JP5823646B1 - 自律式安定供給型再生可能エネルギー制御装置 - Google Patents

自律式安定供給型再生可能エネルギー制御装置 Download PDF

Info

Publication number
JP5823646B1
JP5823646B1 JP2015138336A JP2015138336A JP5823646B1 JP 5823646 B1 JP5823646 B1 JP 5823646B1 JP 2015138336 A JP2015138336 A JP 2015138336A JP 2015138336 A JP2015138336 A JP 2015138336A JP 5823646 B1 JP5823646 B1 JP 5823646B1
Authority
JP
Japan
Prior art keywords
power
renewable energy
output
instantaneous
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015138336A
Other languages
English (en)
Other versions
JP2017022865A (ja
Inventor
哲吾 松尾
哲吾 松尾
信博 藤吉
信博 藤吉
孝次 中嶋
孝次 中嶋
俊之 島
俊之 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuo Construction Co Ltd
Original Assignee
Matsuo Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuo Construction Co Ltd filed Critical Matsuo Construction Co Ltd
Priority to JP2015138336A priority Critical patent/JP5823646B1/ja
Application granted granted Critical
Publication of JP5823646B1 publication Critical patent/JP5823646B1/ja
Priority to US15/741,434 priority patent/US10594139B2/en
Priority to PCT/JP2016/067727 priority patent/WO2017010213A1/ja
Publication of JP2017022865A publication Critical patent/JP2017022865A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B6/00Internal feedback arrangements for obtaining particular characteristics, e.g. proportional, integral or differential
    • G05B6/02Internal feedback arrangements for obtaining particular characteristics, e.g. proportional, integral or differential electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00007Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/121Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using the power network as support for the transmission

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

【課題】電力網の安定を守りながら経済的で安定した再生可能エネルギーの導入を可能とした自律式安定供給型再生可能エネルギー制御装置を提供する。【解決手段】再生可能エネルギーから電力を発電する発電設備12に接続され、発電設備12で発電された電力を直流から交流に変換して出力すると共に出力する電力を操作量に比例して調節する比例制御式電力調節機能を有する電力変換機14と、電力変換機14から出力される電力の瞬時電力を検出する瞬時電力検出器3と、瞬時電力検出器3で検出された瞬時電力と発電電力設定部5で設定された目標値とを比較して比較信号を出力する比較部4と、比較部4により出力された比較信号を調節する制御部6と、制御部6で調節された比較信号を操作量として電力変換機14へ出力する出力信号部7とを備えるため、瞬時電力検出器3で検出される瞬時電力が発電電力設定部5で設定された目標値に制御される。【選択図】図1

Description

本発明は、自律式安定供給型再生可能エネルギー制御装置に関する。詳しくは、太陽光発電、風力発電等の再生可能エネルギーについての電力制御技術、省エネ技術及び電力送電網安定化技術に関する。
資源エネルギー庁と電力各社は、平成26年11月に再生可能エネルギーの全量買い取り制度の見直しに踏み切った。その理由と対策は次の通りである。
(1)安定した系統連係(電圧、周波数、位相)運転を維持する為には、瞬時発電電力値(電力消費側から云うと瞬時デマンド値)の50%未満に再生可能エネルギー発電電力を抑える必要がある。
(2)これを守れないと仮に再生可能エネルギー発電電力が気象条件等によって急速に変化(発電停止等の事象)する場合に電力会社側の火力発電所が追従出来ないと広範囲な大停電(ブラックアウト)に至る。
(3)平成27年1月22日の資源エネルギー庁の「再生可能エネルギー特別措置法施行規則の一部を改正する省令と関連告示」によれば電力網の安定のために「無制限発電電力(発電規模により異なる)」の方向にならざるを得ない状況になりつつある。この事は発電電力の売電利益を目的とした民間投資型の再生可能エネルギー発電事業は低迷の方向なりつつあるが、この処置は電力網安定の為には致し方ないと考える。更に、この通達には「最大限の再生可能エネルギー導入(kwhベース)を実現する為には、より効率的かつきめ細やかな出力制御ルールを導入することが不可欠です。」とある。
この為にソーラーメーカーは新たに出力制限機能を搭載する事が要求されており、平成27年度中を目標に技術開発を行っている。
従って、これらの条件が揃うまでは新規事業は実質的には成立困難な状況となっている。
(4)資源エネルギー庁と電力各社も過去のカレンダー情報(夏場の休祝日)をサーバーに保管して発電業者にスケジュール(予測)制御による出力抑制(費用は全て発電事業者負担)を受け入れる事を条件に事業再開認可を伝えている。
但し、この場合は過去の気象情報を基準にしているので当日出力抑制の必要が無い場合でも出力抑制に至ってしまい、経済的にもCO2削減の観点からも不利であり、これらの厳しい条件をクリアしてでも再度参入しようとする発電業者が激減している。
(5)この様な状況下でも国は平成37年頃に再生可能エネルギーの割合を現在の2倍(20%)にするとの政策案を打ち出しているが、上記の様な矛盾を抱えており、新しい技術が求められている。
なお、特許文献1は、電力網安定の為に負荷(電力消費側)側の空調動力を滑らかに制御する目標値設定型需要電力比例制御装置であり、自動制御可能負荷である排気施設を含む空調機器に対してのみ、全ての負荷の消費電力を目標値に制御するための制御信号を出力するので、自動制御可能負荷に含まれない生産機械による生産効率の低下を回避できると共に事業所の消費電力を任意の目標値に向かって自由に制御できるという効果を奏する。
特許第5606645号
資源エネルギー庁から出された平成27年1月22日の通達に沿うべく、電力各社やメーカー各社は、過去のカレンダー情報に基づく予測型スケジュール管理による遠隔制御でのON−OFF遮断可能な発電装置の開発や製品化を目指している。
このようなカレンダー情報に基づく強制的なON−OFF方法では、予想に反して快晴でなく、幾らかは発電出来る日であっても、再生可能エネルギー発電を停止しなければならず、不経済であり、CO2削減への貢献度も低下してしまう。
このように現在検討が進んでいる発電抑制方式は、過去の系統電力の状態や日射量等のカレンダー情報を基に、休祝日には再生可能エネルギー分よりも系統に掛る電力負荷が少なくなるであろうと予測して,再生可能エネルギー発電を停止させるカレンダー方式と呼ばれているものである。
従って、配電系統に流れ込む電力(再生可能エネルギー分)が多過ぎると予想すれば、再生可能エネルギー発電を停止する。
しかし、過去の情報に基づくカレンダー方式による予想に反して、それ程の日射(気象条件の変動)がなくても再生可能エネルギー発電は抑制されてしまうので、経済的にもCO2削減に於いても不利な状況が生じてしまう。不足分の電力は、火力発電により補充されるからである。
具体的には、図2に示すように、安定系統連係を義務付けされた主要電力会社によってWeb上のサーバー等に保管されたカレンダー情報(カレンダースケジュール)20に基づく発電抑制指令23をネットワーク(有線LAN又は無線LAN等)によって取り込みを義務付けられた発電事業者は、電気保安員等の人手21に依ってパソコン等の機器22を用いてパワーコンデショナー(PCS)14の発電パラメータ(発電能力指令)を書き換えなければならない。
これは国内だけでも数万カ所に設置される再生可能エネルギー発電所内に存在する複数のパワーコンデショナー14のパラメーターを手動にて書き換える事になり、時間的にも経済的にも大きな負担となる。
なお、パワーコンデショナー14は、発電された電力を直流から交流に変換する電力変換機であり、太陽光発電設備である太陽光パネル12に各々接続されている。
本発明は、これらの問題点を改善する為に、電力網の安定を守りながら経済的で安定した再生可能エネルギーの導入を可能とした自律式安定供給型再生可能エネルギー制御装置を提供するものである。
なお、電力網安定の為に負荷(電力消費側)側の空調動力を滑らかに制御する特許文献1に対して、本発明は電力供給側の再生可能エネルギー発電電力側を滑らかに制御する技術である点で明確に相違する。
本発明を用いれば、各発電所に設置された自律式安定供給型再生可能エネルギー制御装置にWeb上等から発電量設定値(0〜100%)命令によって発電量を自由に抑制出来る。また、気象条件の変動による発電量の変化(予想に対する上昇あるいは低下)があっても安定した発電を維持する事が可能となる。
ここで、各PCSメーカーにより、図1に示すように、PCS14内部のPCS電力出口部15に設置された電圧抑制回路(図示省略)は、出力が210Vとなるように制御しているが、PCSの210Vから6600Vに変換する変圧器13までの低圧側送電線16による電圧降下や変圧器13の巻き線比率及び電圧降下、更に変圧器13から瞬時電力検出器3までの高圧送電線17及び瞬時電力検出器3から電圧位相周波数検出器2までの高圧送電線18による電圧降下による送り出し電力の低下を防ぐために、実際は210Vより高めに設定されている。これらの理由によって結果的に必ずしも正確な送電網の電圧を保障できていない。本発明は、これらの問題点を解決すべく最終末端側送電点での正確な電圧位相等の品質を管理して制御を行なうので、精度と信頼性が格段に改善される。また、本発明によって、複数のPCSの設定変更を現地での発電電力の設定操作のみによって不要となる。更に、系統連係側からの有線信号、無線信号やWebによる発電電力の遠隔操作によって系統側の必要とする再生可能エネルギー全体発電電力の制御が可能となり、今後世界的にも有効活用が期待されている再生可能エネルギーによるCO2削減と電力網の安定に大きく寄与できる。
上記課題を解決する本発明の請求項1に係る自律式安定供給型再生可能エネルギー制御装置は、再生可能エネルギーから電力を発電する1又は2台以上の発電設備に各々接続され、前記発電設備で発電された電力を直流から交流に変換して出力すると共に出力する電力を操作量に比例して調節する比例制御式電力調節機能を有する電力変換機と、前記電力変換機から出力される電力の瞬時電力を検出する瞬時電力検出器と、前記瞬時電力検出器で検出された前記瞬時電力と発電電力設定部で設定された目標値とを比較して比較信号を出力する比較部と、前記比較部により出力された比較信号を調節する制御部と、前記制御部で調節された前記比較信号を前記電力変換機へ前記操作量として出力する出力信号部とを備える自律式安定供給型再生可能エネルギー制御装置において、前記発電電力設定部は、情報処理部により求められた発電量設定値に基づき前記目標値を設定し、前記情報処理部は、過去の電力需給に関するカレンダー情報に基づいて予測された予測電力負荷に比較し、当日の実際の気象情報及び系統電圧位相周波数により変動する実電力負荷が大きいときは、前記電力変換機から出力される電力が前記予測電力負荷よりも大きく、前記実電力負荷よりも小さくなるように、前記発電量設定値を設定することを特徴とする。
上記課題を解決する本発明の請求項2に係る自律式安定供給型再生可能エネルギー制御装置は、請求項1記載の自律式安定供給型再生可能エネルギー制御装置において、前記瞬時電力検出器で検出される前記瞬時電力、前記発電電力設定部で設定される前記目標値及び前記比較部により出力される比較信号として、計装標準信号が使用されることを特徴とする。
上記課題を解決する本発明の請求項に係る自律式安定供給型再生可能エネルギー制御装置は、請求項記載の自律式安定供給型再生可能エネルギー制御装置において、前記カレンダー情報は、web上に保管されることを特徴とする。
本発明によれば、発電設備で発電された電力を電力変換機で直流から交流に変換して出力すると共に、電力変換機から出力される電力の瞬時電力を検出し、検出された瞬時電力と目標値とを対比して比較信号とし、検出される瞬時電力が目標値に近づくように、比較信号を調整して電力変換機へ操作量として出力し、電力変換機の比例制御式電力調節機能により、操作量に比例して出力される電力を制御するため、発電電力が不安定である事が常識だった再生可能エネルギーを自由に制御できるという効果を奏する。
また、目標値(出力設定値)を低めにすれば、ある程度の気候変動(日射量)を吸収出来るので、系統連係側にも安全で優しい安定した再生可能エネルギー発電設備の構築が可能となった。
言い換えると、最大値発電量を目標値(出力設定値)によって絞ることにより、気候変動による再生可能エネルギー発電電力量の変動(不安定)をある程度吸収出来る様になった。
従って、扱い難い発電設備だった従来の再生可能エネルギー発電に比較し、安定的に運用が出来る自然に優しく、電力網の安定にも寄与出来る様になった。
更に、カレンダー情報による今後の国と電力各社の出力抑制制度でも系統連係可能な範囲での発電を自動的に行うので、経済的にもCO2削減の観点でも有効な技術と位置付けられる。
つまり、カレンダー情報によって多少の気象変動(雲や影)の影響を受ける従来の再生可能エネルギー発電に比較し、安定した優秀な発電設備とする事が可能となった。
特に、電力余剰(系統電圧や位相や周波数も同様)を検出して自動的に出力抑制機能を持つ事によって、配電線網の安定に寄与出来る。
電力変換機が比例制御式電力調節機能に代えて、ON又はOFF信号により起動又は停止するON/OFF起動停止機能を有する場合でも、出力信号部から、比較信号に対応する数の前記電力変換機のみを起動させ、その他の前記電力変換機を停止するように、電力変換機に対して操作量に代えてON又はOFF信号を出力することにより、出力される電力を簡便に制御することが可能である。
本発明の第1の実施例に係る自律式安定供給型再生可能エネルギー制御装置の概略構成図である。 現在検討が進んでいる発電抑制方式(カレンダ方式)による再生可能エネルギー制御装置の概略構成図である。 発電電力設定部についての具体的構成を示すブロック図である。 本発明により制御された発電電力に対する、発電抑制されない再生可能エネルギー発電電力、カレンダー情報に基づいて予想された電力負荷(再生可能エネルギー分)、実際の電力負荷(デマンド)の関係を示すグラフである。 標準信号に対する電力値を示すグラフである。
以下、本発明の自律式安定供給型再生可能エネルギー制御装置について、図面に示す実施例を参照して詳細に説明する。
本発明の第1の実施例に係る自律式安定供給型再生可能エネルギー制御装置を図1に示す。
本発明は、自然条件によって発電電力が左右されて安定しない電力であると認識されて来た従来の再生可能エネルギー発電の問題を次の方法で解決して安定した発電設備としたものである。
即ち、図1に示す本実施例では、複数の太陽光パネル12よりなる太陽光発電設備によって発電された発電電力は、パワーコンデショナー(PCS)14等を介して、送電点1によって外部の主要電力会社E等の電力網に系統連係しながら送電される。
太陽光パネル12は、再生可能エネルギーである太陽光から電力を発電する太陽光発電設備であり、図中では、10台の太陽光パネル12が示されている。
本実施例では、各太陽光パネル12の最大発電量は200kwとし、合計した最大発電量は2000kwとする。本発明は、太陽光発電設備に代えて風力発電装置等にも適用可能である。風力発電の出力制御はブレードと呼ばれる羽根の風向きに対する角度制御や、発電電力を一度直流に変換して更に交流に変換するDC/ACコンバータ制御がある。それらの発電や変換量を制御して出力電力を制御するやり方はほぼ太陽光等の再生可能エネルギー発電制御と同じである。
太陽光パネル12には、発電された電力を直流から交流に変換して出力する電力変換機であるパワーコンデショナー14が各々接続されている。
これらパワーコンデショナー14は、後述するように、操作量に比例して出力する電力を調節する比例制御式電力調節機能を有する。パワーコンデショナーは、DC/ACインバーターとも呼ばれることがある。
パワーコンデショナー14から送電点1までの間には、変圧器13、瞬時電力検出器(有効、皮相値、力率)3、電圧位相周波数検出器2、発電電力量計11が順に介装されている。
この全体発電電力フィードバック制御の機能により一部のパワーコンデショナー14の不調が発生して能力が低下しても、他の健全なパワーコンデショナー14を有効活用すれば、全体で能力を保証して出力電力が安定するというメリットがある。
瞬時電力検出器3は、パワーコンデショナー14から出力された電力の瞬時電力(有効、皮相値、力率)を検出し、国際的に統一された計装標準信号(以下、単に標準信号という)として、比較部4に出力する。
標準信号としては、図5に示すように、例えば、瞬時電力2000kw(100%)を20mAとして、瞬時電力0kw(0%)を4mAとし、瞬時電力(kW)に対して直線的に変化する直流アナログ信号(DC4〜20mA,又は1〜5V)が一般に用いられる。
但し、このような直流アナログ信号に限るものではなく、これに対応した多種多様なデジタル信号を用いても良い。
以下の実施例では、直流アナログ信号(DC4〜20mA)を使用したアナログ制御について説明するが、制御の本質は、アナログでもデジタルでも相違はない。
瞬時電力検出器3と比較部4との間には、一時遅れ変換器9が介装されている。
一時遅れ変換器9は、一時的な時間遅延により、時間的にギザギザに変動する波形を滑らかな波形に変換するフィルターとしての機能を持つものである。
比較部4には、発電電力設定部5が接続されており、発電電力設定部5で設定された目標値が比較部4へ出力される。発電電力設定部5で設定される目標値としても、標準信号が使用されている。
比較部4は、瞬時電力検出器3で検出された瞬時電力と、発電電力設定部5で設定された目標値とを、標準信号として比較して、比較信号を制御部6へ出力する。
例えば、図5に示すように、瞬時電力検出器3で検出される瞬時電力1900kw(95%)のときは、瞬時電力検出器3から瞬時電力として出力される標準信号は(1900kw/2000kw)×(20mA−4mA)+4mA=19.2mAとなる。
一方、発電電力設定部5で設定される目標値は、例えば、標準信号として18.4mAであるとする。つまり、最大値に対して10%の絞り機能を持つものとし、目標値は、最大発電量2000kw×(18.4mA−4mA)/16mA=1800kw(90%)とする。
そうすると、比較部4は、目標値に対する瞬時電力の差を求め、(18.4mA−19.2mA)=0.8mAを比較信号として出力する。
比較信号によれば、太陽光パネル12で発電された電力が、目標値に対して、どの程度上回っているか、又は、下回っているか評価できることになる。なお、比較信号も、結局、標準信号となる。
制御部6は、比較部4から出力された比較信号に基づき、上記の例で言えば、瞬時電力検出部3で検出される瞬時電力が目標値設定部5で設定された目標値に近づくよう、言い換えると、瞬時電力検出部3で検出される瞬時電力である標準信号が現在の値である19.2mAから目標値18.4mAに近づくよう、計装分野において従来周知の各種の調節を行い、出力信号部7から操作量としてパワーコンデショナー14へ出力する。
例えば、パワーコンデショナー14の比例制御式電力調節機能により、現在の操作量で、太陽光パネル12から発電する電力を瞬時電力1900kw(=95%)として調節しているとする。
そうすると、瞬時電力検出部3で検出される瞬時電力である標準信号が現在の値である19.2mAが目標値18.4mAに一致するためには、現在の操作量を{(18.4mA−19.2mA)/(19.2mA−4mA)}≒−5.3%増減する。つまり、現在の操作量の約94.7%(≒100%−5.3%)とした新たな操作量をパワーコンデショナー14へ出力する。
このように現在の操作量の約94.7%とした新たな操作量をパワーコンデショナー14に与えると、比例制御式電力調節機能により、現在の電力の約94.7%が電力として出力される。つまり、太陽光パネル12で発電された電力を瞬時電力1900kw×94.7%≒1800kw(=90%)として調節されることになる。
これにより、瞬時電力検出器3で瞬時電力1800kwとして検出される標準信号は(1800kw/2000kw)×16mA+4mA≒18.4mAとなる。つまり、目標値18.4mAに近い値となる。
また、このようなネガテブフィードバック(負帰還)制御によって、最大発電量2000kwよりも幾分低い1800kw(=90%)として発電できるように、目標値(18.4mA)を設定すれば、気象条件(日射量)の変化があっても安定した再生可能エネルギー発電が可能となる。
例えば、曇天の場合には、瞬時電力検出部3で検出される瞬時電力が1700kw(85%)となる場合もあり、そのときは、瞬時電力検出器3から瞬時電力として出力される標準信号は(1700kw/2000kw)×(20mA−4mA)+4mA=17.6mAとなる。
一方、発電電力設定部5で設定される目標値は、上記例の通り、1800kw(90%)、標準信号として18.4mAであるとする。
比較部4は、目標値に対する瞬時電力の差を求め、(18.4mA−17.6mA)=0.8mAを比較信号として出力する。
制御部6は、比較部4から出力された比較信号に基づき、瞬時電力検出部3で検出される瞬時電力である標準信号が現在の値である17.6mAから目標値18.4mAに近づくよう、例えば、現在の操作量を{(18.4mA−17.6mA)/(17.6mA−4mA)}≒5.8%増減する。つまり、現在の操作量の約105.8%(≒100%+5.8%)とした新たな操作量をパワーコンデショナー14へ出力する。
このように現在の操作量の約105.8%とした新たな操作量をパワーコンデショナー14に与えると、比例制御式電力調節機能により、現在の電力の約105.8%が電力として出力される。つまり、太陽光パネル12で発電された電力を瞬時電力1700kw×105.8%≒1800kw(=90%)として調節されることになる。
なお、本実施例では、出力信号部7から出力される操作量は、出力信号変換器8を経てパワーコンデショナー14へ出力されている。
この出力信号変換器8は、各メーカ毎にパワーコンデショナー14が受け入れ可能な操作量が異なるために、パワーコンデショナー14に受け入れ可能な操作量に変換してパワーコンデショナー14へ出力する装置である。
ここで、パワーコンデショナー14が標準信号を操作量として受け入れ可能であれば、出力信号変換器8を省略し、出力信号部7からパワーコンデショナー14へ出力される操作量を標準信号することができる。
つまり、瞬時電力検出器3、発電電力設定部5、比較部4、制御部6、出力信号部7の全てにおいて、標準信号を使用できることになる。
発電電力設定部5について、図3を参照して更に詳しく説明する。
発電電力設定部5は、図3に示すように、情報処理部10により求められた発電量設定値に基づき目標値を設定する。設定された目標値に基づき、制御系100を介して操作量がパワーコンデショナー14に出力され、太陽光パネル12で発電される電力が制御される一方、発電電力報告機能30を介して必要な情報が電力会社システム管理者50に供給される。制御系100は、図1における比較部4、制御部6、出力信号部7の総称である。
ここで、図3に示すように、情報処理部10には、過去の電力需給に関するカレンダー情報20による発電抑制指令23、気象情報24、系統電圧位相周波数情報25が入力される。
過去の電力需給に関するカレンダー情報20とは、過去の暦における系統電力の状態や日射量等の情報であり、カレンダー情報20による発電抑制指令とは、再生可能エネルギー分よりも系統に掛る電力負荷が少なくなるであろうと予測したときには再生可能エネルギー発電を抑制する指令のことを言う。カレンダー情報20は、web上に保管することができる。
気象情報24とは、太陽光発電の場合には、主として当日の日射量のことである。風力発電の場合には、風速、風量、風向等の情報である。
系統電圧位相周波数情報25とは、電圧位相周波数検出器2で検出される系統の電圧、位相及び周波数の情報のことである。
情報処理部10はこれらの情報を基に演算処理を行って発電電力設定部5に発電量設定値(例80〜90%)を出力する。
一般電気事業者(東電等の10電力会社)は配電点1の電圧を一定以内(単相100V側相当の値では101±6V:95V〜107V)に安定させる義務を負っている。これを順守する為には発電電力量の変化の大きい再生可能エネルギー(主に太陽光発電や風力発電)の瞬時発電量を全体発電量(あるいはデマンド値)の50%未満に抑える施策を講じている。この一環として、再生可能エネルギー発電を遮断することが今回の再生可能エネルギー事業の骨子としているところ(平成27年1月22日の通達参照)、その為に再生可能エネルギー事業者はその設備を負担せざるをえない状況であった。また、これらの理由により、売電電力量が不確実であり、利益を確保し難くなっており、事業計画そのものも成り立ち難くなっていた。
このような状況下、電圧位相周波数検出器2で検出される値が許容値を超えた時点で自律(自動的)に発電電力を制限するように、情報処理部10は、発電設定量を求める。これにより、電力会社は、多額の費用を投入することなく発電電力制御が可能となる。つまり、再生可能エネルギー事業者は電力監視を簡略化できるのである。
このように、情報処理部10は、電圧位相周波数検出器2で検出される系統の電圧が一定値以上の電圧の場合には、つまり、電力余剰のときには、発電を抑制するように発電量設定値を求めるのである。
一方、電圧位相周波数検出器2で検出される系統の電圧がある電圧以下であれば、発電を抑制しないように発電量設定値を求める。上記の例では、電圧について説明したが、発電位相、周波数についても同様である。
具体的には、過去の電力需給に関するカレンダー情報20に基づく予想に反して、気象情報24によれば当日それ程の日射量がなく、且つ、系統電圧位相周波数情報25によっても再生可能エネルギー発電を抑制する必要のないときには、発電抑制指令に関わらず、発電量設定値を大きく設定する。
どの程度に発電量設定値を設定するかは、以下の通りである。
カレンダー方式では、例えば、休祝日は配電系統に流れ込む電力(再生可能エネルギー)が多過ぎると予想して再生可能エネルギー側に発電抑制を要請して来る為に当日は発電停止としていた。
この場合にカレンダー情報に基づく予想(過去のデーターが基準)に反して、それ程の日射がなくても、従来では発電を抑制してしまうので、経済的にもCO2削減に於いても不利であった。
これに対し、本発明は、当日の気象情報(特に、日射量)、系統電圧、周波数、位相を検出して発電可能と判断すれば、発電量設定値を大きく設定して、下記のように、パワーコンデショナー14を介して送電点1から出力される発電電力(以下、本発明により制御された発電電力と言う)43を自動的に制御できるので、経済的にもCO2削減にも有利となる。
図4に、本発明により制御された発電電力43に対する、発電抑制されない再生可能エネルギー発電電力40、カレンダー情報に基づいて予想抑制される発電電力分(再生可能エネルギー分)41、実際の電力負荷(デマンド)42の関係を示す。
再生可能エネルギー発電電力40は、発電抑制されない場合、図4に一点鎖線で示すように、朝方から上昇して、正午で略ピークとなり、午後は次第に減少するのに対し、カレンダー情報に基づいて予想抑制される発電電力分(再生可能エネルギー分)41は、図中破線で示すように、例えば、終日一定である。
そのため、図4に示すように、午前A時から午後B時までは、再生可能エネルギー発電電力40がカレンダー情報に基づいて予測された発電電力分(再生可能エネルギー分)41に比較し、これを上回ってしまう。つまり、再生可能エネルギー発電電力40は発電電力分(再生可能エネルギー分)41に対して電力余剰が予測される。
そのため、従来では、午前A時から午後B時までは、再生可能エネルギー発電を停止していた。つまり、発電電力分(再生可能エネルギー分)41は、再生可能エネルギー発電を停止する発電停止線であった。
しかし、実際の電力負荷(デマンド)42は、当日の実際の気象状況(情報)や系統電圧、位相、周波数により変動し、図4に実線で示すように、カレンダー方式により予測された発電電力分(再生可能エネルギー分)41を上回ることがある。
従来では、再生可能エネルギー発電を停止していたため、実際の電力負荷42に対して不足する電力を火力発電等で補うことになっていた。
また、実際の電力負荷42は、図4に実線で示すように、発電抑制されない再生可能エネルギー発電電力40よりも低位であるために、単に、再生可能エネルギー発電を再開すると、再生可能エネルギー発電電力40の一部は電力余剰となってしまう。
これに対し、本発明では、カレンダー方式により予測された発電電力分(再生可能エネルギー分)41より大きく、実際の電力負荷(デマンド)42より低くなるように、発電量設定値を設定することにより、図中二点鎖線で示すように、本発明により制御された発電電力43とするのである。
そのため、不足する電力を火力発電等で補う必要がなくなり、その分経済的であり、CO2削減にも有利となる。
この様に、本発明は、再生可能エネルギー発電が瞬時電力に基づく制御機能を持つため、カレンダー予想と云う不確定な予測情報で基づく不確実な発電制御(発電抑制)はなく、リアルタイムで正確で経済的な発電が可能となる。また、CO2削減にも有利となる。
同時に一定量に安定制御された再生可能エネルギーは、社会的にも重要な系統連係の安定にも大きく寄与することは勿論である。
また、再生可能エネルギーの瞬時電力を自由に制御出来るので、安定した電力管理が可能となった。
更に、電力網が許容できる消費電力以上の再生可能エネルギー発電によって電力網の電圧、位相、周波数が上昇した場合に、発電電力量(目標量)の調整によってこれらの問題を解消出来るようになった。
上述した通り、平成27年1月22日の通達によって出力抑制が義務化されたが、現実的には現場に設置される膨大な数のパワーコンデショナ(PCS)のパラメーター等を人力で変更する等の技術的未解決項目が多く残っていた。
これらの問題を、本発明は一括設定(目標値、発電量設定値)による電力瞬時制御によって解決した。
更に、現有技術のカレンダー情報に基づく予測による出力抑制方式では、当日の気象状況で発電可能な日まで出力抑制せざるを得ないが、本発明では系統安定上許される範囲内で可能な限り発電電力を確保出来るようになった。
また、再生可能エネルギー発電設備の最大出力よりも幾分低い設定値(例80〜90%)に設定して運転すれば気象条件(日射量)の変化によって発電量が低下しても、設定低下分の変化以内であれば出力が変化せずに安定した再生可能エネルギー発電が可能となる。
従って、本発明によれば,不安定である事が当然とされた再生可能エネルギーが安定で系統連係にもCO2削減にも有効な発電設備となる。
更に、「発明が解決しようとする課題」の欄に記載したカレンダー方式では、当日の気象状況で発電可能な日まで出力抑制せざるを得ないが、本発明では系統安定上許される範囲内で可能な限り発電電力を確保出来るようになった。
なお、電気事業法の規定では、一定規模以上の発電設備の起動停止に於いては、電気主任技術者の立会等が義務付けられている。
しかし、情報処理部10に、カレンダー情報20による発電抑制指令23が入った場合でも、出力電力を幾らか(例:10〜20%)でも維持して置けば、発電設備の完全停止とならずに、人力操作立会の手間を省く事が可能となり極めて省力が達成出来る利点がある。つまり、結果的に出力抑制が解除された場合は、無人運転での発電復旧が可能である。
本発明の第2の実施例に係る自律式安定供給型再生可能エネルギー制御装置は、図1に示す実施例に比較して簡便に制御可能としたものである。つまり、発電電力を比例制御ではなく、ステップ状に制御するものである。
本実施例で使用するパワーコンデショナー14は、図1に示す実施例に比較し、比例制御式電力調節機能に代えて、ON又はOFF信号により起動又は停止するON/OFF起動停止機能を有する点に特徴がある。
また、出力信号部7は、制御部6により調整された比較信号に対応する数のパワーコンデショナー14のみを起動させ、その他のパワーコンデショナー14を停止するように、パワーコンデショナー14に対して操作量に代えてON又はOFF信号を出力する点にも特徴がある。
また、図1中では、10台の太陽光パネル12を使用しているが、本実施例では、20台の太陽光パネル12を使用するものとし、各太陽光パネル12の最大発電量は100kw、つまり、合計して、2000kwの最大発電量があるものとする。
上記例と同様に、瞬時電力検出器3で検出される瞬時電力1900kw(95%)のときは、瞬時電力検出器3から瞬時電力として出力される標準信号は19.2mAとなる一方、発電電力設定部5で設定される目標値は、例えば、電圧として1800kw(90%)、標準信号として18.4mAであるとする。
比較部4は、目標値に対する瞬時電力の差を求め、(18.4mA−19.2mA)=−0.8mAを比較信号として出力する。
制御部6は、比較部4から出力された比較信号に基づき、上記の例で言えば、瞬時電力検出部3で検出される瞬時電力が目標値設定部5で設定された目標値に近づくよう、言い換えると、瞬時電力検出部3で検出される瞬時電力である標準信号が現在の値である19.2mAから目標値18.4mAに近づくよう、計装分野において従来周知の各種の調節を行う点までは実施例1と同様である。
更に、瞬時電力検出部3で検出される瞬時電力である標準信号が現在の値である19.2mAが目標値18.4mAに一致するためには、現在の操作量を{(18.4mA−19.2mA)/(19.2mA−4mA)}≒−5.3%増減すべきであることも既に述べた通りである。
しかし、本実施例のパワーコンデショナー14は、比例制御式電力調節機能を持たない。
一方、本実施例のパワーコンデショナー14は、比例制御式電力調節機能に代えて、ON又はOFF信号により起動又は停止するON/OFF起動停止機能を有する。
そこで、出力信号部7は、操作量に代えて、比較信号に対応する数のパワーコンデショナー14のみを起動させ、その他のパワーコンデショナー14を停止するように、パワーコンデショナー14に対してON又はOFF信号を出力する。
この例では、19台のパワーコンデショナー14に対してON信号を継続して出力し、1台のパワーコンデショナー14に対してOFF信号を出力する。
これにより、19台のパワーコンデショナー14は起動を継続し、1台のパワーコンデショナー14は停止する。要するに、(1/20)=5%の発電量を抑制するのである。
すると、瞬時電力検出器3で検出される瞬時電力は、1900kw×(19/20)=1805kwとなって、標準信号としては(1805kw/2000kw)×(20mA−4mA)+4mA=18.44mAとなる。つまり、標準信号の目標値18.4mAに近づくことになる。
本実施例では、出力信号部7からのOFF信号により複数のパワーコンデショナー14の一部を停止させるので、パワーコンデショナー14の数に応じて発電量はステップ状(階段状)に制御されることになる。本実施例の場合は、20段階に制御されることになる。
その他の構成は、前述した実施例と同様であり、同様な作用効果を奏する。
上記構成を有する本実施例によれば、瞬時電力検出器13で検出される瞬時電力が発電電力設定部5で設定された目標値に近づくように、制御部6で比較信号を調整してパワーコンデショナー14へ操作量に代えてON又はOFF信号を出力し、パワーコンデショナー14の一部を停止することにより、出力される電力をステップ状に調整することができるため、発電電力が不安定である事が常識だった再生可能エネルギーを自由に制御できる効果を奏する点において実施例1と共通する。
更に、パワーコンデショナー14は、ON/OFF起動停止機能を有するだけで良く、比例制御式電力調節機能が不要であるため、広く一般的に使用されているパワーコンデショナーを利用できるという利点がある。
本発明の自律式安定供給型再生可能エネルギー制御装置は、産業上広く利用可能ものである。
1 送電点
2 電圧位相周波数検出器
3 瞬時電力検出器
4 比較部
5 発電電力設定部
6 制御部
7 出力信号部
8 出力信号変換部
9 一時遅れ変換器
11 発電電力量計
10 情報処理部
12 太陽光パネル
13 変圧器
14 パワーコンデショナー(PCS)
15 PCS電力出口部
16 低圧側送電線
17 高圧側送電線
18 高圧側送電線
20 カレンダー情報
21 電気保安員等の人手
22 パソコン等の機器
23 発電抑制指令
24 気象情報
25 系統電圧位相周波数情報
30 発電電力報告機能
40 再生可能エネルギー発電電力(発電抑制されない)
41 カレンダー情報に基づいて予想抑制される発電電力分(再生可能エネルギー分)
42 実際の電力負荷(デマンド)
43 本発明により制御された発電電力
50 電力会社システム管理者
100 制御系
E 電力会社

Claims (3)

  1. 再生可能エネルギーから電力を発電する1又は2台以上の発電設備に各々接続され、前記発電設備で発電された電力を直流から交流に変換して出力すると共に出力する電力を操作量に比例して調節する比例制御式電力調節機能を有する電力変換機と、
    前記電力変換機から出力される電力の瞬時電力を検出する瞬時電力検出器と、
    前記瞬時電力検出器で検出された前記瞬時電力と発電電力設定部で設定された目標値とを比較して比較信号を出力する比較部と、
    前記比較部により出力された比較信号を調節する制御部と、
    前記制御部で調節された前記比較信号を前記電力変換機へ前記操作量として出力する出力信号部とを備える自律式安定供給型再生可能エネルギー制御装置において、
    前記発電電力設定部は、情報処理部により求められた発電量設定値に基づき前記目標値を設定し、
    前記情報処理部は、過去の電力需給に関するカレンダー情報に基づいて予測された予測電力負荷に比較し、当日の実際の気象情報及び系統電圧位相周波数により変動する実電力負荷が大きいときは、前記電力変換機から出力される電力が前記予測電力負荷よりも大きく、前記実電力負荷よりも小さくなるように、前記発電量設定値を設定すること
    を特徴とする自律式安定供給型再生可能エネルギー制御装置。
  2. 請求項1記載の自律式安定供給型再生可能エネルギー制御装置において、
    前記瞬時電力検出器で検出される前記瞬時電力、前記発電電力設定部で設定される前記目標値及び前記比較部により出力される比較信号として、計装標準信号(デジタル信号を含む)が使用されることを特徴とする自律式安定供給型再生可能エネルギー制御装置。
  3. 請求項記載の自律式安定供給型再生可能エネルギー制御装置において、
    前記カレンダー情報は、web上に保管される
    ことを特徴とする自律式安定供給型再生可能エネルギー制御装置。
JP2015138336A 2015-07-10 2015-07-10 自律式安定供給型再生可能エネルギー制御装置 Active JP5823646B1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015138336A JP5823646B1 (ja) 2015-07-10 2015-07-10 自律式安定供給型再生可能エネルギー制御装置
US15/741,434 US10594139B2 (en) 2015-07-10 2016-06-15 Autonomous stably-supplying type renewable energy control device
PCT/JP2016/067727 WO2017010213A1 (ja) 2015-07-10 2016-06-15 自律式安定供給型再生可能エネルギー制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015138336A JP5823646B1 (ja) 2015-07-10 2015-07-10 自律式安定供給型再生可能エネルギー制御装置

Publications (2)

Publication Number Publication Date
JP5823646B1 true JP5823646B1 (ja) 2015-11-25
JP2017022865A JP2017022865A (ja) 2017-01-26

Family

ID=54696295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015138336A Active JP5823646B1 (ja) 2015-07-10 2015-07-10 自律式安定供給型再生可能エネルギー制御装置

Country Status (3)

Country Link
US (1) US10594139B2 (ja)
JP (1) JP5823646B1 (ja)
WO (1) WO2017010213A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6699719B2 (ja) * 2016-02-29 2020-05-27 日本電気株式会社 制御装置、発電制御装置、制御方法、システム、及び、プログラム
JP2018153003A (ja) * 2017-03-13 2018-09-27 オムロン株式会社 出力制御装置
JP6414870B1 (ja) * 2018-04-18 2018-10-31 松尾建設株式会社 逆潮流防止型自家消費用再エネ発電蓄電制御装置
JP7110963B2 (ja) * 2018-12-11 2022-08-02 トヨタ自動車株式会社 滞空する凧型構造体を用いた風力発電システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268023A (ja) * 1985-09-19 1987-03-27 富士電機株式会社 系統連係インバ−タの制御装置
JPH08147055A (ja) * 1994-11-18 1996-06-07 Sanyo Electric Co Ltd 太陽電池発電システム
JP2000308264A (ja) * 1999-04-16 2000-11-02 Hitachi Ltd 電力変換システム
WO2011111475A1 (ja) * 2010-03-11 2011-09-15 株式会社 東芝 太陽光発電システム及び給電システム
WO2012098769A1 (ja) * 2011-01-20 2012-07-26 株式会社 東芝 太陽光発電システムおよび給電システム
JP2013106381A (ja) * 2011-11-10 2013-05-30 Sony Corp 電力管理装置、電力管理方法およびデマンド通知装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8471520B2 (en) * 2010-05-04 2013-06-25 Xtreme Power Inc. Managing renewable power generation
GB2480684A (en) * 2010-05-28 2011-11-30 Artemis Intelligent Power Ltd A method and apparatus for operating a renewable energy extraction device
JP5762757B2 (ja) 2011-01-20 2015-08-12 株式会社東芝 太陽光発電システム
WO2012178176A1 (en) * 2011-06-23 2012-12-27 Inventus Holdings, Llc Multiple renewables site electrical generation and reactive power control
JP2013108381A (ja) 2011-11-18 2013-06-06 Honda Motor Co Ltd 吸気マニホールド
US9419442B2 (en) * 2012-08-14 2016-08-16 Kr Design House, Inc. Renewable energy power distribution system
US20160230699A1 (en) * 2013-09-06 2016-08-11 Neuco, Inc. Combined cycle power generation optimization system
JP5606645B1 (ja) 2014-03-27 2014-10-15 松尾建設株式会社 目標値設定型需要電力比例制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268023A (ja) * 1985-09-19 1987-03-27 富士電機株式会社 系統連係インバ−タの制御装置
JPH08147055A (ja) * 1994-11-18 1996-06-07 Sanyo Electric Co Ltd 太陽電池発電システム
JP2000308264A (ja) * 1999-04-16 2000-11-02 Hitachi Ltd 電力変換システム
WO2011111475A1 (ja) * 2010-03-11 2011-09-15 株式会社 東芝 太陽光発電システム及び給電システム
WO2012098769A1 (ja) * 2011-01-20 2012-07-26 株式会社 東芝 太陽光発電システムおよび給電システム
JP2013106381A (ja) * 2011-11-10 2013-05-30 Sony Corp 電力管理装置、電力管理方法およびデマンド通知装置

Also Published As

Publication number Publication date
US20180375333A1 (en) 2018-12-27
WO2017010213A1 (ja) 2017-01-19
JP2017022865A (ja) 2017-01-26
US10594139B2 (en) 2020-03-17

Similar Documents

Publication Publication Date Title
KR102101108B1 (ko) 무효 전력 제어 방법, 디바이스 및 시스템
Liew et al. Maximising penetration of wind generation in existing distribution networks
EP2863285B1 (en) Methods and systems for controlling an electric network
US20170317498A1 (en) Resiliency Controller for Voltage Regulation in Microgrids
CN103701155B (zh) 一种光伏并网逆变器有功调度控制方法
AU2013101461A4 (en) Grid stability control system and method
US20130162043A1 (en) Multiple renewables site electrical generation and reactive power control
AU2010285341B2 (en) Power regulating system for solar power station
RU2020135633A (ru) Промышленная пиковая электростанция на возобновляемых источниках, связанная с ней солнечная батарея и накопитель энергии
JP5823646B1 (ja) 自律式安定供給型再生可能エネルギー制御装置
WO2015029138A1 (ja) 太陽光発電システム
Fard et al. Multitimescale three-tiered voltage control framework for dispersed smart inverters at the grid edge
KR102360363B1 (ko) 전력 수요공급 관리 장치 및 그 방법
Bonaldo et al. Comparative analysis of techniques for the limitation of compensation currents in multifunctional grid-tied inverters
Ishii et al. Optimal smart functions of large-scale PV inverters in distribution systems
Elgammal et al. Optimal model predictive frequency control management of grid integration PV/wind/FC/storage battery based smart grid using multi objective particle swarm optimization MOPSO
US10411469B2 (en) Reactive power control integrated with renewable energy power invertor
JP2011060921A (ja) 太陽光発電設備
US8780595B2 (en) Methods and systems for controlling a power converter
Elgammal et al. Optimal frequency control management of grid integration PV/wind/FC/storage battery based smart grid using multi objective particle swarm optimization MOPSO and model predictive control (MPC)
JP6617073B2 (ja) 電力供給システム
Nowak et al. Comparison of voltage control methods in distribution systems using QV based PI and droop controls of solar inverters
Zheng et al. Frequency domain‐based configuration and power follow‐up control for power sources in a grid‐connected microgrid
Petersen et al. Voltage control support and coordination between renewable generation plants in MV distribution systems
Amanipoor et al. Stability Analysis and Design of Volt-VAR Controller for Grid Connected PV Systems with Consideration of the Impact of Voltage Feedforward

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151007

R150 Certificate of patent or registration of utility model

Ref document number: 5823646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350