、化合物半導体発光素子、薄膜トランジスタ等の電子デバイス等に使用され、幅広い用途を持つ。 In recent years, a method of forming a zinc oxide thin film by a technique called MOCVD (Metal Organic Chemical Vapor Deposition) method using diethyl zinc as raw materials and water vapor as an oxidizing agent has been studied. The zinc oxide thin film obtained by this MOCVD method has various functions in solar cells such as CIGS solar cell buffer layer, transparent conductive film, dye-sensitized solar cell electrode film, thin-film Si solar cell intermediate layer, and transparent conductive film. It is used in various functional films such as films, photocatalytic films, ultraviolet cut films, infrared reflective films, and antistatic films, compound semiconductor light emitting devices, electronic devices such as thin film transistors, etc., and has a wide range of uses.

ジエチル亜鉛は、熱を加えると徐々に分解して金属亜鉛粒子が析出することが知られている(例えば非特許文献1参照)。そのため、ジエチル亜鉛の取り扱い等においては、熱分解で生成した金属亜鉛粒子の析出による製品純度の低下、貯蔵容器の汚染、製造設備配管の閉塞等の問題があった。   It is known that diethyl zinc is gradually decomposed and metal zinc particles are deposited when heat is applied (for example, see Non-Patent Document 1). Therefore, handling of diethyl zinc has problems such as a decrease in product purity due to precipitation of metal zinc particles generated by pyrolysis, contamination of storage containers, and blockage of manufacturing equipment piping.

上記の熱分解で生成した金属亜鉛粒子の析出に関する問題を解決する方法として、例えば、アントラセン、アセナフテン、アセナフチレン等の化合物を添加してジエチル亜鉛を安定化した組成物とするような方法が知られている(例えば特許文献1〜3参照)。   As a method for solving the above-mentioned problems related to the precipitation of metal zinc particles generated by pyrolysis, for example, a method of adding a compound such as anthracene, acenaphthene, or acenaphthylene to obtain a composition in which diethyl zinc is stabilized is known. (For example, refer to Patent Documents 1 to 3).

米国特許第4385003号明細書U.S. Pat. No. 4,385,003 米国特許第4402880号明細書U.S. Pat. No. 4,402,880 米国特許第4407758号明細書U.S. Pat. No. 4,407,758

Yasuo Kuniya et Al.,Applied Organometallic Chemistry、5巻,337〜347頁,1991年発行Yasuo Kuniya et al. , Applied Organometallic Chemistry, 5, 337-347, published in 1991

特許文献1〜3に開示されるように、アントラセン、アセナフテン、アセナフチレンを添加してもジエチル亜鉛を十分に安定化することができず、より熱安定性に優れたジエチル亜鉛が求められる。 As disclosed in Patent Documents 1 to 3, even if anthracene, acenaphthene, and acenaphthylene are added, diethylzinc cannot be sufficiently stabilized, and diethylzinc having higher thermal stability is required.

また、アントラセン、アセナフテン、アセナフチレンは、室温で固体の化合物であり、ジエチル亜鉛組成物の調製において、粉体投入等の操作が必要になるという課題もある。   In addition, anthracene, acenaphthene, and acenaphthylene are compounds that are solid at room temperature, and there is a problem that operations such as charging powder are required in the preparation of the diethylzinc composition.

即ち本発明は、重合触媒や有機合成試薬およびMOCVD法等による酸化亜鉛薄膜製造原料や等に使用されるジエチル亜鉛の熱安定性を向上させ、長期間取り扱っても金属亜鉛粒子が析出しない熱安定性に優れたジエチル亜鉛組成物を提供することを目的とする。 In other words, the present invention improves the thermal stability of diethyl zinc used for a raw material for producing a zinc oxide thin film by a polymerization catalyst, an organic synthesis reagent, MOCVD method, etc., and does not precipitate metallic zinc particles even when handled for a long time. It aims at providing the diethyl zinc composition excellent in property.

本発明者は上記課題を解決すべく鋭意研究開発を行った結果、イソプロペニル基を側鎖に有する芳香族化合物をジエチル亜鉛(CAS No.557-20-0)に共存させた組成物とすることで熱安定性が著しく向上することを見出し、本発明を完成させた。 As a result of diligent research and development to solve the above-mentioned problems, the present inventor made a composition in which an aromatic compound having an isopropenyl group in the side chain coexists in diethyl zinc (CAS No. 557-20-0). As a result, it was found that the thermal stability was remarkably improved, and the present invention was completed.

本発明に係るジエチル亜鉛組成物は、ジエチル亜鉛に添加物としてイソプロペニル基を側鎖に有する芳香族化合物が添加されたジエチル亜鉛組成物である。   The diethyl zinc composition according to the present invention is a diethyl zinc composition obtained by adding an aromatic compound having an isopropenyl group in the side chain as an additive to diethyl zinc.

また本発明に係るジエチル亜鉛組成物は、下記一般式(1)、一般式(2)、一般式(3)で表されるイソプロペニル基を側鎖に有する芳香族化合物からなる群より選ばれる1つまたは2以上の化合物を含む。   The diethylzinc composition according to the present invention is selected from the group consisting of aromatic compounds having an isopropenyl group represented by the following general formula (1), general formula (2), and general formula (3) in the side chain. Contains one or more compounds.

式(1)、式(2)、式(3)中、Rはそれぞれ独立して、水素、炭素数1〜8の直鎖もしくは分岐したアルキル基、炭素数1〜8の直鎖もしくは分岐したアルケニル基(アルケニル基にはイソプロペニル基も含む)、炭素数6〜14のアリル基である。 In formula (1), formula (2), and formula (3), each R is independently hydrogen, a linear or branched alkyl group having 1 to 8 carbon atoms, or a linear or branched group having 1 to 8 carbon atoms. An alkenyl group (an alkenyl group includes an isopropenyl group) and an allyl group having 6 to 14 carbon atoms.

前述の一般式(1)、一般式(2)、一般式(3)で表されるイソプロペニル基を側鎖に有する芳香族化合物の側鎖に結合している置換基であるRは、それぞれ独立に、本発明で特徴とされるイソプロペニル基だけでなく、水素やメチル基、イソプロピル基等の炭素数1〜8の直鎖もしくは分岐したアルキル基やビニル基やプロペニル基等の炭素数1〜8の直鎖もしくは分岐したアルケニル基(前述のようにアルケニル基には本発明で特徴とされるイソプロペニル基を含む)およびフェニル基、トルイル基等の炭素数6〜14のアリル基等、イソプロペニル基とは異なる置換基を有していてもよい。側鎖に存在するイソプロペニル基の数は、1つでも2つ以上の複数であってもよく、例えば、芳香族化合物としてベンゼンの場合、2つのイソプロペニル基を有する1,3−ジイソプロペニルベンゼン、1、4―ジイソプロペニルベンゼンは熱安定性の効果が高い。 R, which is a substituent bonded to the side chain of the aromatic compound having the isopropenyl group represented by the above general formula (1), general formula (2), or general formula (3) in the side chain, Independently, not only the isopropenyl group characterized in the present invention, but also a linear or branched alkyl group having 1 to 8 carbon atoms such as hydrogen, a methyl group, and an isopropyl group, or a carbon number of 1 such as a vinyl group and a propenyl group. -8 linear or branched alkenyl groups (the alkenyl group includes an isopropenyl group characterized in the present invention as described above) and an allyl group having 6 to 14 carbon atoms such as a phenyl group and a toluyl group, etc. It may have a substituent different from the isopropenyl group. The number of isopropenyl groups present in the side chain may be one or a plurality of two or more. For example, in the case of benzene as an aromatic compound, 1,3-diisopropenyl having two isopropenyl groups Benzene and 1,4-diisopropenylbenzene have a high thermal stability effect.

前述のイソプロペニル基を側鎖に有する芳香族化合物として、例えば、α―メチルスチレン、4−イソプロペニルトルエン、1−イソプロペニルナフタレン、2−イソプロペニルナフタレン等のイソプロペニル基の1置換体、1,3−ジイソプロペニルベンゼン、1、4―ジイソプロペニルベンゼン、1,3,5-トリイソプロペニルベンゼン、2,4−ジイソプロペニルナフタレン等のイソプロペニル基の2置換体以上の化合物を挙げることが出来る。   Examples of the aromatic compound having the aforementioned isopropenyl group in the side chain include, for example, mono-substituted products of isopropenyl groups such as α-methylstyrene, 4-isopropenyltoluene, 1-isopropenylnaphthalene, 2-isopropenylnaphthalene, and the like. , 3-diisopropenylbenzene, 1,4-diisopropenylbenzene, 1,3,5-triisopropenylbenzene, 2,4-diisopropenylnaphthalene, etc. I can do it.

これらの芳香族化合物のなかでも、構造が単純であり、工業的に容易に入手可能なもので高い効果が得られる添加物として、α―メチルスチレン、4−イソプロペニルトルエン、1,3−ジイソプロペニルベンゼン、1、4―ジイソプロペニルベンゼン、2−イソプロペニルナフタレンを好ましく用いることが出来る。   Among these aromatic compounds, α-methylstyrene, 4-isopropenyltoluene, 1,3-dithiol is an additive which has a simple structure and can be easily obtained industrially and has a high effect. Isopropenylbenzene, 1,4-diisopropenylbenzene, and 2-isopropenylnaphthalene can be preferably used.

特に、α―メチルスチレン、4−イソプロペニルトルエン、1,3−ジイソプロペニルベンゼンは20℃前後の温度において液体であり、ジエチル亜鉛組成物の調整を容易に行なうことが出来る。   In particular, α-methylstyrene, 4-isopropenyltoluene, and 1,3-diisopropenylbenzene are liquid at a temperature of about 20 ° C., and the diethylzinc composition can be easily adjusted.

本発明に用いられる添加物は、単独の添加で充分な効果が得られるが、複数を混合して用いても差し支えない。   The additive used in the present invention can provide a sufficient effect when added alone, but a plurality of additives may be used in combination.

ここで、イソプロペニル基を側鎖に有する芳香族化合物の添加量は、ジエチル亜鉛の性能が維持され、熱安定化効果が得られる範囲であれば、特に制限は無いが、通常、ジエチル亜鉛に対して、100ppm〜20wt%、好ましくは200ppm〜10wt%,より好ましくは 500ppm〜5wt%であれば,熱安定性に優れたジエチル亜鉛組成物を得ることができる。   Here, the amount of the aromatic compound having an isopropenyl group in the side chain is not particularly limited as long as the performance of diethyl zinc is maintained and a thermal stabilization effect can be obtained. On the other hand, if it is 100 ppm to 20 wt%, preferably 200 ppm to 10 wt%, more preferably 500 ppm to 5 wt%, a diethylzinc composition having excellent thermal stability can be obtained.

イソプロペニル基を側鎖に有する芳香族化合物の添加量が、少なすぎると熱安定性向上の充分な効果が得られない場合があったり、多すぎると添加量を増加した効果が得られない場合もあるので、熱安定性の所望の効果を得るための適量を添加することが望ましい。 When the amount of the aromatic compound having an isopropenyl group in the side chain is too small, the sufficient effect of improving the thermal stability may not be obtained, or when the amount is too large, the effect of increasing the added amount may not be obtained. Therefore, it is desirable to add an appropriate amount for obtaining the desired effect of thermal stability.

本発明のジエチル亜鉛組成物は、熱安定性の加速試験として一般に用いられるARC測定(加速速度熱量測定:Accelerating Rate Calorimetry)結果の測定値から、180℃以下の低温において優れた熱安定性を有している。ARCテストの測定値の温度依存性より、温度が下がるほどよりジエチル亜鉛組成物の熱安定性の効果が発現される。 The diethylzinc composition of the present invention has excellent thermal stability at a low temperature of 180 ° C. or lower from the measured value of the ARC measurement (Accelerating Rate Calorimetry) result that is generally used as an accelerated test of thermal stability. doing. From the temperature dependency of the measured value of the ARC test, the effect of the thermal stability of the diethylzinc composition is more manifested as the temperature decreases.

本発明に使用されるジエチル亜鉛は、ポリエチレンオキシド、ポリプロピレンオキシド等の重合触媒用途や、医薬、機能性材料等の中間体等の製造において有機合成の反応試薬として用いられている一般に工業材料として知られているものを用いることが出来る。   Diethyl zinc used in the present invention is generally known as an industrial material used as a reaction reagent for organic synthesis in polymerization catalyst applications such as polyethylene oxide and polypropylene oxide, and in the production of intermediates such as pharmaceuticals and functional materials. What is being used can be used.

また、本発明においては、MOCVD法等により酸化亜鉛薄膜を形成する方法で使用され、CIGS太陽電池のバッファ層、透明導電膜、色素増感太陽電池の電極膜、薄膜Si太陽電池の中間層、透明導電膜等の太陽電池における各種機能膜、光触媒膜、紫外線カット膜、赤外線反射膜、帯電防止膜等の各種機能膜、化合物半導体発光素子、薄膜トランジスタ等の電子デバイス等に使用されるような、工業材料よりも高純度のジエチル亜鉛も用いることが出来る。   In the present invention, it is used in a method of forming a zinc oxide thin film by MOCVD or the like, and includes a buffer layer for CIGS solar cells, a transparent conductive film, an electrode film for dye-sensitized solar cells, an intermediate layer for thin-film Si solar cells, Various functional films in solar cells such as transparent conductive films, photocatalytic films, ultraviolet cut films, infrared reflective films, various functional films such as antistatic films, compound semiconductor light emitting devices, electronic devices such as thin film transistors, etc. Diethyl zinc having a purity higher than that of industrial materials can also be used.

本発明のジエチル亜鉛組成物の調製においては、ジエチル亜鉛とイソプロペニル基を側鎖に有する芳香族化合物である添加物とを混合すればよく、例えば、ジエチル亜鉛に前述の添加物を添加する等、添加の方法においては特に制限は無い。
例えば、保存安定性の向上を目的する場合においては、あらかじめ、ジエチル亜鉛に添加物を添加する方法を用いることが出来る。
In the preparation of the diethylzinc composition of the present invention, diethylzinc and an additive which is an aromatic compound having an isopropenyl group in the side chain may be mixed. For example, the aforementioned additive is added to diethylzinc, etc. The addition method is not particularly limited.
For example, in order to improve storage stability, a method of adding an additive to diethyl zinc in advance can be used.

また、例えば、反応等に使用する場合、使用の直前にジエチル亜鉛に添加物を添加することも可能である。 Further, for example, when used for a reaction or the like, an additive can be added to diethyl zinc immediately before use.

また、本発明のジエチル亜鉛組成物の調製の温度においては、ジエチル亜鉛の熱分解の影響が少ない70℃以下が望ましい。通常、−20℃〜35℃で本発明の組成物の調製を行なうことが出来る。また、圧力についても、特に制限は無いが、反応等、特殊な場合を除いては、通常、0.1013MPaなど、大気圧付近でジエチル亜鉛と本発明の組成物の調製を行なうことが出来る。   In addition, the temperature for preparing the diethylzinc composition of the present invention is preferably 70 ° C. or less, which is less affected by the thermal decomposition of diethylzinc. Usually, the composition of the present invention can be prepared at -20 ° C to 35 ° C. Also, the pressure is not particularly limited. Except for special cases such as reaction, diethylzinc and the composition of the present invention can be usually prepared near atmospheric pressure, such as 0.1013 MPa.

本発明のジエチル亜鉛組成物の保管・運搬容器、貯蔵タンク、配管等の設備における使用機材、使用雰囲気はジエチル亜鉛に用いているものをそのまま転用可能である。例えば、前述の使用機材の材質はSUS、炭素鋼、チタン、ハステロイ等の金属や、テフロン(登録商標)、フッ素系ゴム等の樹脂等を用いることができる。また、使用雰囲気は、窒素、ヘリウム、アルゴン等の不活性ガス等がジエチル亜鉛と同様に用いることができる。   The equipment used and the atmosphere used in equipment such as storage / transport containers, storage tanks, and piping for the diethyl zinc composition of the present invention can be used as they are. For example, the material of the above-mentioned equipment can be a metal such as SUS, carbon steel, titanium, or Hastelloy, or a resin such as Teflon (registered trademark) or fluorine rubber. In addition, an inert gas such as nitrogen, helium, or argon can be used in the same manner as diethyl zinc.

また、本発明のジエチル亜鉛組成物は、ジエチル亜鉛の使用に際して用いることが出来る公知の溶媒に溶解して使用することが出来る。前記溶媒の例として、例えば、ペンタン、ヘキサン、ヘプタン、オクタン等の飽和炭化水素や、ベンゼン、トルエン、キシレン等の芳香族炭化水素等の炭化水素化合物、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジグライム等のエーテル系化合物等を挙げることが出来る。   The diethyl zinc composition of the present invention can be used by dissolving in a known solvent that can be used when diethyl zinc is used. Examples of the solvent include, for example, saturated hydrocarbons such as pentane, hexane, heptane and octane, hydrocarbon compounds such as aromatic hydrocarbons such as benzene, toluene and xylene, diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane and diglyme. And ether compounds such as

本発明のジエチル亜鉛組成物の用途としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等の重合触媒用途や、医薬、機能性材料等の中間体等の製造において有機合成の反応試薬としての用途や、また、MOCVD法等により酸化亜鉛薄膜を形成する方法で使用され、CIGS太陽電池のバッファ層、透明導電膜、色素増感太陽電池の電極膜、薄膜Si太陽電池の中間層、透明導電膜等の太陽電池における各種機能膜、光触媒膜、紫外線カット膜、赤外線反射膜、帯電防止膜等の各種機能膜、化合物半導体発光素子、薄膜トランジスタ等の電子デバイス等に使用されるような酸化物形成用途や、ZnS等、II−VI族の電子デバイス用薄膜形成用途等、これまでジエチル亜鉛が使用されている用途と同様のものを挙げることが出来る。   Examples of the use of the diethylzinc composition of the present invention include use as a polymerization catalyst such as polyethylene oxide and polypropylene oxide, use as a reaction reagent for organic synthesis in the production of intermediates such as pharmaceuticals and functional materials, , Used in a method of forming a zinc oxide thin film by MOCVD method, etc., and CIGS solar cell buffer layer, transparent conductive film, dye-sensitized solar cell electrode film, thin film Si solar cell intermediate layer, transparent conductive film, etc. Various functional films such as various functional films, photocatalytic films, ultraviolet cut films, infrared reflective films, antistatic films, etc. in batteries, oxide forming applications such as compound semiconductor light emitting devices, electronic devices such as thin film transistors, etc., ZnS List the same applications where diethyl zinc has been used so far, such as thin film formation applications for II-VI electronic devices. Can.

本発明のイソプロペニル基を側鎖に有する芳香族化合物を添加したジエチル亜鉛組成物は、熱安定性に優れ、ジエチル亜鉛が熱分解することにより発生する金属亜鉛粒子の析出が極めて少ない。その結果、製品純度の低下,貯蔵容器の汚染、製造設備配管の閉塞等の問題を防ぐことが可能となる。   The diethylzinc composition to which an aromatic compound having an isopropenyl group in the side chain of the present invention is excellent in thermal stability, and precipitation of metallic zinc particles generated when diethylzinc is thermally decomposed is extremely small. As a result, it is possible to prevent problems such as a decrease in product purity, contamination of storage containers, and blockage of manufacturing equipment piping.

以下に本発明を実施例によってさらに詳細に説明するが、これらの実施例は本発明を限定するものではない。   EXAMPLES The present invention will be described in more detail with reference to examples below, but these examples do not limit the present invention.

[測定機器]
DSC測定は、DSC6200(セイコーインスツルメンツ株式会社製)を用いて行なった。
ARC測定は、ARC2000(ADL社製(Authur D Little))を用いて行なった。
[measuring equipment]
DSC measurement was performed using DSC6200 (manufactured by Seiko Instruments Inc.).
ARC measurement was performed using ARC2000 (manufactured by ADL (Authur D Little)).

[ジエチル亜鉛組成物の調製]
ジエチル亜鉛(東ソー・ファインケム株式会社製)と種々のイソプロペニル基を側鎖に有する芳香族化合物(市販試薬)とを窒素雰囲気下、室温において所定の濃度でガラス容器に秤量した。添加物をジエチル亜鉛に溶解して、ジエチル亜鉛組成物を調製した。
[Preparation of diethyl zinc composition]
Diethyl zinc (manufactured by Tosoh Finechem Co., Ltd.) and aromatic compounds having various isopropenyl groups in the side chain (commercial reagents) were weighed in glass containers at a predetermined concentration at room temperature in a nitrogen atmosphere. The additive was dissolved in diethyl zinc to prepare a diethyl zinc composition.

ジエチル亜鉛への添加物の添加率(重量%)は、以下の式で定義したものを用いた。
添加物の添加率(重量%)=(添加物重量/(添加物重量+ジエチル亜鉛重量))×100
The addition rate (wt%) of the additive to diethyl zinc was defined by the following formula.
Addition rate (% by weight) of additive = (additive weight / (additive weight + diethyl zinc weight)) × 100

前述の方法で調製したジエチル亜鉛組成物について、DSC測定(示差走査熱量測定:Differential Scanning Calorimetry)、ARC測定(加速速度熱量測定:Accelerating Rate Calorimetry)および長期熱安定性試験を行ない、添加物の熱安定性効果を評価した。   DSC measurement (Differential Scanning Calorimetry), ARC measurement (Accelerating Rate Calorimetry) and long-term thermal stability test were performed on the diethylzinc composition prepared by the method described above, and the heat of the additive The stability effect was evaluated.

[参考例1]
[ジエチル亜鉛のDSC測定による熱安定性試験]
窒素雰囲気下、ジエチル亜鉛を、SUS製DSCセルに秤収して密閉した。得られたサンプルについてDSC測定を、30〜450℃を測定温度範囲として10℃/分の昇温速度で熱分析測定を行なった。それぞれのサンプルの分解温度は、DSC測定の初期発熱温度で観測される。添加物を添加していないジエチル亜鉛のみのサンプルの初期発熱温度を表1に示す。
[Reference Example 1]
[Thermal stability test by DSC measurement of diethyl zinc]
Diethyl zinc was weighed and sealed in a SUS DSC cell under a nitrogen atmosphere. The obtained sample was subjected to DSC measurement, and thermal analysis measurement was performed at a temperature increase rate of 10 ° C./min with a temperature range of 30 to 450 ° C. The decomposition temperature of each sample is observed at the initial exothermic temperature of DSC measurement. Table 1 shows the initial exothermic temperature of a sample containing only diethyl zinc with no additive added.

[実施例1〜5]
[ジエチル亜鉛組成物のDSC測定による熱安定性試験]
参考例1と同様にして、窒素雰囲気下、種々の本発明のイソプロペニル基を側鎖に有する芳香族化合物を添加したジエチル亜鉛組成物を、SUS製DSCセルに秤収して密閉した。得られたサンプルについてDSC測定を、30〜450℃を測定温度範囲として10℃/分の昇温速度で参考例1と同様の熱分析測定を行なった。各サンプルの初期発熱温度を表1に示す。
本発明のイソプロペニル基を側鎖に有する芳香族化合物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度は、参考例で得られたジエチル亜鉛のみのサンプルの初期発熱温度よりも高く、本発明の組成物は、ジエチル亜鉛のみのサンプルよりも分解の開始温度が高い。本結果より添加物を添加したジエチル亜鉛組成物の高い熱安定性が確認された。
[Examples 1 to 5]
[Thermal stability test of diethyl zinc composition by DSC measurement]
In the same manner as in Reference Example 1, in a nitrogen atmosphere, a diethylzinc composition to which various aromatic compounds having an isopropenyl group of the present invention in the side chain were added was weighed in a SUS DSC cell and sealed. The obtained sample was subjected to DSC measurement, and the same thermal analysis measurement as in Reference Example 1 was carried out at a rate of temperature increase of 10 ° C./min with a temperature range of 30 to 450 ° C. Table 1 shows the initial heat generation temperature of each sample.
The initial exothermic temperature of the sample of the diethylzinc composition to which the aromatic compound having an isopropenyl group in the side chain of the present invention is added is higher than the initial exothermic temperature of the sample of only diethylzinc obtained in the reference example. This composition has a higher decomposition onset temperature than the diethylzinc-only sample. From this result, the high thermal stability of the diethyl zinc composition to which the additive was added was confirmed.

[比較例1〜2]
実施例1〜5と同様にして、イソプロペニル基を側鎖に有していない芳香族化合物として、実施例1から5の化合物からイソプロペニル基を水素に置き換えたベンゼン、トルエンを添加したジエチル亜鉛組成物について同様の検討を行った。それぞれのサンプルの初期発熱温度を表1に示す。
比較例1〜2の結果より、これらのサンプルは、いずれも本発明のイソプロペニル基を側鎖に有する芳香族化合物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度よりも低く、本発明の組成物よりも熱安定性が劣っていた。この結果より、イソプロペニル基を側鎖に有していることが熱安定性に対して極めて高い効果があることが確認された。
[Comparative Examples 1-2]
In the same manner as in Examples 1 to 5, as an aromatic compound having no isopropenyl group in the side chain, benzene in which the isopropenyl group was replaced with hydrogen from the compounds in Examples 1 to 5 and diethyl zinc to which toluene was added A similar study was conducted on the composition. Table 1 shows the initial heat generation temperature of each sample.
From the results of Comparative Examples 1 and 2, all of these samples were lower than the initial exothermic temperature of the sample of the diethylzinc composition to which the aromatic compound having an isopropenyl group of the present invention in the side chain was added. The thermal stability was inferior to the composition. From this result, it was confirmed that having an isopropenyl group in the side chain has an extremely high effect on thermal stability.

[比較例3〜5]
実施例1〜5と同様にして、特許文献1〜3に記載の化合物であるアントラセン、アセナフテン、アセナフチレンを添加したジエチル亜鉛組成物について同様の検討を行った。それぞれのサンプルの初期発熱温度を表1に示す。
これらのサンプルは、本発明のイソプロペニル基を側鎖に有する芳香族化合物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度よりも低く、既存の添加物の添加した組成物は本発明の組成物よりも熱安定性が劣っていた。
[Comparative Examples 3 to 5]
In the same manner as in Examples 1 to 5, the same study was performed on a diethyl zinc composition to which anthracene, acenaphthene, and acenaphthylene, which are compounds described in Patent Documents 1 to 3, were added. Table 1 shows the initial heat generation temperature of each sample.
These samples are lower than the initial exothermic temperature of the sample of the diethyl zinc composition to which the aromatic compound having an isopropenyl group in the side chain of the present invention is added, and the composition to which the existing additive is added is the composition of the present invention. The thermal stability was inferior to the product.

[比較例6〜11]
特許文献1〜3に記載の化合物であるアントラセン、アセナフテン、アセナフチレンを添加したジエチル亜鉛組成物について添加物の添加率を変えて、実施例1〜5と同様の熱分析測定を行なった。各サンプルの初期発熱温度を表2に示す。
これらのサンプルは、本発明のイソプロペニル基を側鎖に有する芳香族化合物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度よりも低く、既存の添加物の添加した組成物は、添加物の添加率が低くなっても、本発明の組成物よりも熱安定性が劣っていることが確認された。
[Comparative Examples 6 to 11]
About the diethyl zinc composition which added the anthracene, acenaphthene, and acenaphthylene which are the compounds of patent documents 1-3, the addition rate of the additive was changed and the thermal analysis measurement similar to Examples 1-5 was performed. Table 2 shows the initial heat generation temperature of each sample.
These samples are lower than the initial exothermic temperature of the sample of the diethyl zinc composition to which the aromatic compound having an isopropenyl group in the side chain of the present invention is added, and the composition to which the existing additive is added It was confirmed that the thermal stability was inferior to the composition of the present invention even when the addition rate was low.

[実施例6〜20]
添加物の添加率を変えて、実施例1〜5と同様の熱分析測定を行なった。各サンプルの初期発熱温度を表3に示す。
本発明のイソプロペニル基を側鎖に有する芳香族化合物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度は、添加物の添加率を変化させても、参考例で得られたジエチル亜鉛のみのサンプルの初期発熱温度よりも高く、本発明の組成物は、ジエチル亜鉛のみのサンプルよりも分解の開始温度が高い。
実施例6〜19の結果より、添加物の添加率を変化させた場合においても、本発明の添加物を添加したジエチル亜鉛組成物の高い熱安定性が確認された。
[Examples 6 to 20]
The thermal analysis measurement similar to Examples 1-5 was performed by changing the addition rate of the additive. Table 3 shows the initial heat generation temperature of each sample.
The initial exothermic temperature of the sample of the diethylzinc composition to which the aromatic compound having an isopropenyl group in the side chain of the present invention is added is only that of diethylzinc obtained in the reference example, even if the addition rate of the additive is changed. Beyond the initial exothermic temperature of the sample, the composition of the present invention has a higher decomposition initiation temperature than the sample of diethyl zinc alone.
From the results of Examples 6 to 19, high thermal stability of the diethylzinc composition to which the additive of the present invention was added was confirmed even when the additive addition rate was changed.

また、芳香族化合物の側鎖Rにメトキシ基のような酸素を含むものを添加したジエチル亜鉛組成物のサンプルの初期発熱温度は、参考例で得られたジエチル亜鉛のみのサンプルの初期発熱温度よりも高く、本発明の組成物は、ジエチル亜鉛のみのサンプルよりも分解の開始温度が高く、実施例20の結果より、芳香族化合物の側鎖にメトキシ基のような酸素を含むものを添加物とした場合においても、本発明の添加物を添加したジエチル亜鉛組成物の高い熱安定性が確認された。
In addition, the initial exothermic temperature of the sample of the diethylzinc composition obtained by adding an oxygen compound such as a methoxy group to the side chain R of the aromatic compound is higher than the initial exothermic temperature of the sample of only diethylzinc obtained in the reference example. The decomposition start temperature of the composition of the present invention is higher than that of the diethylzinc-only sample. From the results of Example 20, an additive containing oxygen such as a methoxy group in the side chain of the aromatic compound is added. Even in this case, high thermal stability of the diethylzinc composition to which the additive of the present invention was added was confirmed.

[参考例2]
[ジエチル亜鉛のARC測定による熱安定性試験]
窒素雰囲気下、ジエチル亜鉛をハステロイC製ARCボンベに秤収し、密閉した。得られたサンプルについてARC測定を、測定開始温度50℃、測定終了温度350℃、昇温ステップ温度5℃、待機時間10分、検索検出感度0.02℃/分、データ出力間隔0.2℃、測定最大圧力170bar、窒素雰囲気で行なった。得られたARC測定データにおいて、サンプルの初期発熱温度を表3の参考例2に示す。
[Reference Example 2]
[Thermal stability test of diethyl zinc by ARC measurement]
Under a nitrogen atmosphere, diethyl zinc was weighed into an ARC cylinder made of Hastelloy C and sealed. For the obtained sample, ARC measurement was performed at a measurement start temperature of 50 ° C., a measurement end temperature of 350 ° C., a temperature increase step temperature of 5 ° C., a waiting time of 10 minutes, a search detection sensitivity of 0.02 ° C./min, and a data output interval of 0.2 ° C. The measurement was performed at a maximum pressure of 170 bar and a nitrogen atmosphere. In the obtained ARC measurement data, the initial heat generation temperature of the sample is shown in Reference Example 2 of Table 3.

[実施例21〜23]
[ジエチル亜鉛組成物のARC測定による熱安定性試験]
参考例2と同様にして、本発明のイソプロペニル基を側鎖に有する芳香族化合物を添加したジエチル亜鉛組成物について参考例2と同様の検討を行った。得られたARC測定データにおいて、サンプルの初期発熱温度を表4の実施例21〜23に示す。
本発明のイソプロペニル基を側鎖に有する芳香族化合物を添加したジエチル亜鉛組成物の初期発熱温度は、ジエチル亜鉛のみのサンプルの初期発熱温度よりも高く、本発明のジエチル亜鉛組成物は熱安定性が優れていることが確認された。
[Examples 21 to 23]
[Thermal stability test by ARC measurement of diethyl zinc composition]
In the same manner as in Reference Example 2, a diethyl zinc composition to which an aromatic compound having an isopropenyl group in the side chain of the present invention was added was examined in the same manner as in Reference Example 2. In the obtained ARC measurement data, the initial heat generation temperature of the sample is shown in Examples 21 to 23 in Table 4.
The initial exothermic temperature of the diethylzinc composition to which the aromatic compound having an isopropenyl group in the side chain of the present invention is added is higher than the initial exothermic temperature of the sample of only diethylzinc, and the diethylzinc composition of the present invention is thermally stable. It was confirmed that the properties were excellent.

[実施例24〜50および参考例3〜11]
実施例21〜23および参考例2で得られたARC測定データを用いて、各温度における最大発熱速度到達時間(TMR:Time to Maximum Rate)をジエチル亜鉛および種々のジエチル亜鉛組成物について算出した。TMRの算出においては、J.E。Huffの方法を用い、自己発熱速度とTMRを低温側に外挿する場合の式を求め、各温度における(Φ)補正後に得られた自己発熱速度とTMRを算出する方法を用いた。
ARC測定温度の範囲外(50℃未満)の値は、50℃、60℃、70℃、80℃の4点の各データから得られた近似式を用いてTMRを算出した。
[Examples 24 to 50 and Reference Examples 3 to 11]
Using the ARC measurement data obtained in Examples 21 to 23 and Reference Example 2, the maximum exothermic rate arrival time (TMR) at each temperature was calculated for diethyl zinc and various diethyl zinc compositions. In calculating TMR, J. E. Using the Huff method, an equation for extrapolating the self-heating rate and TMR to the low temperature side was obtained, and the method for calculating the self-heating rate and TMR obtained after (Φ) correction at each temperature was used.
For the value outside the range of the ARC measurement temperature (less than 50 ° C.), TMR was calculated using an approximate expression obtained from each of the four data of 50 ° C., 60 ° C., 70 ° C., and 80 ° C.

添加物を添加していないジエチル亜鉛のTMRの値を1としたものに対して、本発明のイソプロペニル基を側鎖に有する芳香族化合物を添加したジエチル亜鉛組成物のTMRの値を前述の値に対する相対値として各温度において算出した。即ち、添加物を添加したジエチル亜鉛組成物のTMRの相対値が1よりも大きいほど、最大発熱速度到達時間がかかることとなり、ジエチル亜鉛組成物が添加物を添加しないジエチル亜鉛に対して熱安定性を有することを示す。 The TMR value of the diethylzinc composition to which the aromatic compound having an isopropenyl group in the side chain of the present invention was added was compared with that of the diethylzinc composition to which the additive was not added and the TMR value was set to 1. It calculated in each temperature as a relative value with respect to a value. That is, the higher the relative value of TMR of the diethyl zinc composition to which the additive is added, the longer it takes to reach the maximum heat generation rate, and the diethyl zinc composition is more stable against diethyl zinc to which no additive is added. It shows having sex.

[実施例24〜26および参考例3]
120℃における添加物を添加していないジエチル亜鉛のTMRの値を1とした(参考例3)場合の、各ジエチル亜鉛組成物の120℃での最大発熱速度到達時間(TMR)の相対値を表5に示した。
表5の実施例24〜26より、各ジエチル亜鉛組成物では最大発熱速度到達時間(TMR)の相対値が1よりも大きいことより、本発明の添加物を添加することによって得られたジエチル亜鉛組成物は高い熱安定性があることが確認された。
[Examples 24-26 and Reference Example 3]
The relative value of the maximum heat release rate arrival time (TMR) at 120 ° C. of each diethyl zinc composition when the TMR value of diethyl zinc at 120 ° C. with no additive added is 1 (Reference Example 3). Table 5 shows.
From Examples 24 to 26 in Table 5, each diethyl zinc composition had a relative value of maximum exothermic rate arrival time (TMR) larger than 1, and thus diethyl zinc obtained by adding the additive of the present invention. The composition was confirmed to have high thermal stability.

*添加物のないジエチル亜鉛の最大発熱速度到達時間(TMR)の値を1として算出した相対値 * Relative value calculated by taking the maximum exothermic rate arrival time (TMR) value of diethyl zinc with no additive as 1.

[実施例27〜29および参考例4]
100℃における添加物を添加していないジエチル亜鉛のTMRの値を1とした(参考例4)場合の、各ジエチル亜鉛組成物の100℃での最大発熱速度到達時間(TMR)の相対値を表6に示した。
表6の実施例27〜29より、各ジエチル亜鉛組成物では最大発熱速度到達時間(TMR)の相対値が1よりも大きいことより、本発明の添加物を添加することによって得られたジエチル亜鉛組成物は高い熱安定性があることが確認された。
[Examples 27 to 29 and Reference Example 4]
The relative value of the maximum heat generation rate arrival time (TMR) at 100 ° C of each diethylzinc composition when the TMR value of diethylzinc with no additive at 100 ° C is set to 1 (Reference Example 4). Table 6 shows.
From Examples 27 to 29 in Table 6, each diethyl zinc composition had a relative value of maximum exothermic rate arrival time (TMR) greater than 1, and thus diethyl zinc obtained by adding the additive of the present invention. The composition was confirmed to have high thermal stability.

*添加物のないジエチル亜鉛の最大発熱速度到達時間(TMR)の値を1として算出した相対値 * Relative value calculated by taking the maximum exothermic rate arrival time (TMR) value of diethyl zinc with no additive as 1.

[実施例30〜32および参考例5]
80℃における添加物を添加していないジエチル亜鉛のTMRの値を1とした(参考例5)場合の、各ジエチル亜鉛組成物の80℃での最大発熱速度到達時間(TMR)の相対値を表7に示した。
表7の実施例30〜32より、各ジエチル亜鉛組成物では最大発熱速度到達時間(TMR)の相対値が1よりも大きいことより、本発明の添加物を添加することによって得られたジエチル亜鉛組成物は高い熱安定性があることが確認された。
[Examples 30 to 32 and Reference Example 5]
The relative value of the maximum heat release rate arrival time (TMR) of each diethyl zinc composition at 80 ° C. when the TMR value of diethyl zinc at 80 ° C. with no additive added is 1 (Reference Example 5). It is shown in Table 7.
From Examples 30 to 32 in Table 7, each diethyl zinc composition has a relative value of maximum exothermic rate arrival time (TMR) greater than 1, and thus diethyl zinc obtained by adding the additive of the present invention. The composition was confirmed to have high thermal stability.

*添加物のないジエチル亜鉛の最大発熱速度到達時間(TMR)の値を1として算出した相対値 * Relative value calculated by taking the maximum exothermic rate arrival time (TMR) value of diethyl zinc with no additive as 1.

[実施例33〜35および参考例6]
60℃における添加物を添加していないジエチル亜鉛のTMRの値を1とした(参考例6)場合の、各ジエチル亜鉛組成物の60℃での最大発熱速度到達時間(TMR)の相対値を表8に示した。
表8の実施例33〜35より、各ジエチル亜鉛組成物では最大発熱速度到達時間(TMR)の相対値が1よりも大きいことより、本発明の添加物を添加することによって得られたジエチル亜鉛組成物は高い熱安定性があることが確認された。
[Examples 33 to 35 and Reference Example 6]
The relative value of the maximum heat release rate arrival time (TMR) at 60 ° C of each diethylzinc composition when the TMR value of diethylzinc with no additive at 60 ° C is 1 (Reference Example 6). Table 8 shows.
From Examples 33 to 35 in Table 8, each diethyl zinc composition had a relative value of maximum exothermic rate arrival time (TMR) greater than 1, so that diethyl zinc obtained by adding the additive of the present invention was used. The composition was confirmed to have high thermal stability.

*添加物のないジエチル亜鉛の最大発熱速度到達時間(TMR)の値を1として算出した相対値 * Relative value calculated by taking the maximum exothermic rate arrival time (TMR) value of diethyl zinc with no additive as 1.

[実施例36〜38および参考例7]
40℃における添加物を添加していないジエチル亜鉛のTMRの値を1とした(参考例7)場合の、各ジエチル亜鉛組成物の40℃での最大発熱速度到達時間(TMR)の相対値を表9に示した。
表9の実施例36〜38より、各ジエチル亜鉛組成物では最大発熱速度到達時間(TMR)の相対値が1よりも大きいことより、本発明の添加物を添加することによって得られたジエチル亜鉛組成物は高い熱安定があることが確認された。
[Examples 36 to 38 and Reference Example 7]
The relative value of the maximum heat release rate arrival time (TMR) at 40 ° C of each diethylzinc composition when the TMR value of diethylzinc with no additive at 40 ° C is 1 (Reference Example 7). It is shown in Table 9.
From Examples 36 to 38 in Table 9, each diethyl zinc composition has a relative value of maximum exothermic rate arrival time (TMR) larger than 1, and thus diethyl zinc obtained by adding the additive of the present invention. The composition was confirmed to have high thermal stability.


*添加物のないジエチル亜鉛の最大発熱速度到達時間(TMR)の値を1として算出した相対値

* Relative value calculated by taking the maximum exothermic rate arrival time (TMR) value of diethyl zinc with no additive as 1.

[実施例39〜41および参考例8]
30℃における添加物を添加していないジエチル亜鉛のTMRの値を1とした(参考例8)場合の、各ジエチル亜鉛組成物の30℃での最大発熱速度到達時間(TMR)の相対値を表10に示した。
表10の実施例39〜41より、各ジエチル亜鉛組成物では最大発熱速度到達時間(TMR)の相対値が1よりも大きいことより、本発明の添加物を添加することによって得られたジエチル亜鉛組成物は高い熱安定性があることが確認された。
[Examples 39 to 41 and Reference Example 8]
The relative value of the maximum heat release rate arrival time (TMR) at 30 ° C. of each diethyl zinc composition when the TMR value of diethyl zinc at 30 ° C. with no additive added is 1 (Reference Example 8). Table 10 shows.
From Examples 39 to 41 in Table 10, the diethyl zinc obtained by adding the additive of the present invention has a relative value of the maximum exothermic rate arrival time (TMR) greater than 1 in each diethyl zinc composition. The composition was confirmed to have high thermal stability.

*添加物のないジエチル亜鉛の最大発熱速度到達時間(TMR)の値を1として算出した相対値 * Relative value calculated by taking the maximum exothermic rate arrival time (TMR) value of diethyl zinc with no additive as 1.

[実施例42〜44および参考例9]
25℃における添加物を添加していないジエチル亜鉛のTMRの値を1とした(参考例9)場合の、各ジエチル亜鉛組成物の25℃での最大発熱速度到達時間(TMR)の相対値を表11に示した。
表11の実施例42〜44より、各ジエチル亜鉛組成物では最大発熱速度到達時間(TMR)の相対値が1よりも大きいことより、本発明の添加物を添加することによって得られたジエチル亜鉛組成物は高い熱安定性があることが確認された。
[Examples 42 to 44 and Reference Example 9]
The relative value of the maximum heat release rate arrival time (TMR) at 25 ° C. of each diethyl zinc composition when the TMR value of diethyl zinc not added at 25 ° C. was 1 (Reference Example 9). Table 11 shows.
From Examples 42 to 44 in Table 11, each zinc zinc composition had a relative value of maximum exothermic rate arrival time (TMR) greater than 1, and thus diethyl zinc obtained by adding the additive of the present invention. The composition was confirmed to have high thermal stability.

*添加物のないジエチル亜鉛の最大発熱速度到達時間(TMR)の値を1として算出した相対値 * Relative value calculated by taking the maximum exothermic rate arrival time (TMR) value of diethyl zinc with no additive as 1.

[実施例45〜47および参考例10]
20℃における添加物を添加していないジエチル亜鉛のTMRの値を1とした(参考例10)場合の、各ジエチル亜鉛組成物の20℃での最大発熱速度到達時間(TMR)の相対値を表12に示した。
表12の実施例45〜47より各ジエチル亜鉛組成物では最大発熱速度到達時間(TMR)の相対値が1よりも大きいことより、本発明の添加物を添加することによって得られたジエチル亜鉛組成物は高い熱安定性があることが確認された。
[Examples 45 to 47 and Reference Example 10]
The relative value of the maximum heat release rate arrival time (TMR) at 20 ° C of each diethylzinc composition when the TMR value of diethylzinc with no additive at 20 ° C is 1 (Reference Example 10). It is shown in Table 12.
From Examples 45 to 47 in Table 12, each diethyl zinc composition has a relative value of maximum exothermic rate arrival time (TMR) larger than 1, and thus the diethyl zinc composition obtained by adding the additive of the present invention. The product was confirmed to have high thermal stability.

*添加物のないジエチル亜鉛の最大発熱速度到達時間(TMR)の値を1として算出した相対値 * Relative value calculated by taking the maximum exothermic rate arrival time (TMR) value of diethyl zinc with no additive as 1.

[実施例48〜50および参考例11]
10℃における添加物を添加していないジエチル亜鉛のTMRの値を1とした(参考例11)場合の、各ジエチル亜鉛組成物の10℃での最大発熱速度到達時間(TMR)の相対値を表13に示した。
表13の実施例48〜50より、各ジエチル亜鉛組成物では最大発熱速度到達時間(TMR)の相対値が1よりも大きいことより、本発明の添加物を添加することによって得られたジエチル亜鉛組成物は高い熱安定性があることが確認された。
[Examples 48 to 50 and Reference Example 11]
The relative value of the maximum heat release rate arrival time (TMR) at 10 ° C of each diethylzinc composition when the TMR value of diethylzinc with no additive at 10 ° C is 1 (Reference Example 11). Table 13 shows.
From Examples 48 to 50 in Table 13, the diethyl zinc obtained by adding the additive of the present invention has a relative value of maximum exothermic rate arrival time (TMR) greater than 1 in each diethyl zinc composition. The composition was confirmed to have high thermal stability.

*添加物のないジエチル亜鉛の最大発熱速度到達時間(TMR)の値を1として算出した相対値 * Relative value calculated by taking the maximum exothermic rate arrival time (TMR) value of diethyl zinc with no additive as 1.

[実施例51〜52および参考例12]
[ジエチル亜鉛組成物の長期熱安定性試験]
ガラス内挿容器を備えた200ml耐圧オートクレーブに、ジエチル亜鉛組成物の調製に記載の方法で調製したサンプルを約40g仕込み、70℃で32日間加熱貯蔵する加速試験を行なった。参考例として添加物を添加していないジエチル亜鉛についても同様のサンプルを200ml耐圧オートクレーブに仕込んで同様の加速試験を行なった(参考例12)。試験終了後、窒素雰囲気下で開封し、各サンプルにおいて生成した析出物の析出状態を目視で確認した。さらに、窒素雰囲気下、ジエチル亜鉛を除去し、析出物をヘキサンで洗浄し、残存する析出物を乾燥した。残存する析出物は、ICP分析より亜鉛金属であることを確認した。析出した亜鉛が回収可能な場合は秤量により、回収不可能なほど微量な場合は、10%硝酸水溶液で容器を洗浄し、硝酸溶液中の亜鉛の絶対量を定量した。
[Examples 51 to 52 and Reference Example 12]
[Long-term thermal stability test of diethyl zinc composition]
About 200 g of the sample prepared by the method described in the preparation of the diethylzinc composition was charged in a 200 ml pressure-resistant autoclave equipped with a glass insertion container, and an accelerated test was performed by heating and storing at 70 ° C. for 32 days. As a reference example, diethyl zinc to which no additive was added was also subjected to the same accelerated test by charging a similar sample in a 200 ml pressure-resistant autoclave (Reference Example 12). After completion of the test, the sample was opened in a nitrogen atmosphere, and the precipitation state of the precipitate produced in each sample was visually confirmed. Furthermore, diethyl zinc was removed under a nitrogen atmosphere, the precipitate was washed with hexane, and the remaining precipitate was dried. The remaining precipitate was confirmed to be zinc metal by ICP analysis. When the deposited zinc could be recovered, the container was weighed, and when it was so small that it could not be recovered, the container was washed with a 10% nitric acid aqueous solution, and the absolute amount of zinc in the nitric acid solution was quantified.

添加物を添加していないジエチル亜鉛の熱分解によって生成した析出物の量を1としたものに対して、添加物を添加したジエチル亜鉛組成物の熱分解によって生成した析出物の量を前述の値に対する相対量として算出した。即ち、添加物を添加したジエチル亜鉛組成物の熱分解によって生成した析出物の量を前述の値に対する相対量が1よりも小さいほど、ジエチル亜鉛組成物が添加物を添加しないジエチル亜鉛に対して熱安定性を有することを示す。   The amount of precipitates generated by pyrolysis of the diethylzinc composition to which the additive was added was compared with the amount of precipitates generated by pyrolysis of diethylzinc to which the additive was not added was set to 1. Calculated as a relative amount to the value. That is, the amount of precipitates generated by thermal decomposition of the diethylzinc composition to which the additive is added is smaller than 1 relative to the above-mentioned value, and the diethylzinc composition is less than diethylzinc to which no additive is added. It shows that it has thermal stability.

各サンプルの析出した亜鉛の相対量を表14に示した。表14の実施例51〜52より、添加物を添加したジエチル亜鉛組成物の熱分解によって生成した析出物の量は、添加物を添加していないジエチル亜鉛の熱分解によって生成した析出物の量の50分の1未満であった。この結果より、本発明の添加物を添加することによって得られたジエチル亜鉛組成物は、長期間において高い熱安定性があることが確認された。   Table 14 shows the relative amount of precipitated zinc in each sample. From Example 51-52 of Table 14, the quantity of the precipitate produced | generated by the thermal decomposition of the diethyl zinc composition which added the additive is the quantity of the precipitate produced | generated by the thermal decomposition of the diethyl zinc which does not add an additive. Of less than 1/50. From this result, it was confirmed that the diethyl zinc composition obtained by adding the additive of the present invention has high thermal stability over a long period of time.


*添加物のないジエチル亜鉛のみの熱分解による析出物の量を1として算出した相対量

* Relative amount calculated with 1 as the amount of precipitate from pyrolysis of only diethylzinc without additives

[実施例53〜55および比較例12〜14]
[実施例53〜55]
本発明のイソプロペニル基を側鎖に有する芳香族化合物として、1、3-ジイソプロペニルベンゼンを添加したジエチル亜鉛に、さらにジエチル亜鉛の熱安定性を向上させる添加物とは異なる種類の炭化水素であるヘキサンや、芳香族炭化水素化合物であるトルエンが共存させたサンプルを、それぞれ表15のように調整して、実施例1〜5と同様の熱分析測定を行なった。各サンプルの初期発熱温度を表15に合わせて示す。
[Examples 53 to 55 and Comparative Examples 12 to 14]
[Examples 53 to 55]
As an aromatic compound having an isopropenyl group in the side chain of the present invention, a kind of hydrocarbon different from an additive that further improves the thermal stability of diethyl zinc to diethyl zinc added with 1,3-diisopropenylbenzene Samples in which hexane and aromatic hydrocarbon compound toluene coexisted were adjusted as shown in Table 15 and subjected to the same thermal analysis measurement as in Examples 1-5. Table 15 shows the initial heat generation temperature of each sample.

[比較例12〜14]
実施例53〜55において、本発明の1、3-ジイソプロペニルベンゼンを添加していないこと以外は、実施例53〜55と同様のサンプルを表15のように調整し、実施例1〜5と同様の熱分析測定を行なった。各サンプルの初期発熱温度を表15に合わせて示す。
[Comparative Examples 12-14]
In Examples 53 to 55, samples similar to those in Examples 53 to 55 were prepared as shown in Table 15 except that 1,3-diisopropenylbenzene of the present invention was not added, and Examples 1 to 5 were prepared. The same thermal analysis measurement was performed. Table 15 shows the initial heat generation temperature of each sample.

実施例53〜55および比較例12〜14の結果より、本発明のイソプロペニル基を側鎖に有する芳香族化合物は、ジエチル亜鉛の熱安定性を向上させる添加物とは異なる種類の炭化水素であるヘキサンや、芳香族炭化水素化合物であるトルエンが共存する場合においてもジエチル亜鉛の熱安定性を向上させる添加物として効果があり、本発明の添加物を添加したジエチル亜鉛組成物の高い熱安定性がジエチル亜鉛の熱安定性を向上させる添加物とは異なる種類の炭化水素であるヘキサンや、芳香族炭化水素化合物であるトルエンが共存する場合においても確認された。 From the results of Examples 53 to 55 and Comparative Examples 12 to 14, the aromatic compound having an isopropenyl group in the side chain of the present invention is a different kind of hydrocarbon from the additive that improves the thermal stability of diethyl zinc. It is effective as an additive to improve the thermal stability of diethyl zinc even when certain hexane or aromatic hydrocarbon compound toluene coexists, and the high thermal stability of the diethyl zinc composition to which the additive of the present invention is added It was confirmed even when hexane, which is a different kind of hydrocarbon from the additive that improves the thermal stability of diethyl zinc, and toluene, which is an aromatic hydrocarbon compound, coexist.


Claims (7)

ジエチル亜鉛に添加物としてイソプロペニル基を側鎖に有する芳香族化合物が添加されたジエチル亜鉛組成物。   A diethyl zinc composition in which an aromatic compound having an isopropenyl group in the side chain is added as an additive to diethyl zinc. 添加物が、下記一般式(1)、一般式(2)、一般式(3)で表されるイソプロペニル基を側鎖に有する芳香族化合物からなる群より選ばれる1つまたは2以上の化合物である、請求項1記載のジエチル亜鉛組成物。












(式(1)、式(2)、式(3)中、Rはそれぞれ独立して、水素、炭素数1〜8の直鎖もしくは分岐したアルキル基、炭素数1〜8の直鎖もしくは分岐したアルケニル基(アルケニル基にはイソプロペニル基も含む)、炭素数6〜14のアリル基である)
The additive is one or more compounds selected from the group consisting of aromatic compounds having an isopropenyl group in the side chain represented by the following general formula (1), general formula (2), or general formula (3) The diethylzinc composition according to claim 1, wherein












(In formula (1), formula (2), and formula (3), each R is independently hydrogen, a linear or branched alkyl group having 1 to 8 carbon atoms, or a linear or branched group having 1 to 8 carbon atoms. An alkenyl group (an alkenyl group includes an isopropenyl group) and an allyl group having 6 to 14 carbon atoms)
添加物が、α―メチルスチレン、4−イソプロペニルトルエン、1,3−ジイソプロペニルベンゼン、1、4―ジイソプロペニルベンゼンおよび2−イソプロペニルナフタレンからなる群より選ばれる1つまたは2以上の化合物である、請求項1または請求項2に記載のジエチル亜鉛組成物。   The additive is one or more selected from the group consisting of α-methylstyrene, 4-isopropenyltoluene, 1,3-diisopropenylbenzene, 1,4-diisopropenylbenzene and 2-isopropenylnaphthalene The diethyl zinc composition of Claim 1 or Claim 2 which is a compound. ジエチル亜鉛への添加物の添加率が100ppm〜20wt%である、請求項1〜請求項3のいずれかに記載のジエチル亜鉛組成物。   The diethyl zinc composition in any one of Claims 1-3 whose addition rate of the additive to diethyl zinc is 100 ppm-20 wt%. ジエチル亜鉛の熱安定性を向上させる方法とて、添加物として請求項1〜3記載の化合物を用い、請求項4の添加率で添加することを特徴とする、ジエチル亜鉛の熱安定化の方法。 As a method of improving the thermal stability of diethylzinc, with claims 1-3 compound according as an additive, it is characterized by adding at addition rate of claims 4, the thermal stabilization of diethylzinc Method. 請求項1〜4記載のジエチル亜鉛組成物において、ジエチル亜鉛組成物を構成する添加物とは異なる種類の炭素数5〜25の飽和及び/または不飽和炭化水素及び炭素数6〜30の芳香族炭化水素化合物あるいはエーテル系化合物が共存する、請求項1〜4記載のジエチル亜鉛組成物。   The diethylzinc composition according to claims 1 to 4, wherein the saturated and / or unsaturated hydrocarbon having 5 to 25 carbon atoms and an aromatic having 6 to 30 carbon atoms are different from the additive constituting the diethylzinc composition. The diethyl zinc composition according to claim 1, wherein a hydrocarbon compound or an ether compound coexists. 請求項5記載のジエチル亜鉛の安定化方法において、ジエチル亜鉛に熱安定性に効果のある添加物とは異なる種類の炭素数5〜25の飽和及び/または不飽和炭化水素及び炭素数6〜30の芳香族炭化水素化合物あるいはエーテル系化合物がジエチル亜鉛に共存する、請求項5記載のジエチル亜鉛の熱安定化の方法。   6. The method of stabilizing diethylzinc according to claim 5, wherein the saturated and / or unsaturated hydrocarbons having 5 to 25 carbon atoms and the carbon atoms having 6 to 30 carbon atoms are different from the additive having an effect on the thermal stability of diethyl zinc. The method for thermal stabilization of diethylzinc according to claim 5, wherein said aromatic hydrocarbon compound or ether compound coexists in diethylzinc.
JP2010193110A 2009-09-02 2010-08-31 Diethyl zinc composition, method for thermal stabilization of diethyl zinc, compound for improving thermal stability of diethyl zinc Active JP5603711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010193110A JP5603711B2 (en) 2009-09-02 2010-08-31 Diethyl zinc composition, method for thermal stabilization of diethyl zinc, compound for improving thermal stability of diethyl zinc

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009202294 2009-09-02
JP2009202294 2009-09-02
JP2010193110A JP5603711B2 (en) 2009-09-02 2010-08-31 Diethyl zinc composition, method for thermal stabilization of diethyl zinc, compound for improving thermal stability of diethyl zinc

Publications (2)

Publication Number Publication Date
JP2011074069A JP2011074069A (en) 2011-04-14
JP5603711B2 true JP5603711B2 (en) 2014-10-08

Family

ID=44018422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010193110A Active JP5603711B2 (en) 2009-09-02 2010-08-31 Diethyl zinc composition, method for thermal stabilization of diethyl zinc, compound for improving thermal stability of diethyl zinc

Country Status (1)

Country Link
JP (1) JP5603711B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011107966A1 (en) * 2010-03-05 2011-09-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Adsorbent for removing metal compounds and method for same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3394118A (en) * 1963-09-26 1968-07-23 Shell Oil Co Polymerization catalyst and process
US3400082A (en) * 1965-07-19 1968-09-03 Ethyl Corp Smoke generating compositions and method of use thereof
JPS54115326A (en) * 1978-03-01 1979-09-07 Takasago Corp Preparation of 1-methyl-4-ethylbenzene derivative by autoxidation of unsaturated-p-menthane derivative
JPS60237091A (en) * 1984-05-07 1985-11-25 Seitetsu Kagaku Co Ltd Preparation of dialkyl zinc
JPS61293936A (en) * 1985-06-21 1986-12-24 Kureha Chem Ind Co Ltd Liquid-phase dehydration of alcohol having aromatic side-chain at alpha-site
JP2000327596A (en) * 1999-05-17 2000-11-28 Mitsui Chemicals Inc Dehydrogenation of diisopropylbenzene
JP5090792B2 (en) * 2006-06-02 2012-12-05 日本曹達株式会社 Method for producing polymer

Also Published As

Publication number Publication date
JP2011074069A (en) 2011-04-14

Similar Documents

Publication Publication Date Title
CN107428677B (en) Diazadienyl compound, raw material for forming thin film, method for producing thin film, and diazadiene compound
CN101304964B (en) Titanium complexes, process for production thereof, titanium-containing thin films, and method for formation thereof
TWI527822B (en) Alkoxides and film forming materials
JP5752356B2 (en) Method for thermal stabilization of diethylzinc and diethylzinc composition
KR101790801B1 (en) Diethylzinc composition, method for heat stabilization, and compound for heat stabilization
JP2012153688A (en) Metal complex for metal-containing film deposition
WO2018225668A1 (en) Raw material for chemical vapor deposition, and light-blocking container having raw material chemical vapor deposition contained therein and method for producing same
WO2020179748A1 (en) Indium compound and method for forming indium-containing film using said indium compound
JP5603711B2 (en) Diethyl zinc composition, method for thermal stabilization of diethyl zinc, compound for improving thermal stability of diethyl zinc
WO2018069130A1 (en) Process for the generation of metal-containing films
US10570514B2 (en) Process for the generation of metallic films
JP5752369B2 (en) Diethyl zinc composition, method for thermal stabilization of diethyl zinc, compound for improving thermal stability of diethyl zinc
TW201821431A (en) Compound, raw material for forming thin film, raw material for forming thin film for use in atomic layer deposition method, andmethod for manufacturing thin film
TWI403606B (en) Raw material, and a method of manufacturing a thin film of film-forming zinc compound
JP5775672B2 (en) Diethylzinc composition, thermal stabilization method and thermal stabilization compound
JP5828646B2 (en) Method for thermal stabilization of diethylzinc and diethylzinc composition
EP3539973A1 (en) Compound, starting material for thin film formation, thin film production method, and amidine compound
JP5828647B2 (en) Method for thermal stabilization of diethylzinc and diethylzinc composition
WO2012081254A1 (en) Diethyl zinc composition, method for thermal stabilization and compound for thermal stabilization
JP2012250931A (en) Pentacene multimer, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140822

R150 Certificate of patent or registration of utility model

Ref document number: 5603711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250