JP5821548B2 - Spacer for radial needle bearing - Google Patents

Spacer for radial needle bearing Download PDF

Info

Publication number
JP5821548B2
JP5821548B2 JP2011246179A JP2011246179A JP5821548B2 JP 5821548 B2 JP5821548 B2 JP 5821548B2 JP 2011246179 A JP2011246179 A JP 2011246179A JP 2011246179 A JP2011246179 A JP 2011246179A JP 5821548 B2 JP5821548 B2 JP 5821548B2
Authority
JP
Japan
Prior art keywords
radial
spacer
portions
needle bearing
rim
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011246179A
Other languages
Japanese (ja)
Other versions
JP2013104431A (en
Inventor
北村 浩一
浩一 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011246179A priority Critical patent/JP5821548B2/en
Priority to KR1020127007682A priority patent/KR101389164B1/en
Priority to CN2011800034943A priority patent/CN102639885A/en
Priority to EP11826107.2A priority patent/EP2660486A4/en
Priority to US13/498,065 priority patent/US20130004111A1/en
Priority to PCT/JP2011/077171 priority patent/WO2012070642A1/en
Publication of JP2013104431A publication Critical patent/JP2013104431A/en
Application granted granted Critical
Publication of JP5821548B2 publication Critical patent/JP5821548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば自動車用自動変速機を構成する遊星歯車機構を構成する遊星歯車を、キャリアに支持した遊星軸の周囲に回転自在に支持する為のラジアルニードル軸受に組み込むスペーサの改良に関する。具体的には、軽量且つ低コストで構成でき、しかも、このスペーサと、このスペーサが隣接する相手部材との擦れ合い部の摺動抵抗を低減させて、前記ラジアルニードル軸受の回転抵抗(動トルク)を低減し、このラジアルニードル軸受を組み込んだ、前記自動車用変速機等の各種回転機械装置の動力損失を低減できる構造を実現するものである。   The present invention relates to an improvement of a spacer incorporated in a radial needle bearing for rotatably supporting, for example, a planetary gear constituting a planetary gear mechanism constituting an automatic transmission for an automobile around a planetary shaft supported by a carrier. Specifically, it can be configured at a low weight and at a low cost, and the rotational resistance (dynamic torque) of the radial needle bearing can be reduced by reducing the sliding resistance of the rubbing portion between the spacer and a mating member adjacent to the spacer. ), And a structure capable of reducing power loss of various rotary machine devices such as the automobile transmission incorporating the radial needle bearing.

[従来技術の説明]
例えば自動車用自動変速機等の機械装置の回転支持部に、それぞれが円筒面状である外輪軌道と内輪軌道との間に複数本のニードルを配置したラジアルニードル軸受が、広く使用されている。又、前記外輪軌道を設けた外径側部材と、前記内輪軌道を設けた内径側部材との間に、これら両部材の中心軸同士を傾斜させる方向のモーメントが加わる状態で運転される回転支持部には、軸方向に離隔した2箇所位置に、それぞれ複数本ずつのニードルを配置して前記モーメントに対する剛性を高くした、複列ラジアルニードル軸受が使用されている。このモーメント剛性を確保する為には、複列に配置された前記各ニードル同士の間隔を保つ必要があるが、ラジアルニードル軸受の場合、そのままではこれら各ニードルの軸方向位置を規制できない。この為、複列に配置されたこれら各ニードル同士の間部分に、例えば特許文献1〜6に記載された様な円筒状のスペーサを配置して、これら各ニードル同士の間隔を保つ様にしている。
[Description of prior art]
For example, a radial needle bearing in which a plurality of needles are arranged between an outer ring raceway and an inner ring raceway each having a cylindrical surface is widely used in a rotation support portion of a mechanical device such as an automatic transmission for automobiles. Further, the rotation support is operated in a state where a moment in a direction in which the central axes of both the members are inclined is applied between the outer diameter side member provided with the outer ring raceway and the inner diameter side member provided with the inner ring raceway. The part uses a double-row radial needle bearing in which a plurality of needles are arranged at two positions spaced apart in the axial direction to increase the rigidity against the moment. In order to ensure this moment rigidity, it is necessary to maintain the interval between the needles arranged in a double row, but in the case of a radial needle bearing, the axial position of each needle cannot be regulated as it is. Therefore, for example, a cylindrical spacer as described in Patent Documents 1 to 6 is arranged between the needles arranged in a double row so as to keep the distance between the needles. Yes.

図4は、前記各特許文献に記載される等により従来から知られている、スペーサを備えた複列ラジアルニードル軸受を組み込んだ回転支持装置の1例として、自動車用自動変速機を構成する遊星歯車の回転支持装置1を示している。この回転支持装置1は、キャリア2に両端部を支持した、内径側部材である遊星軸3の中間部周囲に、外径側部材である遊星歯車4を、複列ラジアルニードル軸受ユニット5により、回転自在に支持している。この遊星歯車4は、はすば歯車であり、前記自動車用自動変速機を組み立てた状態で、太陽歯車とリング歯車と(何れも図示省略)に噛合する。従って、前記自動車用自動変速機の運転時に前記遊星歯車4には、ラジアル荷重に加えてアキシアル荷重も加わり、その結果この遊星歯車4に、上述の様なモーメントが加わる。   FIG. 4 is a plan view of a planetary gear constituting an automatic transmission for an automobile as an example of a rotation support device incorporating a double-row radial needle bearing provided with a spacer, which is conventionally known as described in each of the above patent documents. 1 shows a rotation support device 1 for a gear. The rotation support device 1 is configured such that a planetary gear 4 as an outer diameter side member is supported by a double row radial needle bearing unit 5 around an intermediate portion of a planetary shaft 3 as an inner diameter side member supported at both ends by a carrier 2. It is supported rotatably. The planetary gear 4 is a helical gear and meshes with a sun gear and a ring gear (both not shown) in a state in which the automobile automatic transmission is assembled. Therefore, an axial load is applied to the planetary gear 4 in addition to a radial load during operation of the automatic transmission for automobiles. As a result, the moment as described above is applied to the planetary gear 4.

前記複列ラジアルニードル軸受ユニット5は、上述の様なモーメントに対する剛性を十分に確保できる構造とすべく、1対のラジアルニードル軸受6、6とスペーサ7とを備える。図示の例では、これら両ラジアルニードル軸受6、6は、それぞれ、複数本ずつのニードル8、8を、略円筒状の保持器9、9により転動自在に保持して成る。これら各ニードル8、8の転動面は、前記遊星軸3の外周面に設けた円筒面状の内輪軌道10と、前記遊星歯車4の内周面に設けた円筒面状の外輪軌道11とに、それぞれ転がり接触させている。又、前記スペーサ7は、前記両ラジアルニードル軸受6、6の保持器9、9同士の間に配置して、これら両保持器9、9同士が近付き合う事を防止する。尚、保持器を省略した、所謂総ニードル型の複列ラジアルニードル軸受ユニットも知られている。この様な総ニードル型構造の場合には、各ニードルの軸方向一端面を、それぞれスペーサの軸方向両端面に、直接対向させる。何れにしても前記スペーサ7は、複列に配置された前記両ラジアルニードル軸受6、6同士の軸間距離を確保して、前記モーメントに対する剛性を確保する。又、前記複列ラジアルニードル軸受ユニット5の運転時には、前記遊星軸3の内部に設けた給油通路15を通じて前記両ラジアルニードル軸受6、6部分に、潤滑油を供給する。   The double-row radial needle bearing unit 5 includes a pair of radial needle bearings 6 and 6 and a spacer 7 so as to have a structure capable of sufficiently securing rigidity against the moment as described above. In the example shown in the drawing, these radial needle bearings 6 and 6 are each formed by holding a plurality of needles 8 and 8 by means of substantially cylindrical cages 9 and 9 so as to be freely rollable. The rolling surfaces of these needles 8, 8 are a cylindrical inner ring raceway 10 provided on the outer peripheral surface of the planetary shaft 3, and a cylindrical outer ring raceway 11 provided on the inner peripheral surface of the planetary gear 4. In addition, they are in rolling contact with each other. The spacer 7 is disposed between the cages 9 and 9 of the radial needle bearings 6 and 6 to prevent the cages 9 and 9 from approaching each other. A so-called all-needle type double-row radial needle bearing unit in which a cage is omitted is also known. In the case of such a total needle type structure, one end surface in the axial direction of each needle is directly opposed to both end surfaces in the axial direction of the spacer. In any case, the spacer 7 secures the rigidity with respect to the moment by securing the inter-axial distance between the radial needle bearings 6, 6 arranged in a double row. Further, during the operation of the double row radial needle bearing unit 5, lubricating oil is supplied to both the radial needle bearings 6 and 6 through an oil supply passage 15 provided in the planetary shaft 3.

上述の様な役目を果たす、前記スペーサ7として従来から、例えば図5に示す様な構造のものが知られている。このスペーサ7は、1対のリム部12、12と複数本の柱部13、13とを備える。これら両リム部12、12は、それぞれが円環状で、軸方向に関して互いに同心に配置されている。又、前記各柱部13、13は、前記両リム部12、12同士の間の周方向複数箇所に、これら両リム部12、12同士を連結する状態で設けられている。そして、これら両リム部12、12と、周方向に隣り合う前記各柱部13、13とによりそれぞれの四周を囲まれる部分を、前記スペーサ7の内外両周面同士を連通させる透孔部14、14としている。これら各透孔部14、14は、前記スペーサ7を軽量化して慣性質量を低減し、前記遊星軸3の公転運動に伴ってこのスペーサ7に作用する遠心力を低減して、この遊星軸3が曲がるのを抑える機能を果たす。又、前記各透孔部14、14は、潤滑油流路の確保による前記両ニードル軸受6、6の転がり接触部への潤滑油供給の安定化等に基づく前記回転支持装置1の性能向上、更には、前記スペーサ7の材料節減による低コスト化等の役目も果たす。尚、本明細書及び特許請求の範囲で、軸方向、径方向、周方向とは、特に断わらない限り、スペーサの軸方向、径方向、周方向を言う。   For example, a spacer having a structure as shown in FIG. 5 has been known as the spacer 7 having the above-mentioned function. The spacer 7 includes a pair of rim portions 12 and 12 and a plurality of column portions 13 and 13. These rim parts 12, 12 are each annular and are arranged concentrically with respect to the axial direction. The column parts 13 and 13 are provided at a plurality of positions in the circumferential direction between the rim parts 12 and 12 so as to connect the rim parts 12 and 12 to each other. And the through-hole part 14 which makes both the inner and outer peripheral surfaces of the said spacer 7 connect the part surrounded by each of these four rim | limb parts 12 and 12 and said pillar parts 13 and 13 adjacent to the circumferential direction in each circumference | surroundings. , 14. Each of the through-hole portions 14 and 14 reduces the weight of the spacer 7 to reduce the inertial mass, and reduces the centrifugal force acting on the spacer 7 along with the revolving motion of the planetary shaft 3. It plays a function to suppress the bending. Further, the through holes 14 and 14 improve the performance of the rotary support device 1 based on stabilization of the supply of lubricating oil to the rolling contact portions of the both needle bearings 6 and 6 by securing a lubricating oil flow path. Furthermore, it also plays a role of cost reduction due to the material saving of the spacer 7. In the present specification and claims, the axial direction, radial direction, and circumferential direction refer to the axial direction, radial direction, and circumferential direction of the spacer unless otherwise specified.

上述の様なスペーサ7は、前記回転支持装置1への組み付け状態で、外周面を前記外輪軌道11に、軸方向両端面を前記両保持器9、9又は前記各ニードル8、8の軸方向端面に、それぞれ当接若しくは近接対向させる。この状態で、これら各当接部若しくは近接対向部には、潤滑油が介在する。そして、前記回転支持装置1の運転時には、前記スペーサ7の外周面と前記外輪軌道11とが、このスペーサ7の軸方向両端面と前記両保持器9、9又は前記各ニードル8、8の軸方向端面とが、それぞれ相対変位する(擦れ合う)。これら各擦れ合い部には潤滑油の油膜が存在するので、前記スペーサ7が隣接する部材に対して相対回転する際には、この油膜に作用する剪断抵抗が、このスペーサ7の回転抵抗の大部分を占める。この様な剪断抵抗は、前記スペーサ7と前記隣接する部材との対向面積が広い程大きくなる。   The spacer 7 as described above is assembled to the rotary support device 1, the outer peripheral surface is the outer ring raceway 11, and both axial end surfaces are the axial directions of the cages 9, 9 or the needles 8, 8. The end faces are brought into contact with or in close proximity to each other. In this state, lubricating oil is present in each of the contact portions or the proximity facing portions. During the operation of the rotation support device 1, the outer peripheral surface of the spacer 7 and the outer ring raceway 11 are connected to both axial end surfaces of the spacer 7 and the shafts of the cages 9 and 9 or the needles 8 and 8. The direction end faces are displaced relative to each other (rubbed). Since an oil film of lubricating oil exists in each of these rubbing portions, when the spacer 7 rotates relative to the adjacent member, the shear resistance acting on the oil film is large in the rotation resistance of the spacer 7. Occupy part. Such shear resistance increases as the facing area between the spacer 7 and the adjacent member increases.

上述の様な剪断抵抗等により、前記スペーサ7と、このスペーサ7が隣接する部材との相対変位に基づく摩擦抵抗は、前記回転支持装置1の動トルク増大(トルク損失発生)の原因となり、この回転支持装置1を組み込んだ、自動車用自動変速機等の各種回転機械装置の性能を悪化させる原因となる。即ち、前記回転支持装置1の動トルクを増大させる要因としては、前記両ラジアルニードル軸受6、6部分の転がり抵抗や摩擦抵抗、潤滑油の攪拌抵抗等、各種存在する。そして、前記スペーサ7と相手部材との間で発生する、前記剪断抵抗を含む摩擦抵抗や、このスペーサ7の回転に伴う潤滑油の攪拌抵抗も無視できない程に大きい。従って、前記回転支持装置1を組み込んだ回転機械装置の性能向上を図る為には、前記スペーサ7に関する抵抗を低く抑える事が望まれる。   The frictional resistance based on the relative displacement between the spacer 7 and the member adjacent to the spacer 7 due to the shear resistance or the like as described above causes an increase in dynamic torque (torque loss generation) of the rotary support device 1. It becomes a cause of deteriorating the performance of various rotary machine devices such as an automatic transmission for automobiles incorporating the rotation support device 1. That is, there are various factors that increase the dynamic torque of the rotary support device 1, such as the rolling resistance and frictional resistance of the radial needle bearings 6 and 6 and the stirring resistance of the lubricating oil. The frictional resistance including the shearing resistance generated between the spacer 7 and the mating member and the agitation resistance of the lubricating oil accompanying the rotation of the spacer 7 are so large that they cannot be ignored. Therefore, in order to improve the performance of the rotary machine device incorporating the rotary support device 1, it is desirable to keep the resistance related to the spacer 7 low.

[先発明の説明]
上述の様な事情に鑑み、スペーサと相手部材とが当接若しくは近接対向する部分の面積(以下「対向面積」とする)を狭くし、このスペーサの回転抵抗(剪断抵抗を含む摩擦抵抗)を低減する発明として、特願2010−264249に係る発明がある。この先発明は、スペーサと相手部材との摩擦抵抗を低減させて、複列ラジアルニードル軸受ユニットを組み込んだ回転支持装置の運転時に於けるトルク損失を低減させ、併せて、軽量で且つ低コストで造れるスペーサの構造を実現する事を意図したものである。
[Description of Prior Invention]
In view of the circumstances as described above, the area of the part where the spacer and the mating member abut or approach each other (hereinafter referred to as “opposing area”) is narrowed, and the rotational resistance (friction resistance including shear resistance) of this spacer is reduced. As an invention to be reduced, there is an invention according to Japanese Patent Application No. 2010-264249. This prior invention reduces the frictional resistance between the spacer and the mating member, reduces the torque loss during the operation of the rotary support device incorporating the double row radial needle bearing unit, and is also lightweight and can be manufactured at low cost. It is intended to realize a spacer structure.

前記先発明(及び後述する本発明)の対象となるラジアルニードル軸受用スペーサは、遊星軸等の内輪相当部材(内径側部材と同じ)の外周面に設けられた円筒状の内輪軌道と、遊星歯車等の外輪相当部材(外径側部材と同じ)の内周面に設けられた円筒状の外輪軌道との間に、軸方向に離隔した状態で設けられた1対のラジアルニードル軸受同士の間部分に設置される。そして、それぞれが円環状で、軸方向に関して互いに同心に配置された1対のリム部と、これら両リム部同士の間の周方向複数箇所に、これら両リム部同士を連結する状態で設けられた複数本の柱部とを備える。又、これら両リム部と、周方向に隣り合うこれら各柱部とによりそれぞれの四周を囲まれる部分を、内外両周面同士を連通させる透孔部としている。そして、前記内輪軌道と前記外輪軌道と前記両ラジアルニードル軸受とにより周囲を囲まれる空間に組み込み、その表面を相手部材の表面に当接若しくは近接対向させた状態で、この相手部材に対し相対回転する   A radial needle bearing spacer that is a subject of the above-described invention (and the present invention described later) includes a cylindrical inner ring orbit provided on an outer peripheral surface of an inner ring equivalent member (same as an inner diameter side member) such as a planetary shaft, and a planet. Between a pair of radial needle bearings provided in an axially separated state between a cylindrical outer ring raceway provided on an inner peripheral surface of an outer ring equivalent member (same as an outer diameter side member) such as a gear. It is installed in the middle part. Each of the rim portions is annular and is provided in a state where the rim portions are connected to each other at a plurality of circumferential positions between the rim portions and a pair of rim portions arranged concentrically with respect to the axial direction. A plurality of pillars. Further, a portion surrounded by each of the four circumferences by both the rim portions and the column portions adjacent to each other in the circumferential direction is a through-hole portion that allows the inner and outer peripheral surfaces to communicate with each other. Then, the inner ring raceway, the outer ring raceway, and the radial needle bearings are incorporated into a space surrounded by the outer ring raceway, and the surface rotates relative to the counterpart member in a state where the surface is in contact with or in close proximity to the surface of the counterpart member. Do

特に、先発明に係るラジアルニードル軸受用スペーサは、前記両リム部と前記各柱部とのうちの少なくとも一方の部分で、前記空間に組み込んだ状態で相手部材の表面に当接若しくは近接対向する部分の一部を、この相手部材から離れる方向に凹ませる。そして、この凹ませた部分の面積分、前記相手部材と前記スペーサの外表面との摩擦面積を狭くして、このスペーサの存在に基づく複列ラジアルニードル軸受ユニットのトルク損失(動トルク、摩擦抵抗)を低減させる。尚、前記凹ませた部分には、有底の凹みは勿論、スペーサの内外両周面同士を貫通する状態で設けた透孔状の構造を含む。   In particular, the radial needle bearing spacer according to the present invention is in contact with or in close proximity to the surface of the mating member in the state of being incorporated in the space at at least one of the rim portions and the pillar portions. A part of the part is recessed in a direction away from the mating member. Then, the frictional area between the mating member and the outer surface of the spacer is reduced by the area of the recessed portion, and the torque loss (dynamic torque, frictional resistance) of the double row radial needle bearing unit based on the presence of the spacer is reduced. ). The recessed portion includes a through-hole structure provided in a state of penetrating the inner and outer peripheral surfaces of the spacer as well as the bottomed recess.

上述の様な先発明の態様としては、例えば、前記各柱部を、周方向に関して間欠的に、互いに平行に、或いは、傾斜して配列する。
或いは、前記各柱部の周方向の側面のうち、軸方向の一部又は全体に凹部を形成し、これら各凹を形成した部分で、周方向に関する前記各柱部の幅寸法を、前記各透孔部の同方向の幅寸法よりも小さくする。
或いは、前記両リム部の軸方向外側面又は外周縁部に凹部を、それぞれの周方向に関して断続的乃至は連続的に凹ませた状態で形成する。
或いは、前記各柱部に凹部を、これら各柱部の外周面(外径側面)全体を、前記両リム部の外周面よりも径方向内方に凹ませた状態で形成する。
或いは、周方向に隣り合う各柱部の軸方向中間部同士を、これら各柱部同士の間に、周方向に掛け渡す状態で設けた連結部により互いに連結する。
As an aspect of the prior invention as described above, for example, the respective pillar portions are arranged intermittently in parallel with each other in the circumferential direction or in an inclined manner.
Alternatively, among the circumferential side surfaces of each column part, a recess is formed in a part or the whole in the axial direction, and the width dimension of each column part in the circumferential direction is defined in the part where these recesses are formed. It is made smaller than the width dimension of the through hole in the same direction.
Alternatively, the concave portions are formed in the axially outer side surfaces or outer peripheral edge portions of the both rim portions in a state where the concave portions are intermittently or continuously recessed with respect to the respective circumferential directions.
Alternatively, a recess is formed in each of the column portions, and the entire outer peripheral surface (outer diameter side surface) of each of the column portions is recessed inward in the radial direction from the outer peripheral surfaces of the two rim portions.
Or the axial direction intermediate part of each pillar part adjacent to the circumferential direction is mutually connected by the connection part provided in the state which spanned between these each pillar parts in the circumferential direction.

上述の様な先発明によれば、ラジアルニードル軸受用スペーサの表面と、相手部材の表面である、外輪軌道、又は、保持器の軸方向端面或いは各ニードルの軸方向端面との擦れ合い面積を狭くできる。そして、前記ラジアルニードル軸受用スペーサと相手部材との相対回転を抑える方向に作用する抵抗(油膜の剪断抵抗を含む摩擦抵抗)を低く抑えて、前記ラジアルニードル軸受用スペーサを備えた複列ラジアルニードル軸受ユニットの動トルク(トルク損失)を低減できる。又、相手部材の表面との擦れ合い面積を狭くする為に前記凹部を設ける分、前記ラジアルニードル軸受用スペーサの容積を少なくして、このラジアルニードル軸受用スペーサの軽量化及び低コスト化を図れる。   According to the above-described prior invention, the frictional area between the surface of the radial needle bearing spacer and the outer ring raceway or the axial end surface of the cage or the axial end surface of each needle, which is the surface of the counterpart member, is reduced. Can be narrowed. And the double-row radial needle provided with the radial needle bearing spacer while suppressing the resistance (friction resistance including the shear resistance of the oil film) acting in the direction of suppressing the relative rotation between the radial needle bearing spacer and the mating member. The dynamic torque (torque loss) of the bearing unit can be reduced. In addition, the volume of the radial needle bearing spacer can be reduced by reducing the volume of the radial needle bearing spacer by providing the concave portion in order to reduce the frictional area with the surface of the mating member, thereby reducing the weight and cost of the radial needle bearing spacer. .

次に、先発明に係るラジアルニードル軸受用スペーサの具体例に就いて、図6〜17により説明する。尚、以下に説明する先発明に係る各スペーサ7a〜7k及び後述する本発明に係るスペーサ7m〜7pは、何れも、前述の図4に示す様に、軸方向に離隔して配置した1対のラジアルニードル軸受6、6同士の間に配置する。そして、外周面が外輪軌道11に摺接乃至は近接対向し、軸方向両端面が保持器9、9又は各ニードル8、8の軸方向端面に摺接乃至は近接対向する状態で使用される。又、前記各スペーサ7a〜7pは、何れも、前述の図5に記載した、従来から知られているスペーサ7を基本としてこれに改良を施したものであるから、以下の説明では、改良部分の説明を主として、この従来構造と共通する部分に関しては説明を省略若しくは簡略にする。   Next, specific examples of the radial needle bearing spacer according to the present invention will be described with reference to FIGS. Each of the spacers 7a to 7k according to the prior invention described below and the spacers 7m to 7p according to the present invention to be described later is a pair arranged separately in the axial direction as shown in FIG. The radial needle bearings 6 and 6 are disposed between each other. Further, the outer peripheral surface is used in a state of sliding contact with or close to the outer ring raceway 11, and both axial end surfaces are in sliding contact with or close to the axial end surfaces of the cages 9, 9 or the needles 8, 8. . Each of the spacers 7a to 7p is an improvement made on the basis of the conventionally known spacer 7 shown in FIG. 5 described above. The description will be mainly omitted and the description common to the conventional structure will be omitted or simplified.

又、先発明及び本発明のスペーサ7a〜7pの諸元(寸法、材質、表面粗さ)に関しては特に限定しないが、例えば、次の様な諸元を採用できる。
寸法
内径 : 5〜30mm
径方向厚さ : 0.3〜3.0mm
軸方向幅 : 2〜30mm
透孔部の周方向幅 : 1mm以上
リム部の径方向外側面の軸方向幅 : 1mm以上
材質
鉄系合金
鉄系合金としては、冷間圧延鋼板(SPCC)、超低炭素鋼(AISI−1010)、クロムモリブデン鋼(SCM415)等の未熱処理品、或いは、これらに浸炭処理、浸炭窒化処理等の熱処理を施したものを使用できる。これらの鉄系合金を使用すれば、高温環境下でも十分な強度及び剛性を確保できる
合成樹脂
合成樹脂としては、ポリアセタール樹脂、ポリアミド樹脂(ナイロン46、ナイロン66)、ポリフェニレンサルファイド樹脂(PPS)等が使用可能である。これらの合成樹脂を使用すれば、スペーサを射出成形する事により容易に形成できて、低コスト化を図れるだけでなく、軽量化により、前述した様な効果を得られる。
表面粗さ
スペーサの表面のうち、相手部材に当接若しくは近接対向する外周面及び軸方向端面は、この相手部材との相対回転時の摩擦抵抗を低く抑える為に、平滑面とする事が好ましい。そこで、少なくとも前記外周面及び軸方向端面を、それぞれ中心線平均粗さRaで、6.3μm以下とする事が好ましい。
Further, the specifications (dimensions, material, surface roughness) of the spacers 7a to 7p of the present invention and the present invention are not particularly limited, but for example, the following specifications can be adopted.
Dimensions Inner diameter: 5-30mm
Radial thickness: 0.3-3.0mm
Axial width: 2-30mm
Circumferential width of the through-hole portion: 1 mm or more Axial width of the radially outer surface of the rim portion: 1 mm or more Material Iron-based alloy As the iron-based alloy, cold rolled steel plate (SPCC), ultra-low carbon steel (AISI-1010) ), Chrome molybdenum steel (SCM415) or the like, or those subjected to heat treatment such as carburizing or carbonitriding can be used. If these iron-based alloys are used, sufficient strength and rigidity can be ensured even in high-temperature environments. Synthetic resins Synthetic resins include polyacetal resin, polyamide resin (nylon 46, nylon 66), polyphenylene sulfide resin (PPS), etc. It can be used. If these synthetic resins are used, the spacer can be easily formed by injection molding, and not only the cost can be reduced, but also the above-described effects can be obtained by reducing the weight.
Surface Roughness Of the surface of the spacer, it is preferable that the outer peripheral surface and the axial end surface that are in contact with or in close proximity to the mating member are smooth surfaces in order to keep the frictional resistance during relative rotation with the mating member low. . Therefore, it is preferable that at least the outer peripheral surface and the axial end surface have a center line average roughness Ra of 6.3 μm or less.

「先発明の実施の形態の第1例」
図6は、先発明の実施の形態の第1例のスペーサ7aを示している。このスペーサ7aは、互いに平行に配列された複数の柱部13a、13aの軸方向中間部の周方向幅を、軸方向両端部の周方向幅に比べて狭くし、且つ、これら各柱部13a、13a同士の間に存在する各透孔14a、14aの周方向幅よりも狭くしている。言い換えれば、前記各柱部13a、13aの周方向両側面のうちの軸方向中間部に、それぞれ周方向に凹んだ、これら各柱部13a、13aの周方向両側面毎に1箇所ずつの凹部16、16を形成し、これら各柱部13a、13aの軸方向中間部の周方向幅wを、前記各透孔14a、14aの軸方向中間部の周方向幅Sよりも小さくしている(w<S)。そして、これら各凹部16、16の径方向開口面積分だけ、前記スペーサ7aの外周面で内輪軌道10(図4参照)との対向面積を狭くしている。尚、前記各柱部13a、13aの軸方向中間部の周方向幅wは、前記図5に示した従来構造に於ける各柱部13、13の周方向幅Wよりも十分に小さい。これに対して、前記各柱部13a、13aの軸方向両端部の周方向幅は、前記従来構造に関する周方向幅Wとほぼ同じとしている。但し、周方向幅が広くなった前記軸方向両端部の軸方向長さは短いので、この軸方向両端部の周方向幅を、前記従来構造に関する周方向幅Wよりも少し広くしても良い。
"First example of the embodiment of the prior invention"
FIG. 6 shows the spacer 7a of the first example of the embodiment of the prior invention. The spacer 7a is configured such that the circumferential width of the axial intermediate portion of the plurality of column portions 13a, 13a arranged in parallel with each other is narrower than the circumferential width of both axial end portions, and each of the column portions 13a. , 13a is narrower than the circumferential width of each of the through holes 14a, 14a. In other words, one concave portion is provided in each circumferential side surface of each of the pillar portions 13a and 13a and is recessed in the circumferential direction at the axially intermediate portion of the circumferential side surfaces of the pillar portions 13a and 13a. 16 and 16 and the circumferential width w of the intermediate portion in the axial direction of each of the pillar portions 13a and 13a is made smaller than the circumferential width S of the intermediate portion in the axial direction of each of the through holes 14a and 14a ( w <S). Then, the area facing the inner ring raceway 10 (see FIG. 4) is narrowed on the outer peripheral surface of the spacer 7a by the radial opening area of each of the recesses 16 and 16. The circumferential width w of the intermediate portion in the axial direction of each of the column portions 13a and 13a is sufficiently smaller than the circumferential width W of the column portions 13 and 13 in the conventional structure shown in FIG. On the other hand, the circumferential widths at both axial ends of the pillars 13a and 13a are substantially the same as the circumferential width W related to the conventional structure. However, since the axial length of both ends in the axial direction where the circumferential width is wide is short, the circumferential width of the both ends in the axial direction may be slightly wider than the circumferential width W related to the conventional structure. .

尚、前記各凹部16、16の形状及び大きさ(軸方向長さ、周方向深さ)は、前記各柱部13a、13aに必要とされる強度等を考慮して、前記対向面積をできる限り狭くすべく、前述した諸元の範囲内で、適切に規制する。例えば、前記各凹部16、16の形状に関して、図6に示した構造では台形状としているが、台形状に限定されず、例えば円弧状、楕円状、矩形状等、前記各柱部13a、13aの強度及び剛性を確保できる範囲で、任意の形状を採用できる。又、図6に示した構造では、各柱部13a、13aの周方向両側にそれぞれ凹部16、16を形成しているが、何れか片側にのみ凹部16、16を形成しても良い。何れにしても、前記スペーサ7a自体は、軸方向に離隔して配置した1対のラジアルニードル軸受6、6が互いに近付くのを防止できれば良く、特に、大きなラジアル荷重やアキシアル荷重が加わる事はないので、必要とされる強度及び剛性は特に高くはない。従って、前記各凹部16、16を、前記スペーサ7aの外周面の面積の低減やこのスペーサ7aの軽量化の為に或る程度大きくしても、このスペーサ7aを組み込んだ複列ラジアルニードル軸受ユニット5(図4参照)の信頼性や耐久性の面から問題を生じる事はない。   In addition, the shape and size (axial length, circumferential depth) of each of the recesses 16 and 16 can make the opposing area in consideration of the strength required for the column parts 13a and 13a. In order to make it as narrow as possible, we will regulate appropriately within the scope of the above-mentioned specifications. For example, the shape of each of the recesses 16 and 16 is trapezoidal in the structure shown in FIG. 6, but is not limited to the trapezoidal shape. For example, each of the column portions 13a and 13a such as an arc shape, an elliptical shape, a rectangular shape or the like. Any shape can be adopted as long as the strength and rigidity can be secured. Moreover, in the structure shown in FIG. 6, although the recessed parts 16 and 16 are each formed in the circumferential direction both sides of each pillar part 13a and 13a, you may form the recessed parts 16 and 16 only in any one side. In any case, the spacer 7a itself is only required to prevent the pair of radial needle bearings 6 and 6 arranged apart from each other in the axial direction from approaching each other. In particular, no large radial load or axial load is applied. Therefore, the required strength and rigidity are not particularly high. Therefore, even if each of the recesses 16 and 16 is enlarged to some extent for reducing the area of the outer peripheral surface of the spacer 7a or reducing the weight of the spacer 7a, a double row radial needle bearing unit incorporating the spacer 7a is used. There is no problem in terms of reliability and durability of 5 (see FIG. 4).

図6に示したスペーサ7aによれば、前記各柱部13a、13aの軸方向中間部の周方向幅wを狭くした分、前記各透孔部14a、14aの周方向幅Sを、前述の図5に記載した従来構造のスペーサ7に設けた各透孔部14、14の周方向幅sよりも広くしている(S>s)。そして、前記各透孔部14a、14aの周方向幅Sを広くした分、前記各柱部13a、13aの外径側面を含めた、前記スペーサ7aの外周面の面積を、前記従来構造のスペーサ7の外周面の面積よりも狭くしている。そして、この外周面の面積を狭くした分、前記スペーサ7aの外周面と、遊星歯車4等の外径側部材の内周面に形成した外輪軌道11(図4参照)との間に作用する、前述した剪断抵抗を含む摩擦抵抗を小さくできる様にしている。これにより、前記スペーサ7aを組み込んだ複列ラジアルニードル軸受ユニット5(図4参照)の動トルクを小さく抑えて、この複列ラジアルニードル軸受ユニット5の回転機械装置の性能向上を図れる。又、前記スペーサ7aは、前記各柱部13a、13aに凹部16、16を形成して軸方向中間部の周方向幅wを狭くした分、軽量化、及び、原材料の低減による低コスト化を図れる。尚、軽量化は、運転時に(公転運動に伴って)発生する遠心力に基づく、遊星軸3(図4参照)等の内径側部材の曲がりの抑制に寄与する。   According to the spacer 7a shown in FIG. 6, the circumferential width S of each of the through hole portions 14a and 14a is reduced by the amount corresponding to the reduction in the circumferential width w of the axial intermediate portion of each of the column portions 13a and 13a. The circumferential width s of each of the through holes 14 and 14 provided in the spacer 7 having the conventional structure shown in FIG. 5 is made larger (S> s). Then, the area of the outer peripheral surface of the spacer 7a including the outer diameter side surface of each column portion 13a, 13a is increased by the amount of the circumferential width S of the respective through-hole portions 14a, 14a being increased. 7 is narrower than the area of the outer peripheral surface. Then, by reducing the area of the outer peripheral surface, it acts between the outer peripheral surface of the spacer 7a and the outer ring raceway 11 (see FIG. 4) formed on the inner peripheral surface of the outer diameter side member such as the planetary gear 4. The frictional resistance including the aforementioned shearing resistance can be reduced. As a result, the dynamic torque of the double row radial needle bearing unit 5 (see FIG. 4) incorporating the spacer 7a can be kept small, and the performance of the rotary machine device of the double row radial needle bearing unit 5 can be improved. In addition, the spacer 7a is reduced in weight and reduced in cost by reducing the raw material by forming the recesses 16 and 16 in the respective pillars 13a and 13a to reduce the circumferential width w of the axial intermediate portion. I can plan. In addition, weight reduction contributes to suppression of the bending of inner diameter side members, such as the planetary shaft 3 (refer FIG. 4) based on the centrifugal force which generate | occur | produces (with revolving motion) at the time of a driving | operation.

「先発明の実施の形態の第2例」
図7は、先発明の実施の形態の第2例のスペーサ7bを示している。本例の場合には、上述した第1例の場合とは逆に、各柱部13b、13bの軸方向両端部の周方向両側面に、それぞれ凹部16a、16aを形成して、これら各柱部13b、13bの外径側面、延いては前記スペーサ7bの外周面の面積を、図5に示した従来構造に比べて狭くしている。即ち、本例の場合には、前記各柱部13a、13aの軸方向中間部の周方向幅を、前記従来構造の場合と同程度とし、軸方向両端部の周方向幅をこれよりも狭くしている。
その他の構成及び作用・効果に就いては、上述した第1例と同様であるから、重複する説明は省略する。
"Second example of the embodiment of the prior invention"
FIG. 7 shows the spacer 7b of the second example of the embodiment of the prior invention. In the case of this example, conversely to the case of the first example described above, recesses 16a and 16a are formed on both side surfaces in the circumferential direction of both end portions in the axial direction of the respective column portions 13b and 13b, respectively. The outer diameter side surfaces of the portions 13b and 13b, that is, the area of the outer peripheral surface of the spacer 7b are made narrower than the conventional structure shown in FIG. That is, in the case of this example, the circumferential width of the intermediate portion in the axial direction of each of the pillar portions 13a, 13a is set to the same level as in the conventional structure, and the circumferential width at both axial end portions is narrower than this. doing.
Since other configurations and operations / effects are the same as those in the first example described above, redundant description is omitted.

「先発明の実施の形態の第3例」
図8は、先発明の実施の形態の第3例のスペーサ7cを示している。このスペーサ7cは、前述した第1例と上述した第2例とを組み合わせた如き構造を有する。即ち、本例の構造の場合には、各柱部13c、13cの軸方向中間部の周方向両側面に凹部16b、16bを、軸方向両端部の周方向両側面に凹部16a、16aを、それぞれ形成している。そして、これら各凹部16b、16aの分だけ、前記各柱部13c、13cの外径側面の面積、延いては、前記スペーサ7cの外周面の面積を狭くしている。
その他の構成及び作用・効果に就いては、前述した第1例及び上述した第2例と同様であるから、重複する説明は省略する。
"Third example of the embodiment of the prior invention"
FIG. 8 shows a spacer 7c of the third example of the embodiment of the prior invention. The spacer 7c has a structure that combines the first example described above and the second example described above. That is, in the case of the structure of this example, the recesses 16b, 16b are formed on both sides in the circumferential direction of the intermediate portion in the axial direction of the pillars 13c, 13c, and the recesses 16a, 16a are formed on both sides in the circumferential direction at both ends in the axial direction. Each is formed. The area of the outer side surface of each of the column portions 13c and 13c, and hence the area of the outer peripheral surface of the spacer 7c, is reduced by the amount of the recesses 16b and 16a.
Since other configurations and operations / effects are the same as those in the first example and the second example described above, a duplicate description is omitted.

「先発明の実施の形態の第4例」
図9は、先発明の実施の形態の第4例のスペーサ7dを示している。このスペーサ7dは、各柱部13d、13dの軸方向中間部の周方向両側面の2箇所位置ずつに凹部16b、16bを、それぞれ形成している。そして、これら各凹部16b、16bの分だけ、前記各柱部13d、13dの外径側面の面積、延いては、前記スペーサ7dの外周面の面積を狭くしている。
その他の構成及び作用・効果に就いては、前述した第1〜2例及び上述した第3例と同様であるから、重複する説明は省略する。
"Fourth example of the embodiment of the prior invention"
FIG. 9 shows a spacer 7d of the fourth example of the embodiment of the prior invention. The spacer 7d has recesses 16b and 16b formed at two positions on both side surfaces in the circumferential direction of the intermediate portion in the axial direction of the pillars 13d and 13d, respectively. The area of the outer side surface of each of the pillar portions 13d and 13d, that is, the area of the outer peripheral surface of the spacer 7d is reduced by the amount of each of the recesses 16b and 16b.
Since other configurations and operations / effects are the same as those in the above-described first and second examples and the above-described third example, overlapping description will be omitted.

「先発明の実施の形態の第5例」
図10は、先発明の実施の形態の第5例のスペーサ7eを示している。このスペーサ7eは、それぞれが円環状である1対のリム部12a、12aの軸方向外側面(互いに反対側の軸方向側面)の径方向外寄り部分に、それぞれ部分円すい凸面状の傾斜面部17、17を形成して、この径方向外寄り部分を、相手部材から離れる方向に凹ませている。これに対して、前記両リム部12a、12aの軸方向外側面の径方向内寄り部分は、前記スペーサ7eの中心軸に対し直角方向に存在する平坦面18、18としている。尚、前記両傾斜面部17、17の大きさ(軸方向寸法及び径方向寸法)は、例えば前記両リム部12a、12aの強度及び剛性を確保できる範囲で、できるだけ大きくする事が、相手部材との擦れ合い面積を低減する面からも、前記スペーサ7eの軽量化を図る面からも好ましい。例えば、軸方向寸法に関しては、前記両リム部12a、12aの軸方向幅の1/2〜3/4程度とし、径方向寸法に関しては、これら両リム部12a、12aの径方向厚さの1/2〜3/4程度とする事が好ましい。又、前記スペーサ7eの中心軸に対する前記両傾斜面部17、17の傾斜角度は、0°を超えて90°未満の範囲で設定するが、好ましくは、30〜60°の範囲に設定する。
"Fifth example of embodiment of prior invention"
FIG. 10 shows a spacer 7e of the fifth example of the embodiment of the prior invention. The spacer 7e has a partially conical convex inclined surface portion 17 on the radially outer side portion of the pair of rim portions 12a, 12a each having an annular shape, on the radially outer side surface (the axial side surface opposite to each other). , 17 are formed, and the radially outward portion is recessed in a direction away from the mating member. On the other hand, the radially inward portions of the outer side surfaces in the axial direction of the rim portions 12a and 12a are flat surfaces 18 and 18 that exist in a direction perpendicular to the central axis of the spacer 7e. In addition, the size (axial dimension and radial dimension) of both the inclined surface portions 17 and 17 is, for example, as large as possible within a range in which the strength and rigidity of the both rim portions 12a and 12a can be secured. This is also preferable from the viewpoint of reducing the rubbing area and reducing the weight of the spacer 7e. For example, the axial dimension is about 1/2 to 3/4 of the axial width of the rim parts 12a and 12a, and the radial dimension is 1 of the radial thickness of the rim parts 12a and 12a. It is preferable to set it to about / 2 to 3/4. In addition, the inclination angle of the two inclined surface portions 17 and 17 with respect to the central axis of the spacer 7e is set in a range of more than 0 ° and less than 90 °, but is preferably set in a range of 30 to 60 °.

上述の様に構成するスペーサ7eを複列ラジアルニードル軸受ユニット5(図4参照)に組み込んだ状態で、前記両平坦面18、18が、1対のラジアルニードル軸受6、6を構成する保持器9、9又は各ニードル8、8(図4参照)の軸方向端面と、当接若しくは近接対向する。前記両平坦面18、18の面積は、前記両傾斜面部17、17の存在に基づき、前記図5に示した従来構造のリム部12、12の軸方向端面の面積よりも狭い。従って本例の場合には、前記スペーサ7eと前記両保持器9、9又は前記各ニードル8、8との相対回転に伴う摩擦抵抗を低減できる。又、前記両リム部12a、12aの外周面と外輪軌道11(図4参照)との対向面積を狭くして、その分だけ、前記スペーサ7eと、遊星歯車4(図4参照)等の外径側部材との相対回転に伴う摩擦抵抗を低減できる。そして、前記複列ラジアルニードル軸受ユニット5の動トルクの低減を図れる。更に、前記両傾斜面部17、17を形成した分、前記スペーサ7eの容積を低減し、軽量化を図れる。
本例の構造は、先に説明した第1〜4例の構造と組み合わせて実施する事もできる。
その他の構成及び作用・効果に就いては、前述した第1〜4例と同様であるから、重複する説明は省略する。
A cage in which the flat surfaces 18 and 18 constitute a pair of radial needle bearings 6 and 6 in a state in which the spacer 7e configured as described above is incorporated in the double row radial needle bearing unit 5 (see FIG. 4). 9, 9 or the axial end surfaces of the needles 8 and 8 (see FIG. 4) abut or face each other. The areas of the flat surfaces 18 and 18 are narrower than the areas of the end faces in the axial direction of the rim portions 12 and 12 of the conventional structure shown in FIG. 5 based on the presence of the inclined surface portions 17 and 17. Therefore, in the case of this example, it is possible to reduce the frictional resistance associated with the relative rotation between the spacer 7e and the retainers 9, 9 or the needles 8, 8. Further, the facing area between the outer peripheral surfaces of the rim portions 12a, 12a and the outer ring raceway 11 (see FIG. 4) is narrowed, and the spacer 7e, the planetary gear 4 (see FIG. 4), etc. Friction resistance accompanying relative rotation with the diameter side member can be reduced. And the dynamic torque of the double row radial needle bearing unit 5 can be reduced. Furthermore, the volume of the spacer 7e can be reduced and the weight can be reduced by forming the both inclined surface portions 17 and 17.
The structure of this example can also be implemented in combination with the structures of the first to fourth examples described above.
Since other configurations and operations / effects are the same as those in the first to fourth examples described above, redundant description will be omitted.

「先発明の実施の形態の第6例」
図11は、先発明の実施の形態の第6例のスペーサ7fを示している。このスペーサ7fは、それぞれが円環状である1対のリム部12b、12bの軸方向外側面を周方向に関して間欠的に軸方向に凹ませ、それぞれ複数箇所ずつの凹部19、19を形成している。図示の例ではこれら各凹部19、19を、それぞれ前記両リム部12b、12bの軸方向外側面の内周縁から外周縁に貫通する、略矩形状としている。図示の例では、前記各凹部19、19を周方向に関して等ピッチで配列しているが、必ずしも等ピッチである必要はない。
"Sixth example of embodiment of prior invention"
FIG. 11 shows a spacer 7f of a sixth example of the embodiment of the prior invention. The spacer 7f has a pair of rim portions 12b, 12b each having an annular shape, and the outer surfaces in the axial direction of the pair of rim portions 12b, 12b are intermittently recessed in the axial direction with respect to the circumferential direction. Yes. In the illustrated example, each of the recesses 19 is formed in a substantially rectangular shape penetrating from the inner periphery to the outer periphery of the axially outer side surfaces of the rim portions 12b, 12b. In the illustrated example, the recesses 19 are arranged at an equal pitch in the circumferential direction, but it is not always necessary to have an equal pitch.

何れにしても、前記各凹部19、19の大きさ(周方向幅、軸方向深さ)は、例えば前記両リム部12b、12bの大きさ(直径、径方向厚さ、軸方向幅)に応じて決定し、前記各凹部19、19を形成した後の状態で、前記両リム部12b、12bに必要とされる強度及び剛性を確保できる範囲で、できるだけ大きく設定する事が、相手面との対向面積を狭くする事によるトルク損失の低減と、前記スペーサ7fの軽量化とを図る面から好ましい。例えば、前記各凹部19、19の周方向幅を、周方向に隣り合う凹部19、19同士の間に存在する凸部の周方向幅の1〜2倍程度とし、これら各凹部19、19の軸方向深さを、前記両リム部12b、12bの軸方向幅の1/3〜2/3程度に設定する事が好ましい。   In any case, the size (circumferential width, axial depth) of the recesses 19, 19 is, for example, the size (diameter, radial thickness, axial width) of the rim portions 12b, 12b. Accordingly, it is possible to set as large as possible within a range in which the strength and rigidity required for the two rim portions 12b and 12b can be secured in a state after the respective recesses 19 and 19 are formed. This is preferable from the viewpoint of reducing torque loss by reducing the facing area of the spacer and reducing the weight of the spacer 7f. For example, the circumferential width of each of the recesses 19 and 19 is set to about 1 to 2 times the circumferential width of the projections existing between the recesses 19 and 19 adjacent to each other in the circumferential direction. The axial depth is preferably set to about 1/3 to 2/3 of the axial width of the rim portions 12b, 12b.

又、前記各凹部19、19の形状としては、図示の様な矩形状に限らず、例えば部分円弧状、楕円状、三角形状等、各種形状を採用できる。又、図示の例では、周方向の位相に関して、前記各凹部19、19と各柱部13、13とを一致させているが、これら各凹部19、19と各柱部13、13との位相を半ピッチ分ずらせて、これら各凹部19、19の位相と各透孔部14、14の位相とを一致させても良い。更に、前記両リム部12b、12bの軸方向外側面に形成する前記各凹部19、19の数と、前記各柱部13、13(各透孔部14、14)の数とを異ならせても良い。
本例の構造は、先に説明した第1〜5例の構造と組み合わせて実施する事もできる。
その他の構成及び作用・効果に就いては、前述した第1〜5例と同様であるから、重複する説明は省略する。
Further, the shape of each of the recesses 19 and 19 is not limited to the rectangular shape as illustrated, and various shapes such as a partial arc shape, an elliptical shape, and a triangular shape can be employed. In the example shown in the figure, the recesses 19 and 19 and the pillars 13 and 13 are made to coincide with each other with respect to the phase in the circumferential direction, but the phases of the recesses 19 and 19 and the pillars 13 and 13 are the same. May be shifted by a half pitch so that the phase of each of the recesses 19 and 19 and the phase of each of the through holes 14 and 14 coincide with each other. Further, the number of the concave portions 19 and 19 formed on the outer side surfaces in the axial direction of the rim portions 12b and 12b is different from the number of the column portions 13 and 13 (the through-hole portions 14 and 14). Also good.
The structure of this example can also be implemented in combination with the structures of the first to fifth examples described above.
Since other configurations and operations / effects are the same as those in the first to fifth examples described above, redundant description is omitted.

「先発明の実施の形態の第7例」
図12は、先発明の実施の形態の第7例のスペーサ7gを示している。このスペーサ7gは、1対のリム部12c、12cを、それぞれ周方向に関して不連続な、欠円環状としている。即ち、これら両リム部12c、12cは、それぞれが部分円弧状である複数個ずつ(図示の例では6個ずつ)のリム素子20、20を、前記両リム部12c、12c同士の間で、周方向に関する位相を半ピッチ分ずらせて配置している。そして、前記両リム素子20、20の周方向両端縁同士を、それぞれ柱部13、13により連続させて、全体が円筒状で、展開した状態での形状がクランク状となる、前記スペーサ7gとしている。本例の構造では、周方向に隣り合う、前記各リム素子20、20同士の不連続部が、相手部材から離れる方向に凹ませた部分となる。
"Seventh example of the embodiment of the prior invention"
FIG. 12 shows a spacer 7g of the seventh example of the embodiment of the prior invention. The spacer 7g has a pair of rim portions 12c and 12c that are discontinuous in the circumferential direction. That is, the rim parts 12c, 12c are each a plurality of (six in the illustrated example) rim elements 20, 20 each having a partial arc shape, between the rim parts 12c, 12c. The phase in the circumferential direction is arranged by being shifted by a half pitch. As the spacer 7g, both end edges in the circumferential direction of the rim elements 20 and 20 are made continuous by the column parts 13 and 13, respectively, and the whole is cylindrical, and the shape in the unfolded state is crank-shaped. Yes. In the structure of this example, the discontinuous portions between the rim elements 20 and 20 that are adjacent to each other in the circumferential direction are portions that are recessed in a direction away from the counterpart member.

尚、前記不連続部は、前記スペーサ7gを、合成樹脂の射出成形により一体成形すると同時に形成する事が、材料の節約と加工の容易化との面から好ましい。但し、前記スペーサ7gを金属材料製とする場合には、前述の図5に示した従来構造の保持器7を構成するリム部12、12の一部を、後から削り取る事により形成する事もできる。何れにしても、前記不連続部を設けた分、前記スペーサ7gのうちで前記両リム部12c、12cの外周面及び軸方向外側面と、外輪軌道11及び保持器9、9又は各ニードル8、8の軸方向端面(図4参照)とが対向する面積を狭くできる。
本例の構造は、先に説明した第1〜6例の構造と組み合わせて実施する事もできる。
その他の構成及び作用・効果に就いては、前述した第1〜6例と同様であるから、重複する説明は省略する。
The discontinuous portion is preferably formed at the same time as the spacer 7g is integrally formed by injection molding of synthetic resin from the viewpoint of saving material and facilitating processing. However, when the spacer 7g is made of a metal material, a part of the rim portions 12 and 12 constituting the cage 7 having the conventional structure shown in FIG. it can. In any case, the outer peripheral surface and the axially outer surface of both the rim portions 12c and 12c, the outer ring raceway 11 and the cages 9 and 9 or the needles 8 in the spacer 7g are provided for the discontinuous portion. , 8 can be reduced in the area facing the axial end face (see FIG. 4).
The structure of this example can also be implemented in combination with the structures of the first to sixth examples described above.
Since other configurations and operations / effects are the same as those in the first to sixth examples described above, a duplicate description is omitted.

「先発明の実施の形態の第8例」
図13は、先発明の実施の形態の第8例のスペーサ7hを示している。このスペーサ7hは、前述の図5に示した従来構造に対して柱部13、13の数を少なく、周方向ピッチを大きくして、周方向に隣り合う柱部13、13同士の間に存在する透孔部14b、14bの開口面積を広くし、外輪軌道11(図4参照)と対向する外周面の面積を狭くしている。本例の構造では、前記各透孔部14b、14bの周方向両端部で、前記従来構造の透孔部14、14(図5参照)に比べて広くなった部分が、相手部材から離れる方向に凹ませた部分となる。
“Eighth Example of Embodiment of Prior Invention”
FIG. 13 shows the spacer 7h of the eighth example of the embodiment of the prior invention. This spacer 7h exists between the column portions 13 and 13 adjacent to each other in the circumferential direction by reducing the number of the column portions 13 and 13 and increasing the circumferential pitch with respect to the conventional structure shown in FIG. The opening areas of the through-hole portions 14b and 14b are widened, and the area of the outer peripheral surface facing the outer ring raceway 11 (see FIG. 4) is narrowed. In the structure of this example, at the circumferential end portions of the respective through-hole portions 14b, 14b, the portions that are wider than the through-hole portions 14, 14 of the conventional structure (see FIG. 5) are away from the mating member. It becomes the part dented in.

前記スペーサ7hを構成する前記各柱部13、13の数は、3本以上は必要であるが、このスペーサ7hの強度及び剛性を確保できる限り、少ない方が好ましい。又、前記各透孔部14b、14bの周方向幅は、前記各柱部13、13の周方向幅に比べて大きい程好ましいが、少なくとも、前記各透孔部14b、14bの周方向幅を前記各柱部13、13の周方向幅の2倍以上、好ましくは3倍以上確保する。この各透孔部14b、14bの周方向幅の上限は、これら各柱部13、13の数を3本以上とした上で、必要とする剛性を確保できる値に規定する。この条件を満たす限り、前記各透孔部14b、14bの周方向幅は大きい程好ましい。   The number of the pillar portions 13 and 13 constituting the spacer 7h is required to be three or more, but it is preferable that the number is smaller as long as the strength and rigidity of the spacer 7h can be secured. The circumferential width of each of the through holes 14b and 14b is preferably larger than the circumferential width of each of the pillars 13 and 13, but at least the circumferential width of each of the through holes 14b and 14b. Two or more times, preferably three times or more, the circumferential width of each of the pillars 13 and 13 is secured. The upper limit of the circumferential width of each of the through-hole portions 14b and 14b is defined as a value that can secure the required rigidity after setting the number of the column portions 13 and 13 to three or more. As long as this condition is satisfied, the circumferential width of each of the through holes 14b, 14b is preferably as large as possible.

尚、これら各幅広の透孔部14b、14bは、前記スペーサ7hを、合成樹脂の射出成形により一体成形すると同時に形成する事が、材料の節約と加工の容易化との面から好ましい。但し、前記スペーサ7hを金属材料製とする場合には、前述の図5に示した従来構造の保持器7を構成する柱部13、13のうちの一部(1本置き若しくは2本置き)の柱部13、13を、後から削り取る(間引く)事により形成する事もできる。
本例の構造は、先に説明した、第1〜7例の構造と組み合わせて実施する事もできる。
その他の構成及び作用・効果に就いては、前述した第1〜7例と同様であるから、重複する説明は省略する。
The wide through holes 14b and 14b are preferably formed at the same time as the spacer 7h is integrally formed by injection molding of synthetic resin from the viewpoint of saving materials and facilitating processing. However, when the spacer 7h is made of a metal material, a part (one or two) of the column parts 13 and 13 constituting the cage 7 having the conventional structure shown in FIG. The column portions 13 and 13 can be formed by scraping (thinning) later.
The structure of this example can also be implemented in combination with the structures of the first to seventh examples described above.
Since other configurations and operations / effects are the same as those in the first to seventh examples described above, a duplicate description is omitted.

「先発明の実施の形態の第9例」
図14は、先発明の実施の形態の第9例のスペーサ7iを示している。本例のスペーサ7iは、上述した第8例のスペーサ7hの構造を改良したもので、軸方向中間部に補強用リム部21を追加した如き構造を有する。即ち、幅広の透孔部14b、14bを軸方向に仕切る様に、各柱部13、13の軸方向中間部同士を連結する状態で、前記補強用リム部21を設けている。この補強用リム部21は、軸方向両端部に設けた1対のリム部12、12と同径で、これら両リム部12、12と同心である。本例の場合、前記補強用リム部21を設ける事により、前記各透孔部14b、14bの周方向幅を十分に大きくしても、前記スペーサ7iの強度及び剛性を十分に確保できる様にしている。
その他の構成及び作用・効果に就いては、他の形態と組み合わせ可能な点を含めて、上述した第8例と同様であるから、重複する説明は省略する。
"Ninth example of embodiment of prior invention"
FIG. 14 shows a spacer 7i of the ninth example of the embodiment of the prior invention. The spacer 7i of this example is an improvement of the structure of the spacer 7h of the eighth example described above, and has a structure in which a reinforcing rim portion 21 is added to the intermediate portion in the axial direction. That is, the reinforcing rim portion 21 is provided in a state in which the axial intermediate portions of the column portions 13 and 13 are connected to each other so as to partition the wide through-hole portions 14b and 14b in the axial direction. The reinforcing rim portion 21 has the same diameter as the pair of rim portions 12 and 12 provided at both end portions in the axial direction, and is concentric with both the rim portions 12 and 12. In the case of this example, the reinforcing rim portion 21 is provided so that the strength and rigidity of the spacer 7i can be sufficiently ensured even if the circumferential widths of the through-hole portions 14b and 14b are sufficiently large. ing.
Other configurations, operations, and effects are the same as those in the eighth example described above, including the points that can be combined with other forms, and thus redundant description is omitted.

「先発明の実施の形態の第10例」
図15は、先発明の実施の形態の第10例のスペーサ7jを示している。このスペーサ7jの場合には、1対のリム部12、12同士の間に配置した偶数本(図示の例では6本)の柱部13d、13eを、軸方向に対し傾斜させている。又、傾斜方向は、周方向に隣り合う柱部13d、13e同士の間で、互いに逆方向としている。この様に、これら各柱部13d、13eを傾斜させて、前記スペーサ7jの構造をトラス状とする事により、リム部12、12同士の間に作用する捻り方向及び軸方向の力に関する、前記スペーサ7jの強度及び剛性を、前述した第8例に比べて向上させている。
尚、この様な本例と上述した第9例の構造と組み合わせれば、前記スペーサ7jの強度及び剛性を、より一層向上させる事ができる。
その他の構成及び作用・効果に就いては、先に説明した第1〜7例の構造と組み合わせて実施できる事も含め、前述した第8例と同様であるから、重複する説明は省略する。
"Tenth example of the embodiment of the prior invention"
FIG. 15 shows the spacer 7j of the tenth example of the embodiment of the prior invention. In the case of the spacer 7j, an even number (six in the illustrated example) of column portions 13d and 13e disposed between the pair of rim portions 12 and 12 are inclined with respect to the axial direction. The inclination direction is opposite to each other between the column portions 13d and 13e adjacent to each other in the circumferential direction. In this way, by tilting each of the column portions 13d and 13e and making the structure of the spacer 7j into a truss shape, the twisting direction and the axial force acting between the rim portions 12 and 12 are described above. The strength and rigidity of the spacer 7j are improved compared to the eighth example described above.
In addition, when this example is combined with the structure of the ninth example described above, the strength and rigidity of the spacer 7j can be further improved.
Other configurations, operations, and effects are the same as those of the eighth example described above, including that they can be implemented in combination with the structures of the first to seventh examples described above, and thus redundant descriptions are omitted.

「先発明の実施の形態の第11例」
図16〜17は、先発明の実施の形態の第11例のスペーサ7kを示している。このスペーサ7kの場合、前述の図5に示した従来構造のスペーサ7に対して、各柱部13f、13fの径方向厚さを小さくしている。又、これら各柱部13f、13fの径方向内側面と、1対のリム部12、12の内周面とを単一円筒面上に位置させている。そして、各柱部13f、13fの径方向外側面の全体を、前記両リム部12、12の外周面よりも径方向内方に凹ませている。本例の構造では、前記各柱部13f、13fの径方向外側面が、相手部材から離れる方向に凹ませた部分となる。
前記各柱部13f、13fの径方向厚さを前記両リム部12、12の径方向厚さに比べて小さくする程度は、前記スペーサ7kの強度及び剛性を確保できる限り大きくする事が、このスペーサ7kの軽量化を図る面からは好ましい。相手面である外輪軌道11(図4参照)との摩擦抵抗を低く抑える面からは、各柱部13f、13fの径方向外側面を前記両リム部12、12の外周面よりも少しだけ(例えば0.5mm以上、好ましくは1mm以上)凹ませれば、当該部分に油膜が形成される事を防止して、前記摩擦抵抗を十分に低減できる。
尚、本例の構造は、保持器9、9又はニードル8、8(図4参照)の軸方向端面との摩擦抵抗を低減する面から先に説明した第5〜7例の構造と、軽量化を図る面から、先に説明した第5〜10例の構造と、それぞれ組み合わせて実施する事もできる。
その他の構成及び作用・効果に就いては、先に説明した第1〜10例と同様であるから、重複する説明は省略する。
"Eleventh example of the embodiment of the prior invention"
16 to 17 show an eleventh example spacer 7k according to the embodiment of the present invention. In the case of the spacer 7k, the thickness in the radial direction of each of the column portions 13f and 13f is made smaller than the spacer 7 having the conventional structure shown in FIG. Further, the radially inner side surfaces of these pillar portions 13f and 13f and the inner peripheral surfaces of the pair of rim portions 12 and 12 are positioned on a single cylindrical surface. And the whole radial direction outer side surface of each pillar part 13f and 13f is dented in the radial direction inner side rather than the outer peripheral surface of both the said rim | limb parts 12 and 12. FIG. In the structure of this example, the radially outer surface of each of the pillar portions 13f and 13f is a portion that is recessed in a direction away from the counterpart member.
The extent to which the radial thickness of each of the column portions 13f, 13f is smaller than the radial thickness of the rim portions 12, 12 can be increased as much as possible to ensure the strength and rigidity of the spacer 7k. This is preferable in terms of reducing the weight of the spacer 7k. From the surface where the frictional resistance with the outer ring raceway 11 (see FIG. 4) which is the mating surface is kept low, the radially outer surface of each of the column portions 13f and 13f is slightly smaller than the outer peripheral surface of both the rim portions 12 and 12 ( If it is recessed (for example, 0.5 mm or more, preferably 1 mm or more), it is possible to prevent the oil film from being formed on the portion and sufficiently reduce the frictional resistance.
The structure of this example is lighter than the structures of the fifth to seventh examples described above from the aspect of reducing the frictional resistance with the axial end surfaces of the cages 9 and 9 or needles 8 and 8 (see FIG. 4). From the aspect of achieving the above, the structures of the fifth to tenth examples described above can be combined with each other.
Since other configurations and operations / effects are the same as those of the first to tenth examples described above, a duplicate description is omitted.

先発明のラジアルニードル軸受用スペーサは、上述した様な構造を有し、回転支持装置の運転時に於けるトルク損失を低減させる等の効果を得られるが、強度及び剛性を確保しつつ、このトルク損失をより一層低減する面からは、改良の余地がある。即ち、先発明及び本発明の対象となるラジアルニードル軸受用スペーサは、回転支持装置の運転時に外周面と外輪軌道とが相対回転する可能性が大きい。この為、これら外周面と外輪軌道との擦れ合い部で油膜切れによる著しい摩耗が発生するのを防止すべく、この擦れ合い部に適切な油膜を存在させる必要がある。一方、先に説明した通り、この油膜の面積が広くなると、前記外周面と前記外輪軌道との相対回転時にこの油膜部分に大きな剪断抵抗が発生し、前記回転支持装置を構成する複列ラジアルニードル軸受の動トルク(トルク損失)が増大する。   The radial needle bearing spacer of the previous invention has the structure as described above, and can obtain an effect such as reducing torque loss during operation of the rotary support device. However, while ensuring strength and rigidity, this torque can be obtained. There is room for improvement in terms of further reducing the loss. That is, the radial needle bearing spacer which is the subject of the previous invention and the present invention has a high possibility that the outer peripheral surface and the outer ring raceway rotate relative to each other during operation of the rotary support device. For this reason, it is necessary to make an appropriate oil film exist in the rubbing portion in order to prevent the occurrence of significant wear due to the oil film breakage in the rubbing portion between the outer peripheral surface and the outer ring raceway. On the other hand, as described above, when the area of the oil film is increased, a large shear resistance is generated in the oil film portion at the time of relative rotation between the outer peripheral surface and the outer ring raceway, and the double row radial needle constituting the rotation support device. The dynamic torque (torque loss) of the bearing increases.

特開2005−16710号公報JP 2005-16710 A 特開2005−325992号公報JP 2005-325992 A 特開2008−101725号公報JP 2008-101725 A 特開2008−303992号公報JP 2008-303992 A 特開2009−115323号公報JP 2009-115323 A 特開2010−2029号公報JP 2010-2029 A

本発明は、上述の様な事情に鑑みて、その外周面と外輪軌道との擦れ合い部に適切な(面積が過大でない)油膜を存在させて、各部の摩耗を抑えつつ、複列ラジアルニードル軸受の動トルクを低く抑えられるラジアルニードル軸受用スペーサを実現すべく発明したものである。   In view of the circumstances as described above, the present invention has a double-row radial needle while suppressing an abrasion of each part by making an appropriate (non-excessive area) oil film in a frictional part between the outer peripheral surface and the outer ring raceway. This invention was invented to realize a radial needle bearing spacer that can keep the dynamic torque of the bearing low.

本発明のラジアルニードル軸受用スペーサは、内輪相当部材の外周面に設けられた円筒状の内輪軌道と、外輪相当部材の内周面に設けられた円筒状の外輪軌道との間に、軸方向に離隔した状態で設けられた1対のラジアルニードル軸受同士の間部分に設置される。
この様なラジアルニードル軸受用スペーサは、それぞれが円環状で、軸方向に離隔した状態で互いに同心に配置された1対のリム部と、これら両リム部同士の間の周方向複数箇所に、これら両リム部同士を連結する状態で設けられた複数本の柱部とを備える。
The radial needle bearing spacer of the present invention has an axial direction between a cylindrical inner ring raceway provided on the outer peripheral surface of the inner ring equivalent member and a cylindrical outer ring raceway provided on the inner peripheral surface of the outer ring equivalent member. It is installed in the part between a pair of radial needle bearings provided in a state separated from each other.
Such radial needle bearing spacers are each annular, a pair of rim portions arranged concentrically with each other in an axially separated state, and a plurality of circumferential directions between these rim portions, And a plurality of column portions provided in a state of connecting both the rim portions.

特に、本発明のラジアルニードル軸受用スペーサに於いては、少なくとも前記各柱部の表面のうちで、径方向に関して外側の側面である外径側面に、径方向に関して内方に凹んだ有底の径方向凹部を設けている。そして、これら各径方向凹部をそれぞれ全周で囲む部分を、これら各径方向凹部よりも径方向に関して外方に位置させている。
この様な本発明のラジアルニードル軸受用スペーサを実施する場合に、例えば請求項2に記載した発明の様に、前記各径方向凹部を前記各柱部の外径側面に、軸方向に形成する。そして、これら各径方向凹部の周方向両端部をこれら各柱部の周方向両端縁部により、同じく軸方向両端部を前記両リム部により、それぞれ仕切る。
或いは、請求項3に記載した発明の様に、前記各径方向凹部を、前記各柱部の外径側面に、これら各柱部毎に複数箇所ずつ形成された円形凹部とする。
In particular, in the radial needle bearing spacer of the present invention, at least the surface of each column portion has a bottomed bottom that is recessed inward in the radial direction on the outer diameter side that is the outer side in the radial direction. A radial recess is provided. And the part which surrounds each of these radial direction recessed parts in each perimeter is located outside in the radial direction rather than each of these radial direction recessed parts.
When implementing such a radial needle bearing spacer according to the present invention, for example, as in the invention described in claim 2, the radial recesses are formed on the outer diameter side surfaces of the column portions in the axial direction. . Then, both ends in the circumferential direction of the respective radial recesses are partitioned by both ends in the circumferential direction of the respective column portions, and both ends in the axial direction are similarly partitioned by the both rim portions.
Alternatively, as in the invention described in claim 3, each of the radial recesses is a circular recess formed on the outer diameter side surface of each of the column portions at a plurality of positions for each of the column portions.

又、上述の様な本発明のラジアルニードル軸受用スペーサを実施する場合に好ましくは、請求項4に記載した発明の様に、前記両リム部の軸方向両側面のうちで、互いに反対側の側面である軸方向外側面に、軸方向に関して内方に凹入した軸方向凹部を形成する。
この様な請求項4に記載した発明を実施する場合に、例えば請求項5に記載した発明の様に、前記軸方向凹部を、前記両リム部の外側面の径方向中間部に、全周に亙って形成された環状凹部とする。
或いは、請求項6に記載した発明の様に、前記軸方向凹部を、前記両リム部の外側面に、これら両リム部毎に複数箇所ずつ形成された円形凹部とする。
Further, when the radial needle bearing spacer of the present invention as described above is implemented, it is preferable that, as in the invention described in claim 4, the axially opposite side surfaces of the two rim portions are opposite to each other. An axial recess that is recessed inward in the axial direction is formed on the axially outer side surface that is a side surface.
When carrying out the invention described in claim 4, for example, as in the invention described in claim 5, the axial concave portion is placed around the entire circumference in the radial intermediate portion of the outer surfaces of the rim portions. An annular recess formed over the area.
Or like the invention described in Claim 6, the said axial direction recessed part is made into the circular recessed part formed in the outer surface of the said both rim | limb part by several places for each of these rim | limb parts.

上述の様に構成する本発明のラジアルニードル軸受用スペーサによれば、外周面と内輪軌道との擦れ合い部に適切な油膜を存在させて、各部の摩耗を抑えつつ、複列ラジアルニードル軸受の動トルクを低く抑えられる。
即ち、本発明のラジアルニードル軸受用スペーサを組み込んだ複列ラジアルニードル軸受の運転時に、このラジアルニードル軸受用スペーサを構成する各柱部の外径側面に形成した、各径方向凹部内に、潤滑油が貯溜される。そして、この潤滑油が、前記ラジアルニードル軸受用スペーサと外輪相当部材との相対回転に伴って、このラジアルニードル軸受用スペーサの外周面と外輪軌道との間に入り込み、当該部分に油膜を形成する。この為、これら外周面と外輪軌道との擦れ合い部で油膜切れによる著しい摩耗が発生するのを防止できる。一方、前記各径方向凹部の底面と前記外輪軌道との距離は十分に確保できるので、これら各径方向凹部内に貯溜された潤滑油に関しては、前記相対回転時にも、大きな剪断抵抗が発生する事はない。この結果、上述の様に、各部の摩耗を抑えつつ動トルクを低く抑えられる。
更に、請求項4に記載した発明によれば、前記ラジアルニードル軸受用スペーサの軸方向端面と、ラジアルニードル軸受を構成する保持器若しくは各ニードルの軸方向端面との潤滑状態も良好にできる。
According to the radial needle bearing spacer of the present invention configured as described above, an appropriate oil film is present in the frictional portion between the outer peripheral surface and the inner ring raceway, and the wear of each part is suppressed, while the double row radial needle bearing is Dynamic torque can be kept low.
That is, during operation of the double-row radial needle bearing incorporating the radial needle bearing spacer of the present invention, lubrication is provided in each radial recess formed on the outer diameter side surface of each column portion constituting the radial needle bearing spacer. Oil is stored. Then, the lubricating oil enters between the outer peripheral surface of the radial needle bearing spacer and the outer ring raceway with the relative rotation of the radial needle bearing spacer and the outer ring equivalent member, and forms an oil film in the portion. . For this reason, it is possible to prevent the occurrence of significant wear due to oil film breakage at the rubbing portion between the outer peripheral surface and the outer ring raceway. On the other hand, since the distance between the bottom surface of each of the radial recesses and the outer ring raceway can be sufficiently ensured, the lubricating oil stored in each of the radial recesses generates a large shear resistance even during the relative rotation. There is nothing. As a result, as described above, the dynamic torque can be kept low while suppressing the wear of each part.
Furthermore, according to the invention described in claim 4, the lubrication state between the axial end surface of the radial needle bearing spacer and the axial end surface of the cage or each needle constituting the radial needle bearing can be improved.

本発明の実施の形態の第1例を示す、ラジアルニードル軸受用スペーサの斜視図。The perspective view of the spacer for radial needle bearings which shows the 1st example of embodiment of this invention. 同第2例を示す斜視図。The perspective view which shows the 2nd example. 同第3例を示す斜視図。The perspective view which shows the 3rd example. 本発明の対象となるスペーサを組み込んだ、複列ラジアルニードル軸受ユニットによる回転支持装置の1例を示す断面図。Sectional drawing which shows an example of the rotation support apparatus by the double row radial needle bearing unit incorporating the spacer used as the object of this invention. ラジアルニードル軸受用スペーサの従来構造の1例を示す斜視図。The perspective view which shows an example of the conventional structure of the spacer for radial needle bearings. 先発明に係るラジアルニードル軸受用スペーサの第1例を示す斜視図。The perspective view which shows the 1st example of the spacer for radial needle bearings concerning a prior invention. 同第2例を示す斜視図。The perspective view which shows the 2nd example. 同第3例を示す斜視図。The perspective view which shows the 3rd example. 同第4例を示す斜視図。The perspective view which shows the 4th example. 同第5例を示す斜視図。The perspective view which shows the 5th example. 同第6例を示す斜視図。The perspective view which shows the 6th example. 同第7例を示す斜視図。The perspective view which shows the 7th example. 同第8例を示す斜視図。The perspective view which shows the 8th example. 同第9例を示す斜視図。The perspective view which shows the 9th example. 同第10例を示す斜視図。The perspective view which shows the 10th example. 同第11例を示す斜視図。The perspective view which shows the 11th example. 図16のX−X断面図。XX sectional drawing of FIG.

[実施の形態の第1例]
図1は、請求項1、2に対応する、本発明の実施の形態の第1例を示している。尚、本例のスペーサ7mの特徴は、各柱部13g、13gの外径側面に径方向に関して内方に凹んだ有底の径方向凹部22、22を設けて、前記スペーサ7mと、遊星歯車4(図4参照)等の外径側部材との相対回転を円滑に行わせる点にある。前記各径方向凹部22、22を除く、前記スペーサ7mの基本構成に関しては、前述の図5に記載した従来構造のスペーサ7と同様であるから、重複する説明は省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。尚、前記スペーサ7mとして採用可能な諸元(寸法、材質、表面粗さ)に関しては、前述した先発明の場合と同様である。
[First example of embodiment]
FIG. 1 shows a first example of an embodiment of the present invention corresponding to claims 1 and 2. The spacer 7m of this example is characterized by providing bottomed radial recesses 22 and 22 that are recessed inward in the radial direction on the outer diameter side surfaces of the pillars 13g and 13g, and the spacer 7m and the planetary gear. 4 (refer to FIG. 4) and the like to smoothly rotate relative to the outer diameter side member. Since the basic configuration of the spacer 7m excluding the radial recesses 22 and 22 is the same as that of the spacer 7 having the conventional structure shown in FIG. 5 described above, the overlapping description will be omitted or simplified. The description will focus on the features of the example. The specifications (dimensions, material, and surface roughness) that can be used as the spacer 7m are the same as those in the above-described prior invention.

本例の場合、前記各柱部13g、13gの内径側面と1対のリム部12、12の内周面とを単一円筒面上に、これら各柱部13g、13gの外径側面の周方向両端部と前記両リム部12、12の外周面とを単一円筒面上に、それぞれ位置させている。そして、前記各柱部13g、13gの周方向中間部に前記各径方向凹部22、22を、それぞれ形成している。本例の場合、これら各径方向凹部22、22は、前記各柱部13g、13gの全長に亙り形成している。又、前記スペーサ7mの中心軸に対し直交する仮想平面に関する、前記各径方向凹部22、22の断面形状(底面の輪郭)は、全長に亙り、同じ複合円弧としている。この複合円弧は、周方向に関して幅方向中央部で径方向外側が凹となり、同じく幅方向両端部で凸となっている。又、これら各円弧の端部同士は滑らかに連続しており、前記各径方向凹部22、22の周方向両端縁と前記各柱部13g、13gの周方向両端部外周面とも、滑らかに連続している。以上の構成により、前記各径方向凹部22、22の周方向両端部を前記各柱部13g、13gの周方向両端部により、同じく軸方向両端部を前記両リム部12、12により、それぞれ仕切っている。   In the case of this example, the inner diameter side surface of each of the column portions 13g and 13g and the inner peripheral surface of the pair of rim portions 12 and 12 are arranged on a single cylindrical surface, and the circumference of the outer diameter side surface of each of the column portions 13g and 13g. Both end portions in the direction and the outer peripheral surfaces of the rim portions 12, 12 are respectively positioned on a single cylindrical surface. And each said radial direction recessed part 22 and 22 is each formed in the circumferential direction intermediate part of each said column part 13g, 13g. In the case of this example, each of these radial recesses 22 and 22 is formed over the entire length of each of the column portions 13g and 13g. The cross-sectional shapes (bottom surfaces of the bottom surfaces) of the radial recesses 22 and 22 with respect to a virtual plane orthogonal to the central axis of the spacer 7m are the same composite arc over the entire length. This composite arc has a concave portion on the radially outer side at the center in the width direction with respect to the circumferential direction, and is also convex at both ends in the width direction. Further, the ends of the respective arcs are smoothly continuous with each other, and both the circumferential edges of the radial recesses 22 and 22 and the outer circumferential surfaces of the circumferential ends of the pillars 13g and 13g are smoothly continuous. doing. With the above configuration, both circumferential ends of the radial recesses 22 and 22 are partitioned by the circumferential ends of the column portions 13g and 13g, and both axial ends are similarly partitioned by the rim portions 12 and 12, respectively. ing.

上述の様に構成する本例のスペーサ7mを、前述の図4に示す様な回転支持装置1に組み込んだ場合、前記各柱部13g、13gの外径側面と外輪軌道11とが近接対向する。又、前記各径方向凹部22、22内には、給油通路15からこの外輪軌道11の内径側に送り込まれる潤滑油が貯溜される。この状態で前記スペーサ7mとこの外輪軌道11とが回転方向に相対変位すると、前記各径方向凹部22、22内に貯溜された潤滑油が、前記スペーサ7mの外周面と前記外輪軌道11との間に入り込んで、当該部分に油膜を形成する。この為、これら外周面と外輪軌道11との擦れ合い部で油膜切れによる著しい摩耗が発生するのを防止できる。一方、前記各径方向凹部22、22の底面と前記外輪軌道11との距離は、径方向に関して十分に確保できるので、これら各径方向凹部22、22内に貯溜された潤滑油に関しては、前記相対回転時にも、大きな剪断抵抗が発生する事はない。この結果、上述の様に、各部の摩耗を抑えつつ、動トルクを低く抑えられる。   When the spacer 7m of the present example configured as described above is incorporated in the rotation support device 1 as shown in FIG. 4 described above, the outer diameter side surfaces of the pillar portions 13g and 13g and the outer ring raceway 11 face each other. . In each of the radial recesses 22, 22, lubricating oil that is fed from the oil supply passage 15 to the inner diameter side of the outer ring raceway 11 is stored. In this state, when the spacer 7m and the outer ring raceway 11 are relatively displaced in the rotational direction, the lubricating oil stored in the radial recesses 22 and 22 is caused between the outer peripheral surface of the spacer 7m and the outer ring raceway 11. The oil film is formed in the part. For this reason, it is possible to prevent the occurrence of significant wear due to the oil film breakage at the rubbing portion between the outer peripheral surface and the outer ring raceway 11. On the other hand, since the distance between the bottom surface of each of the radial recesses 22 and 22 and the outer ring raceway 11 can be sufficiently secured in the radial direction, the lubricating oil stored in each of these radial recesses 22 and 22 is Even during relative rotation, a large shear resistance does not occur. As a result, as described above, the dynamic torque can be kept low while suppressing the wear of each part.

前記剪断抵抗を低く抑える為に、前記各径方向凹部22、22の径方向深さは十分に(少なくとも0.5mm以上、好ましくは1mm以上)確保する必要がある。この径方向深さを大きくする分、前記各柱部13g、13gの周方向中央部の径方向厚さは小さくなるが、周方向両端部の径方向厚さが小さくなる事はない。従って、前記各柱部13g、13gの断面係数を十分に確保できて、これら各柱部13g、13gを含む、前記スペーサ7mの強度及び剛性を十分に確保できる。
尚、本例の構造は、前述の先発明の実施の形態の第5〜10例と組み合わせて実施する事もできる。
その他の部分の構成及び作用は、先に説明した先発明と同様であるから、重複する説明は省略する。
In order to keep the shear resistance low, it is necessary to ensure a sufficient radial depth (at least 0.5 mm or more, preferably 1 mm or more) of the radial recesses 22 and 22. As the radial depth is increased, the radial thickness of the central portion in the circumferential direction of each of the column portions 13g and 13g is reduced, but the radial thickness at both ends in the circumferential direction is not reduced. Accordingly, the section modulus of each of the pillar portions 13g and 13g can be sufficiently secured, and the strength and rigidity of the spacer 7m including these pillar portions 13g and 13g can be sufficiently secured.
In addition, the structure of this example can also be implemented in combination with the 5th to 10th examples of the above-described embodiment of the present invention.
Since the configuration and operation of the other parts are the same as those of the previous invention described above, redundant description will be omitted.

[実施の形態の第2例]
図2は、請求項1、2、4、5に対応する、本発明の実施の形態の第2例を示している。本例のスペーサ7nの場合には、軸方向両端部に設けた1対のリム部12d、12dの軸方向外側面の径方向中間部に環状凹部23を、全周に亙って形成している。この様な環状凹部23を備えた本例のスペーサ7nを、前述の図4に示す様な回転支持装置1に組み込んだ場合、前記両リム部12d、12dの軸方向外側面と保持器9、9又は各ニードル8、8の軸方向端面とが近接対向する。又、前記両環状凹部23内には、給油通路15から外輪軌道11の内径側に送り込まれる潤滑油が貯溜される。
[Second Example of Embodiment]
FIG. 2 shows a second example of an embodiment of the present invention corresponding to claims 1, 2, 4, and 5. In the case of the spacer 7n of this example, an annular recess 23 is formed over the entire circumference in the radial intermediate portion of the axially outer side surface of the pair of rim portions 12d, 12d provided at both axial end portions. Yes. When the spacer 7n of this example having such an annular recess 23 is incorporated in the rotary support device 1 as shown in FIG. 4 described above, the axially outer side surfaces of the rim portions 12d and 12d and the cage 9, 9 or the axial end surfaces of the needles 8 and 8 are close to each other. Further, in both the annular recesses 23, lubricating oil fed from the oil supply passage 15 to the inner diameter side of the outer ring raceway 11 is stored.

この状態で前記スペーサ7nと前記両保持器9、9又は前記各ニードル8、8とが周方向に相対変位すると、前記両環状凹部23内に貯溜された潤滑油が、前記スペーサ7nと前記両保持器9、9又は前記各ニードル8、8の軸方向端面同士の間に入り込んで、当該部分に油膜を形成する。この為、これらスペーサ7nと両保持器9、9又は各ニードル8、8との擦れ合い部で油膜切れによる著しい摩耗が発生するのを防止できる。一方、前記両環状凹部23の底面と前記両保持器9、9又は前記各ニードル8、8の軸方向端面との距離は、軸方向に関して十分に確保できるので、前記両環状凹部23内に貯溜された潤滑油に関しては、前記相対回転時にも、大きな剪断抵抗が発生する事はない。この結果、上述の様に、各部の摩耗を抑えつつ、動トルクを低く抑えられる。尚、前記両リム部12d、12dの径方向厚さが十分に大きければ、これら両リム部12d、12dの軸方向外側面に複数ずつの環状凹部を、同心円状に形成する事もできる。
その他の部分の構成及び作用は、先発明構造との組み合わせ可能性を含めて、上述した実施の形態の第1例と同様であるから、同等部分には同一符号を付して、重複する説明を省略する。
In this state, when the spacer 7n and the cages 9 and 9 or the needles 8 and 8 are relatively displaced in the circumferential direction, the lubricating oil stored in the annular recesses 23 is transferred to the spacer 7n and the both The cages 9 and 9 or the needles 8 and 8 enter between the axial end surfaces to form an oil film in the portions. For this reason, it is possible to prevent the occurrence of significant wear due to oil film breakage at the rubbing portion between the spacers 7n and the retainers 9, 9 or the needles 8, 8. On the other hand, since the distance between the bottom surfaces of the annular recesses 23 and the axial end surfaces of the cages 9 and 9 or the needles 8 and 8 can be sufficiently secured in the axial direction, the reservoirs are stored in the annular recesses 23. With respect to the lubricating oil, no great shear resistance is generated even during the relative rotation. As a result, as described above, the dynamic torque can be kept low while suppressing the wear of each part. If the rim portions 12d and 12d are sufficiently thick in the radial direction, a plurality of annular recesses can be formed concentrically on the outer surfaces of the rim portions 12d and 12d in the axial direction.
Since the configuration and operation of the other parts are the same as those in the first example of the above-described embodiment, including the possibility of combination with the structure of the previous invention, the same parts are denoted by the same reference numerals, and redundant description is given. Is omitted.

[実施の形態の第3例]
図3は、請求項1、3、4、6に対応する、本発明の実施の形態の第3例を示している。本例のスペーサ7pの場合には、各柱部13、13の外径側面に、それぞれが各径方向凹部である円形凹部24、24を、これら各柱部13、13毎に複数箇所ずつ形成している。又、前記スペーサ7pの軸方向両端部に形成した1対のリム部12、12の軸方向外側面に、それぞれが軸方向凹部である円形凹部25、25を、これら両リム部12、12毎に複数箇所ずつ形成している。これら各円形凹部24、25は、それぞれ部分球状の凹部である。この様な各円形凹部24、25に関しても、上述した実施の形態の第2例に於ける軸方向凹部22、22及び環状凹部23と同様に機能して、各部の摩耗を抑えつつ、動トルクを低く抑える事に寄与する。
その他の部分の構成及び作用は、先発明構造との組み合わせ可能性を含めて、上述した実施の形態の第2例と同様であるから、重複する説明は省略する。
[Third example of embodiment]
FIG. 3 shows a third example of an embodiment of the present invention corresponding to claims 1, 3, 4, and 6. In the case of the spacer 7p of this example, a plurality of circular recesses 24, 24, each being a recess in the radial direction, are formed on the outer diameter side surfaces of the pillars 13, 13, respectively, for each of the pillars 13, 13. doing. In addition, circular recesses 25 and 25, each of which is an axial recess, are formed on the axially outer side surfaces of the pair of rim portions 12 and 12 formed at both axial ends of the spacer 7p. Are formed at multiple locations. Each of these circular recesses 24 and 25 is a partially spherical recess. Such circular recesses 24 and 25 also function in the same manner as the axial recesses 22 and 22 and the annular recess 23 in the second example of the embodiment described above, and suppress the wear of each part, while reducing the dynamic torque. It contributes to keeping low.
Since the configuration and operation of the other parts are the same as those of the second example of the above-described embodiment, including the possibility of combination with the structure of the previous invention, overlapping description will be omitted.

本発明のラジアルニードル軸受用スペーサは、各種機械装置の回転支持部を構成するラジアルニードル軸受用として利用できる。遊星歯車装置を構成する遊星歯車の回転支持部に適用する場合に、自動車用自動変速機に限らない事は勿論、遊星歯車以外の回転部材の回転支持部にも適用できる。   The spacer for radial needle bearings of the present invention can be used for a radial needle bearing constituting a rotation support part of various mechanical devices. When applied to the rotation support portion of the planetary gear constituting the planetary gear device, the invention is not limited to the automatic transmission for automobiles, and can be applied to the rotation support portion of a rotation member other than the planetary gear.

又、本発明の構造と、前述した先発明に係る構造とは、適宜組み合わせて実施する事もできる。例えば、図3に示した本発明の実施の形態の第3例の如く、円形凹部を設ける構造は、前述した先発明の実施の形態の第1〜11例の何れとも組み合わせて実施できる。又、図1、2に示した、前記各柱部の外径側面に径方向凹部を軸方向に形成する構造は、前述した先発明の実施の形態の各例のうち、図10〜15に示した第5〜11例と、そのまま組み合わせて実施できる。又、図6〜9に示した第1〜4例に関しても、柱部のうちで周方向幅が広い部分に前記径方向凹部を形成すれば、組み合わせ実施できる。更に、図2に示した、両リム部の外側面に環状凹部を形成する構造は、前述した先発明の実施の形態の各例のうち、図10〜12に示した第5〜7例以外と組み合わせて実施できる。   In addition, the structure of the present invention and the structure according to the previous invention can be combined as appropriate. For example, as in the third example of the embodiment of the present invention shown in FIG. 3, the structure in which the circular concave portion is provided can be implemented in combination with any of the first to eleventh examples of the above-described embodiment of the present invention. The structure shown in FIGS. 1 and 2 in which the radial recesses are formed in the axial direction on the outer diameter side surfaces of the pillars is shown in FIGS. It can be implemented in combination with the fifth to eleventh examples shown. Also, the first to fourth examples shown in FIGS. 6 to 9 can be combined and implemented if the radial recesses are formed in a portion having a large circumferential width in the column portion. Further, the structure shown in FIG. 2 in which the annular recesses are formed on the outer side surfaces of both rims is not the fifth to seventh examples shown in FIGS. Can be implemented in combination.

1 回転支持装置
2 キャリア
3 遊星軸
4 遊星歯車
5 複列ラジアルニードル軸受ユニット
6 ラジアルニードル軸受
7、7a〜7p スペーサ
8 ニードル
9 保持器
10 内輪軌道
11 外輪軌道
12、12a リム部
13、13a〜13g 柱部
14、14a、14b 透孔部
15 給油通路
16、16a 凹部
17 傾斜面部
18 平坦面
19 凹部
20 リム素子
21 補強用リム部
22 径方向凹部
23 環状凹部
24 円形凹部
25 円形凹部
DESCRIPTION OF SYMBOLS 1 Rotation support apparatus 2 Carrier 3 Planetary shaft 4 Planetary gear 5 Double row radial needle bearing unit 6 Radial needle bearing 7, 7a-7p Spacer 8 Needle 9 Cage 10 Inner ring track 11 Outer ring track 12, 12a Rim part 13, 13a-13g Pillar part 14, 14a, 14b Through-hole part 15 Oil supply passage 16, 16a Concave part 17 Inclined surface part 18 Flat surface 19 Concave part 20 Rim element 21 Reinforcing rim part 22 Radial concave part 23 Annular concave part 24 Circular concave part 25 Circular concave part

Claims (6)

内輪相当部材の外周面に設けられた円筒状の内輪軌道と、外輪相当部材の内周面に設けられた円筒状の外輪軌道との間に、軸方向に離隔した状態で設けられた1対のラジアルニードル軸受同士の間部分に設置される、
それぞれが円環状で、軸方向に離隔した状態で互いに同心に配置された1対のリム部と、これら両リム部同士の間の周方向複数箇所に、これら両リム部同士を連結する状態で設けられた複数本の柱部とを備えたラジアルニードル軸受用スペーサに於いて、
少なくともこれら各柱部の表面のうちで、径方向に関して外側の側面である外径側面に、径方向に関して内方に凹んだ有底の径方向凹部を設け、これら各径方向凹部をそれぞれの全周で囲む部分を、これら各径方向凹部よりも径方向に関して外方に位置させた事を特徴とするラジアルニードル軸受用スペーサ。
A pair provided in an axially separated state between a cylindrical inner ring raceway provided on the outer peripheral surface of the inner ring equivalent member and a cylindrical outer ring raceway provided on the inner peripheral surface of the outer ring equivalent member. Of radial needle bearings,
In a state in which each rim portion is connected to a pair of rim portions arranged concentrically with each other in an annular shape and spaced apart in the axial direction, and a plurality of circumferential directions between these rim portions. In a radial needle bearing spacer provided with a plurality of provided pillars,
At least the surface of each column portion is provided with a bottomed radial concave portion that is recessed inward in the radial direction on the outer radial side surface that is the outer side surface in the radial direction, A radial needle bearing spacer characterized in that a portion surrounded by a circumference is positioned outward in the radial direction with respect to each of the radial recesses.
前記各径方向凹部が前記各柱部の外径側面に、軸方向に形成されており、これら各径方向凹部の周方向両端部がこれら各柱部の周方向両端縁部により、同じく軸方向両端部が前記両リム部により、それぞれ仕切られている、請求項1に記載したラジアルニードル軸受用スペーサ。   The respective radial recesses are formed in the axial direction on the outer diameter side surfaces of the respective column parts, and both circumferential ends of the respective radial recesses are also axially formed by the circumferential end edges of the respective column parts. The radial needle bearing spacer according to claim 1, wherein both end portions are respectively partitioned by the both rim portions. 前記各径方向凹部が前記各柱部の外径側面に、これら各柱部毎に複数箇所ずつ形成された円形凹部である、請求項1に記載したラジアルニードル軸受用スペーサ。   The radial needle bearing spacer according to claim 1, wherein each of the radial recesses is a circular recess formed on the outer diameter side surface of each of the column portions at a plurality of locations for each of the column portions. 前記両リム部の軸方向両側面のうちで、互いに反対側の側面である軸方向外側面に、軸方向に関して内方に凹入した軸方向凹部を形成している、請求項1〜3のうちの何れか1項に記載したラジアルニードル軸受用スペーサ。   The axial direction recessed part recessed inward with respect to the axial direction is formed in the axial direction outer side surface which is a mutually opposite side surface among the axial direction both sides | surfaces of both the said rim | limb parts, The Claims 1-3 The radial needle bearing spacer described in any one of the above. 前記軸方向凹部が、前記両リム部の外側面の径方向中間部に、全周に亙って形成された環状凹部である、請求項4に記載したラジアルニードル軸受用スペーサ。   The radial needle bearing spacer according to claim 4, wherein the axial recess is an annular recess formed over the entire circumference in a radially intermediate portion of the outer surfaces of the two rim portions. 前記軸方向凹部が、前記両リム部の外側面に、これら両リム部毎に複数箇所ずつ形成された円形凹部である、請求項4に記載したラジアルニードル軸受用スペーサ。   The radial needle bearing spacer according to claim 4, wherein the axial recess is a circular recess formed on the outer surface of each of the rim portions at a plurality of locations for each of the rim portions.
JP2011246179A 2010-11-26 2011-11-10 Spacer for radial needle bearing Active JP5821548B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011246179A JP5821548B2 (en) 2011-11-10 2011-11-10 Spacer for radial needle bearing
KR1020127007682A KR101389164B1 (en) 2010-11-26 2011-11-25 Spacer for a radial needle roller bearing
CN2011800034943A CN102639885A (en) 2010-11-26 2011-11-25 Spacer for radial needle bearing
EP11826107.2A EP2660486A4 (en) 2010-11-26 2011-11-25 Spacer for radial needle bearing
US13/498,065 US20130004111A1 (en) 2010-11-26 2011-11-25 Spacer for Radial Needle Roller Bearing
PCT/JP2011/077171 WO2012070642A1 (en) 2010-11-26 2011-11-25 Spacer for radial needle bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011246179A JP5821548B2 (en) 2011-11-10 2011-11-10 Spacer for radial needle bearing

Publications (2)

Publication Number Publication Date
JP2013104431A JP2013104431A (en) 2013-05-30
JP5821548B2 true JP5821548B2 (en) 2015-11-24

Family

ID=48624154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011246179A Active JP5821548B2 (en) 2010-11-26 2011-11-10 Spacer for radial needle bearing

Country Status (1)

Country Link
JP (1) JP5821548B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019207093A1 (en) * 2019-05-16 2020-11-19 Zf Friedrichshafen Ag Hydrodynamic support of a bearing cage

Also Published As

Publication number Publication date
JP2013104431A (en) 2013-05-30

Similar Documents

Publication Publication Date Title
WO2012070642A1 (en) Spacer for radial needle bearing
KR102612494B1 (en) Eccentric oscillation type speed reducer
JP2008196583A (en) Tapered roller bearing for planetary roller
WO2016132983A1 (en) Tapered roller bearing
JP4661424B2 (en) Rotation support
JP5821548B2 (en) Spacer for radial needle bearing
JP2009047294A (en) Roller bearing for reduction gear
JP2010255778A (en) Radial needle bearing
JP5012438B2 (en) Needle roller bearing
JP5636887B2 (en) Tandem angular contact ball bearings
JP5927773B2 (en) Tandem angular contact ball bearings
JP5909918B2 (en) Roller bearing cage
JP2017180557A (en) Transmission device
JP2008045597A (en) Tapered roller bearing and pilot portion shaft supporting structure
JP4545122B2 (en) Roller bearing
WO2017043425A1 (en) Rolling bearing
JP5909893B2 (en) Radial needle bearing
JP6269021B2 (en) Radial roller bearing cage
WO2017170587A1 (en) Gearing
JP2013061040A (en) Self-aligning rolling bearing
JP2006022824A (en) Tapered roller bearing for differential
JP5803234B2 (en) Tandem angular contact ball bearings
JPH08200375A (en) Cage for roller bearing
JP2010060008A (en) Roller bearing of planetary gear mechanism
JP2010249164A (en) Railway vehicle drive unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150921

R150 Certificate of patent or registration of utility model

Ref document number: 5821548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150