JP2008045597A - Tapered roller bearing and pilot portion shaft supporting structure - Google Patents

Tapered roller bearing and pilot portion shaft supporting structure Download PDF

Info

Publication number
JP2008045597A
JP2008045597A JP2006219553A JP2006219553A JP2008045597A JP 2008045597 A JP2008045597 A JP 2008045597A JP 2006219553 A JP2006219553 A JP 2006219553A JP 2006219553 A JP2006219553 A JP 2006219553A JP 2008045597 A JP2008045597 A JP 2008045597A
Authority
JP
Japan
Prior art keywords
roller
small
tapered
rollers
tapered roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006219553A
Other languages
Japanese (ja)
Inventor
Yasuhiro Uehori
泰裕 上堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006219553A priority Critical patent/JP2008045597A/en
Publication of JP2008045597A publication Critical patent/JP2008045597A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • F16C33/36Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces
    • F16C33/366Tapered rollers, i.e. rollers generally shaped as truncated cones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/48Cages for rollers or needles for multiple rows of rollers or needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/54Cages for rollers or needles made from wire, strips, or sheet metal
    • F16C33/542Cages for rollers or needles made from wire, strips, or sheet metal made from sheet metal
    • F16C33/543Cages for rollers or needles made from wire, strips, or sheet metal made from sheet metal from a single part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6696Special parts or details in view of lubrication with solids as lubricant, e.g. dry coatings, powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/80Pitch circle diameters [PCD]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tapered roller bearing applicable to a pilot portion of a transmission, reducing sliding resistance when there is a self-rotating speed difference between the small diameter side and the large diameter side of a roller, and reducing torque loss due to the flowing resistance of lubricating oil while utilizing the skew preventing property of the roller-split tapered roller bearing. <P>SOLUTION: In pockets 4a provided at a plurality of circumferential positions on a cage 4, the plurality of rollers 3A, 3B are arranged side by side in the axial direction. The plurality of rollers 3A, 3B arranged side by side in the axial direction have outer peripheral faces which are tapered faces different in diameter to approximately form a common virtual tapered face. A small end face 3Ab of the roller 3A on the large diameter side or a large end face 3Ba of the roller 3B on the small diameter side is spherical, and it is made at its self-rotation axial center in point contact with the large end face 3Ba of the roller 3B on the small diameter side or the small diameter face 3Ab of the roller 3A on the large diameter side. A molybdenum-disulfide coating film is formed on the surface of each of the rollers 3A, 3B. In each of the pockets 4a of the cage 4, a cutout is provided at a columnar portion 4d on the narrow side. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、各種の機器に用いられ、特に潤滑油が外部から流入する部位の用途に好適な円すいころ軸受、およびこの軸受を装備した自動車のトランスミッションのパイロット部軸支持構造に関する。   The present invention relates to a tapered roller bearing that is used in various devices and that is particularly suitable for use in a region where lubricating oil flows from the outside, and a pilot part shaft support structure for an automobile transmission equipped with the bearing.

自動車のトランスミッションパイロット部軸支持用円すいころ軸受は、トランスミッションの構造上の制約から、ころが細長い形状となっており、また、使用条件としては、ミスアライメントが大きく、外輪軌道面に相当する部分がギヤの内径面となっている。そのため、ころのスキューに起因した耐久性低下、例えば、ころの大端面と内輪の大鍔面との接触による所謂大鍔面のかじりや焼き付き等が発生することがある。特許文献1には、このような問題点を解消し得る円すいころ軸受が開示されている。   Tapered roller bearings for supporting the transmission pilot section of automobiles have elongated rollers due to structural limitations of the transmission, and as a condition of use, misalignment is large and there is a portion corresponding to the outer ring raceway surface. It is the inner diameter surface of the gear. For this reason, durability deterioration due to roller skew, for example, so-called large collar surface seizure or seizure due to contact between the large end surface of the roller and the large collar surface of the inner ring may occur. Patent Document 1 discloses a tapered roller bearing capable of solving such problems.

この特許文献1に開示された円すいころ軸受は、各円すいころを長さ方向に並ぶ複数個の分割円すいころに分割し、これら分割円すいころを保持器の円周方向の複数個所に形成されたポケットに保持している。内輪および外輪の軌道面は、各分割ころに対応する軸方向部分間に渡って連続した一つの円すい状面としている。このような構成によって、断面高さを増大させることなく定格荷重を確保しながら、スキューの発生を抑え、かつミスアライメントの発生などでころと軌道面の接触位置が小径側に寄ったときでもスキューの影響が生じ難く、軸受寿命を向上させることができる。そして、この円すいころ軸受をトランスミッションパイロット部軸支持用の軸受に適用すると、パイロット部軸受の軸受寿命が向上する。   In the tapered roller bearing disclosed in Patent Document 1, each tapered roller is divided into a plurality of divided tapered rollers arranged in the length direction, and these divided tapered rollers are formed at a plurality of locations in the circumferential direction of the cage. Hold it in your pocket. The raceway surfaces of the inner ring and the outer ring are formed as one conical surface that is continuous between the axial portions corresponding to the divided rollers. With such a configuration, while maintaining the rated load without increasing the cross-sectional height, the occurrence of skew is suppressed, and even when the contact position between the roller and the raceway surface approaches the small diameter side due to misalignment, etc. Therefore, the bearing life can be improved. When this tapered roller bearing is applied to a bearing for supporting a transmission pilot part shaft, the bearing life of the pilot part bearing is improved.

また、自動車のデファレンシャルやトランスミッション等の動力伝達軸を支持する円すいころ軸受は、下部が油浴に漬かった状態で使用され、その回転に伴って油浴の油が潤滑油として軸受内部に流入する。このような用途に使用される円すいころ軸受では、潤滑油が円すいころの小径側から軸受内部に流入し、保持器よりも外径側から流入する潤滑油は外輪の軌道面に沿って円すいころの大径側へ通過し、保持器よりも内径側から流入する潤滑油は内輪の軌道面に沿って円すいころの大径側へ通過する。   Tapered roller bearings that support power transmission shafts such as automobile differentials and transmissions are used with the lower part immersed in an oil bath, and the oil in the oil bath flows into the bearing as lubricating oil as it rotates. . In tapered roller bearings used for such applications, the lubricating oil flows into the bearing from the small diameter side of the tapered roller, and the lubricating oil flowing from the outer diameter side of the cage flows along the raceway surface of the outer ring. The lubricating oil that passes to the larger diameter side and flows from the inner diameter side to the cage passes along the raceway surface of the inner ring to the larger diameter side of the tapered roller.

このように潤滑油が外部から流入する部位に使用される円すいころ軸受には、保持器のポケットに切欠きを設けて、保持器の外径側と内径側とに分かれて流入する潤滑油がこの切欠きを通過するようにし、軸受内部での潤滑油の流通を向上させるようにしたものがある(特許文献2,3)。特許文献2に記載されたものでは、図22(A)に示すように、保持器34のポケット34a間の柱部34dの中央部に切欠き31を設け、潤滑油に混入する異物が軸受内部に滞留しないようにしている。また、特許文献3に記載されたものでは、図22(B)に示すように、保持器34のポケット34aの軸方向両端の小環状部34bと大環状部34cに切欠き32を設け、保持器34の外径側から流入する潤滑油が内輪側へ流れやすくなるようにしている。
特開2003−184885号公報 特開平9−32858号公報(第3図) 持開平11−201149号公報(第2図)
In such a tapered roller bearing used for a portion where the lubricating oil flows from the outside, a notch is provided in the pocket of the cage, and the lubricating oil that flows into the outer diameter side and the inner diameter side of the cage is separated. There are some which pass through this notch and improve the flow of lubricating oil inside the bearing (Patent Documents 2 and 3). 22A, a notch 31 is provided in the central portion of the column portion 34d between the pockets 34a of the retainer 34, and foreign matter mixed into the lubricating oil is generated inside the bearing as shown in FIG. So that it does not stay. Moreover, in what was described in patent document 3, as shown in FIG.22 (B), the notch 32 is provided in the small annular part 34b and the large annular part 34c of the axial direction both ends of the pocket 34a of the holder | retainer 34, and hold | maintained. The lubricating oil flowing in from the outer diameter side of the vessel 34 is made easier to flow to the inner ring side.
JP 2003-184885 A JP-A-9-32858 (FIG. 3) No. 11-2011149 (FIG. 2)

上記特許文献1の円すいころ軸受は、複数の分割円すいころが保持器の同じポケット内にあり、小径側のころの大端面と隣り合うころの小端面は面接触している。このようにころ同士が面接触しているため、ころのスキュー発生時に、小径側のころと、大径側のころとに自転速度差が生じた際、接触部でのすべり抵抗が大きくなり、トルクが増大し易いと言う新たな問題点が生じる。   In the tapered roller bearing of Patent Document 1, a plurality of divided tapered rollers are in the same pocket of the cage, and the small end surface of the roller adjacent to the large end surface of the roller on the small diameter side is in surface contact. Since the rollers are in surface contact with each other in this way, when a roller skew occurs, when a difference in rotation speed occurs between the small-diameter side roller and the large-diameter side roller, slip resistance at the contact portion increases. A new problem arises that torque is likely to increase.

また、上述したように潤滑油が保持器の外径側と内径側とに分かれて軸受内部へ流入する円すいころ軸受では、保持器の内径側から内輪側へ流入する潤滑油の割合が多くなると、トルク損失が大きくなることが分かった。この理由は、以下のように考えられる。   Further, as described above, in the tapered roller bearing in which the lubricating oil is divided into the outer diameter side and the inner diameter side of the cage and flows into the bearing, the ratio of the lubricating oil flowing from the inner diameter side of the cage to the inner ring side increases. It was found that the torque loss increased. The reason is considered as follows.

すなわち、保持器の外径側から外輪側へ流入する潤滑油は、外輪の内径面には障害物がないので、その軌道面に沿って円すいころの大径側ヘスムーズに通過して軸受内部から流出するが、保持器の内径側から内輪側へ流入する潤滑油は、内輪の外径面には大鍔があるので、その軌道面に沿って円すいころの大径側へ通過したときに大鍔で堰き止められ、軸受内部に滞留しやすくなる。このため、保持器の内径側から内輪側へ流入する潤滑油の割合が多くなると、軸受内部に滞留する潤滑油の量が多くなり、この滞留する潤滑油が軸受回転に対する流動抵抗となってトルク損失が増大するものと考えられる。   That is, the lubricating oil flowing from the outer diameter side of the cage to the outer ring side has no obstacles on the inner diameter surface of the outer ring, so it smoothly passes along the raceway surface to the large diameter side of the tapered roller from the inside of the bearing. The lubricating oil that flows out from the inner diameter side of the cage to the inner ring side has a large flaw on the outer diameter surface of the inner ring, so it is large when it passes along the raceway surface to the larger diameter side of the tapered roller. It will be dammed up with a lance and will be easily retained inside the bearing. For this reason, when the ratio of the lubricating oil flowing from the inner diameter side to the inner ring side of the cage increases, the amount of the lubricating oil staying inside the bearing increases, and this staying lubricating oil becomes a flow resistance against the bearing rotation and generates torque. Loss is considered to increase.

この発明の目的は、ころ分割形の円すいころ軸受のスキュー防止特性を活かし、かつ、小径側のころと、大径側のころとの自転速度差が生じた際の滑り抵抗を低減することができ、さらに、軸受内部に潤滑油が流入する円すいころ軸受における潤滑油の流動抵抗によるトルク損失を低減することである。
この発明の他の目的は、ころの転がり粘性抵抗を下げ、トルクの増大を抑えることができるものとすることである。
この発明のさらに他の目的は、パイロット部軸受のスキューが発生し難く、かつミスアライメントの発生時にもスキューの影響が生じ難く、潤滑油の流動性にも優れ、パイロット部のトルク低減を図ることのできるトランスミッションのパイロット部軸支持構造を提供することである。
An object of the present invention is to make use of the anti-skew characteristic of a roller-separated tapered roller bearing and to reduce slip resistance when a difference in rotation speed occurs between a small-diameter side roller and a large-diameter side roller. Further, it is possible to reduce torque loss due to flow resistance of the lubricating oil in the tapered roller bearing in which the lubricating oil flows into the bearing.
Another object of the present invention is to reduce the rolling viscous resistance of a roller and to suppress an increase in torque.
Still another object of the present invention is to make it difficult for the pilot portion bearing skew to occur, to prevent the effect of skew even when misalignment occurs, and to improve the fluidity of the lubricating oil and to reduce the torque of the pilot portion. It is an object of the present invention to provide a pilot shaft support structure for a transmission that can perform transmission.

この発明の円すいころ軸受は、外径面の軌道面の両側に小鍔と大鍔が設けられた内輪と、内径面に軌道面が設けられた外輪と、前記内輪と外輪の軌道面間に配列された複数の円すいころと、これらの円すいころを、円周方向複数箇所に設けられた各ポケットに収納して保持する保持器とからなり、前記保持器が、前記内輪の前記小鍔側で連なる小環状部と、内輪の大鍔側で連なる大環状部と、これらの環状部を連結する複数の柱部とからなり、前記ポケットが、前記小円環部側が狭幅側、大円環部側が広幅側となる台形伏に形成された円すいころ軸受に適用される。
この前提構成の円すいころ軸受において、前記円すいころは、前記各ポケット内に軸方向に並んで複数設けられ、これら軸方向に並ぶ複数のころは、外周面が互いに共通の仮想円すい面を略構成するように、互いに径の差を持つ円すい状の面であり、互いに軸方向に隣合うころは、大径側のころの小端面が球面形状となっていて、小径側のころの大端面と自転軸中心上で点接触するものであり、前記各ころの表面における少なくとも軌道面との接触面部分に、二硫化モリブデン系のコーティング膜を形成し、前記保持器のポケット内に狭幅側部分で柱部に切欠きを設けたことを特徴とする。
The tapered roller bearing according to the present invention includes an inner ring having small and large flanges on both sides of a raceway surface of an outer diameter surface, an outer ring having a raceway surface on an inner diameter surface, and a raceway surface between the inner ring and the outer ring. A plurality of tapered rollers arranged and a retainer that stores and retains these tapered rollers in respective pockets provided at a plurality of positions in the circumferential direction, and the retainer is disposed on the small collar side of the inner ring. A small annular portion that is continuous at the large collar side of the inner ring, and a plurality of pillars that connect these annular portions, and the pocket has a narrow circular side on the small annular portion side, a large circle The present invention is applied to a tapered roller bearing formed in a trapezoid shape where the ring side is the wide side.
In the tapered roller bearing of this precondition, a plurality of the tapered rollers are provided in the respective pockets along the axial direction, and the plurality of the rollers arranged in the axial direction substantially constitute a virtual tapered surface whose outer peripheral surface is common to each other. As described above, the rollers are conical surfaces having a difference in diameter from each other, and the rollers adjacent to each other in the axial direction have a spherical shape on the small end surface of the roller on the large diameter side and the large end surface of the roller on the small diameter side. A point contact is made on the center of the axis of rotation, and a molybdenum disulfide-based coating film is formed on at least the contact surface portion of the surface of each roller with the raceway surface, and the narrow side portion is formed in the pocket of the cage. It is characterized in that a notch is provided in the column part.

この構成によると、各円すいころを長さ方向に分割したため、断面高さを増大させることなく定格荷重を確保しながら、スキューの発生を抑え、かつミスアライメントの発生などでころと軌道面の接触位置が小径側に寄ったときのスキューの影響が生じ難く、軸受寿命を向上させることができる。そして、大径側のころの小端面が球面形状となっていて、小径側のころの大端面と自転軸中心上で点接触するものとしたので、ころの自転速度に差が生じた際のころ同士の接触部におけるすべり抵抗を軽減することができ、軸受のトルク低減が可能となる。各ころの表面における少なくとも軌道面との接触面部分には、二硫化モリブデン系のコーティング膜が形成されているため、滑り摩擦抵抗をさらに低減することが可能であり、より一層のトルク低減、および長寿命化が得られる。
また、保持器の台形状ポケットの狭幅側の柱部に切欠きを設けたため、保持器の内径側から内輪側へ流入する潤滑油を、円すいころの小径側を収納するポケットの狭幅側で切欠きから外輪側へ速やかに逃がし、内輪の軌道面に沿って大鍔まで到る潤滑油の量を少なくして、軸受内部に滞留する潤滑油の量を減らし、潤滑油の流動抵抗によるトルク損失を低減できる。
According to this configuration, each tapered roller is divided in the length direction, so that the rated load is ensured without increasing the cross-sectional height, the occurrence of skew is suppressed, and the contact between the roller and the raceway surface occurs due to misalignment. The effect of skew when the position approaches the small diameter side hardly occurs, and the bearing life can be improved. Since the small end face of the large diameter roller has a spherical shape and is in point contact with the large end face of the small diameter roller on the center of the rotation axis, there is a difference in the rotation speed of the roller. The sliding resistance at the contact portion between the rollers can be reduced, and the torque of the bearing can be reduced. Since a molybdenum disulfide-based coating film is formed on at least the contact surface portion of the surface of each roller with the raceway surface, it is possible to further reduce sliding frictional resistance, and further reduce torque, and Long life is obtained.
In addition, because the notch was provided in the narrow side column of the cage-shaped pocket of the cage, the lubricating oil flowing from the inner diameter side of the cage to the inner ring side can be used to store the small diameter side of the tapered roller. Because of the flow resistance of the lubricating oil, the amount of lubricating oil that quickly escapes from the notch to the outer ring side, decreases the amount of lubricating oil that reaches the main ring along the inner ring raceway surface, and reduces the amount of lubricating oil that stays inside the bearing. Torque loss can be reduced.

この発明の第2の円すいころ軸受は、小径側のころの大端面が球面形状となっていて、大径側のころの小端面と自転軸中心上で点接触する点で、第1の円すいころ軸受と異なるものであり、その他の構成は第1の円すいころ軸受と同じである。
この構成においても、円すいころを長さ方向に分割したことにより、断面高さを増大させることなく定格荷重を確保しながら、スキューの発生を抑え、かつミスアライメントの発生などでころと軌道面の接触位置が小径側に寄ったときのスキューの影響が生じ難く、軸受寿命を向上させることができる。また、小径側のころの大端面を球面形状となし、大径側のころの小端面と自転軸中心上で点接触させることにより、ころの自転速度に差が生じた際のころ同士の接触部におけるすべり抵抗を軽減することができ、軸受のトルク低減が可能となる。各ころの表面における少なくとも軌道面との接触面部分には、二硫化モリブデン系のコーティング膜が形成されているため、滑り摩擦抵抗をさらに低減することが可能であり、より一層のトルク低減、および長寿命化が得られる。
また、保持器の台形状ポケットの狭幅側の柱部に切欠きを設けたため、保持器の内径側から内輪側へ流入する潤滑油を、円すいころの小径側を収納するポケットの狭幅側で切欠きから外輪側へ速やかに逃がし、内輪の軌道面に沿って大鍔まで到る潤滑油の量を少なくして、軸受内部に滞留する潤滑油の量を減らし、潤滑油の流動抵抗によるトルク損失を低減できる。
In the second tapered roller bearing of the present invention, the large end surface of the small-diameter side roller has a spherical shape, and is in point contact with the small end surface of the large-diameter side roller on the center of the rotation axis. It is different from the roller bearing, and other configurations are the same as those of the first tapered roller bearing.
Even in this configuration, by dividing the tapered roller in the length direction, while maintaining the rated load without increasing the cross-sectional height, the occurrence of skew is suppressed and the occurrence of misalignment causes the roller and raceway surface to be separated. The effect of skew is less likely to occur when the contact position approaches the small diameter side, and the bearing life can be improved. Also, the large end surface of the roller on the small diameter side has a spherical shape, and contact between the rollers when there is a difference in the rotation speed of the roller by making point contact with the small end surface of the large diameter roller on the center of the rotation axis. It is possible to reduce the slip resistance at the portion, and to reduce the torque of the bearing. Since a molybdenum disulfide-based coating film is formed on at least the contact surface portion of the surface of each roller with the raceway surface, it is possible to further reduce sliding frictional resistance, and further reduce torque, and Long life is obtained.
In addition, because the notch was provided in the narrow side column of the cage-shaped pocket of the cage, the lubricating oil flowing from the inner diameter side of the cage to the inner ring side can be used to store the small diameter side of the tapered roller. Because of the flow resistance of the lubricating oil, the amount of lubricating oil that quickly escapes from the notch to the outer ring side, decreases the amount of lubricating oil that reaches the main ring along the inner ring raceway surface, and reduces the amount of lubricating oil that stays inside the bearing. Torque loss can be reduced.

この発明において、前記ころの外周面に山形のクラウニングを施しても良い。ころの外周面に山形のクラウニングを施した場合、スキューによるトルク増大を防ぎ、ころの転がり粘性抵抗を下げ、より一層トルクの低減がなされる。   In the present invention, a chevron-shaped crowning may be applied to the outer peripheral surface of the roller. When angled crowning is applied to the outer peripheral surface of the roller, torque increase due to skew is prevented, the rolling viscous resistance of the roller is lowered, and torque is further reduced.

この発明において、前記内輪の軌道面に山形のクラウニングを施しても良い。内輪の軌道面に山形のクラウニングを施した場合も、スキューによるトルク増大を防ぎ、ころの転がり粘性抵抗を下げ、より一層トルクの低減がなされる。   In the present invention, a mountain-shaped crowning may be applied to the raceway surface of the inner ring. Even when the inner ring raceway surface is chevron-shaped crowned, torque increase due to skew is prevented, the rolling viscous resistance of the roller is lowered, and torque is further reduced.

前記ポケットに、狭幅側の小環状部にも切欠きを設けても良い。この部位に切欠を設けることにより、保持器の内径側から内輪側へ流入する潤滑油をこの小環状部の切欠きからも外輪側へ逃がし、内輪の軌道面に沿って大鍔まで到る潤滑油の量をより少なくして、潤滑油の流動抵抗によるトルク損失をさらに低減することができる。   The pocket may be provided with a notch in the small annular portion on the narrow side. By providing a notch in this part, the lubricating oil flowing from the inner diameter side of the cage to the inner ring side is released from the notch of this small annular part to the outer ring side, and the lubricating oil reaches the main shaft along the raceway surface of the inner ring. The amount of oil can be further reduced to further reduce torque loss due to the flow resistance of the lubricating oil.

ポケットの広幅側の少なくとも柱部にも切欠きを設けても良い。ポケットの広幅側にも柱部に切欠きを設けることにより、円すいころを、バランスよく柱部に摺接させることができる。   You may provide a notch also in the pillar part at least on the wide side of a pocket. By providing a notch in the column part on the wide side of the pocket, the tapered roller can be brought into sliding contact with the column part in a balanced manner.

前記ポケットの狭幅側に設けた切欠きの合計面積は、ポケットの広幅側に設けた切欠きの合計面積よりも広くしても良い。これによっても、内輪の軌道面に沿って大鍔まで到る潤滑油の量をより少なくして、潤滑油の流動抵抗によるトルク損失をさらに低減することができる。   The total area of the notches provided on the narrow side of the pocket may be larger than the total area of the notches provided on the wide side of the pocket. This also makes it possible to further reduce the torque loss due to the flow resistance of the lubricating oil by reducing the amount of the lubricating oil reaching the surface along the raceway surface of the inner ring.

この発明の上記各構成の円すいころ軸受は、自動車のトランスミッションパイロット部の支持用の軸受として使用しても良い。トランスミッションパイロット部では、その構造上の制約から、軸受転動体の配置空間が狭いものとなり、1本のころであると、細長くてスキューの生じ易いものとなる。そのため、この発明の円すいころ軸受をパイロット部の支持用軸受として使用することにより、その利点が効果的に発揮され、自動車のトランスミッション部におけるトルクの低減化および長寿命化が可能となる。   The tapered roller bearing having the above-described configuration of the present invention may be used as a bearing for supporting a transmission pilot portion of an automobile. In the transmission pilot portion, the arrangement space of the bearing rolling elements is narrow due to the structural restrictions, and if it is a single roller, it is elongated and easily skewed. Therefore, by using the tapered roller bearing of the present invention as a bearing for supporting the pilot part, the advantages are effectively exhibited, and the torque in the transmission part of the automobile can be reduced and the life can be extended.

この発明のトランスミッションのパイロット部軸支持構造は、ハウジングに軸受を介して入力側軸が回転自在に支持され、入力側軸と同一軸心上に下段側軸が配置され、両軸を互いに相対回転自在に支持するパイロット部軸受が、下段側軸の外周と入力側軸の内周の間に設けられたトランスミッションのパイロット部軸支持構造において、上記パイロット部軸受を、この発明における上記いずれかの構成の円すいころ軸受としたものである。
この構成によると、この発明における円すいころ軸受のスキュー防止の効果、ミスアライメント発生時のスキューの影響緩和の効果に加えて、ころの自転速度に差が生じた際のころ同士の接触部におけるすべり抵抗を軽減する効果、さらにはスキューによるトルク増大を防ぎ、また潤滑油の流動抵抗によるトルク損失を抑え、より一層トルクの低減がなされる効果が、効果的なものとなり、パイロット部軸受の軸受寿命が向上する。
In the transmission pilot shaft support structure of the present invention, the input side shaft is rotatably supported by the housing via the bearing, the lower stage side shaft is disposed on the same axis as the input side shaft, and both shafts rotate relative to each other. In the pilot part shaft support structure of the transmission in which the pilot part bearing that is freely supported is provided between the outer periphery of the lower stage side shaft and the inner periphery of the input side shaft, the pilot part bearing is any one of the above-described configurations in the present invention This is a tapered roller bearing.
According to this configuration, in addition to the effect of preventing the skew of the tapered roller bearing in the present invention and the effect of reducing the influence of the skew when misalignment occurs, the slip at the contact portion between the rollers when a difference occurs in the rotation speed of the roller occurs. The effect of reducing the resistance, further preventing the torque increase due to skew, and suppressing the torque loss due to the flow resistance of the lubricating oil, the effect of further reducing the torque is effective, the bearing life of the pilot part bearing Will improve.

この発明の円すいころ軸受は、保持器の円周方向複数箇所に設けられた各ポケット内に、軸方向に並ぶ複数のころを有し、これら軸方向に並ぶ複数のころは、外周面が互いに共通の仮想円すい面を略構成するように、互いに径の差を持つ円すい状の面であり、軸方向に隣合うころは、小径側のころの大端面が球面形状となっていて、大径側のころの小端面と自転軸中心上で点接触するものとし、あるいは、小径側のころの大端面が球面形状となっていて、大径側のころの小端面と自転軸中心上で点接触するものとしたため、断面高さを増大させることなく定格荷重を確保しながら、スキューの発生を抑え、かつミスアライメントの発生などでころと軌道面の接触位置が小径側に寄ったときのスキューの影響が生じ難く、軸受寿命を向上させることができる。また、ころの自転速度に差が生じた際のころ同士のすべり抵抗を軽減することができ、軸受のトルク低減が可能となる。各ころの表面には少なくとも軌道面との接触面部分に、二硫化モリブデン系のコーティング膜が形成されているため、滑り摩擦抵抗をさらに低減することが可能であり、さらなるトルク低減、および長寿命化が得られる。また、保持器の台形状ポケットの狭幅側の柱部に切欠きを設けたので、流入する潤滑油が軸受内部に滞留する潤滑油の量を減らし、潤滑油の流動抵抗によるトルク損失を低減することができる。
前記ころまたは内輪の軌道面に山形のクラウニングが施されたものとした場合は、ころの転がり粘性抵抗を下げ、よりトルクの低減が可能となる。
The tapered roller bearing according to the present invention has a plurality of rollers arranged in the axial direction in each pocket provided in a plurality of locations in the circumferential direction of the cage. It is a conical surface having a difference in diameter so that a common virtual conical surface is substantially configured, and the rollers adjacent to each other in the axial direction have a spherical shape on the large end surface of the roller on the small diameter side. Point contact with the small end surface of the roller on the side on the center of the rotation axis, or the large end surface of the roller on the small diameter side has a spherical shape, and the point on the small end surface of the roller on the large diameter side and the center of the rotation axis Because it is in contact, skew is maintained when the contact position between the roller and the raceway surface is closer to the smaller diameter due to misalignment, etc. The bearing life is improved. Door can be. Further, it is possible to reduce the slip resistance between the rollers when there is a difference in the rotation speed of the rollers, and it is possible to reduce the torque of the bearing. Since the surface of each roller has a molybdenum disulfide-based coating film at least on the contact surface with the raceway surface, it is possible to further reduce sliding friction resistance, further reducing torque, and extending the service life Is obtained. In addition, since the notch is provided in the narrow column of the trapezoidal pocket of the cage, the amount of lubricating oil staying in the bearing is reduced and torque loss due to the flow resistance of the lubricating oil is reduced. can do.
If the roller or inner ring raceway surface is provided with a chevron crowning, the rolling viscous resistance of the roller is lowered, and the torque can be further reduced.

この発明のトランスミッションのパイロット部軸支持構造は、パイロット部軸受をこの発明の円すいころ軸受としたものであるため、この発明における円すいころ軸受のスキュー防止の効果、ミスアライメント発生時のスキューの影響緩和の効果に加えて、ころの自転速度に差が生じた際のころ同士の接触部におけるすべり抵抗を軽減する効果、さらには潤滑油の流動抵抗によるトルク損失を低減する効果が、効果的なものとなり、パイロット部軸受の軸受寿命が向上する。   Since the pilot portion shaft support structure of the transmission of the present invention uses the pilot portion bearing as the tapered roller bearing of the present invention, the effect of preventing skew of the tapered roller bearing according to the present invention and the effect of skew when misalignment occurs are mitigated. In addition to the effect of the above, the effect of reducing the slip resistance at the contact portion between the rollers when there is a difference in the rotation speed of the rollers and the effect of reducing the torque loss due to the flow resistance of the lubricating oil are effective. Thus, the bearing life of the pilot part bearing is improved.

第1の発明にかかる円すいころ軸受の一実施形態を図1ないし図4と共に説明する。この円すいころ軸受は、内輪1と、外輪2と、これら内外輪1,2の軌道面1a,2aの間に転動自在に円周方向に配列された複数個の円すいころ3と、保持器4とを備える。内輪1は、軌道面1aが円すい状に形成されたものであり、軌道面1aの大径側および小径側に、大鍔5および小鍔6をそれぞれ有する。大鍔5の内側の側面が大鍔面5aとなる。外輪2は、軌道面2aが円すい状に形成されたものであり、鍔無しとされている。外輪2は、独立した軸受部品であっても、またギヤや軸など、他の機械部品を兼用するものであっても良い。例えば、この円すいころ軸受をトランスミッションのパイロット部用の軸受とする場合は、外輪2はギヤを兼用する部品とされる。   An embodiment of a tapered roller bearing according to the first invention will be described with reference to FIGS. The tapered roller bearing includes an inner ring 1, an outer ring 2, a plurality of tapered rollers 3 arranged in a circumferential direction so as to be freely rollable between raceway surfaces 1a and 2a of the inner and outer rings 1 and 2, a cage 4. The inner ring 1 has a raceway surface 1a formed in a conical shape, and has large ridges 5 and small ridges 6 on the large diameter side and the small diameter side of the track surface 1a, respectively. The inner side surface of the large bowl 5 is the large bowl surface 5a. The outer ring 2 has a raceway surface 2a formed in a conical shape and has no wrinkles. The outer ring 2 may be an independent bearing part, or may also be used as another mechanical part such as a gear or a shaft. For example, when this tapered roller bearing is used as a bearing for a pilot portion of a transmission, the outer ring 2 is a component that also serves as a gear.

この円すいころ軸受は、各円すいころ3を、軸方向、つまり長さ方向に並ぶ複数個の分割ころ3A,3Bに分割したものである。円すいころ3の分割個数は、この実施形態では2個としているが、図7に示すように3個の分割ころ3A,3B,3Cに分割しても、また4個以上に分割しても良い。軸受幅が広い場合に、分割数を増やすことが有効である。内輪1および外輪2の軌道面1a,2aは、各分割ころ3A,3Bに対応する軸方向部分間に渡って連続した一つの円すい状面とされている。   This tapered roller bearing is obtained by dividing each tapered roller 3 into a plurality of divided rollers 3A and 3B arranged in the axial direction, that is, in the length direction. The number of divisions of the tapered roller 3 is two in this embodiment, but it may be divided into three divided rollers 3A, 3B, 3C as shown in FIG. 7, or may be divided into four or more. . Increasing the number of divisions is effective when the bearing width is wide. The raceway surfaces 1a and 2a of the inner ring 1 and the outer ring 2 are formed as a single conical surface extending between the axial portions corresponding to the divided rollers 3A and 3B.

分割ころ3A,3Bの端面形状は、この実施形態では、内輪1の大鍔面5aと接触する大径側の分割ころ3Aの大端面3Aa、小径側の分割ころ3Bの大端面3Baおよび小端面3Bbは、いずれも平坦面状とされている。
大径側の分割ころ3Aの小端面3Abは、球面形状となっていて、小径側の分割ころ3Bの大端面3Baと自転軸中心上で点接触するようになされている。
In this embodiment, the end face shapes of the split rollers 3A and 3B are the large end face 3Aa of the large diameter side split roller 3A that contacts the large collar surface 5a of the inner ring 1, the large end face 3Ba and the small end face of the small diameter side split roller 3B. 3Bb has a flat surface shape.
The small end surface 3Ab of the large diameter side split roller 3A has a spherical shape, and is in point contact with the large end surface 3Ba of the small diameter side split roller 3B on the center of the rotation axis.

各分割ころ3A,3Bの両側の端面における外周縁には面取りが施されている。大径側の分割ころ3Aの小端面3Ab、および小径側の分割ころ3Bの両端面3Ba,3Bbの最終仕上げは、ヘッダ、旋削、研削等のいずれの加工方法を採用しても良い。大径側の分割ころ3Aの大端面3Aaは、研削またはスーパー仕上げとされる。なお、大鍔面5aと接触する大径側のころ3Aの大端面3Aaを球面状としても良く、これにより、従来の円すいころ軸受と同様に、大鍔面5aとの滑り部の油膜形成能力を確保することができる。
The outer peripheral edges of the end faces on both sides of each of the divided rollers 3A and 3B are chamfered. For the final finishing of the small end surface 3Ab of the large diameter side split roller 3A and the both end surfaces 3Ba, 3Bb of the small diameter side split roller 3B, any processing method such as header, turning or grinding may be adopted. The large end surface 3Aa of the split roller 3A on the large diameter side is ground or superfinished. The large end surface 3Aa of the large-diameter roller 3A that contacts the large flange surface 5a may be spherical, so that the oil film forming ability of the sliding portion with the large flange surface 5a is the same as that of the conventional tapered roller bearing. Can be secured.

図1において、円すいころ3の総長さL、すなわち長さ方向に並ぶ複数個の分割ころ3A,3Bの総長さLと、これら複数の分割ころ3A,3Bの最大径dとの比である、(ころ総長さL)/(最大径d)の値は、例えば2倍以上とされている。なお、各分割ころ3A,3Bは、円すいころ3を長さ方向に分割したものであるため、内輪軌道面1aの大径側の分割ころ3Aの方が小径側の分割ころ3Bよりも外径が大きいものとなっている。   In FIG. 1, it is a ratio of the total length L of the tapered rollers 3, that is, the total length L of the plurality of split rollers 3A and 3B arranged in the length direction, and the maximum diameter d of the plurality of split rollers 3A and 3B. The value of (roller total length L) / (maximum diameter d) is, for example, twice or more. Since each of the divided rollers 3A and 3B is obtained by dividing the tapered roller 3 in the length direction, the divided roller 3A on the large diameter side of the inner ring raceway surface 1a has an outer diameter than the divided roller 3B on the small diameter side. Is a big one.

円すいころ3における各分割ころ3A,3Bの長さL1,L2は、互いに同じ長さであっても、また相互に異ならせても良い。円すいころ3を3個以上に分割する場合も同様である。円すいころ3を2分割する場合、分割ころ3A,3Bの長さL1,L2は、L1≦L2とすることが好ましく、より好ましくはL1<L2である。すなわち、内輪1の小径側の分割ころ3Bの長さL2を大径側の分割ころ3Aの長さL1よりも長くすることが好ましい。円すいころ3を3個以上に分割する場合は、各分割ころ3A,3B,3C,…(図7)の中で、内輪1の最も大径側に配置する分割ころ3Aの長さを最も短くすることが好ましい。   The lengths L1 and L2 of the divided rollers 3A and 3B in the tapered roller 3 may be the same length or may be different from each other. The same applies to the case where the tapered roller 3 is divided into three or more. When the tapered roller 3 is divided into two, the lengths L1 and L2 of the divided rollers 3A and 3B are preferably L1 ≦ L2, and more preferably L1 <L2. That is, it is preferable that the length L2 of the split roller 3B on the small diameter side of the inner ring 1 is longer than the length L1 of the split roller 3A on the large diameter side. When the tapered roller 3 is divided into three or more, among the divided rollers 3A, 3B, 3C,... (FIG. 7), the length of the divided roller 3A arranged on the largest diameter side of the inner ring 1 is the shortest. It is preferable to do.

分割ころ3A,3Bは、いずれも表面に二硫化モリブデン(MoS2 )系のコーティング膜8を形成する(図4)。二硫化モリブデン系のコーティング膜8としては、ゾルベスト(商品名)を使用することが好適である。コーティング膜8は、この実施形態では分割ころ3A,3Bの表面の全面に形成しているが、滑り接触の生じ易い箇所のみに形成しても良い。例えば分割ころ3A,3Bの端面、特に大径側分割ころ3Aの大端面や、両分割ころ3A,3Bの互いに接触する端面のみに形成しても良い。両分割ころ3A,3Bの互いに接触する端面では、上記コーティング膜8の形成範囲は、ころ端面の接触点となる中心部付近のみとしても良い。   Each of the split rollers 3A and 3B has a molybdenum disulfide (MoS2) -based coating film 8 formed on the surface (FIG. 4). As the molybdenum disulfide-based coating film 8, it is preferable to use sol best (trade name). In this embodiment, the coating film 8 is formed on the entire surface of the split rollers 3A and 3B, but it may be formed only on a portion where sliding contact is likely to occur. For example, it may be formed only on the end surfaces of the split rollers 3A and 3B, particularly on the large end surface of the large-diameter side split roller 3A, and on the end surfaces of the split rollers 3A and 3B that are in contact with each other. On the end surfaces of the split rollers 3A and 3B that are in contact with each other, the coating film 8 may be formed only in the vicinity of the central portion that is the contact point of the roller end surfaces.

保持器4は、図2,図3に示すように、円すいころ3を保持するポケット4aを円周方向の複数個所に有するものであり、同じ長さ方向位置に並ぶ複数の分割ころ3A,3Bは、保持器4の互いに同じポケット4a内に保持されている。   As shown in FIGS. 2 and 3, the cage 4 has pockets 4a for holding the tapered rollers 3 at a plurality of locations in the circumferential direction, and a plurality of divided rollers 3A and 3B arranged at the same length direction position. Are held in the same pocket 4 a of the cage 4.

保持器4は、円すいころ3の小径端側(すなわち内輪1の小鍔6側)で連なる小環状部4bと、円すいころ3の大径端側(すなわち内輪1の大鍔5側)で連なる大環状部4cと、これらの小環状部4bと大環状部4cを連結する複数の柱部4dとからなる。これにより、円すいころ3の小径側を収納する部分が狭幅側、大径側を収納する部分が広幅側となる台形状のポケット4aが形成されている。ポケット4aの狭幅側と広幅側には、それぞれ両側の柱部8に2つずつ切欠き21,22が設けられている。各切欠き21,22は幅は、いずれも対応する各分割ころ3A,3Bの長さの半分以下とすることが好ましい。   The cage 4 is connected to the small annular portion 4b that is continuous on the small diameter end side of the tapered roller 3 (that is, the small flange 6 side of the inner ring 1) and the large diameter end side of the tapered roller 3 (that is, the large flange 5 side of the inner ring 1). It consists of a large annular portion 4c and a plurality of column portions 4d that connect these small annular portion 4b and the large annular portion 4c. As a result, a trapezoidal pocket 4a is formed in which the portion storing the small diameter side of the tapered roller 3 is the narrow side and the portion storing the large diameter side is the wide side. On the narrow side and the wide side of the pocket 4a, two notches 21 and 22 are provided in the column portions 8 on both sides, respectively. The widths of the notches 21 and 22 are preferably less than or equal to half the length of the corresponding divided rollers 3A and 3B.

保持器4の小環状部4bの軸方向外側には、図1に示したように、内輪1の小鍔6の外径面に対向させた径方向内向きの鍔4baが設けられる。この対向させた小環状部4bの鍔4baの内径面と内輪1の小鍔6の外径面との隙間aは、小鍔6の外径寸法の2.0%以下に狭く設定されている。   As shown in FIG. 1, a radially inward flange 4ba facing the outer diameter surface of the small collar 6 of the inner ring 1 is provided outside the small annular portion 4b of the cage 4 in the axial direction. A gap a between the inner diameter surface of the flange 4ba of the small annular portion 4b and the outer diameter surface of the small flange 6 of the inner ring 1 is set narrowly to 2.0% or less of the outer diameter of the small flange 6. .

なお、保持器4は、ころ非分離の保持器と同じものを用いることができ、例えば、従来の鉄板製の保持器に、切欠き21,22を設けたものとできる。保持器4に対する円すいころ3の組み立て方法も、分割ころ3A,3Bを2個並べる点が異なるだけであり、保持器4を底広げし、加締める方法で内輪1への円すいころ3の組み立てが行える。なお、この例では保持器4は鉄板製であるが、樹脂製としても良い。   The retainer 4 can be the same as the non-separated retainer. For example, a conventional iron plate retainer can be provided with notches 21 and 22. The method of assembling the tapered roller 3 with respect to the cage 4 also differs in that two split rollers 3A and 3B are arranged, and the tapered roller 3 can be assembled to the inner ring 1 by spreading the cage 4 and crimping. Yes. In this example, the cage 4 is made of iron plate, but may be made of resin.

保持器4は、上記の他に、例えば図5,図6に示す変形例のものとしても良い。図5に示した変形例は、ポケット4aの狭幅側の小環状部4bにも切欠き23が設けられ、狭幅側の3つの切欠き21,21,23の合計面積が、広幅側の2つの切欠き22,22の合計面積よりも広くなっている。
図6に示した変形例は、狭幅側の柱部4dの各切欠き21の深さが、広幅側の柱部4dの各切欠き22よりも深く形成され、狭幅側の各切欠き21,21の合計面積が、広幅側の各切欠き22,22の合計面積よりも広くなっている。
In addition to the above, the cage 4 may be modified as shown in FIGS. 5 and 6, for example. In the modification shown in FIG. 5, the notch 23 is also provided in the small annular portion 4b on the narrow side of the pocket 4a, and the total area of the three notches 21, 21, 23 on the narrow side is equal to that on the wide side. The area is larger than the total area of the two notches 22 and 22.
In the modification shown in FIG. 6, the depth of each notch 21 of the narrow-side column part 4d is formed deeper than each notch 22 of the wide-side column part 4d, and each notch on the narrow side is formed. The total area of 21 and 21 is wider than the total area of the notches 22 and 22 on the wide side.

この構成の円すいころ軸受によると、各円すいころ3を長さ方向に分割したため、個々の分割ころ3A,3Bは、ころ径に対するころ長さの比が小さくなり、また互いに分割された分割ころ3A,3Bは、スキューについて、それぞれが独立して挙動する。このため、分割ころ3A,3Bのスキューが発生し難くなる。また、内輪1の大鍔面5aに接する大径側の分割ころ3Aの長さL1が短いため、ミスアライメント等によって軌道面1aと分割ころ3Aとの接触位置が小径側へ寄っても、その接触位置と抵抗発生部となる大鍔面5aとの距離が短くて、分割ころ3Aのスキューの影響が大鍔面5aに伝わり難い。小径側の分割ころ3Bは大鍔面5aに接触しないため、軌道面1aと分割ころ3Bとの接触位置が小径側へ寄っても、大鍔面5aに対する影響はない。これらによってもスキューが発生し難くなる。なお、大鍔面5aに接触しない小径側の分割ころ3Bは、軌道面1aと分割ころ3Bとの接触位置が小径側へ寄っても、大鍔面5aに対する影響がないため、この大鍔面5aに接触しない分割ころ3Bの長さを、大鍔面5aに接触する大径側の分割ころ3Aよりも長くすることで、接触する方の分割ころ3Aの長さを短くすることが、上記のミスアライメントの発生に対しては好ましい。   According to the tapered roller bearing of this configuration, since each tapered roller 3 is divided in the length direction, the ratio of the roller length to the roller diameter of each of the divided rollers 3A and 3B becomes small, and the divided rollers 3A divided from each other. , 3B behave independently of each other with respect to skew. For this reason, it becomes difficult to generate the skew of the divided rollers 3A and 3B. Further, since the length L1 of the large-diameter split roller 3A in contact with the large collar surface 5a of the inner ring 1 is short, even if the contact position between the raceway surface 1a and the split roller 3A approaches the small-diameter side due to misalignment or the like, The distance between the contact position and the large flange surface 5a serving as the resistance generating portion is short, and the influence of the skew of the split rollers 3A is not easily transmitted to the large flange surface 5a. Since the split roller 3B on the small diameter side does not contact the large collar surface 5a, even if the contact position between the raceway surface 1a and the split roller 3B moves to the small diameter side, there is no influence on the large collar surface 5a. These also make it difficult for skew to occur. The small-diameter split roller 3B that does not contact the large collar surface 5a has no effect on the large collar surface 5a even if the contact position between the raceway surface 1a and the split roller 3B approaches the small-diameter side. By making the length of the split roller 3B not in contact with 5a longer than the split roller 3A on the large diameter side in contact with the large flange surface 5a, the length of the split roller 3A in contact with the length can be reduced. This is preferable for the occurrence of misalignment.

このように、円すいころ3の分割により、ころ3自身の耐スキュー能力特性(ころがスキューを発生せずに真っ直ぐに転がろうとする特性)が高められるうえ、ミスアライメントによるスキューの影響が生じ難くなる。特に、長さ方向に並ぶ複数個の分割ころ3A,3Bの総長さLと、これら複数の分割ころ3A,3Bの最大径dとの比L/dを2倍以上とした場合は、従来のころ非分割の軸受ではスキューの発生が大きいが、そのため円すいころ3の分割による上記スキュー緩和等の効果が大きい。各円すいころ3は分割するが、非分割の軸受に比べて、長さ方向に並ぶ分割ころ3A,3Bの総長さLは同等に維持されるため、同等の定格荷重を確保することができる。このように、従来品と同等の定格荷重を確保したまま、ころ長さを短くできて、スキューを抑制することができ、軸受寿命が向上できる。   As described above, the division of the tapered roller 3 improves the skew resistance characteristic of the roller 3 itself (characteristic that the roller tries to roll straight without generating skew), and the influence of skew due to misalignment hardly occurs. Become. In particular, when the ratio L / d between the total length L of the plurality of split rollers 3A and 3B arranged in the length direction and the maximum diameter d of the plurality of split rollers 3A and 3B is set to be twice or more, The roller non-divided bearing generates a large amount of skew. Therefore, the above-described effect of reducing the skew by dividing the tapered roller 3 is large. Although each tapered roller 3 is divided, the total length L of the divided rollers 3A and 3B aligned in the length direction is maintained to be equal as compared with the non-divided bearing, so that an equivalent load rating can be ensured. In this way, the roller length can be shortened while keeping the rated load equivalent to that of the conventional product, skew can be suppressed, and the bearing life can be improved.

そして、大径側の分割ころ3Aの小端面3Abが、球面形状となっていて、分割ころ3Bの大端面3Aaと自転軸中心上で点接触するようになされているので、分割ころ3A,3Bの自転速度に差が出ても、分割ころ3Aの小端面3Abと分割ころ3Bの大端面3Baとの接触部分でのすべり抵抗が小さく、軸受のトルク低減化が図られる。   The small end surface 3Ab of the large-diameter split roller 3A has a spherical shape and is in point contact with the large end surface 3Aa of the split roller 3B on the center of the rotation axis. Even if there is a difference in the rotation speed, the sliding resistance at the contact portion between the small end surface 3Ab of the split roller 3A and the large end surface 3Ba of the split roller 3B is small, and the torque of the bearing can be reduced.

このように、分割ころ3A,3B間のすべり抵抗が小さくなること、円すいころの分割による上記スキュー発生抑制効果およびミスアライメントによるスキューの影響が生じ難くなる効果等が相乗して、軸受寿命のより向上が図られ、例えば、自動車のトランスミッションパイロット部の支持用軸受等への使用適性が増大する。   As described above, the sliding resistance between the split rollers 3A and 3B is reduced, the effect of suppressing the occurrence of skew due to the division of the tapered rollers and the effect of making the skew less likely to be caused by misalignment, and the like. Improvement is achieved and, for example, the suitability for use as a bearing for supporting a transmission pilot portion of an automobile increases.

また、この実施形態の円すいころ軸受は、軸受使用機器に対する取付形状を変更する必要がないため、軸受使用機器に対してそのまま従来のころ非分割の軸受と置き換えが可能である。この円すいころ軸受の構成部品についても、内輪1および外輪2は、軌道面1a,2aが各分割ころ3A,3Bに対応する軸方向部分間に渡って連続した一つの円すい状面であって、非分割の軸受と同じであり、保持器4についても非分割の軸受と同じものが使用できる。   Further, since the tapered roller bearing of this embodiment does not need to change the mounting shape with respect to the bearing-using device, it can be directly replaced with a conventional roller non-divided bearing with respect to the bearing-using device. Also for the components of this tapered roller bearing, the inner ring 1 and the outer ring 2 are one tapered surface in which the raceway surfaces 1a, 2a are continuous between the axial portions corresponding to the divided rollers 3A, 3B, The same as the non-divided bearing, and the same retainer 4 as the non-divided bearing can be used.

さらに、この実施形態の円すいころ軸受は、各分割ころ3A,3Bの表面に二硫化モリブデン系のコーティング膜8を形成したため、滑り摩擦抵抗をさらに低減することが可能であり、さらなるトルク低減、および長寿命化が得られる。例えば、大径側の分割ころ3Aの大端面と内輪大鍔5の内側面との接触部における滑り抵抗や、大径側の分割ころ3Aの小端面3Abと小径側の分割ころ3Bの大端面3Baとの接触部分でのすべり抵抗が低減され、トルク低減、摩耗緩和が得られる。また、内外輪1,2が同期回転して相対的に停止状態であって、外部から振動等が繰り返し作用するときに生じる分割ころ3A,3Bの周面と軌道面1a,2a間の微小滑りにおける滑り抵抗が低減し、フレッティング摩耗が緩和される。   Furthermore, in the tapered roller bearing of this embodiment, since the molybdenum disulfide-based coating film 8 is formed on the surfaces of the split rollers 3A and 3B, it is possible to further reduce the sliding friction resistance, and to further reduce the torque, and Long life is obtained. For example, the slip resistance at the contact portion between the large end surface of the large diameter side split roller 3A and the inner surface of the inner ring collar 5 or the small end surface 3Ab of the large diameter side split roller 3A and the large end surface of the small diameter side split roller 3B Slip resistance at the contact portion with 3Ba is reduced, and torque reduction and wear relaxation are obtained. Further, a minute slip between the circumferential surfaces of the split rollers 3A and 3B and the raceway surfaces 1a and 2a, which occurs when the inner and outer rings 1 and 2 are synchronously rotated and relatively stopped, and vibration or the like repeatedly acts from the outside. Slip resistance is reduced and fretting wear is reduced.

潤滑油流れを説明する。この円すいころ軸受が高速で回転してその下部が油浴に漬かると、図1に矢印で示すように、油浴の潤滑油が円すいころ3の小径側から保持器4の外径側と内径側とに分かれて軸受内部へ流人し、保持器4の外径側から外輪2へ流入した潤滑油は、外輪2の軌道面2aに沿って円すいころ3の大径側へ通過して軸受内部から流出する。一方、保持器4の内径側から内輪1側へ流人する潤滑油は、保持器4の小環状部4bの鍔4baと内輪1の小鍔6との隙間aが狭く設定されているので、保持器4の外径側から流入する潤滑油よりも遥かに少なく、かつ、この隙間aから流入する潤滑油の大半は、ポケット4aの狭幅側の柱部4dに設けた切欠き21を通過して、保持器4の外径側へ移動する。したがって、そのまま内輪1の軌道面1aに沿って大鍔6まで到る潤滑油の量は非常に少なくなり、軸受内部に滞留する潤滑油の量を減らすことができる。   The lubricating oil flow will be described. When this tapered roller bearing rotates at high speed and its lower part is immersed in an oil bath, as shown by the arrow in FIG. 1, the lubricating oil in the oil bath starts from the small diameter side of the tapered roller 3 to the outer diameter side and inner diameter of the cage 4. The lubricating oil that flows into the bearing and flows into the outer ring 2 from the outer diameter side of the retainer 4 passes along the raceway surface 2a of the outer ring 2 to the larger diameter side of the tapered roller 3 and is bearing. Escape from inside. On the other hand, the lubricating oil that flows from the inner diameter side of the cage 4 to the inner ring 1 side has a narrow gap a between the flange 4ba of the small annular portion 4b of the cage 4 and the small flange 6 of the inner ring 1, It is far less than the lubricating oil flowing in from the outer diameter side of the cage 4, and most of the lubricating oil flowing in from the gap a passes through the notch 21 provided in the narrow column portion 4d of the pocket 4a. Then, the cage 4 moves to the outer diameter side. Therefore, the amount of the lubricating oil that reaches the main shaft 6 along the raceway surface 1a of the inner ring 1 becomes very small, and the amount of the lubricating oil staying inside the bearing can be reduced.

図7は、円すいころ3が、3個の分割ころ3A,3B,3Cからなる実施形態を示す。これら3個の分割ころ3A,3B,3Cの外周面は、互いに共通の仮想円すい面を略構成するように、互いに径の差を持つ円すい状の面とされている。内輪1の大鍔面5aと接触する大径側の分割ころ3Aの大端面3Aa、大鍔面5aと接触しない中間の分割ころ3Bの大端面3Ba、小鍔6側の分割ころ3Cの大端面3Caおよび小端面3Cbは、平坦面状とされている。また、大径側の分割ころ3Aの小端面3Abおよび中間の分割ころ3Bの小端面3Bbは、球面形状となっていて、それぞれ分割ころ3Bの大端面3Baおよび分割ころ3Cの大端面3Caと自転軸中心上で点接触するようになされている。円すいころが4個以上に分割される場合でも、隣接する分割ころの大径側の小端面は球面形状とされる。   FIG. 7 shows an embodiment in which the tapered roller 3 includes three divided rollers 3A, 3B, 3C. The outer peripheral surfaces of the three divided rollers 3A, 3B, 3C are conical surfaces having a difference in diameter so as to substantially constitute a common virtual conical surface. The large end surface 3Aa of the large diameter split roller 3A that contacts the large collar surface 5a of the inner ring 1, the large end surface 3Ba of the intermediate split roller 3B that does not contact the large collar surface 5a, and the large end surface of the split roller 3C on the small collar 6 side. 3Ca and the small end surface 3Cb are flat surfaces. Further, the small end surface 3Ab of the split roller 3A on the large diameter side and the small end surface 3Bb of the intermediate split roller 3B are spherical, and rotate with the large end surface 3Ba of the split roller 3B and the large end surface 3Ca of the split roller 3C, respectively. Point contact is made on the axis center. Even when the tapered roller is divided into four or more pieces, the small end surface on the large diameter side of the adjacent divided roller is formed into a spherical shape.

保持器4には、図3または図5,図6に示す例のものが用いられる。この場合、柱部4dに設けられる各切欠21,22の幅は、対応する分割ころ3A,3Cの長さの半分以下とすることが好ましい。
この実施形態におけるその他の構成は、図1〜図4に示した第1の実施形態と同じである。
As the cage 4, the example shown in FIG. 3 or FIG. 5 and FIG. 6 is used. In this case, it is preferable that the width of each of the notches 21 and 22 provided in the column portion 4d is equal to or less than half the length of the corresponding split rollers 3A and 3C.
Other configurations in this embodiment are the same as those in the first embodiment shown in FIGS.

この実施形態において、円すいころ3が3個の分割ころ3A,3B,3Cからなることによる効果、分割ころ3Aの小端面3Abおよび分割ころ3Bの小端面3Bbが球面形状となっていることによる効果、各ころ3A,3B,3Cに二硫化モリブデン系のコーティング膜8を形成したことによる効果、並びに保持器4に前記各切欠き21〜23を設けたことによる効果は、第1の実施形態で述べた効果と同様であるので、ここではその説明を省略する。また、分割ころ3A,3B,3Cの端面形状は、上記と同様の変更が可能であり、各端面の外周縁には面取り加工が施されていることが望ましいことも同様である。   In this embodiment, the effect obtained when the tapered roller 3 includes the three divided rollers 3A, 3B, and 3C, and the effect obtained when the small end surface 3Ab of the divided roller 3A and the small end surface 3Bb of the divided roller 3B have a spherical shape. The effect of forming the molybdenum disulfide-based coating film 8 on each of the rollers 3A, 3B, 3C and the effect of providing the notches 21 to 23 on the cage 4 are the same as those of the first embodiment. Since it is the same as the effect mentioned, the description is abbreviate | omitted here. Further, the end face shapes of the divided rollers 3A, 3B, 3C can be changed in the same manner as described above, and it is also preferable that the outer peripheral edge of each end face is preferably chamfered.

図8ないし図10は第2の発明にかかる円すいころ軸受の一実施形態を示す。この実施形態は、図1ないし図3の例と同様に、円すいころ3が2個の分割ころ3A,3Bからなるが、小径側の分割ころ3Bの大端面3Baが球面形状となっていて、大径側の分割ころ3Aの小端面3Abと自転軸中心上で点接触するようになされている点で、図1ないし図4に示した第1の実施形態と異なる。その他の構成は、図1ないし図4に示す第1の実施形態と同様である。
したがって、円すいころ3を分割したことによる効果は上記と同様である。また、小径側の分割ころ3Bの大端面3Baを球面形状とし、大径側の分割ころ3Aの小端面3Abと自転軸中心上で点接触するようにした点も、球面形状による点接触部分の相互関係が異なるだけで、その奏する効果は同様である。二硫化モリブデン系のコーティング膜8を形成したことによる効果、および保持器4に上記のように切欠き21,22を設けた効果も第1の実施形態と同様である。
8 to 10 show an embodiment of a tapered roller bearing according to the second invention. In this embodiment, as in the example of FIGS. 1 to 3, the tapered roller 3 is composed of two split rollers 3A and 3B, but the large end surface 3Ba of the small-diameter side split roller 3B has a spherical shape. This is different from the first embodiment shown in FIGS. 1 to 4 in that the small end surface 3Ab of the large-diameter split roller 3A is in point contact with the center of the rotation axis. Other configurations are the same as those of the first embodiment shown in FIGS.
Therefore, the effect obtained by dividing the tapered roller 3 is the same as described above. The point where the large end surface 3Ba of the small-diameter side split roller 3B has a spherical shape and is in point contact with the small end surface 3Ab of the large-diameter side split roller 3A on the center of the rotation axis is also a point contact portion of the spherical shape. The effects are the same, only the mutual relationship is different. The effect of forming the molybdenum disulfide-based coating film 8 and the effect of providing the retainers 4 with the notches 21 and 22 as described above are the same as in the first embodiment.

この実施形態においても、円すいころ3を図11の例のように3個に、あるいは4個以上に分割することも可能である。また、この実施形態においても、図5,図6に示した保持器4を用いることができる。   Also in this embodiment, the tapered roller 3 can be divided into three as shown in the example of FIG. 11, or four or more. Also in this embodiment, the cage 4 shown in FIGS. 5 and 6 can be used.

図12ないし図14は、この発明のさらに他の実施形態を示す。この実施形態は、図1〜図4に示す第1の実施形態において、円すいころ3における各分割ころ3A,3Bの外周面である転動面3Ac,3Bcの形状を、山形のクラウニング形状としたものである。このクラウニングは、全長にわたる円弧形状のクラウニング形状、つまりフルクラウニングとし、そのドロップ量δを10μm以上とすることが好ましい。ドロップ量δは、クラウニングにより生じる母線高さの差である。この実施形態におけるその他の構成は、図1〜図4に示す第1の実施形態と同様である。保持器4についても、図3に示した例と同じものが用いられ、あるいは図5,図6に示したものが用いられる。   12 to 14 show still another embodiment of the present invention. In this embodiment, in the first embodiment shown in FIGS. 1 to 4, the shape of the rolling surfaces 3Ac and 3Bc which are the outer peripheral surfaces of the divided rollers 3A and 3B in the tapered roller 3 is a chevron crowning shape. Is. The crowning is preferably an arc-shaped crowning shape over the entire length, that is, a full crowning, and the drop amount δ is 10 μm or more. The drop amount δ is a difference in bus height caused by crowning. Other configurations in this embodiment are the same as those in the first embodiment shown in FIGS. As the cage 4, the same one as that shown in FIG. 3 is used, or one shown in FIGS. 5 and 6 is used.

この実施形態の場合、各分割ころ3A,3Bの転動面3Ac,3Bcの形状を山形のクラウニング形状としたため、分割ころ3A,3Bの軌道面1a,2aにおける転がり粘性抵抗が小さくなり、転動におけるトルクの低減が可能となる。
この実施形態におけるその他の作用,効果は、第1の実施形態と同じである。
In the case of this embodiment, since the shape of the rolling surfaces 3Ac, 3Bc of each of the split rollers 3A, 3B is a mountain-shaped crowning shape, the rolling viscous resistance on the raceway surfaces 1a, 2a of the split rollers 3A, 3B is reduced, and the rolling is reduced. It is possible to reduce the torque.
Other operations and effects in this embodiment are the same as those in the first embodiment.

図15は、さらに他の実施形態を示す。この実施形態は、図7に示すころ3を3分割した例において、さらに、各分割ころ3A,3B,3Cの転動面3Ac,3Bc,3Ccの形状を図12〜図14の例と同様の山形のクラウニング形状としている。
この実施形態の場合、図12〜図14の例と同様に、クラウニング形状としたことによる転がり粘性抵抗の低減効果が得られる。その他の構成,効果は、図7に示す実施形態と同様である。
FIG. 15 shows still another embodiment. In this embodiment, in the example in which the roller 3 shown in FIG. 7 is divided into three, the shapes of the rolling surfaces 3Ac, 3Bc, 3Cc of the divided rollers 3A, 3B, 3C are the same as those in the examples of FIGS. Yamagata crowning shape.
In the case of this embodiment, similarly to the examples of FIGS. 12 to 14, the effect of reducing the rolling viscous resistance due to the crowning shape is obtained. Other configurations and effects are the same as those of the embodiment shown in FIG.

図16は、軌道面にクラウニングを施した実施形態を示す。この実施形態は、円すいころ3が2個の分割ころ3A,3Bからなり、内輪1の大鍔面5aと接触する大径側の分割ころ3Aの大端面3Aa、小径側の分割ころ3Bの大端面3Baおよび小端面3Bbは、平坦面状とされ、大径側の分割ころ3Aの小端面3Abが球面形状となっていて、分割ころ3Bの大端面3Baと自転軸中心上で点接触するようになされている。この点は、図12の実施形態と同様であるが、この実施形態では、分割ころ3A,3Bの転動面3Ac,3Bcの形状が山形のクラウニング形状とされず、内輪1の軌道面1aが、各分割ころ3A,3Bに対応して、2列の断面山形の環状突部1aa,1abからなる山形クラウニング形状とされている。
このように、内輪1の軌道面1aを山形クラウニング形状とした場合、分割ころ3A,3Bの転動面3Ac,3Bcの形状が山形クラウニング形状とされている場合と同様に、粘性抵抗が小さく、転動部分でのトルクの低減化が可能となる。円すいころ3を分割したことによる効果、分割ころ3Aの小端面3Abが球面形状となっていることによる効果、二硫化モリブデン系のコーティング膜8を形成したことによる効果、および保持器4に切欠き21,22を設けたことによる効果は、図1や図12の実施形態と同様である。
FIG. 16 shows an embodiment in which the raceway surface is crowned. In this embodiment, the tapered roller 3 is composed of two split rollers 3A and 3B, and the large end surface 3Aa of the large-diameter side split roller 3A that contacts the large flange surface 5a of the inner ring 1 and the large split roller 3B on the small-diameter side. The end surface 3Ba and the small end surface 3Bb are flat surfaces, and the small end surface 3Ab of the split roller 3A on the large diameter side has a spherical shape so as to make point contact with the large end surface 3Ba of the split roller 3B on the center of the rotation axis. Has been made. This point is the same as the embodiment of FIG. 12, but in this embodiment, the shape of the rolling surfaces 3Ac, 3Bc of the split rollers 3A, 3B is not a chevron crowning shape, and the raceway surface 1a of the inner ring 1 is Corresponding to each of the divided rollers 3A and 3B, a chevron crowning shape composed of two rows of cross-sectional chevron-shaped annular protrusions 1aa and 1ab is formed.
Thus, when the raceway surface 1a of the inner ring 1 has a chevron crowning shape, the viscous resistance is small, as in the case where the rolling surfaces 3Ac and 3Bc of the split rollers 3A and 3B have a chevron crowning shape, It is possible to reduce the torque at the rolling part. The effect of dividing the tapered roller 3, the effect of the small end surface 3Ab of the divided roller 3A having a spherical shape, the effect of forming the molybdenum disulfide-based coating film 8, and the notch in the cage 4 The effect obtained by providing 21 and 22 is the same as that of the embodiment of FIGS.

図17は、ころ3を3分割して軌道面にクラウニングを施した実施形態を示す。この実施形態は、円すいころ3が3個の分割ころ3A,3B,3Cからなり、分割ころ3A,3B,3Cの転動面3Ac,3Bc,3Ccの形状はクラウニング形状とされず、内輪1の軌道面1aが、各分割ころ3A,3B,3Cに対応して3列の環状山形突部1aa,1ab,1acからなるクラウニング形状とされている。大径側となる分割ころ3Aの小端面3Abおよび分割ころ3Bの小端面3Bbが球面形状となっていて、これら球面形状の端面3Ab,3Bbが、それぞれ小径側となる分割ころ3Bの大端面3Baおよび分割ころ3Cの大端面3Caと自転軸中心上で点接触するようになされている点は、図15の例と同様である。
この実施形態においても、分割ころ3A,3B,3Cの転動面3Ac,3Bc,3Ccの形状が山形クラウニング形状とされている場合と同様、粘性抵抗が小さく、転動部分でのトルクの低減化が可能となる。その他の効果は図15の例と同様である。
FIG. 17 shows an embodiment in which the roller 3 is divided into three and the raceway is crowned. In this embodiment, the tapered roller 3 includes three divided rollers 3A, 3B, and 3C, and the shapes of the rolling surfaces 3Ac, 3Bc, and 3Cc of the divided rollers 3A, 3B, and 3C are not the crowning shape, and the inner ring 1 The raceway surface 1a has a crowning shape composed of three rows of annular chevron projections 1aa, 1ab, 1ac corresponding to the divided rollers 3A, 3B, 3C. The small end surface 3Ab of the split roller 3A on the large diameter side and the small end surface 3Bb of the split roller 3B have a spherical shape, and the spherical end surfaces 3Ab and 3Bb each have a large end surface 3Ba on the small diameter side 3B. Further, the point that is in point contact with the large end surface 3Ca of the split roller 3C on the center of the rotation axis is the same as the example of FIG.
Also in this embodiment, the viscous resistance is small and the torque at the rolling portion is reduced as in the case where the shape of the rolling surfaces 3Ac, 3Bc, 3Cc of the split rollers 3A, 3B, 3C is a chevron crowning shape. Is possible. Other effects are the same as in the example of FIG.

図18〜図20は、この発明のさらに他の実施形態を示す。この実施形態は、図8〜図10に示す実施形態において、各分割ころ3A,3Bの転動面をクラウニング形状とした例である。すなわち、円すいころ3が2個の分割ころ3A,3Bからなり、小径側の分割ころ3Bの大端面3Baが球面形状となっていて、大径側の分割ころ3Aの小端面3Abと自転軸中心上で点接触する円すいころ軸受において、分割ころ3A,3Bの転動面をクラウニング形状としたものである。その他の構成は、図8〜図10に示す実施形態と同様である。
このように、小径側の分割ころ3Bの大端面3Baを球面形状とした場合においても、分割ころ3A,3Bの転動面をクラウニング形状としたことにより、粘性抵抗が小さくなり、転動部分でのトルクの低減化が可能となる。その他の各効果も、前記各実施形態と同様に得られる。
18 to 20 show still another embodiment of the present invention. This embodiment is an example in which the rolling surfaces of the divided rollers 3A and 3B are crowned in the embodiment shown in FIGS. That is, the tapered roller 3 is composed of two split rollers 3A and 3B, the large end surface 3Ba of the small diameter side split roller 3B is spherical, and the small end surface 3Ab of the large diameter side split roller 3A and the center of the rotation axis In the tapered roller bearing in point contact above, the rolling surfaces of the split rollers 3A and 3B are formed in a crowning shape. Other configurations are the same as those of the embodiment shown in FIGS.
As described above, even when the large end surface 3Ba of the small-diameter split roller 3B has a spherical shape, by making the rolling surfaces of the split rollers 3A and 3B crowned, the viscous resistance is reduced, and the rolling portion Torque can be reduced. Other effects can also be obtained in the same manner as in the above embodiments.

なお、このように小径側の分割ころ3Bの大端面3Baを球面形状した場合でも、ころ3を3分割以上としても良く、また図16,図17の実施形態のように、内輪1の軌道面1aをクラウニング形状としても良い。   Even when the large end surface 3Ba of the small-diameter split roller 3B is spherical, the roller 3 may be divided into three or more, and the raceway surface of the inner ring 1 as in the embodiment of FIGS. 1a may be a crowning shape.

図21は、この発明の実施形態にかかる円すいころ軸受を装備したトランスミッションのパイロット部軸支持構造の一例を示す。このトランスミッションは、自動車のマニュアルトランスミッションである。ハウジング11に軸受12を介してインプットシャフトとなる入力側軸13が回転自在に支持され、入力側軸13と同一軸心上に、メインシャフトとなる下段側軸14が配置されている。両軸13,14は、パイロット部軸受15により、互いに相対回転自在に支持されている。パイロット部軸受15は、下段側軸14の外周と入力側軸13の内周の間に設けられている。   FIG. 21 shows an example of a pilot part shaft support structure of a transmission equipped with a tapered roller bearing according to an embodiment of the present invention. This transmission is a manual transmission of an automobile. An input side shaft 13 serving as an input shaft is rotatably supported by the housing 11 via a bearing 12, and a lower stage shaft 14 serving as a main shaft is disposed on the same axis as the input side shaft 13. Both shafts 13 and 14 are supported by a pilot portion bearing 15 so as to be rotatable relative to each other. The pilot portion bearing 15 is provided between the outer periphery of the lower stage side shaft 14 and the inner periphery of the input side shaft 13.

パイロット部軸受15は、この発明における上記いずれかの実施形態にかかる円すいころ軸受であり、図では図1〜図4に示す第1の実施形態に係る円すいころ軸受を示している。パイロット部軸受15の内輪1は、下段側軸14の外径面に嵌合して装着されている。パイロット部軸受15の外輪2は、入力側軸13の軸端に設けられた中空軸部で構成され、外周にギヤ16が形成されている。すなわち、外輪2は、ギヤ16と兼用する部品として構成され、また入力側軸13と一体に構成されている。ギヤ16は、下段側軸14と平行なカウンタシャフト(図示せず)に設けられたギヤと噛み合う。入力側軸13のギヤ16の隣接部には、ドッグクラッチ17におけるドッグ歯18が一体に設けられており、入力側軸13の回転は、シンクロナイザを有するドッグクラッチ17を介して下段側軸14に伝達可能である。また、入力側軸13の回転は、上記カウンタシャフトを介して上記とは別の伝達経路(図示せず)から下段側軸14に伝達可能である。   The pilot portion bearing 15 is a tapered roller bearing according to any one of the above-described embodiments of the present invention, and in the drawings, the tapered roller bearing according to the first embodiment shown in FIGS. The inner ring 1 of the pilot portion bearing 15 is fitted and attached to the outer diameter surface of the lower stage side shaft 14. The outer ring 2 of the pilot unit bearing 15 is constituted by a hollow shaft portion provided at the shaft end of the input side shaft 13, and a gear 16 is formed on the outer periphery. That is, the outer ring 2 is configured as a part that also serves as the gear 16, and is configured integrally with the input side shaft 13. The gear 16 meshes with a gear provided on a counter shaft (not shown) parallel to the lower stage side shaft 14. The dog teeth 18 of the dog clutch 17 are integrally provided in the adjacent portion of the gear 16 of the input side shaft 13, and the rotation of the input side shaft 13 is transferred to the lower stage side shaft 14 via the dog clutch 17 having a synchronizer. It can be transmitted. Further, the rotation of the input side shaft 13 can be transmitted to the lower side shaft 14 through a transmission path (not shown) different from the above through the counter shaft.

このような構成のトランスミッションのパイロット部では、パイロット部軸受15に大きな負荷容量が要求され、またこの軸受15の断面高さを高く採ることができない。したがって、パイロット部軸受15は、ころ長さの長い円すいころ軸受となる。しかも、このパイロット部軸受15は、軸13,14間の撓みによるミスアライメントが生じ易いものとなる。しかし、パイロット部軸受15として、上記実施形態の円すいころ軸受を用いたため、そのスキュー防止の効果、ミスアライメント発生時のスキューの影響緩和の効果、さらには、分割ころ3A,3Bの自転速度に差が生じた際のころ3A,3B同士の接触部におけるすべり抵抗を軽減する効果、加えて、分割ころ3A,3Bの転動面3Ac,3Bcもしくは内輪1の軌道面1aに形成された山形クラウニング形状により粘性抵抗が小さくなる効果が、効果的なものとなり、パイロット部軸受15の軸受寿命が向上する。   In the pilot portion of the transmission having such a configuration, a large load capacity is required for the pilot portion bearing 15 and the sectional height of the bearing 15 cannot be increased. Therefore, the pilot portion bearing 15 is a tapered roller bearing having a long roller length. Moreover, the pilot portion bearing 15 is likely to be misaligned due to the bending between the shafts 13 and 14. However, since the tapered roller bearing of the above embodiment is used as the pilot portion bearing 15, there is a difference in the effect of preventing the skew, the effect of reducing the influence of the skew when misalignment occurs, and the rotation speed of the split rollers 3A and 3B. In addition to the effect of reducing the sliding resistance at the contact portion between the rollers 3A and 3B when the rolling occurs, in addition to the angled crowning shape formed on the rolling surfaces 3Ac and 3Bc of the split rollers 3A and 3B or the raceway surface 1a of the inner ring 1 Thus, the effect of reducing the viscous resistance becomes effective, and the bearing life of the pilot portion bearing 15 is improved.

なお、図21に示したトランスミッションのパイロット部は、入力側軸13がイップットシャフトであって、かつ下段側軸14がメインシャフトとなるものであるが、この発明のトランスミッションのパイロット部軸支持構造は、同軸心に配置された下段側軸の外周と入力側軸の内周の間に設けられたパイロット部軸受一般に適用することができる。例えば、図21のトランスミッションのパイロット部において、下段側軸14が互いに上段側および下段側の軸となるパイロットシャフトとメインシャフトとに軸方向に分割されていて、両シャフト間にパイロット部軸受(図示せず)が設けられた構造のトランスミッションである場合、そのパイロット部軸受にこの発明の円すいころ軸受を用いても良い。   In the pilot portion of the transmission shown in FIG. 21, the input side shaft 13 is an Ipput shaft, and the lower stage side shaft 14 is the main shaft. Can be generally applied to pilot section bearings provided between the outer periphery of the lower stage side shaft disposed coaxially and the inner periphery of the input side shaft. For example, in the pilot portion of the transmission of FIG. 21, the lower shaft 14 is divided in the axial direction into a pilot shaft and a main shaft, which are upper and lower shafts, and a pilot portion bearing (see FIG. (Not shown), the tapered roller bearing of the present invention may be used for the pilot portion bearing.

第1の発明の一実施形態にかかる円すいころ軸受の断面図である。It is sectional drawing of the tapered roller bearing concerning one Embodiment of 1st invention. その保持器と円すいころの関係を示す部分展開図である。It is a partial expanded view which shows the relationship between the holder | retainer and a tapered roller. その保持器の部分展開図である。It is a partial expanded view of the cage. 同実施形態における分割ころの詳細を示す断面図である。It is sectional drawing which shows the detail of the split roller in the embodiment. 保持器の変形例の部分展開図である。It is a partial expanded view of the modification of a holder | retainer. 保持器の他の変形例の部分展開図である。It is a partial expanded view of the other modification of a holder | retainer. 他の実施形態における分割ころの詳細を示す断面図である。It is sectional drawing which shows the detail of the split roller in other embodiment. 第2の発明の一実施形態にかかる円すいころ軸受の断面図である。It is sectional drawing of the tapered roller bearing concerning one Embodiment of 2nd invention. 同実施形態における保持器と円すいころの関係を示す部分展開図である。It is a partial expanded view which shows the relationship between the holder | retainer and the tapered roller in the embodiment. 同実施形態における分割ころの詳細を示す断面図である。It is sectional drawing which shows the detail of the split roller in the embodiment. さらに他の実施形態における分割ころの詳細を示す断面図である。It is sectional drawing which shows the detail of the split roller in other embodiment. さらに他の実施形態にかかる円すいころ軸受の断面図である。It is sectional drawing of the tapered roller bearing concerning other embodiment. その保持器と円すいころの関係を示す部分展開図である。It is a partial expanded view which shows the relationship between the holder | retainer and a tapered roller. 同実施形態における分割ころの詳細を示す断面図である。It is sectional drawing which shows the detail of the split roller in the embodiment. さらに他の実施形態における分割ころの詳細を示す断面図である。It is sectional drawing which shows the detail of the split roller in other embodiment. さらに他の実施形態における分割ころの詳細を示す断面図である。It is sectional drawing which shows the detail of the split roller in other embodiment. さらに他の実施形態における分割ころの詳細を示す断面図である。It is sectional drawing which shows the detail of the split roller in other embodiment. さらに他の実施形態にかかる円すいころ軸受の断面図である。It is sectional drawing of the tapered roller bearing concerning other embodiment. その保持器と円すいころの関係を示す部分展開図である。It is a partial expanded view which shows the relationship between the holder | retainer and a tapered roller. 同実施形態における分割ころの詳細を示す断面図である。It is sectional drawing which shows the detail of the split roller in the embodiment. この発明の実施形態にかかる円すいころ軸受を応用したトランスミッションのパイロット部軸支持構造の断面図である。It is sectional drawing of the pilot part shaft support structure of the transmission which applied the tapered roller bearing concerning embodiment of this invention. 従来の保持器の各例の部分展開図である。It is a partial expanded view of each example of the conventional cage.

符号の説明Explanation of symbols

1…内輪
1a…内輪の軌道面
3…円すいころ
3A…分割ころ(大径側の円すいころ)
3Aa…大径側円すいころの大端面
3Ab…大径側円すいころの小端面
3B…分割ころ(小径側の円すいころ)
3Ba…小径側円すいころの大端面
3Bb…小径側円すいころの小端面
4…保持器
4a…ポケット
4b…小環状部
4c…大環状部
4d…柱部
8…コーティング膜
11…ハウジング
12…軸受
13…入力側軸
14…下段側受
15…パイロット部軸受
21〜23…切欠き
DESCRIPTION OF SYMBOLS 1 ... Inner ring 1a ... Race surface 3 of inner ring ... Tapered roller 3A ... Split roller (cone roller on large diameter side)
3Aa: Large end face 3Ab of large diameter side tapered roller ... Small end face 3B of large diameter side tapered roller: Split roller (small diameter tapered roller)
3Ba: Large end face 3Bb of the small diameter side tapered roller 4 Small end face 4 of the small diameter side tapered roller 4 ... Cage 4a ... Pocket 4b ... Small annular portion 4c ... Large annular portion 4d ... Column 8 ... Coating film 11 ... Housing 12 ... Bearing 13 ... Input side shaft 14 ... Lower stage side receiver 15 ... Pilot part bearings 21 to 23 ... Notches

Claims (9)

外径面の軌道面の両側に小鍔と大鍔が設けられた内輪と、内径面に軌道面が設けられた外輪と、前記内輪と外輪の軌道面間に配列された複数の円すいころと、これらの円すいころを、円周方向複数箇所に設けられた各ポケットに収納して保持する保持器とからなり、前記保持器が、前記内輪の前記小鍔側で連なる小環状部と、内輪の大鍔側で連なる大環状部と、これらの環状部を連結する複数の柱部とからなり、前記ポケットが、前記小円環部側が狭幅側、大円環部側が広幅側となる台形伏に形成された円すいころ軸受において、
前記円すいころは、前記各ポケット内に軸方向に並んで複数設けられ、これら軸方向に並ぶ複数のころは、外周面が互いに共通の仮想円すい面を略構成するように、互いに径の差を持つ円すい状の面であり、互いに軸方向に隣合うころは、大径側のころの小端面が球面形状となっていて、小径側のころの大端面と自転軸中心上で点接触するものであり、前記各ころの表面における少なくとも軌道面との接触面部分に、二硫化モリブデン系のコーティング膜を形成し、前記保持器のポケット内に狭幅側部分で柱部に切欠きを設けたことを特徴とする円すいころ軸受。
An inner ring provided with small and large flanges on both sides of the raceway surface of the outer diameter surface, an outer ring provided with a raceway surface on the inner diameter surface, and a plurality of tapered rollers arranged between the raceway surfaces of the inner ring and the outer ring And a retainer that stores and holds these tapered rollers in respective pockets provided in a plurality of locations in the circumferential direction, and the retainer includes a small annular portion that is continuous on the small collar side of the inner ring, and an inner ring. And a plurality of pillars connecting the annular portions, and the pocket is a trapezoid in which the small annular portion side is a narrow side and the large annular portion side is a wide side. For tapered roller bearings
A plurality of the tapered rollers are provided side by side in the axial direction in each pocket, and the plurality of rollers arranged in the axial direction have a difference in diameter from each other so that the outer peripheral surfaces substantially constitute a common virtual tapered surface. Conical surfaces of rollers that are adjacent to each other in the axial direction. The small end surface of the large diameter roller has a spherical shape, and is in point contact with the large end surface of the small diameter side roller on the center of the rotation axis. A molybdenum disulfide-based coating film is formed on at least a contact surface portion with the raceway surface on the surface of each roller, and a notch is provided in the column portion at the narrow side portion in the pocket of the cage. Tapered roller bearings characterized by that.
外径面の軌道面の両側に小鍔と大鍔が設けられた内輪と、内径面に軌道面が設けられた外輪と、前記内輪と外輪の軌道面間に配列された複数の円すいころと、これらの円すいころを、円周方向複数箇所に設けられた各ポケットに収納して保持する保持器とからなり、前記保持器が、前記内輪の前記小鍔側で連なる小環状部と、内輪の大鍔側で連なる大環状部と、これらの環状部を連結する複数の柱部とからなり、前記ポケットが、前記小円環部側が狭幅側、大円環部側が広幅側となる台形伏に形成された円すいころ軸受において、
前記円すいころは、前記各ポケット内に軸方向に並んで複数設けられ、これら軸方向に並ぶ複数のころは、外周面が互いに共通の仮想円すい面を略構成するように、互いに径の差を持つ円すい状の面であり、互いに軸方向に隣合うころは、小径側のころの大端面が球面形状となっていて、大径側のころの小端面と自転軸中心上で点接触するものであり、前記各ころの表面における少なくとも軌道面との接触面部分に、二硫化モリブデン系のコーティング膜を形成し、前記保持器のポケット内に狭幅側部分で柱部に切欠きを設けたことを特徴とする円すいころ軸受。
An inner ring provided with small and large flanges on both sides of the raceway surface of the outer diameter surface, an outer ring provided with a raceway surface on the inner diameter surface, and a plurality of tapered rollers arranged between the raceway surfaces of the inner ring and the outer ring And a retainer that stores and holds these tapered rollers in respective pockets provided in a plurality of locations in the circumferential direction, and the retainer includes a small annular portion that is continuous on the small collar side of the inner ring, and an inner ring. And a plurality of pillars connecting the annular portions, and the pocket is a trapezoid in which the small annular portion side is a narrow side and the large annular portion side is a wide side. For tapered roller bearings
A plurality of the tapered rollers are provided side by side in the axial direction in each pocket, and the plurality of rollers arranged in the axial direction have a difference in diameter from each other so that the outer peripheral surfaces substantially constitute a common virtual tapered surface. Conical surface of rollers that are adjacent to each other in the axial direction. The large end surface of the small-diameter roller has a spherical shape, and is in point contact with the small end surface of the large-diameter roller on the center of the rotation axis. A molybdenum disulfide-based coating film is formed on at least a contact surface portion with the raceway surface on the surface of each roller, and a notch is provided in the column portion at the narrow side portion in the pocket of the cage. Tapered roller bearings characterized by that.
請求項1または請求項2において、前記ころの外周面に山形のクラウニングを施した円すいころ軸受。   The tapered roller bearing according to claim 1 or 2, wherein an outer peripheral surface of the roller is chevron-shaped crowned. 請求項1ないし請求項3のいずれか1項において、前記内輪の軌道面に山形のクラウニングを施した円すいころ軸受。   The tapered roller bearing according to any one of claims 1 to 3, wherein a raceway surface of the inner ring is provided with a chevron-shaped crowning. 請求項1ないし請求項4のいずれか1項において、前記ポケット内に、狭幅側の小環状部に切欠きを設けた円すいころ軸受。   The tapered roller bearing according to any one of claims 1 to 4, wherein a notch is provided in the small annular portion on the narrow side in the pocket. 請求項1ないし請求項5のいずれか1項において、前記ポケット内に、広幅側部分で少なくとも柱部に切欠きを設けた円すいころ軸受。   The tapered roller bearing according to any one of claims 1 to 5, wherein a notch is provided at least in a column portion at a wide side portion in the pocket. 請求項6において、前記ポケットの狭幅側に設けた切欠きの合計面積を、前記ポケットの広幅側に設けた切欠きの合計面積よりも広くした円すいころ軸受。   The tapered roller bearing according to claim 6, wherein the total area of the notches provided on the narrow side of the pocket is wider than the total area of the notches provided on the wide side of the pocket. 請求項1ないし請求項7のいずれか1項において、自動車のトランスミッションパイロット部の支持用の軸受として使用されるものである円すいころ軸受。   The tapered roller bearing according to any one of claims 1 to 7, wherein the tapered roller bearing is used as a bearing for supporting a transmission pilot portion of an automobile. ハウジングに軸受を介して入力側軸が回転自在に支持され、入力側軸と同一軸心上に下段側軸が配置され、両軸を互いに相対回転自在に支持するパイロット部軸受が、下段側軸の外周と入力側軸の内周の間に設けられたトランスミッションのパイロット部軸支持構造において、上記パイロット部軸受を、請求項1ないし請求項7のいずれかに記載の円すいころ軸受としたことを特徴とするトランスミッションのパイロット部軸支持構造。   The input side shaft is rotatably supported via a bearing in the housing, the lower stage side shaft is disposed on the same axis as the input side axis, and the pilot section bearing that supports both shafts so as to be relatively rotatable is a lower stage side shaft. In the pilot portion shaft support structure of the transmission provided between the outer periphery of the transmission and the inner periphery of the input side shaft, the pilot portion bearing is the tapered roller bearing according to any one of claims 1 to 7. A pilot shaft support structure for the transmission.
JP2006219553A 2006-08-11 2006-08-11 Tapered roller bearing and pilot portion shaft supporting structure Pending JP2008045597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006219553A JP2008045597A (en) 2006-08-11 2006-08-11 Tapered roller bearing and pilot portion shaft supporting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006219553A JP2008045597A (en) 2006-08-11 2006-08-11 Tapered roller bearing and pilot portion shaft supporting structure

Publications (1)

Publication Number Publication Date
JP2008045597A true JP2008045597A (en) 2008-02-28

Family

ID=39179534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006219553A Pending JP2008045597A (en) 2006-08-11 2006-08-11 Tapered roller bearing and pilot portion shaft supporting structure

Country Status (1)

Country Link
JP (1) JP2008045597A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103443485A (en) * 2011-03-31 2013-12-11 谢夫勒科技股份两合公司 Rolling-element bearing cage and method for producing a rolling-element bearing cage
KR101503574B1 (en) 2012-12-13 2015-03-18 제일베어링공업(주) Manufacturing Method of Spherical Roller Bearing Retainer
CN113202860A (en) * 2021-05-08 2021-08-03 洛阳新强联回转支承股份有限公司 Three-row cylindrical roller wind power main shaft bearing with convex end surface and double-row rollers

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50126841U (en) * 1974-04-04 1975-10-17
JPS5916265U (en) * 1982-07-24 1984-01-31 日本精工株式会社 Swing bearing device
JPH11201149A (en) * 1998-01-12 1999-07-27 Koyo Seiko Co Ltd Tapered roller bearing
JP2000193069A (en) * 1998-12-24 2000-07-14 Ntn Corp Main shaft gear mechanism of automobile transmission, and conical roller bearing used in the mechanism
JP2002168246A (en) * 2000-11-27 2002-06-14 Nsk Ltd Double-row cone roller bearing unit for holding wheel
JP2002235752A (en) * 2001-02-07 2002-08-23 Nsk Ltd Cage for roller bearing
JP2003097567A (en) * 2001-09-27 2003-04-03 Koyo Seiko Co Ltd Bearing device for axle
JP2003184885A (en) * 2001-12-18 2003-07-03 Ntn Corp Conical roller bearing and pilot part axis support structure
JP2006194375A (en) * 2005-01-14 2006-07-27 Nsk Ltd Thrust cylindrical roller bearing

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50126841U (en) * 1974-04-04 1975-10-17
JPS5916265U (en) * 1982-07-24 1984-01-31 日本精工株式会社 Swing bearing device
JPH11201149A (en) * 1998-01-12 1999-07-27 Koyo Seiko Co Ltd Tapered roller bearing
JP2000193069A (en) * 1998-12-24 2000-07-14 Ntn Corp Main shaft gear mechanism of automobile transmission, and conical roller bearing used in the mechanism
JP2002168246A (en) * 2000-11-27 2002-06-14 Nsk Ltd Double-row cone roller bearing unit for holding wheel
JP2002235752A (en) * 2001-02-07 2002-08-23 Nsk Ltd Cage for roller bearing
JP2003097567A (en) * 2001-09-27 2003-04-03 Koyo Seiko Co Ltd Bearing device for axle
JP2003184885A (en) * 2001-12-18 2003-07-03 Ntn Corp Conical roller bearing and pilot part axis support structure
JP2006194375A (en) * 2005-01-14 2006-07-27 Nsk Ltd Thrust cylindrical roller bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103443485A (en) * 2011-03-31 2013-12-11 谢夫勒科技股份两合公司 Rolling-element bearing cage and method for producing a rolling-element bearing cage
KR101503574B1 (en) 2012-12-13 2015-03-18 제일베어링공업(주) Manufacturing Method of Spherical Roller Bearing Retainer
CN113202860A (en) * 2021-05-08 2021-08-03 洛阳新强联回转支承股份有限公司 Three-row cylindrical roller wind power main shaft bearing with convex end surface and double-row rollers

Similar Documents

Publication Publication Date Title
WO2015041109A1 (en) Bearing structure
KR101389164B1 (en) Spacer for a radial needle roller bearing
JP6047999B2 (en) Rotating support device
JP4661424B2 (en) Rotation support
JP2008045597A (en) Tapered roller bearing and pilot portion shaft supporting structure
JP5931279B2 (en) Power transmission device
JP5636887B2 (en) Tandem angular contact ball bearings
JP5101086B2 (en) Tapered roller bearing
JP2008267400A (en) Ball bearing
JP2003184885A (en) Conical roller bearing and pilot part axis support structure
JP2007071292A (en) Roller bearing
JP2007155063A (en) Tapered roller bearing and pilot part shaft supporting structure
JP5273442B2 (en) Radial needle roller bearings
JP4370907B2 (en) Ball bearing
JP2008020020A (en) Tapered roller bearing, and structure for supporting shaft at pilot portion
JP6064783B2 (en) Rolling bearing
JP2007154988A (en) Tapered roller bearing and pilot part shaft supporting structure
JP2006258262A (en) Double-row rolling bearing
JP2007154989A (en) Tapered roller bearing and pilot part shaft supporting structure
JP2007327518A (en) Cylindrical roller bearing and its cage
JP5803234B2 (en) Tandem angular contact ball bearings
WO2021177369A1 (en) Retainer for radial roller bearing, and radial roller bearing
JP2008020019A (en) Tapered roller bearing, and structure for supporting shaft at pilot portion
JP5821548B2 (en) Spacer for radial needle bearing
JP2008020018A (en) Tapered roller bearing, and structure for supporting shaft at pilot portion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100810