JP5820886B2 - 走査プローブ顕微鏡 - Google Patents

走査プローブ顕微鏡 Download PDF

Info

Publication number
JP5820886B2
JP5820886B2 JP2013537300A JP2013537300A JP5820886B2 JP 5820886 B2 JP5820886 B2 JP 5820886B2 JP 2013537300 A JP2013537300 A JP 2013537300A JP 2013537300 A JP2013537300 A JP 2013537300A JP 5820886 B2 JP5820886 B2 JP 5820886B2
Authority
JP
Japan
Prior art keywords
probe
sample
scanning
microscope
probe microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013537300A
Other languages
English (en)
Other versions
JPWO2013051094A1 (ja
Inventor
富博 橋詰
富博 橋詰
誠嗣 平家
誠嗣 平家
山本 剛
剛 山本
小泉 英明
英明 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2013051094A1 publication Critical patent/JPWO2013051094A1/ja
Application granted granted Critical
Publication of JP5820886B2 publication Critical patent/JP5820886B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/02Non-SPM analysing devices, e.g. SEM [Scanning Electron Microscope], spectrometer or optical microscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/08Means for establishing or regulating a desired environmental condition within a sample chamber
    • G01Q30/12Fluid environment
    • G01Q30/14Liquid environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/02Multiple-type SPM, i.e. involving more than one SPM techniques
    • G01Q60/06SNOM [Scanning Near-field Optical Microscopy] combined with AFM [Atomic Force Microscopy]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/30Scanning potential microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/653Coherent methods [CARS]
    • G01N2021/656Raman microprobe

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Microscoopes, Condenser (AREA)

Description

本発明は、培養液中の試料−培養液界面における水分子の配向分布、および、培養液中の試料表面の凹凸、電位分布、分子やたんぱく質などの組成分布や配列構造などの物理情報を高空間分解能で計測する走査プローブ顕微鏡に関する。
培養液中における生体基板材料への細胞の接着やその後の伸展・分化などの生体反応を計測・評価・制御する場合に、生体分子・生体組織・生体基板材料などの水和現象が重要である。このとき、水和構造は、水を主成分とする培養液中における試料−培養液界面において、試料表面と水分子の相互作用、および、水分子間での水素結合を含む相互作用から形成される三次元構造を示している。人工血管の内壁と赤血球との癒着などに代表されるいわゆる生体適合性は、この水和構造と密接に関連していると考えられている(例えば、非特許文献1)。さらに、培養液中の試料表面の凹凸、電位分布、分子やたんぱく質などの組成分布や配列構造などは、培養液中における生体分子・生体組織・生体基板材料などの生体反応に関して、特に、重要な特性である。
培養液中における生体分子・生体組織・生体基板材料などの試料−培養液界面を観察・計測する手法として、従来は、光学顕微鏡、および、ラマン分光法、第二高調波法、和周波分光法などの非線形光学顕微鏡が用いられている。特に、和周波分光法では、試料−培養液界面における水和構造に関する水分子の配列構造を計測できる。非線形光学顕微鏡としては、例えば、特許文献1では、プローブとターゲットとの間の相互作用を、界面付近の水分子、溶媒分子、または、標識物質による第二高調波光や和周波光による表面選択性の非線形光学法が開示されている。しかし、これらの光学顕微鏡、および、非線形光学顕微鏡における空間分解能は100nmよりも大きく、典型的には1μm程度である。
一方、走査プローブ顕微鏡は、原子間力顕微鏡(AFM:Atomic Force Microscopy)を基礎としている。走査プローブ顕微鏡の一例である、走査ケルビンプローブ顕微鏡では、導電性探針を持ったカンチレバーと試料との間に働く静電場力をカンチレバーのたわみとして検出しながら、探針を試料表面上で走査することにより静電場力分布をマッピングする手法である。探針には静電場力以外に原子間力等も加わっており、静電場力を他の相互作用から分離する必要がある。そのために、まず、カンチレバーを振動させ、探針と試料の接触時に働く原子間力により減少する振動振幅を一定に保つように探針−試料間距離を調整する。これにより試料表面の高さ方向の位置が決定され、そこから一定の距離だけ探針を試料表面から離した状態で、カンチレバーの振動の位相変化から長距離力である静電場力を検出する(例えば、特許文献2)。走査プローブ顕微鏡では、探針をプローブと呼ぶことがある。
走査プローブ顕微鏡では、一般的に、凹凸計測で1nm程度の空間分解能、静電場、および、光計測で10nm程度の空間分解能が期待できる。しかし、探針と試料との相互作用領域が探針先端部の直径程度に限定されるために、特に、非線形光学法のようにシグナルが弱い物理量を用いる走査プローブ顕微鏡の実現は一般的に困難である。
この弱いシグナルを補償してラマン分光法を走査プローブ顕微鏡で実現するために、探針による表面増強ラマン散乱を用いる探針増強ラマン検出法に関する文献が開示されている。特許文献3では、サンプル表面に発生させたエバネッセント場にプローブを挿入し、プローブ先端でエバネッセント場を散乱させて散乱光を検出する近接場顕微鏡において、表面増強ラマン散乱を効率良く誘起する均一な金属粒子を再現性よくコーティングした近接場顕微鏡用プローブが開示されている。
非特許文献2では、先端がナノメートル径の金属探針に光を照射することで、その先端のナノ空間に光を閉じこめることができ、さらにナノ光源として分子を照明することで、分子からのラマン散乱光をナノ空間分解能で検出できることが示されている。とくに、共鳴現象である局在プラズモンポラリトンが探針先端に励起されるので、光の電場強度が増強され、ラマン散乱の散乱断面積が実効的に増大することで、弱散乱性が補償され(探針増強ラマン検出法)、15nmの空間分解能が実現されると示されている。
特許文献4では、試料にレーザー光を集光させてラマン散乱光を発生させ、近接または接触させた探針によりラマン散乱光を増強し散乱させて、散乱された散乱光からラマンスペクトルを検出する、探針増強ラマン検出法を用いた紫外近接場光学顕微鏡が開示されている。このとき、励起レーザー光は紫外・深紫外レーザー光であり、探針先端の材料は励起レーザーの波長で誘電率が−2以下である金属で、例えば、シリコン製の探針の表面に真空蒸着した、膜厚が約25nmで金属粒子直径が10〜20nmであるアルミニウム薄膜が好ましいとしている。
しかし、これらの文献において、第二高調波法や和周波分光法を用いた走査プローブ顕微鏡は開示されておらず、また、ラマン分光法による高空間分解能の走査プローブ顕微鏡も開示されていない。
特表2004−530105号公報 特開2011−27582号公報 特開2006−71448号公報 特開2010−286397号公報
北野博巳,源明誠、高分子、58巻、2009年、p.74 井上康志 外、表面科学、26巻、2005年、p.667
本発明の目的は、培養液中における生体分子・生体組織・生体基板材料などの試料−培養液界面における水和構造に関する水分子の配列構造を高空間分解能で計測し、さらに、培養液中の試料表面の凹凸、電位分布、分子やたんぱく質などの組成分布や配列構造などを高空間分解能で計測する走査プローブ顕微鏡を提供することにある。
本願において開示される発明のうち代表的なものを挙げれば、次の通りである。
発明の走査プローブ顕微鏡は、探針と、試料を載置する試料ホルダと、前記探針の位置を変位させる振動子と、前記探針に印加される力を検出する検出部と、前記探針に交流電圧と直流電圧を印加する探針用電源と、前記試料ホルダを移動する走査機構と、制御装置とを備え、試料の表面の静電場力分布を計測する走査プローブ顕微鏡において、
前記制御装置により、前記振動子の前記探針位置を周期的に変位させるとともに、前記探針位置と前記探針に印加する交流電圧のタイミングを制御して培養液中の静電場分布計測の感度を最適化することを特徴とするものである。
本発明によれば、培養液中で生体分子・生体組織・生体基板材料などと培養液の界面にける水や分子との相互作用を高空間分解能で計測することが可能となる。また、培養液中における培養基板、水浄化膜、培養細胞の凹凸や物理情報を高空間分解能で計測することが可能となる。
本発明の実施例1の走査プローブ顕微鏡の概略構成図である。 探針増強効果が無い場合の、検出器出力の探針‐試料間距離依存を示すプロットである。 探針増強効果がある場合の、検出器出力の探針‐試料間距離依存を示すプロットである。 探針の振動とパルスレーザー光の繰り返しを同期させて、探針増強効果を最適化した場合の、検出器出力の探針‐試料間距離依存を示すプロットである。 本発明の実施例2の走査プローブ顕微鏡の概略構成図である。 本発明の実施例4の走査プローブ顕微鏡の概略構成図である。 本発明の実施例4の走査プローブ顕微鏡において、電極部分の一例を示す概略構成図である。
本発明は、試料表面に生じた近接場光(エバネッセント光)中に探針を配置して、探針からの近接場光と試料からの近接場光とにより試料表面近傍の光の電場強度を増幅することにより微弱なシグナル光を補償する探針増強検出法による走査プローブ顕微鏡において、和周波分光法(SFG)、第二高調波法(SHG)やその他の線形・非線形光学分光法を用いるときに、探針増強効果が探針−試料間距離に強く依存するために、探針−試料間距離に依存する検出光強度を計測することにより、探針増強効果を最適化することが可能であるという新たな知見に基づくものである。
また、本発明は、探針−試料間に働く静電気力分布を計測する走査プローブ顕微鏡(走査ケルビンプローブ顕微鏡)において、探針に働く静電気力が、探針−試料間距離に強く依存するために、探針−試料間距離に依存する静電場力強度を計測することにより、培養液中においても静電場分布計測の感度を最適化することが可能であるという新たな知見に基づくものである。
本発明を、以下の実施例を用いて詳細に説明する。なお、発明を実施するための形態に記載され、本実施例に未記載の事項は本実施例にも適用することができる。
本実施例では、走査プローブ顕微鏡の一形態としての、探針増強走査和周波顕微鏡を開示する。図1は、本発明の実施例1の走査プローブ顕微鏡の概略構成図である。探針1は振動子2に設置され、試料3との相対位置は振動子2により制御される。探針1は、入射する光中に置かれたときに、先端近傍に近接場光強度が増幅・集中する材料が選択される。また、ラマン分光法や和周波分光法などのようにラマン散乱を用いる場合は、表面増強ラマン散乱を有効に用いることができる、金、銀、銅、アルミなどの金属やそれらの化合物が用いられる。シリコン探針に厚さ1〜20nmの金薄膜を蒸着した探針は、有効な探針の候補として用いられる。また、本実施例においては、振動子2は主に試料3の垂直方向に振動し、探針1と試料3の距離は300nm以下で制御され、また、振動子2の固有振動数は200kHz〜2MHzが用いられる。本実施例では、振動子2として、長手方向に伸縮する水晶振動子が用いられるが、原子間力顕微鏡などの走査プローブ顕微鏡で一般的に用いられるチューニングフォーク型の水晶振動子、ピエゾ素子による振動子、カンチレバーにピエゾ素子を配置した振動子などを用いることができる。
振動子2により探針1は、振動子2の固有振動数近傍の周波数(固有振動数の±1%程度以内)で、試料3の表面に対して垂直方向に振動させられる。探針1と試料3との間の相互作用(力)により、振動子2に印加する電圧と振動子2の実際の振動振幅には位相差が生じるが、その位相差は、本実施例では、振動子2に印加する交流電圧と振動子2に流入する電流との位相差により、探針−試料間の相互作用(力)がわかり、探針−試料間距離がわかる。また、この位相差を一定にしながら、走査機構31により試料3と探針1との相対位置を試料に垂直方向と試料の平面方向に走査することにより、走査プローブ顕微鏡の一方式である原子間力顕微鏡(AFM)を構成でき、試料表面の凹凸が計測できる。探針1と試料3の距離は、一般的には、最近接位置で0nm(接触)から100nmの距離まで接近するが、探針1を試料3の内部までめり込ませることも可能である。また、振動子2の振動振幅が一定の量だけ減少するようにしながら、走査機構31により試料3と探針1との相対位置を試料に垂直方向と試料の平面方向に走査することにより、探針1と試料3の距離を最近接位置で0nmとすることもできる(タッピングモードAFM)。探針1は配線4により探針用電源5に接続され、探針1と試料3との間に交流電圧と直流電圧を印加することができる。本実施例では、試料3として、表面処理を行ったポリカーボネートを用い、また、探針1と試料3との間に印加する電圧は用いない。
試料ホルダ11は、培養液注入口12と培養液回収口13とを備え、培養液14を、保持、または、交換できる。培養液14のかわりに、水、または、溶媒を用いることもできる。
探針1が近接する試料3の領域近傍にパルスレーザー光、または、同期して入力する複数のパルスレーザー光を入力し、フィルター付検出器25で出力光24の強度を計測する。本実施例では、波長532nmの緑色パルスレーザー光である第一のパルスレーザー光22と、波長が2.3〜10ミクロンで可変の赤外パルスレーザー光である、第二のパルスレーザー光23を同期して入力する。出力光24をフィルター付検出器25に入力して、第一のパルスレーザー光22の周波数と第二のパルスレーザー光23の周波数との和の周波数(和周波)の強度を計測する。第二のパルスレーザー光23の周波数に依存する和周波の出力光24の強度を記録することにより和周波分光ができる。本実施例では、波数が3200カイザーのピークと波数が3400カイザーのピークを比較して、ポリカーボネートと培養液14との界面における4面体配位した水分子と非対称結合した水分子の配向の割合を議論できる。
AFMを構成して、探針1と試料3が十分に近接している場合には、局在プラズモンポラリトンが探針1の先端に励起され光の電場強度が増強されることに起因する探針増強効果により、和周波の出力光24の強度が飛躍的に増強される(探針増強和周波分光法)。さらに、探針1により試料3の表面の一部を走査しながら特定の波数における和周波の出力光24の強度を計測することにより、試料3と培養液14との界面における水分子の配向の空間分布を高空間分解能でマッピングできる(探針増強走査和周波顕微鏡)。本実施例においては、探針増強効果により和周波の出力光24は10000倍に増強され、走査和周波顕微鏡の空間分解能は10nmとなる。
ここで、本実施例の走査プローブ顕微鏡において、探針増強効果を最適化して検出器出力を最大に調整する手法を開示する。探針1、および、試料3の表面に生ずる近接場光(エバネッセント光)は、表面から距離が離れるに従い指数関数的に強度が減少する。したがって、探針増強効果は、探針1と試料3の距離が十分に近い場合だけに期待できる。本実施例においては、探針1と試料3の距離が20nm以下であるときに探針増強効果が起こる。振動子2により探針1を1nm程度の距離で微小振動させ、探針1と試料3の距離(探針−試料間距離)を計測する。制御装置26により、走査機構31を制御して探針1と試料3の最近接位置を変化させながら、フィルター付検出器25の出力を計測する。
図2A〜Cは、本実施例の走査プローブ顕微鏡により測定された検出器出力の探針‐試料間距離依存を示すプロットである。図2Aは、探針1と試料3の距離が比較的離れていて探針増強効果が無い場合で、探針‐試料間距離が大きいときに、探針1により遮られるパルスレーザー光が少なくなり、探針が光を遮らない幾何学的条件による出力光極大41を示す。図2Bは、探針1と試料3の距離が十分に近く探針増強効果がある場合で、探針‐試料間距離が大きいときには、探針1により遮られるパルスレーザー光が少なくて、探針が光を遮らない幾何学的条件による出力光極大41を示すが、探針‐試料間距離が小さいときには、探針増強効果による出力光極大42を示す。パルスレーザー光の入射位置、入射角度、出力光角度、複数のパルスレーザー光の同期条件、探針1の材料や形状、振動子2の振動数、振幅、振動子2の振動とパルスレーザー光との同期条件など、探針増強効果を変化させる実験パラメタは、探針増強効果による出力光極大42を最適化するように設定すれば良い。さらに、図2Cでは、通常の測定モードとして、振動子2により探針1を振動させ、探針‐試料間距離が最近接位置になったときに同期してパルスレーザー光を入射する場合に、探針1の振動とパルスレーザー光の繰り返しを同期させて、探針増強効果を最適化する場合を示していて、一例として、パルスレーザー光の繰り返し周波数が、探針1の振動数の1/3の場合を示している。このとき、制御装置26により、探針1の振動とフィルター付検出器25の出力の振動の位相差を、適宜、設定する必要があるが、その位相差の値は、図2A,Bで示す測定により設定することが本質的に重要である。探針と試料間の距離に応じて、検出器出力は図2Aおよび図2Bのように変化し、さらに、探針増強効果による出力光極大42の大きさが変化する。出力光極大42の大きさが大きくなるように、パルスレーザー光の入射位置、入射角度、出力光角度、複数のパルスレーザー光の同期条件、探針1の材料や形状、振動子2の振動数、振幅、振動子2の振動とパルスレーザー光との同期条件など、探針増強効果を変化させる実験パラメタを調整すればよい。
本実施例では、走査プローブ顕微鏡の一形態として、全反射法による探針増強走査和周波顕微鏡を開示する。図3は、本発明の実施例2の走査プローブ顕微鏡の概略構成図である。実施例1の走査プローブ顕微鏡と異なる部分を中心に説明する。本実施例においては、試料3はプリズム21の上面に設置される。試料ホルダ11は、底が無いリング状の形状、または、プリズム21と接する部分の厚みが非常に薄く、かつ、パルスレーザー光を良く透過する材料を用いる。試料3は、厚みが薄く、かつ、パルスレーザー光を良く透過する材料に限定する。プリズム21の円筒面にほぼ垂直に入力するパルスレーザー光、または、同期して入力する複数のパルスレーザー光は、プリズム上面、または、試料表面において全反射して、出力光24として散乱される。フィルター付検出器25で出力光24の強度を計測する。本実施例では、波長532nmの緑色パルスレーザー光である第一のパルスレーザー光22と、波長が2.3〜10ミクロンで可変の赤外パルスレーザー光である、第二のパルスレーザー光23を同期して入力する。出力光24をフィルター付検出器25に入力して、第一のパルスレーザー光22の周波数と第二のパルスレーザー光23の周波数との和の周波数(和周波)の強度を計測する。第二のパルスレーザー光23の周波数に依存する和周波の出力光24の強度を記録することにより和周波分光ができる。本実施例では、波数が3200カイザーのピークと波数が3400カイザーのピークを比較して、ポリカーボネートと培養液14との界面における4面体配位した水分子と非対称結合した水分子の配向の割合を測定する。
本実施例では、走査プローブ顕微鏡の一形態として、探針増強走査第二高調波顕微鏡、および、その他の線形・非線形光学特性による探針増強走査光プローブ顕微鏡を開示する。本実施例では、実施例1と同様に、図1を用いて説明する。
本実施例における探針増強走査第二高調波顕微鏡では、探針1が近接する試料3の領域近傍に波長1064nmの赤外パルスレーザー光である第一のパルスレーザー光22を入力する。出力光24をフィルター付検出器25に入力して、第一のパルスレーザー光22の周波数の2倍の周波数の光強度を計測する。試料3として、培養した神経細胞を用い、AFMにより神経細胞の凹凸を計測しながら、第二高調波強度をマッピングすることにより、走査第二高調波顕微鏡が構成でき、神経細胞の神経活動強度をマッピングできる。このとき、実施例1と同様に探針増強効果を最適化することができ、探針増強走査第二高調波顕微鏡が構成できる。
本実施例における探針増強走査ラマン顕微鏡では、探針1が近接する試料3の領域近傍に波長532nmの緑色パルスレーザー光である第一のパルスレーザー光22を入力する。出力光24をフィルター付検出器25に入力して、ラマン散乱光の光強度を計測する。試料3として、培養した肝細胞を用い、AFMにより肝細胞の凹凸を計測しながら、ラマン散乱をしらべることにより、肝細胞中の分子やたんぱく質などの組成分布をマッピングできる。このとき、実施例1と同様に探針増強効果を最適化することができ、探針増強走査ラマン顕微鏡が構成できる。
本実施例における探針増強走査CARS顕微鏡では、コヒーレントアンチストークスラマン散乱(CARS)を用いる。探針1が近接する試料3の領域近傍に角振動数が異なる第一のパルスレーザー光22(角振動数ω1)と、第二のパルスレーザー光23(角振動数ω2)を同期して入力する。出力光24をフィルター付検出器25に入力して、CARS光の光強度を計測する。AFMにより試料3の凹凸を計測しながら、CARS光の光強度をしらべることにより、試料3の分子やたんぱく質などの組成分布をマッピングできる。このとき、実施例1と同様に探針増強効果を最適化することができ、探針増強走査CARS顕微鏡が構成できる。
本実施例では、走査プローブ顕微鏡の一形態として、試料の表面の静電場力分布を計測する走査プローブ顕微鏡(走査ケルビンプローブ顕微鏡)を開示する。本実施例では、実施例1と同様の図4、および、電極部分の一例を示す図5を用いて説明する。
図5は、本発明の実施例4の走査プローブ顕微鏡において、電極部分の一例を示す概略構成図である。制御装置26により制御するバイポテンショスタット51は、探針電極52、試料電極53、作用電極54、参照電極55を制御する。培養液14の電位を参照電極55により計測して、培養液14に対する探針1の電圧を探針電極52により印加して、また、培養液14に対する試料3の電圧を試料電極53で印加する。このとき、培養液14と参照電極55の間に流れる電流はほとんど零である。培養液14と試料3の間に電流を流し、例えば、化学反応を生じさせるためには、作用電極54−試料電極53間の電流を用いる。探針1と試料3の間に電圧を印加する場合は、探針電極52と試料電極53の間に電圧を印加する。本発明の実施例の走査プローブ顕微鏡において、走査トンネル顕微鏡を構成する場合は、探針電極52と試料電極53の間の電圧、および、電流を印加電圧、および、トンネル電流として用いる。また、試料3に電荷注入を行う場合には電荷注入電極56を用いる。
実施例1と同様に、振動子2を固有振動数近傍の周波数(固有振動数の±1%程度以内)で振動させ、試料3の表面に対して垂直方向に探針1を振動させる。振動子2に印加する交流電圧と振動子2に流入する電流との位相差により、探針1と試料3の間の相互作用(力)がわかり、探針−試料間距離がわかる。
試料の表面の静電場力分布を計測するためには、探針1と試料3の間に交流電圧、および、直流電圧を足し合わせた電圧信号を印加する。このとき、試料3と探針1の間には、この電圧信号と探針1と試料3の表面の仕事関数の差に応じた静電気力Fが加わる。交流電圧の振幅はあらかじめ設定された値であるが、直流電圧の値は次のように決定される。振動子2により探針1と試料3の間の相互作用(力)(力信号)を計測する。交流電圧に同期した同じ周波数の信号を参照信号として、力信号の交流電圧と同じ周波数成分の強度をロックインアンプにより検出する。探針1と試料3との間の距離をz、電位差をV、誘電率をεとすると、探針1加わる静電気力Fは、F∝εV/zとなる。ロックインアンプから出力される信号は静電気力Fの電圧Vに関する微分となるため、dF/dV∝εV/zとなり、距離zおよび誘電率εが一定であれば、電位差に比例した値となる。そのため、ロックインアンプからの出力信号がゼロとなるように、直流電圧を調整することにより、探針1と試料3との間の電位差は常にゼロに保たれる。これにより、試料3の表面電位によらず探針1に加わる静電気力Fをゼロとすることができる。即ち、探針1と試料3との間の電位差は、静電気力Fをゼロにするように調整した直流電圧により計測できる。
このとき、力信号fを、第二のロックインアンプに入力し、電圧信号の交流電圧に同期した二倍周波数の信号を参照信号として、力信号fの二倍周波数成分の強度を検出する。ロックインアンプ出力される信号は力信号fの電圧Vに関する二回微分となるため、df/dV∝ε/zとなり、誘電率εが一定であれば、探針1と試料3の間の距離zの二乗に反比例した値となる。そのため、第二のロックインアンプからの出力信号を一定にしながら、走査機構31により試料3と探針1との相対位置を試料に垂直方向と試料の平面方向に走査することにより、探針1と試料3との距離を一定に保つことができ、走査プローブ顕微鏡の一方式である原子間力顕微鏡(AFM)を構成することができる。これらにより、試料の表面の静電場力分布を計測する走査プローブ顕微鏡(走査ケルビンプローブ顕微鏡)が構成される。
このとき、培養液14と探針1との間で電流が流れるために、静電場力分布の感度が悪くなることがわかった。しかし、実施例1と同様に、制御装置26により、試料3と探針1の距離に対する電圧信号の交流電圧のタイミングを制御して培養液中の静電場分布計測の感度を最適化できることがわかった。また、交流電圧の周波数に対して静電場分布計測の感度を最適化できることもわかった。これらにより、試料3の静電場分布を高空間分解能で計測することを特徴とする走査プローブ顕微鏡が構成できる。
本実施例においては、実施例4の走査プローブ顕微鏡による神経細胞の神経シグナル計測法を開示する。
試料3として培養した神経細胞を培養液14中に設置する。試料3の表面に対向する様に振動子2に設置した探針1が設けられる。振動子2により探針1は試料3の表面に対して垂直方向に振動させられる。試料3は試料ホルダ11を介して走査機構31上に固定されており、探針1に対して3次元方位方向に移動させることができる。振動子2により探針1は、振動子2の固有振動数近傍の周波数(固有振動数の±1%程度以内)で、試料1の表面に対して垂直方向に振動させられる。振動子2に印加する交流電圧と振動子2に流入する電流との位相差により、探針−試料間の相互作用(力)がわかり、探針−試料間距離がわかる。また、この位相差を一定にしながら、走査機構31により試料3と探針1との相対位置を試料に垂直方向と試料の平面方向に走査することにより、走査プローブ顕微鏡の一方式である原子間力顕微鏡(AFM)を構成でき、試料表面の凹凸が計測できる。
神経シグナルの測定においては、試料3の表面と探針1の先端の距離を常に一定に保ちながら行う。神経シグナルは、電荷注入電極56により神経細胞に電荷を注入することにより神経細胞に生ずる電圧パルスである。神経シグナルの測定には、まず試料3に対して所定の電荷を注入することにより神経細胞に電圧パルスを印加する。このとき、電圧パルスの大きさは50μV〜100mV程度である。試料3の所望の位置に探針3を接触、または、接近させ、この電圧パルスを実施例5の走査プローブ顕微鏡により検出する。試料3の多点において電圧パルス計測を行い神経シグナルが伝達されているかを判断することにより、培養された神経細胞の不良箇所を特定することができる。
培養液中で生体分子・生体組織・生体基板材料と培養液との界面を計測・評価することが可能となる、また、培養基板、水浄化膜、培養細胞の評価に適用できる。
1 探針
2 振動子
3 試料
4 配線
5 探針用電源
11 試料ホルダ
12 培養液注入口
13 培養液回収口
14 培養液(水、溶媒)
21 プリズム
22 第一のパルスレーザー光
23 第二のパルスレーザー光
24 出力光
25 フィルター付検出器
26 制御装置
31 走査機構
41 探針が光を遮らない幾何学的条件による出力光極大
42 探針増強効果による出力光極大
51 バイポテンショスタット
52 探針電極
53 試料電極
54 作用電極
55 参照電極
56 電荷注入電極

Claims (4)

  1. 探針と、試料を載置する試料ホルダと、前記探針の位置を変位させる振動子と、前記探針に印加される力を検出する検出部と、前記探針に交流電圧と直流電圧を印加する探針用電源と、前記試料ホルダを移動する走査機構と、制御装置とを備え、試料の表面の静電場力分布を計測する走査プローブ顕微鏡において、
    前記制御装置により、前記振動子の前記探針位置を周期的に変位させるとともに、前記探針位置と前記探針に印加する交流電圧のタイミングを制御して培養液中の静電場分布計測の感度を最適化することを特徴とする走査プローブ顕微鏡。
  2. 請求項記載の走査プローブ顕微鏡において、
    前記試料ホルダは、培養液を保持・循環させる機能を有することを特徴とする走査プローブ顕微鏡。
  3. 請求項記載の走査プローブ顕微鏡において、
    前記試料は、前記培養液中で培養される生体分子・生体細胞・生体組織などの生体材料であることを特徴とする走査プローブ顕微鏡。
  4. 請求項記載の走査プローブ顕微鏡において、
    前記試料は、前記培養液中で培養される神経組織などの生体材料であり、前記試料の静電場分布は神経活動による神経シグナルであることを特徴とする走査プローブ顕微鏡。
JP2013537300A 2011-10-03 2011-10-03 走査プローブ顕微鏡 Expired - Fee Related JP5820886B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/072812 WO2013051094A1 (ja) 2011-10-03 2011-10-03 走査プローブ顕微鏡

Publications (2)

Publication Number Publication Date
JPWO2013051094A1 JPWO2013051094A1 (ja) 2015-03-30
JP5820886B2 true JP5820886B2 (ja) 2015-11-24

Family

ID=48043286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013537300A Expired - Fee Related JP5820886B2 (ja) 2011-10-03 2011-10-03 走査プローブ顕微鏡

Country Status (2)

Country Link
JP (1) JP5820886B2 (ja)
WO (1) WO2013051094A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018053483A1 (en) * 2016-09-19 2018-03-22 Zyvex Labs, Llc Methods, devices, and systems for scanning tunneling microscopy control system design
KR102619577B1 (ko) * 2022-12-22 2023-12-29 포항공과대학교 산학협력단 탐침 증강 현미경의 분석 방법 및 탐침 증강 현미경

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185518A1 (ja) * 2015-05-15 2016-11-24 オリンパス株式会社 原子間力顕微鏡の情報取得方法
FR3039280B1 (fr) * 2015-07-22 2019-05-17 Vmicro S.A.S Sonde pour microscopie a force atomique a faible encombrement et microscope a force atomique comprenant une telle sonde
JP7486820B2 (ja) * 2018-05-25 2024-05-20 モレキュラー・ビスタ・インコーポレイテッド サンプルに対する光誘起力を改善するためにセンサ分子を用いるスキャニングプローブ顕微鏡

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4987284B2 (ja) * 2005-11-10 2012-07-25 エスアイアイ・ナノテクノロジー株式会社 液中用カンチレバーホルダ及び走査型プローブ顕微鏡
JP5091065B2 (ja) * 2008-09-11 2012-12-05 日本電子株式会社 走査プローブ顕微鏡
JP5270280B2 (ja) * 2008-09-19 2013-08-21 独立行政法人科学技術振興機構 近接場光学顕微鏡の信号光測定システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018053483A1 (en) * 2016-09-19 2018-03-22 Zyvex Labs, Llc Methods, devices, and systems for scanning tunneling microscopy control system design
KR102619577B1 (ko) * 2022-12-22 2023-12-29 포항공과대학교 산학협력단 탐침 증강 현미경의 분석 방법 및 탐침 증강 현미경

Also Published As

Publication number Publication date
JPWO2013051094A1 (ja) 2015-03-30
WO2013051094A1 (ja) 2013-04-11

Similar Documents

Publication Publication Date Title
JP5922240B2 (ja) 走査プローブ顕微鏡およびそれを用いた計測方法
Martín Sabanés et al. Versatile side-illumination geometry for tip-enhanced Raman spectroscopy at solid/liquid interfaces
Collins et al. Towards nanoscale electrical measurements in liquid by advanced KPFM techniques: a review
Micic et al. Finite element method simulation of the field distribution for AFM tip-enhanced surface-enhanced Raman scanning microscopy
US8418538B2 (en) High frequency deflection measurement of IR absorption
JP5820886B2 (ja) 走査プローブ顕微鏡
Flores et al. The new future of scanning probe microscopy: Combining atomic force microscopy with other surface-sensitive techniques, optical microscopy and fluorescence techniques
Rheinlaender et al. Lateral resolution and image formation in scanning ion conductance microscopy
Eifert et al. Hyphenating atomic force microscopy
Meyer et al. Latest instrumental developments and bioanalytical applications in tip-enhanced Raman spectroscopy
JP6322295B2 (ja) 走査プローブ顕微鏡及びその試料ホルダ
Moreno-Flores et al. Hybridizing Surface Probe Microscopies
WO2014016952A1 (ja) プローブ顕微鏡用ホルダ、プローブ顕微鏡および試料計測方法
Wang et al. Principle and applications of peak force infrared microscopy
Antognozzi et al. A new detection system for extremely small vertically mounted cantilevers
Tognoni High-speed multifunctional scanning ion conductance microscopy: Innovative strategies to study dynamic cellular processes
Hess et al. Integration of an electrochemical quartz crystal microbalance into a scanning electrochemical microscope for mechanistic studies of surface patterning reactions
WO2014132341A1 (ja) 原子間力顕微鏡を用いた表面電荷密度測定装置
JP2013053878A (ja) 原子間力顕微鏡を用いた誘電特性測定方法
Sagara UV‐Visible Reflectance Spectroscopy of Thin Organic Films at Electrode Surfaces
HUT62702A (en) Method and scanning optical microscope having influenced total reflection field of view for performing material testings
Ariyaratne et al. Plasmon resonance enhanced mechanical detection of ligand binding
Li et al. Advances in scanning ion conductance microscopy: Principles and applications
JP2006214947A (ja) 表面プラズモン共鳴を用いた誘電体薄膜の分極検出装置及び分極検出方法
Li Nanoscale chargé density measurement in liquid with AFM

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151005

R150 Certificate of patent or registration of utility model

Ref document number: 5820886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees