JP5752369B2 - Diethyl zinc composition, method for thermal stabilization of diethyl zinc, compound for improving thermal stability of diethyl zinc - Google Patents

Diethyl zinc composition, method for thermal stabilization of diethyl zinc, compound for improving thermal stability of diethyl zinc Download PDF

Info

Publication number
JP5752369B2
JP5752369B2 JP2010193156A JP2010193156A JP5752369B2 JP 5752369 B2 JP5752369 B2 JP 5752369B2 JP 2010193156 A JP2010193156 A JP 2010193156A JP 2010193156 A JP2010193156 A JP 2010193156A JP 5752369 B2 JP5752369 B2 JP 5752369B2
Authority
JP
Japan
Prior art keywords
diethyl zinc
diethylzinc
composition
additive
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010193156A
Other languages
Japanese (ja)
Other versions
JP2012051808A (en
Inventor
健一 羽賀
健一 羽賀
静夫 富安
静夫 富安
功一 徳留
功一 徳留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Finechem Corp
Original Assignee
Tosoh Finechem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Finechem Corp filed Critical Tosoh Finechem Corp
Priority to JP2010193156A priority Critical patent/JP5752369B2/en
Publication of JP2012051808A publication Critical patent/JP2012051808A/en
Application granted granted Critical
Publication of JP5752369B2 publication Critical patent/JP5752369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、熱安定性に優れたジエチル亜鉛組成物、ジエチル亜鉛の熱安定化方法およびジエチル亜鉛の熱安定性を向上させる化合物に関する。 The present invention relates to a diethylzinc composition excellent in thermal stability, a method for thermal stabilization of diethylzinc, and a compound that improves the thermal stability of diethylzinc.

ジエチル亜鉛は、従来、ポリエチレンオキシド、ポリプロピレンオキシド等の重合触媒用途や、医薬、機能性材料等の中間体等の製造において有機合成の反応試薬として用いられており、極めて有用な工業材料として知られている。   Diethyl zinc is conventionally used as a reaction reagent for organic synthesis in polymerization catalyst applications such as polyethylene oxide and polypropylene oxide, and in the production of intermediates such as pharmaceuticals and functional materials, and is known as an extremely useful industrial material. ing.

また近年、原料にジエチル亜鉛と酸化剤として水蒸気を使用してMOCVD(Metal Organic Chemical Vapor Deposition)法と呼ばれる手法等により酸化亜鉛薄膜を形成する方法が検討されている。このMOCVD法により得られた酸化亜鉛薄膜は、CIGS太陽電池のバッファ層、透明導電膜、色素増感太陽電池の電極膜、薄膜Si太陽電池の中間層、透明導電膜等の太陽電池における各種機能膜、光触媒膜、紫外線カット膜、赤外線反射膜、帯電防止膜等の各種機能膜、化合物半導体発光素子、薄膜トランジスタ等の電子デバイス等に使用され、幅広い用途を持つ。 In recent years, a method of forming a zinc oxide thin film by a technique called MOCVD (Metal Organic Chemical Vapor Deposition) method using diethyl zinc as raw materials and water vapor as an oxidizing agent has been studied. The zinc oxide thin film obtained by this MOCVD method has various functions in solar cells such as CIGS solar cell buffer layer, transparent conductive film, dye-sensitized solar cell electrode film, thin-film Si solar cell intermediate layer, and transparent conductive film. It is used in various functional films such as films, photocatalytic films, ultraviolet cut films, infrared reflective films, and antistatic films, compound semiconductor light emitting devices, electronic devices such as thin film transistors, etc., and has a wide range of uses.

ジエチル亜鉛は、熱を加えると徐々に分解して金属亜鉛粒子が析出することが知られている(例えば非特許文献1参照)。そのため、ジエチル亜鉛の取り扱い等においては、熱分解で生成した金属亜鉛粒子の析出による製品純度の低下、貯蔵容器の汚染、製造設備配管の閉塞等の問題があった。   It is known that diethyl zinc is gradually decomposed and metal zinc particles are deposited when heat is applied (for example, see Non-Patent Document 1). Therefore, handling of diethyl zinc has problems such as a decrease in product purity due to precipitation of metal zinc particles generated by pyrolysis, contamination of storage containers, and blockage of manufacturing equipment piping.

上記の熱分解で生成した金属亜鉛粒子の析出に関する問題を解決する方法として、例えば、アントラセン、アセナフテン、アセナフチレン等の化合物を添加してジエチル亜鉛を安定化した組成物とするような方法が知られている(例えば特許文献1〜3参照)。   As a method for solving the above-mentioned problem relating to the precipitation of metal zinc particles generated by pyrolysis, for example, a method of adding a compound such as anthracene, acenaphthene, or acenaphthylene to obtain a composition in which diethyl zinc is stabilized is known. (For example, refer to Patent Documents 1 to 3).

米国特許第4385003号明細書U.S. Pat. No. 4,385,003 米国特許第4402880号明細書U.S. Pat. No. 4,402,880 米国特許第4407758号明細書U.S. Pat. No. 4,407,758

Yasuo Kuniya et Al.,Applied Organometallic Chemistry、5巻,337〜347頁,1991年発行Yasuo Kuniya et al. , Applied Organometallic Chemistry, 5, 337-347, published in 1991

特許文献1〜3に開示されるように、アントラセン、アセナフテン、アセナフチレンを添加してもジエチル亜鉛を十分に安定化することができず、より熱安定性に優れたジエチル亜鉛が求められる。 As disclosed in Patent Documents 1 to 3, even if anthracene, acenaphthene, and acenaphthylene are added, diethylzinc cannot be sufficiently stabilized, and diethylzinc having higher thermal stability is required.

また、アントラセン、アセナフテン、アセナフチレンは、室温で固体の化合物であり、ジエチル亜鉛組成物の調製において、粉体投入等の操作が必要になるという課題もある。   In addition, anthracene, acenaphthene, and acenaphthylene are compounds that are solid at room temperature, and there is a problem that operations such as charging powder are required in the preparation of the diethylzinc composition.

即ち本発明は、重合触媒や有機合成試薬およびMOCVD法等による酸化亜鉛薄膜製造原料や等に使用されるジエチル亜鉛の熱安定性を向上させ、長期間取り扱っても金属亜鉛粒子が析出しない熱安定性に優れたジエチル亜鉛組成物を提供することを目的とする。 In other words, the present invention improves the thermal stability of diethyl zinc used for a raw material for producing a zinc oxide thin film by a polymerization catalyst, an organic synthesis reagent, MOCVD method, etc., and does not precipitate metallic zinc particles even when handled for a long time. It aims at providing the diethyl zinc composition excellent in property.

本発明者は上記課題を解決すべく鋭意研究開発を行った結果、アズレン構造を有する化合物をジエチル亜鉛(CAS No.557-20-0)に共存させた組成物とすることで熱安定性が著しく向上することを見出し、本発明を完成させた。 As a result of diligent research and development to solve the above problems, the present inventor has improved thermal stability by using a composition in which a compound having an azulene structure coexists in diethyl zinc (CAS No. 557-20-0). The present invention was completed by finding that it was significantly improved.

本発明に係るジエチル亜鉛組成物は、ジエチル亜鉛に添加物としてアズレン構造を有する化合物が添加されたジエチル亜鉛組成物である。ここでアズレン構造とは、下記一般式(1)の炭素数7の環状構造の炭素からなる構造と炭素数5の環状構造の炭素からなる構造がつながった構造として、一般に広く知られている。

Figure 0005752369
The diethylzinc composition according to the present invention is a diethylzinc composition obtained by adding a compound having an azulene structure as an additive to diethylzinc. Here, the azulene structure is generally widely known as a structure in which a structure composed of carbon having a cyclic structure of 7 carbon atoms and a structure composed of carbon having a cyclic structure of 5 carbon atoms in the following general formula (1) are connected.
Figure 0005752369

また本発明に係るジエチル亜鉛組成物は、下記一般式(2)、アズレン構造を有する化合物を含む。   The diethyl zinc composition according to the present invention includes the following general formula (2) and a compound having an azulene structure.

Figure 0005752369
Figure 0005752369

前述のアズレン構造を有する化合物として、例えば、アズレン、グアイアズレン、ラクタルアズレン等の各種置換アズレン化合物を挙げることが出来る。   Examples of the compound having an azulene structure include various substituted azulene compounds such as azulene, guaiazulene, and lactalazulene.

これらのアズレン構造を有する化合物のなかでも、アズレン(CAS No.275-51-4)、グアイアズレン(CAS No.489-84-9)、ラクタルアズレン(CAS No.489-85-0)は、構造が単純であり、工業的に容易に入手可能なもので高い効果が得られる添加物であり、好ましく用いることが出来る。   Among these compounds having an azulene structure, azulene (CAS No.275-51-4), guaiazulene (CAS No.489-84-9), and lactalazulene (CAS No.489-85-0) have a structure. Is an additive that can be easily obtained industrially and can provide a high effect, and can be preferably used.

本発明に用いられる添加物は、単独の添加で充分な効果が得られるが、複数を混合して用いても差し支えない。   The additive used in the present invention can provide a sufficient effect when added alone, but a plurality of additives may be used in combination.

ここで、アズレン構造を有する化合物の添加量は、ジエチル亜鉛の性能が維持され、熱安定化効果が得られる範囲であれば、特に制限は無いが、通常、ジエチル亜鉛に対して、100ppm〜20wt%、好ましくは200ppm〜10wt%,より好ましくは 500ppm〜5wt%であれば,熱安定性に優れたジエチル亜鉛組成物を得ることができる。   Here, the amount of the compound having an azulene structure is not particularly limited as long as the performance of diethyl zinc is maintained and a thermal stabilization effect can be obtained, but usually 100 ppm to 20 wt with respect to diethyl zinc. %, Preferably 200 ppm to 10 wt%, more preferably 500 ppm to 5 wt%, a diethylzinc composition having excellent thermal stability can be obtained.

アズレン構造を有する化合物の添加量が、少なすぎると熱安定性向上の充分な効果が得られない場合があったり、多すぎると添加量を増加した効果が得られない場合もあるので、熱安定性の所望の効果を得るための適量を添加することが望ましい。 If the addition amount of the compound having an azulene structure is too small, a sufficient effect of improving the thermal stability may not be obtained, and if it is too much, the effect of increasing the addition amount may not be obtained. It is desirable to add an appropriate amount to obtain the desired effect of sex.

本発明に使用されるジエチル亜鉛は、ポリエチレンオキシド、ポリプロピレンオキシド等の重合触媒用途や、医薬、機能性材料等の中間体等の製造において有機合成の反応試薬として用いられている一般に工業材料として知られているものを用いることが出来る。   Diethyl zinc used in the present invention is generally known as an industrial material used as a reaction reagent for organic synthesis in polymerization catalyst applications such as polyethylene oxide and polypropylene oxide, and in the production of intermediates such as pharmaceuticals and functional materials. What is being used can be used.

また、本発明においては、MOCVD法等により酸化亜鉛薄膜を形成する方法で使用され、CIGS太陽電池のバッファ層、透明導電膜、色素増感太陽電池の電極膜、薄膜Si太陽電池の中間層、透明導電膜等の太陽電池における各種機能膜、光触媒膜、紫外線カット膜、赤外線反射膜、帯電防止膜等の各種機能膜、化合物半導体発光素子、薄膜トランジスタ等の電子デバイス等に使用されるような、工業材料よりも高純度のジエチル亜鉛も用いることが出来る。   In the present invention, it is used in a method of forming a zinc oxide thin film by MOCVD or the like, and includes a buffer layer for CIGS solar cells, a transparent conductive film, an electrode film for dye-sensitized solar cells, an intermediate layer for thin-film Si solar cells, Various functional films in solar cells such as transparent conductive films, photocatalytic films, ultraviolet cut films, infrared reflective films, various functional films such as antistatic films, compound semiconductor light emitting devices, electronic devices such as thin film transistors, etc. Diethyl zinc having a purity higher than that of industrial materials can also be used.

本発明のジエチル亜鉛組成物の調製においては、ジエチル亜鉛とアズレン構造を有する化合物である添加物とを混合すればよく、例えば、ジエチル亜鉛に前述の添加物を添加する等、添加の方法においては特に制限は無い。
例えば、保存安定性の向上を目的する場合においては、あらかじめ、ジエチル亜鉛に添加物を添加する方法を用いることが出来る。
In the preparation of the diethylzinc composition of the present invention, diethylzinc and an additive which is a compound having an azulene structure may be mixed. For example, in the addition method such as adding the above-mentioned additive to diethylzinc, There is no particular limitation.
For example, in order to improve storage stability, a method of adding an additive to diethyl zinc in advance can be used.

また、例えば、反応等に使用する場合、使用の直前にジエチル亜鉛に添加物を添加することも可能である。 Further, for example, when used for a reaction or the like, an additive can be added to diethyl zinc immediately before use.

また、本発明のジエチル亜鉛組成物の調製の温度においては、ジエチル亜鉛の熱分解の影響が少ない70℃以下が望ましい。通常、−20℃〜35℃で本発明の組成物の調製を行なうことが出来る。また、圧力についても、特に制限は無いが、反応等、特殊な場合を除いては、通常、0.1013MPaなど、大気圧付近でジエチル亜鉛と本発明の組成物の調製を行なうことが出来る。   In addition, the temperature for preparing the diethylzinc composition of the present invention is preferably 70 ° C. or less, which is less affected by the thermal decomposition of diethylzinc. Usually, the composition of the present invention can be prepared at -20 ° C to 35 ° C. Also, the pressure is not particularly limited. Except for special cases such as reaction, diethylzinc and the composition of the present invention can be usually prepared near atmospheric pressure, such as 0.1013 MPa.

本発明のジエチル亜鉛組成物の保管・運搬容器、貯蔵タンク、配管等の設備における使用機材、使用雰囲気はジエチル亜鉛に用いているものをそのまま転用可能である。例えば、前述の使用機材の材質はSUS、炭素鋼、チタン、ハステロイ等の金属や、テフロン、フッ素系ゴム等の樹脂等を用いることができる。また、使用雰囲気は、窒素、ヘリウム、アルゴン等の不活性ガス等がジエチル亜鉛と同様に用いることができる。   The equipment used and the atmosphere used in equipment such as storage / transport containers, storage tanks, and piping for the diethyl zinc composition of the present invention can be used as they are. For example, the material of the above-mentioned equipment can be a metal such as SUS, carbon steel, titanium, or hastelloy, or a resin such as Teflon or fluorine rubber. In addition, an inert gas such as nitrogen, helium, or argon can be used in the same manner as diethyl zinc.

また、本発明のジエチル亜鉛組成物は、ジエチル亜鉛の使用に際して用いることが出来る公知の溶媒に溶解して使用することが出来る。前記溶媒の例として、例えば、ペンタン、ヘキサン、ヘプタン、オクタン等の飽和炭化水素や、ベンゼン、トルエン、キシレン等の芳香族炭化水素等の炭化水素化合物、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジグライム等のエーテル系化合物等を挙げることが出来る。   The diethyl zinc composition of the present invention can be used by dissolving in a known solvent that can be used when diethyl zinc is used. Examples of the solvent include, for example, saturated hydrocarbons such as pentane, hexane, heptane and octane, hydrocarbon compounds such as aromatic hydrocarbons such as benzene, toluene and xylene, diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane and diglyme. And ether compounds such as

本発明のジエチル亜鉛組成物の用途としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等の重合触媒用途や、医薬、機能性材料等の中間体等の製造において有機合成の反応試薬としての用途や、また、MOCVD法等により酸化亜鉛薄膜を形成する方法で使用され、CIGS太陽電池のバッファ層、透明導電膜、色素増感太陽電池の電極膜、薄膜Si太陽電池の中間層、透明導電膜等の太陽電池における各種機能膜、光触媒膜、紫外線カット膜、赤外線反射膜、帯電防止膜等の各種機能膜、化合物半導体発光素子、薄膜トランジスタ等の電子デバイス等に使用されるような酸化物形成用途や、ZnS等、II−VI族の電子デバイス用薄膜形成用途等、これまでジエチル亜鉛が使用されている用途と同様のものを挙げることが出来る。   Examples of the use of the diethylzinc composition of the present invention include use as a polymerization catalyst such as polyethylene oxide and polypropylene oxide, use as a reaction reagent for organic synthesis in the production of intermediates such as pharmaceuticals and functional materials, , Used in a method of forming a zinc oxide thin film by MOCVD method, etc., and CIGS solar cell buffer layer, transparent conductive film, dye-sensitized solar cell electrode film, thin film Si solar cell intermediate layer, transparent conductive film, etc. Various functional films such as various functional films, photocatalytic films, ultraviolet cut films, infrared reflective films, antistatic films, etc. in batteries, oxide forming applications such as compound semiconductor light emitting devices, electronic devices such as thin film transistors, etc., ZnS List the same applications where diethyl zinc has been used so far, such as thin film formation applications for II-VI electronic devices. Can.

本発明のアズレン構造を有する化合物を添加したジエチル亜鉛組成物は、熱安定性に優れ、ジエチル亜鉛が熱分解することにより発生する金属亜鉛粒子の析出が極めて少ない。その結果、製品純度の低下,貯蔵容器の汚染、製造設備配管の閉塞等の問題を防ぐことが可能となる。   The diethylzinc composition to which the compound having an azulene structure of the present invention is added is excellent in thermal stability, and there is very little precipitation of metallic zinc particles generated by the thermal decomposition of diethylzinc. As a result, it is possible to prevent problems such as a decrease in product purity, contamination of storage containers, and blockage of manufacturing equipment piping.

以下に本発明を実施例によってさらに詳細に説明するが、これらの実施例は本発明を限定するものではない。   EXAMPLES The present invention will be described in more detail with reference to examples below, but these examples do not limit the present invention.

[測定機器]
DSC測定は、DSC6200(セイコーインスツルメンツ株式会社製)を用いて行なった。
[measuring equipment]
DSC measurement was performed using DSC6200 (manufactured by Seiko Instruments Inc.).

[ジエチル亜鉛組成物の調製]
ジエチル亜鉛(東ソー・ファインケム株式会社製)と種々のアズレン構造を有する化合物(市販試薬)とを窒素雰囲気下、室温において所定の濃度でガラス容器に秤量した。添加物をジエチル亜鉛に溶解して、ジエチル亜鉛組成物を調製した。
[Preparation of diethyl zinc composition]
Diethyl zinc (manufactured by Tosoh Finechem Co., Ltd.) and various compounds having azulene structure (commercially available reagents) were weighed into glass containers at a predetermined concentration at room temperature in a nitrogen atmosphere. The additive was dissolved in diethyl zinc to prepare a diethyl zinc composition.

ジエチル亜鉛への添加物の添加率(重量%)は、以下の式で定義したものを用いた。
添加物の添加率(重量%)=(添加物重量/(添加物重量+ジエチル亜鉛重量))×100
The addition rate (wt%) of the additive to diethyl zinc was defined by the following formula.
Addition rate of additive (% by weight) = (additive weight / (additive weight + diethyl zinc weight)) × 100

前述の方法で調製したジエチル亜鉛組成物について、DSC測定(示差走査熱量測定:Differential Scanning Calorimetry)を行ない、添加物の熱安定性効果を評価した。   DSC measurement (Differential Scanning Calorimetry) was performed about the diethyl zinc composition prepared by the above-mentioned method, and the thermal stability effect of the additive was evaluated.

[参考例1]
[ジエチル亜鉛のDSC測定による熱安定性試験]
窒素雰囲気下、ジエチル亜鉛を、SUS製DSCセルに秤収して密閉した。得られたサンプルについてDSC測定を、30〜450℃を測定温度範囲として10℃/分の昇温速度で熱分析測定を行なった。それぞれのサンプルの分解温度は、DSC測定の初期発熱温度で観測される。添加物を添加していないジエチル亜鉛のみのサンプルの初期発熱温度を表1に示す。
[Reference Example 1]
[Thermal stability test by DSC measurement of diethyl zinc]
Diethyl zinc was weighed and sealed in a SUS DSC cell under a nitrogen atmosphere. The obtained sample was subjected to DSC measurement, and thermal analysis measurement was performed at a temperature increase rate of 10 ° C./min with a temperature range of 30 to 450 ° C. The decomposition temperature of each sample is observed at the initial exothermic temperature of DSC measurement. Table 1 shows the initial exothermic temperature of a sample containing only diethyl zinc with no additive added.

[実施例1〜2]
[ジエチル亜鉛組成物のDSC測定による熱安定性試験]
参考例1と同様にして、窒素雰囲気下、種々の本発明のアズレン構造を有する化合物を添加したジエチル亜鉛組成物を、SUS製DSCセルに秤収して密閉した。得られたサンプルについてDSC測定を、30〜450℃を測定温度範囲として10℃/分の昇温速度で参考例1と同様の熱分析測定を行なった。各サンプルの初期発熱温度を表1に示す。
本発明のアズレン構造を有する化合物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度は、参考例で得られたジエチル亜鉛のみのサンプルの初期発熱温度よりも高く、本発明の組成物は、ジエチル亜鉛のみのサンプルよりも分解の開始温度が高い。本結果より添加物を添加したジエチル亜鉛組成物の高い熱安定性が確認された。
[Examples 1-2]
[Thermal stability test of diethyl zinc composition by DSC measurement]
In the same manner as in Reference Example 1, a diethylzinc composition to which various compounds having the azulene structure of the present invention were added in a nitrogen atmosphere was weighed and sealed in a SUS DSC cell. The obtained sample was subjected to DSC measurement, and the same thermal analysis measurement as in Reference Example 1 was carried out at a rate of temperature increase of 10 ° C./min with a temperature range of 30 to 450 ° C. Table 1 shows the initial heat generation temperature of each sample.
The initial exothermic temperature of the sample of the diethylzinc composition to which the compound having an azulene structure of the present invention was added was higher than the initial exothermic temperature of the sample of only diethylzinc obtained in the Reference Example. The decomposition start temperature is higher than that of the zinc-only sample. From this result, the high thermal stability of the diethyl zinc composition to which the additive was added was confirmed.

[比較例1〜3]
実施例1〜2と同様にして、特許文献1〜3に記載の化合物であるアントラセン、アセナフテン、アセナフチレンを添加したジエチル亜鉛組成物について同様の検討を行った。それぞれのサンプルの初期発熱温度を表1に示す。
これらのサンプルは、本発明のアズレン構造を有する化合物を添加したジエチル亜鉛組成物のサンプルの初期発熱温度よりも低く、既存の添加物の添加した組成物は本発明の組成物よりも熱安定性が劣っていた。
[Comparative Examples 1-3]
In the same manner as in Examples 1 and 2, the same study was performed on a diethyl zinc composition to which anthracene, acenaphthene, and acenaphthylene, which are compounds described in Patent Documents 1 to 3, were added. Table 1 shows the initial heat generation temperature of each sample.
These samples are lower than the initial exothermic temperature of the sample of the diethyl zinc composition to which the compound having the azulene structure of the present invention is added, and the composition to which the existing additive is added is more thermally stable than the composition of the present invention. Was inferior.

Figure 0005752369
Figure 0005752369

Claims (5)

ジエチル亜鉛の熱安定性を向上させる方法として、添加物として下記一般式(2)のアズレン構造を有する化合物を用い、ジエチル亜鉛への添加物の添加率が100ppm〜20wt%で添加することを特徴とする、ジエチル亜鉛の熱安定化の方法。
Figure 0005752369
(式(2)中、Rはそれぞれ独立して、水素、炭素数1〜3の直鎖もしくは分岐したアルキル基、炭素数2〜3の直鎖もしくは分岐したアルケニル基である。)
As a method for improving the thermal stability of diethyl zinc, a compound having an azulene structure represented by the following general formula (2) is used as an additive, and the additive is added to diethyl zinc at an addition rate of 100 ppm to 20 wt%. And a method of thermal stabilization of diethylzinc.
Figure 0005752369
(In formula (2), each R is independently hydrogen, a linear or branched alkyl group having 1 to 3 carbon atoms, or a linear or branched alkenyl group having 2 to 3 carbon atoms.)
請求項1に記載のジエチル亜鉛の熱安定化の方法において、前記添加物が、アズレン、グアイアズレンおよびラクタルアズレンからなる群より選ばれる1つまたは2以上の化合物であることを特徴とするジエチル亜鉛の熱安定化の方法。   The method for thermal stabilization of diethylzinc according to claim 1, wherein the additive is one or more compounds selected from the group consisting of azulene, guaiazulene and lactalazulene. Thermal stabilization method. 請求項1または請求項2に記載のジエチル亜鉛の熱安定化の方法において、ジエチル亜鉛に熱安定性に効果のある添加物とは異なる種類の炭素数5〜25の飽和及び/若しくは不飽和炭化水素炭素数6〜30の芳香族炭化水素化合物又はエーテル系化合物が、ジエチル亜鉛に共存することを特徴とするジエチル亜鉛の熱安定化の方法。 The method for thermal stabilization of diethylzinc according to claim 1 or 2, wherein the saturated and / or unsaturated carbonization having 5 to 25 carbon atoms is different from the additive effective for thermal stability of diethylzinc. hydrogen, an aromatic hydrocarbon compound or ether compound having 6 to 30 carbon atoms, a method of heat stabilization of diethylzinc, characterized in that co-exist in the diethylzinc. 請求項1または請求項2に記載のジエチル亜鉛の安定化方法を用いて成るジエチル亜鉛組成物。   A diethylzinc composition comprising the method for stabilizing diethylzinc according to claim 1 or 2. ジエチル亜鉛と、アズレン、グアイアズレンおよびラクタルアズレンからなる群より選ばれる1つまたは2以上の添加物とからなる組成物であって、前記添加物の添加率が100ppm〜20wt%であるジエチル亜鉛組成物。   A composition comprising diethyl zinc and one or more additives selected from the group consisting of azulene, guaiazulene and lactalazulene, wherein the additive zinc is added in an amount of 100 ppm to 20 wt%. .
JP2010193156A 2010-08-31 2010-08-31 Diethyl zinc composition, method for thermal stabilization of diethyl zinc, compound for improving thermal stability of diethyl zinc Active JP5752369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010193156A JP5752369B2 (en) 2010-08-31 2010-08-31 Diethyl zinc composition, method for thermal stabilization of diethyl zinc, compound for improving thermal stability of diethyl zinc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010193156A JP5752369B2 (en) 2010-08-31 2010-08-31 Diethyl zinc composition, method for thermal stabilization of diethyl zinc, compound for improving thermal stability of diethyl zinc

Publications (2)

Publication Number Publication Date
JP2012051808A JP2012051808A (en) 2012-03-15
JP5752369B2 true JP5752369B2 (en) 2015-07-22

Family

ID=45905590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010193156A Active JP5752369B2 (en) 2010-08-31 2010-08-31 Diethyl zinc composition, method for thermal stabilization of diethyl zinc, compound for improving thermal stability of diethyl zinc

Country Status (1)

Country Link
JP (1) JP5752369B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3394118A (en) * 1963-09-26 1968-07-23 Shell Oil Co Polymerization catalyst and process

Also Published As

Publication number Publication date
JP2012051808A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
Popov et al. Atomic layer deposition of PbI2 thin films
US9096441B2 (en) Composition for manufacturing doped or undoped zinc oxide thin film and method for manufacturing zinc oxide thin film using same
JP5752356B2 (en) Method for thermal stabilization of diethylzinc and diethylzinc composition
KR102367495B1 (en) Raw material for chemical vapor deposition, light-shielding container containing raw material for chemical vapor deposition, and method for manufacturing the same
Rouf et al. Hexacoordinated gallium (III) triazenide precursor for epitaxial gallium nitride by atomic layer deposition
US9018125B2 (en) Diethylzinc composition, method for heat stabilization, and compound for heat stabilization
Kim et al. Atomic Layer Deposition of Tin Monosulfide Using Vapor from Liquid Bis (N, N′-diisopropylformamidinato) tin (II) and H2S
JP2018090855A (en) Raw material for chemical vapor deposition, production method thereof, and production method of oxide film containing indium formed by using raw material for chemical vapor deposition
JP5752369B2 (en) Diethyl zinc composition, method for thermal stabilization of diethyl zinc, compound for improving thermal stability of diethyl zinc
JP5603711B2 (en) Diethyl zinc composition, method for thermal stabilization of diethyl zinc, compound for improving thermal stability of diethyl zinc
JP5775672B2 (en) Diethylzinc composition, thermal stabilization method and thermal stabilization compound
JP5828646B2 (en) Method for thermal stabilization of diethylzinc and diethylzinc composition
JP5828647B2 (en) Method for thermal stabilization of diethylzinc and diethylzinc composition
WO2012081254A1 (en) Diethyl zinc composition, method for thermal stabilization and compound for thermal stabilization
JP2011046566A (en) Composition for producing doped zinc oxide thin film, and method for producing doped zinc oxide thin film using the same
JP5756273B2 (en) Zinc oxide thin film production composition and zinc oxide thin film production method using doped zinc oxide thin film production composition, and antistatic thin film, UV cut thin film, transparent electrode thin film produced by this method
Son et al. Synthesis and Characterization of Tungsten Amide Complexes for the Deposition of Tungsten Disulfide Thin Films
Filatov et al. Crystal structure of lithium (i) 1, 1, 1,-trifluoro-5, 5-dimethyl-2, 4-hexanedionate
JP5756272B2 (en) Composition for producing zinc oxide thin film and composition for producing doped zinc oxide thin film
JP2012250931A (en) Pentacene multimer, and method for producing the same
JP2015163560A (en) Composition for producing porous zinc oxide thin film and composition for producing porous doped zinc oxide thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150520

R150 Certificate of patent or registration of utility model

Ref document number: 5752369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250