JP5818732B2 - 電解セル及び電解槽 - Google Patents

電解セル及び電解槽 Download PDF

Info

Publication number
JP5818732B2
JP5818732B2 JP2012076936A JP2012076936A JP5818732B2 JP 5818732 B2 JP5818732 B2 JP 5818732B2 JP 2012076936 A JP2012076936 A JP 2012076936A JP 2012076936 A JP2012076936 A JP 2012076936A JP 5818732 B2 JP5818732 B2 JP 5818732B2
Authority
JP
Japan
Prior art keywords
anode
cathode
electrolyte
chamber
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012076936A
Other languages
English (en)
Other versions
JP2013204130A (ja
Inventor
佐々木 岳昭
岳昭 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2012076936A priority Critical patent/JP5818732B2/ja
Priority to CN201320146489.4U priority patent/CN203256349U/zh
Publication of JP2013204130A publication Critical patent/JP2013204130A/ja
Application granted granted Critical
Publication of JP5818732B2 publication Critical patent/JP5818732B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、電解セル及び電解槽に関する。
アルカリ金属塩電気分解(以下、「電解」という。)とは、食塩水等のアルカリ金属塩化物水溶液を電気分解して、高濃度のアルカリ金属水酸化物、水素、塩素等を製造する方法である。その方法としては、水銀法や隔膜法が挙げられるが、近年では、電力効率の良いイオン交換膜法が主に用いられている。イオン交換膜法では、陽極と陰極を備えた電解セルを、イオン交換膜を介して、多数並べた電解槽を用いる。電解セルは、陰極を取り付けた陰極室枠と、陽極を取り付けた陽極室枠とが、隔壁(背面板)を介して背中合わせに配置された構造を有している。陽極にアルカリ金属塩化物水溶液を供給し、陰極にアルカリ金属水酸化物又は水を供給して電解を行うことで、陽極では塩素ガスを生成し、陰極ではアルカリ金属水酸化物や水素ガスを生成する。
電解セルとしては、特許文献1には、電解液を電解槽内の横方向にわたって均一に供給するために、電解セル内に分散パイプ(ディストリビュータ)を設置した構造が開示されている。
国際公開第2001/016398号パンフレット
一般に、イオン交換膜や電解槽付属部品(ガスケット等)の交換、さらには電極の更新、電解セル設備の点検等の作業を行なう際に、電解を停止することがある。電解停止後は、電解セルの陽極室及び陰極室から電解液を排出する必要がある。電解液を排出する際は、作業者が電解液を被液することがないよう、電解セル内から電解液を残らず排出する必要がある。
通常、電解セル内の下部には、電解液を陽極室や陰極室に供給するためのパイプが設置されている。しかし、電解セルから電解液を排出する場合、パイプより下方の内部空間に、電解液が残ってしまうという問題がある。電解液が残ると、電解を停止して電解セルを開いたときに、電解セル内の下方の内部空間に溜まった電解液が漏れてしまい、作業者が被液することがある。
また、イオン交換膜を交換する場合には、電解セルを開けて電解液を排出した後、純水で電解セルを内部洗浄して、残った電解液を排出する。しかし、電解液は純水よりも比重が重いため、電解セル内の下方に電解液が溜まったままであり、水洗を行なっても十分に排出できないという問題もある。
さらに、電解セル内の下方に電解液が溜まった状態で長期間保管されると、電解液が固化して、パイプの穴等を詰まらせてしまうという問題もある。
本発明は、上記事情に鑑みなされたものであり、電解停止時に電解液を排出する際には電解液が電解セル内に残り難い、電解セルを提供することを目的とする。
本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、陽極室と、陰極室と、前記陽極室と前記陰極室との間に配置された隔壁と、前記陽極室に電解液を供給する陽極側電解液供給部と、前記陰極室に電解液を供給する陰極側電解液供給部と、を備え、前記陽極側電解液供給部は、陽極室外に配置された陽極側電解液入口部と、前記陽極室内に配置された陽極側電解液出口部と、前記陽極側電解液入口部と前記陰極側電解液出口部を接続する陽極側接続部と、を有し、前記陽極側接続部は、パイプ形状であり、外周壁の陽極室内領域に孔が形成されている電解セルは、電解停止時に電解液を排出する際には電解液が電解セル内に残り難いことを見出し、本発明を完成させるに至った。
すなわち、本発明は以下のとおりである。
〔1〕
陽極室と、
陰極室と、
前記陽極室と前記陰極室との間に配置された隔壁と、
前記陽極室に電解液を供給する陽極側電解液供給部と、
前記陰極室に電解液を供給する陰極側電解液供給部と、を備え、
前記陽極側電解液供給部は、
前記陽極室外に配置された陽極側電解液入口部と、
前記陽極室内に配置された陽極側電解液出口部と、
前記陽極側電解液入口部と前記陽極側電解液出口部とを接続する陽極側接続部と、を有し、
前記陽極側接続部は、パイプ形状であり、外周壁の陽極室内領域に孔が形成されている電解セル。
〔2〕
前記陽極側接続部の中央内径が、前記陽極側電解液入口部との接続箇所の内径より小さい、〔1〕に記載の電解セル。
〔3〕
前記陽極側接続部の中央内径が、前記陽極側電解液出口部との接続箇所の内径より小さい、〔1〕又は〔2〕に記載の電解セル。
〔4〕
前記孔の内径は、前記陽極側接続部の中央内径より小さい、〔1〕〜〔3〕のいずれか一項に記載の電解セル。
〔5〕
前記陰極側電解液供給部は、
前記陰極室外に配置された陰極側電解液入口部と、
前記陰極室内に配置された陰極側電解液出口部と、
前記陰極側電解液入口部と前記陰極側電解液出口部とを接続する陰極側接続部と、をさらに有し、
前記陰極側接続部は、パイプ形状であり、外周壁の陽極室内領域に孔が形成されている、〔1〕〜〔4〕のいずれか一項に記載の電解セル。
〔6〕
前記陽極側接続部及び/又は前記陰極側接続部は、ベンチュリ部を有する、〔1〕〜〔5〕のいずれか一項に記載の電解セル。
〔7〕
前記陽極室は、区切り板により区画された複数の単位陽極室から構成され、
前記陽極側電解液出口部は、前記単位陽極室のそれぞれに前記電解液を分配するよう前記陽極側接続部から分岐した、〔1〕〜〔6〕のいずれか一項に記載の電解セル。
〔8〕
直列に配置された複数の〔1〕〜〔7〕のいずれか一項に記載の電解セルと、
隣接する前記電解セルの間に配置されたイオン交換膜と、
を備える電解槽。
本発明によれば、電解停止時に電解液を排出する際には電解液が電解セル内に残り難い、電解セルを提供することができる。
本実施形態の電解セルの一例の側断面図である。 同実施形態の電解セルの正面断面図である。 同実施形態の電解セル内における陽極側電解液供給部付近の部分拡大図である。 同実施形態の電解セルにおける接続部の部分模式図である。 本実施形態の電解槽の組み立て途中の模式図である。 実施例1及び2で用いたジョイントパイプの正面図である。 実施例1及び2で用いたジョイントパイプの側面図である。 比較例1で用いたジョイントパイプの正面図である。 本実施例で行った塩水濃度測定の測定箇所を示す正面図である。 実施例1及び2の電解セルの側面図である。
以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について、必要に応じて図面を参照しつつ詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。添付図面は実施形態の一例を示したものであり、その形態はこれに限定して解釈されるものではなく、本発明はその要旨の範囲内で適宜に変形して実施できる。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとし、図面の寸法比率は図示の比率に限られるものではない。さらに、本明細書において、「略」を付した用語は、当業者の技術常識の範囲内でその「略」を除いた用語の意味を示すものであり、「略」を除いた意味自体をも含むものとする。
本実施形態の電解セルは、陽極室と、陰極室と、陽極室と陰極室との間に配置された隔壁と、陽極室に電解液を供給する陽極側電解液供給部と、陰極室に電解液を供給する陰極側電解液供給部と、を備え、
陽極側電解液供給部は、陽極室外に配置された陽極側電解液入口部と、陽極室内に配置された陽極側電解液出口部と、陽極側電解液入口部と陽極側電解液出口部を接続する陽極側接続部と、を有し、
陽極側接続部は、パイプ形状であり、外周壁の陽極室内領域に孔が形成された電解セルである。
本実施形態の電解セルは、陽極室内に電解液を供給する電解液供給部において、陽極側電解液入口と陽極側電解液出口とを接続する陽極側接続部の形状が特徴の1つである。
図1は、本実施形態の電解セルの一例の側断面図を表し、図2は同実施形態の電解セルの正面図を表す。電解セル1は、陽極室10と、陰極室20と、陽極室10と陰極室20との間に配置された隔壁30と、陽極室10に電解液を供給する陽極側電解液供給部104と、陰極室20に電解液を供給する陰極側電解液供給部204と、を備える。そして、陽極側電解液供給部104は、陽極室10内へ電解液を導入する陽極側電解液入口部(入口ノズル)1043と、陽極室内に配置された陽極側電解液出口部(分散パイプ)1041と、陽極側電解液入口部1043と陽極側電解液出口部1041とを接続する陽極側接続部(ジョイントパイプ)1042と、を有する。陽極側接続部1042は、パイプ形状であり、外周壁の陽極室内領域に孔1044が形成されている。陽極側電解液出口部(分散パイプ)1041は、その外周壁に開口部1045が上方に向けて形成されている。
電解中、電解液は、系外から陽極側電解液入口部1043に供給され、陽極側接続部1042を経由して、陽極側電解液出口部1041の開口部1045から電解セル内に導入される。電解停止時には、陽極側電解液出口部1041の開口部1045からだけでなく、孔1044からも、電解液を系外に排出することができる。
さらに、陰極側電解液供給部204は、陰極室20の内壁内部に配置された、陰極室内へ電解液を導入する陰極側電解液入口部2043と、陰極室内に電解液を供給する陰極側電解液出口2041と、陰極側電解液出口部2041と陰極側電解液入口部2043とを接続する陰極側接続部2042と、を有する。陰極側接続部2042は、パイプ形状であり、外周壁の陰極室内領域に孔2044が形成されている。
電解中、電解液は、系外から陰極側電解液入口部2043に供給され、陰極側接続部2042を経由して、陰極側電解液出口部2041の開口部(図示せず;陽極側の開口部1045に対応)から電解セル内に導入される。電解停止時には、陰極側電解液出口部2041からだけでなく、孔2044からも、電解液を系外に排出することができる。
以下、各部材についてより詳細に説明する。
(陽極室)
陽極室10は、電解セル1を構成する枠体と、隔壁30と、陽極102とにより構成されている。図2に示すように、陽極室10は、区切り部(リブ)10aによって区画された複数の単位陽極室10bから構成されていてもよい。
(陽極)
陽極102としては、チタン基材の表面を、ルテニウム、イリジウムを成分とする酸化物で被覆した、いわゆるDSA等の金属電極を用いることができる。
(バッフル板)
必要に応じて、陽極室10は、陽極側電解液供給部104の上方に配置され、かつ、隔壁30と略並行に配置されたバッフル板108を、更に備えることが好ましい。バッフル板108は、陽極室10内の電解液の流れを制御する仕切り板である。バッフル板108を設けることで、陽極室10において電解液を内部循環させ、電解液の濃度をより均一にすることができる。内部循環を促進させるために、バッフル板108は、陽極102と隔壁30との間に配置することが好ましい。かかる観点から、バッフル板108は、陽極室10の幅方向(図1において紙面の垂直方向に相当し、図2において紙面の左右方向に相当する。)に沿って配置されることが好ましい。バッフル板108で仕切られた陽極102の近傍の空間では、電解が進行すると、電解液濃度が下がり、塩素ガス等の生成ガスが発生する。これにより気液の比重差が生じる場合があるが、バッフル板108を配置することで、陽極室10における電解液の内部循環を促進させ、陽極室10の電解液の濃度分布をより均一にすることができる。
(陽極側気液分離部)
陽極室10は、陽極側電解液供給部104の上方に配置され、気体が混入した電解液から気体を分離する陽極側気液分離部106を、更に備えることが好ましい。陽極側気液分離部106は、電解中に発生する塩素ガス等の生成ガスと、電解液とを分離する。電解時、電解セル1で発生する生成ガスと電解液が気液混相になると、電解セル1内部の圧力変動によって振動が発生する場合がある。陽極側気液分離部106により生成ガスと電解液とを分離することで、振動を抑制できる。陽極側気液分離部106としては、例えば、気泡を消去するための消泡板を備えるものが挙げられる。気液混相流が消泡板を通過するときに気泡が弾けることにより、生成ガスと電解液とを分離することができる。消泡板としては、例えば、エクスパンデッドメタル、丸型や角型等の孔を打ち抜いたパンチングメタル、金網、ワイヤーメッシュ、発泡金属等を用いることができる。
(陽極側電解液供給部)
陽極側電解液供給部104は、陽極室10外に配置された陽極側電解液入口部1043と、陽極室10内に配置された陽極側電解液出口部1041と、陽極側電解液入口部1043と陽極側電解液出口部1041とを接続する陽極側接続部1042と、を有する。
(陽極側電解液入口部)
以下、図3を用いて、陽極側電解液供給部について詳細に説明する。図3は、本実施形態の陽極側電解液供給部付近の部分拡大図である。陽極側電解液入口部1043は、陽極室10外に配置され、陽極室10外から陽極室10内へ電解液を供給する。陽極側電解液入口部1043の材料は、電解液に対する耐腐食性の観点から、チタンやフッ素樹脂等を用いることができる。陽極側電解液入口部1043としては、例えば、ノズル(入口ノズル)を用いることができる。
(陽極側電解液出口部)
陽極側電解液出口部1041は、電解セル1の幅方向に沿って配置され、電解液を電解セル1内の幅方向に渡って分散的に供給する。陽極側電解液出口部1041としては、開口部1045を複数有していることが好ましい。開口部1045は、陽極側電解液出口部1041の上面に配置されていることが好ましい。これにより、開口部1045の電解液の流れや循環がより円滑になるため、電解セル内の液濃度をより均一化することができる。
陽極室10が、陽極室10の幅方向に沿って並べられた区切り部(リブ)10aによって区画された複数の単位陽極室10bから構成される場合、陽極側電解液出口部1041は、各単位陽極室10bに電解液を分配できるよう陽極側接続部1042から分岐されていることが好ましい。この場合、陽極側電解液出口部1041としては、分岐した分散パイプを用いることができる。
さらに、陽極側電解液出口部1041は単位陽極室10bごとに開口部1045が形成されていることがより好ましい。そして、単位陽極室10bのうちの1つ以上の単位陽極室10bは、複数の開口部1045が形成されていることがより好ましい。このような構造とすることで、各単位陽極室10b間での電解液の移動も促進させることができるため、各単位陽極室10bに電解液を均一に供給することができる。なお、単位陽極室10b間の電解液の移動を一層促進させるために、区切り部(リブ)10aに開口部(図示せず)を設けてもよい。
なお、図2に示すように、陽極室10が複数の単位陽極室10bから構成される場合、陽極側電解液入口部1043から遠い位置に配置されている単位陽極室10bの開口部1045の開口面積が、電解セル1の中央よりに配置されている単位陽極室10bの開口部1045の開口面積よりも大きいことが好ましい。ここでいう、開口面積とは、開口部1045を垂直投影して求めた面積をいう。
陽極側電解液入口部1043から遠い位置に配置されている単位陽極室10bでは、陽極側電解液入口部1043から移送される電解液の流速が減少する傾向にあるため、当該単位陽極室10bの横方向の電解液の流れが弱くなり、当該単位陽極室10b内の縦方向に電解液が上昇しやすい。そのため、電解セル1の中央付近は液供給量が増え、供給される電解液の濃度は高いことから、電解液の濃度が比較的上昇しやすく、電解セル1の横方向における電解液の濃度が均一にならない。
したがって、単位陽極室10bの開口部1045の開口面積を、上記関係を満たすように制御することで、陽極側電解液入口部1043から遠い単位陽極室10bの横方向の電解液の流れを促進することができる。これにより、電解セル1内の電解液の濃度分布をより均一にすることができる。
また、陽極側電解液入口部1043に近い位置に配置されている単位陽極室10bの開口部1045の開口面積が、電解セル1の中央よりに配置されている単位陽極室10bの開口部1045の開口面積よりも大きいことが好ましい。これにより、電解セル1内の電解液の濃度分布をより均一にすることができる。
具体的には、陽極室10の幅全長Lに対して、陽極室10の片端から距離0.13×Lに位置する各単位陽極室10bでは、その単位陽極室における開口部1045の開口面積の総和Saが、その他の単位陽極室10bにおける開口部1045の開口面積の総和Sbの1.5〜3倍であることがより好ましい(1.5Sb≦Sa≦3Sb)。
さらに、陽極室10の片端から4番目に位置する2つの単位陽極室10bに配置された陽極側電解液出口部1041の開口部1045の開口面積の総和が、その他の単位陽極室10bの開口部1045の開口面積の総和に対して、1.5〜3倍であることが更に好ましい。
また、陽極側電解液出口部1041の各開口部1045の断面積は全て同じであり、かつ、陽極室10の片端から距離0.13×Lに位置する各単位陽極室10bの開口部1045の数がその他の各単位陽極室10bが有する開口部の数の2〜3倍であることが特に好ましい。
(陽極側接続部)
陽極側接続部1042は、陽極室10内外に跨って配置され、陽極側電解液入口部1043と陽極側電解液出口部1041とを接続する。陽極側接続部1042は、パイプ形状であり、陽極側接続部1042の外周壁に孔1044が形成されている。孔1044は、陽極室10の内部領域に配置されている外周壁に形成されている(図3参照)。これにより、電解液が電解セル1内に残留することを防止できる。電解停止時には、陽極側電解液出口部1041の開口部1045だけでなく(図3の矢印A参照)、陽極側接続部1042の孔1044からも(図3の矢印B参照)、電解液を電解セル1外へ排出することができる。その結果、電解液を電解セル1から効率よく短時間で排出することができる。
なお、陽極室接続部1042の外周壁の陽極室内領域とは、陽極側接続部1042の外周壁の内、陽極室10内に位置している外周壁の領域のことである。図3においては、陽極側接続部1042の外周壁の内、陽極室10内、つまり、電解セル1の底面から上側に位置している外周壁の領域のことである。なお、後述する陰極室内領域についても同様である。
さらに、陽極側接続部1042の孔1044は、陽極室10の底面と同じ高さに位置することが好ましい。それによって、電解液をより残らず電解セル1外へ排出することができる。陽極側接続部1042としては、上記孔1044を備えたジョイントパイプ等を用いることができる。
陽極側接続部1042の中央内径(パイプ中央の内径)は、陽極側電解液入口部1043との接続箇所の内径よりも小さいことが好ましい。また、陽極側接続部1042の中央内径は、陽極側電解液出口部1041との接続箇所の内径よりも小さいことが好ましい。
さらに、陽極側接続部1042の孔1044の内径は、陽極側接続部1042の中央内径より小さいことが好ましい。このような構造とすることにより、電解液を電解セル内に供給する時に、陽極側接続部1042の孔1044付近で、供給される電解液の流速を増加させることができ、また、陽極側接続部1042の孔1044では、陽極室10内よりも低い圧力となる。それにより、陽極側接続部1042の孔1044から陽極室10へ液が漏れるように供給されず、効率的に電解液を陽極室10へ供給することができる。一方、電解液を排出する時には、陽極側接続部1042の孔1044からも電解セル外へ排出することができる。
陽極側接続部1042はベンチュリ部を有することが好ましく、例えば、ベンチュリ管を採用できる。さらに、孔1044はベンチュリ部の絞り部分に設けられることがより好ましい。ここで、ベンチュリ部とは、ベンチュリ効果を応用した管構造を有する部位であり、電解液が通過する領域の一部が狭くなっている構造を有する部位である。図4を用いて具体的に説明する。図4は、陽極側接続部1042の部分模式図である。陽極側電解液入口部1043との接続箇所の内径基準の断面積(以下、「内断面積」という。)S2、陽極側電解液出口部1041との接続箇所の内断面積S3、及び陽極側接続部1042の絞り部分の内断面積S1の関係は、S2及びS3よりも、S1が小さい(S2>S1、かつ、S3>S1)。絞り部分の電解液の流れが絞られることで、絞り部分の電解液の流速を増加させることができる。例えば、電解液の流量が一定で、電解液が非圧縮性の流体であるとき、絞り部分の流速は絞り部分を通過する前の流速のS2/S1倍となる。そして、電解液が絞り部分を通過すると絞り部分の圧力が低下し、その負圧により孔1044からも電解液を吸い出すことができる。これにより、電解液を均一かつ短時間で供給することができる。ベンチュリ効果を一層発揮させるためには、陽極側接続部1042の絞り部分は、パイプ内径の40〜80%の内径にすることが好ましく、50〜70%の内径にすることがより好ましい。具体例としては、パイプ内径が10mmのとき、絞り部分の内径は4mm〜8mmであることが好ましく、5mm〜7mmであることがより好ましい。
例えば、電解液供給時に孔1044からの液漏れを防ぎたい場合は、陽極側接続部1042の流速をより増加させればよく、そのためにはベンチュリ部の絞りを大きくすればよい。一方、電解液の流量をより増やしたい場合は、ベンチュリ部の絞りを小さくすればよい。
孔1044の内径s4は、ベンチュリ部の絞り部分の内径s1よりも小さいことが好ましい(s4<s1)。これにより、電解液供給時に孔1044からの液漏れを効果的に防ぐことができ、かつ、陽極側接続部1042の流速を一層増加させることができる。
陽極側接続部1042の材料としては、特に限定されないが、電解液に対する耐腐食性の観点から、チタン、フッ素系樹脂等であることが好ましい。
<陰極室>
続いて、陰極側について説明する。特に断りがない限り、陰極側の構成を上述した陽極側の構成と同様にしてもよい。陰極室20は、電解セル1を構成する枠体と、隔壁30と、陰極202とにより構成されている。陽極室10と同様に、陰極室20も、区切り部(リブ)によって区画された複数の単位陰極室から構成されている。
(陰極)
陰極202としては、ニッケル基材上の表面を、ニッケル、酸化ニッケル、ニッケルとスズの合金、活性炭と酸化物、酸化ルテニウム、白金等をコーティングした陰極等を用いることができる。その製造方法としては、合金めっき、分散・複合めっき、熱分解、溶射及びその組み合わせ等が挙げられる。
陰極202の集電効果を高める目的で、陰極室20の側面に沿って集電板208が配置されていることが好ましい。集電板208としては、公知のものを用いることができ、導電性の高い金属により構成されていることが好ましい。
(陰極側気液分離部)
さらに、陰極室20に陰極側気液分離部206を設けてもよい。陰極側気液分離部206は、陰極側電解液供給部204の上方に配置することが好ましい。陰極側気液分離部206は、陽極側気液分離部106と同様の構成をとることができる。
(陰極側電解液供給部)
陰極側電解液供給部204は、陽極側電解液供給部104と同様に、陰極室20外に配置された陰極側電解液入口部2043と、陰極室20内に配置された陰極側電解液出口部2041と、陰極側電解液入口部2043と陰極側電解液出口部2041とを接続する陰極側接続部2042と、を有することが好ましい。陰極側電解液入口部2043、陰極側電解液出口部2041及び陰極側接続部2042は、それぞれ、陽極側電解液入口部1043、陽極側電解液出口部1041及び陽極側接続部1042と同様の構成をとることが好ましい。
陰極側接続部2042の材料としては、特に限定されないが、電解液に対する耐腐食性の観点から、ニッケル、SUS、フッ素系樹脂等であることが好ましい。
(隔壁)
隔壁30は、陽極室10と陰極室20の間に配置されている。隔壁30は、セパレータと呼ばれることもあり、陽極室10と陰極室20とを区画するものである。隔壁30は、電解用のセパレータとして公知のものを使用することができ、例えば、陰極側にニッケルからなる板を、陽極側にチタンからなる板を溶接した隔壁等が挙げられる。
<その他構成>
(ガスケット)
本実施形態の電解セル1は、陽極室10を構成する枠体表面に配置された陽極側ガスケット40と、陰極室20を構成する枠体表面に配置された陰極側ガスケット50と、を備えることが好ましい。
<電解槽>
本実施形態の電解セル1は、イオン交換膜を介して複数個を直列に接続して、複極式電解槽とすることができる。図5は、同実施形態の電解槽を組み立てる途中の状態を示す概略斜視図である。本実施形態では、直列に配置された複数の電解セル1と、隣接する電解セル1の間に配置されたイオン交換膜(図示せず)と、を少なくとも備える複極式電解槽4(以下、単に「電解槽」という場合がある。)とすることができる。電解槽4は、イオン交換膜(図示せず)を介して複数の電解セル1を直列に配置して、プレス器7により連結されることにより組み立てられる(図5参照)。なお、連結した電解セル1の両端には、陽極室のみを有する電解セル(陽極ターミナルセル)と、陰極室のみを有する電解セル(陰極ターミナルセル)を配置する。さらに、連結した電解セル1には、電解セル1の陽極及び陰極の電解液供給部に接続された電解液供給管8と、電解セル1から排出された電解液を移送する電解液排出管9とが、接続される。電解液供給管8から、ホースを経由して、各電解セル1の電解液入口に電解液が供給される。また、電解停止時に、電解液を電解セル内から排出するときは、各電解セル1の電解液入口から、ホースを経由して電解液供給管に排出される。このようにして組み立てられた電解槽4では、その両端に配置された電解セル1のうちの一方に陽極端子が、もう一方に陰極端子が接続される。
電解槽4で用いられるイオン交換膜は、特に限定されず、公知のものを用いることができる。例えば、塩化アルカリ等の電気分解により塩素とアルカリを製造する場合、耐熱性及び耐薬品性等に優れるという観点から、含フッ素系イオン交換膜が好ましい。含フッ素系イオン交換膜としては、電解時に発生する陽イオンを選択的に透過する機能を有し、かつイオン交換基を有する含フッ素系重合体を含むもの等が挙げられる。ここでいうイオン交換基を有する含フッ素系重合体とは、イオン交換基、又は、加水分解によりイオン交換基となり得るイオン交換基前駆体、を有する含フッ素系重合体をいう。例えば、フッ素化炭化水素の主鎖からなり、加水分解等によりイオン交換基に変換可能な官能基をペンダント側鎖として有し、かつ溶融加工が可能な重合体等が挙げられる。
以下の実施例により本発明を更に詳しく説明するが、本発明は以下の実施例により何ら限定されるものではない。
<電解液の残留評価>
[実施例1]
電解槽の電解液の漏洩の有無について検討した。電解槽のうち陽極室側の領域における電解液の残留評価を行った。電解槽の構成について下記に示す。なお、以下、特に断りがない限り、陰極室側の各部材の配置は陽極室側の各部材の配置と同様にした。
図10に示す、横幅が2400mm、高さが1200mm、陽極室深さは35.5mm、陰極室深さは24.5mmである電解セル2を用意した。電解セル2は、区切り部(リブ)10aによって陽極室を区切られた26個の単位陽極室10bと、同様に区切り部(図示せず)によって陰極室を区切られた26個の単位陰極室と、を有する。陽極はエクスパンデッドメッシュ加工したチタン板の表面に、ルテニウム、イリジウム、チタンを成分とする酸化物を被覆することにより製作した。
陰極室内には、ニッケル製の集電板の上に、エクスパンデッドメッシュ加工したニッケル板に酸化ニッケルを溶射した陰極を用いた。
陽極室の内壁内部に、電解セル2の幅方向に沿って陽極側電解液出口部(分散パイプ)1041を配置し、陽極室外から陽極室内へ電解液を供給する陽極側電解液入口部(入口ノズル)1043を陽極室外に配置し、分散パイプ1041と入口ノズル1043とを接続する陽極側接続部(ジョイントパイプ)1042を配置した。陽極側のジョイントパイプとして、図6及び図7に示す形状のものを用いた。図6は、実施例1及び2で用いたジョイントパイプの正面図を表し、図7は、実施例1及び2で用いたジョイントパイプの側面図を表す。ジョイントパイプ1042は、図3に示すように、その外周に設けられた孔1044が、陽極室の底面と同じ高さに位置するように配置した。
また、陰極室においても同様に、分散パイプ(図示せず)、陰極側電解液入口部(入口ノズル)2043、陰極側接続部(ジョイントパイプ;図示せず)を配置した。陰極側においても、陽極側と同様に、ジョイントパイプの外周壁に設けられた孔が、陰極室の底面と同じ高さに位置するように配置した。
陽極側の分散パイプ1041は、外径25.4mm、厚み0.7mm、内径24mmのチタン製のパイプであり、電解セル2の陽極室の下端から分散パイプの中心までの距離が62.7mmである位置に配置した。分散パイプ1041には、図10に示す番号1〜26の各単位陽極室において、分散パイプ1041の上面に直径1.5mmの開口部を1か所ずつ設けた。番号3と23の単位陽極室においては、さらにもう1か所に直径1.5mmの開口部を設け、合計28個の開口部を設けた。なお、番号3と23以外の単位陽極室では、各開口部は単位陽極室の中心付近に配置した。番号3と23の陽極室では、2つの開口部間を31mmとし、開口部からリブまでの距離をそれぞれ32mmとなるように配置した。
陰極側の分散パイプは、直径12mm(内径)のニッケル製のパイプであり、電解セル2の陰極室の下端から分散パイプの中心までの距離が48.5mmである位置に設置した。陰極側の分散パイプも、陽極側と同様に開口部を設けた。
陽極室と陰極室にそれぞれ、気液分離部を電解セル2内の上部に設置した。陽極室にはさらに、長さ500mmのバッフル板を分散パイプの上方550mmにバッフル板の下端がくるように設置した。
なお、図10の電解セル2は、陽極側及び陰極側のジョイントパイプの孔が陽極室及び陰極室の底面と略同じ高さに位置するよう配置されている点以外は、図1の電解セル1と同様の構成とした。
この電解セル2を9個直列に並べ、両端には、陽極室のみを有する電解セル(陽極ターミナルセル)と、陰極室のみを有する電解セル(陰極ターミナルセル)を配置し、陽極ターミナルセルに陽極端子を、陰極ターミナルセルに陰極端子を配置した。各電解セル1は、その周縁部に陽極側ガスケット40と陰極側ガスケット50を接着剤で貼り付け、各電解セル1の間に、食塩電解用の含フッ素系イオン交換膜(旭化成ケミカルズ社製、商品名「ACIPLEX(登録商標)F6801」;以下、「イオン交換膜」という場合がある。)を挟んで、イオン交換膜と陰極との距離が1.7mmになるようにプレスして、図5に示すような、電解槽4を組み立てた。
そして、電解槽4の各電解セル2の陽極室に電解液として塩水を供給して陽極室内を塩水で満たした後、塩水を排出した。その後、電解槽を開けて、陽極室内に塩水が残っているかを目視にて評価した。その結果、陽極室にはほとんど電解液は残っておらず、電解停止時に電解液を排出する際には電解液が電解セル内に残り難いことが確認された。
また、電解液供給時において、高い流速で電解液を効率的に供給することができた。
[比較例1]
陽極側のジョイントパイプとして、図8に示す形状のものを用いた以外は、実施例1と同様の条件で電解液の残留評価を行なった。図8は、比較例1で用いたジョイントパイプの正面図である。その結果、電解槽を開けた際に陽極室から電解液が漏れ、電解液が陽極室内に残っていたことを目視にて確認した。
〔電解液の濃度分布測定(実施例2)〕
続いて、実施例1で使用した電解セル2(図10)を用いて、運転時における濃度分布を測定した。
電解液の濃度分布の測定方法について説明する。電解槽の各電解セルの陽極室に、陽極液として300g/Lの塩水を供給し、陰極室には、排出ノズル付近より、苛性ソーダ濃度が32質量%となるように希薄苛性ソーダを供給し、電解温度90℃、陽極室側ガス圧(ゲージ圧)を40kPa、陰極室側ガス圧(ゲージ圧)を44kPa、電流密度6kA/m2で1ヶ月間電解した。また、陽極液の排出ノズル付近の塩水のpHが2となるように、供給する塩水に塩酸を添加して電解を行った。
電解セル内の塩水濃度分布は、図9に示す箇所についての塩水濃度を測定し、その平均値をもとに評価した。図9は、本実施例で行った塩水濃度測定の測定箇所を示す側面図である。陽極室内の陽極近傍に、ノズルを9箇所挿入し、電解中に電解液をゆっくりサンプリングし、各測定点での塩水濃度を測定した。そして、6kA/m2の電流密度における、この9箇所での塩水濃度の最大値と最小値の差をセル内濃度分布差として求めた。サンプリング位置は、陽極室枠内において、以下の位置で測定した(図9の丸点参照)。
上部3箇所:陽極室周縁部の上部から、150mm内側の高さにおいて、電解セルの幅方向に沿って、真ん中で1箇所、中央から左右方向にそれぞれ968mmの位置で2箇所を測定した。
中央3箇所:陽極室の中心点で1箇所、中心点から左右方向にそれぞれ968mmの位置で2箇所を測定した。
下部3箇所:陽極室の周縁部の下部から、150mm内側の高さにおいて、電解セルの幅方向に沿って、真ん中で1箇所、中央から左右方向にそれぞれ968mmの位置で2箇所を測定した。その結果、セル内濃度分布差(最大値と最小値の差)は0.27N(=4.08N−3.81N)であった。塩水濃度分布を測定した結果を表1に示す。
Figure 0005818732
[電解液の濃度分布測定(実施例3)]
図10に示す番号2〜25の各単位陽極室10bにおいて、分散パイプを、直径1.5mmの孔を1か所ずつ設けた分散パイプに変更したこと以外は実施例2と同様にして実験を行った。なお、各開口部は、単位陽極室10bにおいて中心付近に設けた。その結果、セル内濃度分布差は0.40N(=3.98N−3.58N)であった。塩水濃度分布を測定した結果を表2に示す。
Figure 0005818732
以上より、実施例2及び3のいずれにおいても、電解液の濃度分布差が小さく、電解の際には電解液を均一に供給できることが確認された。
特に実施例2は、セル内濃度分布差が小さく、特に中央部における濃度分布差が小さくなっていることが確認された。また、実施例2では、電解セルの横方向の中央に相当する箇所(中央部の中央)で塩水濃度が高く、電解セルの左右端側に対して中央における塩水の供給量が増加し、電解セルの横方向における濃度がより均一になっていることが確認された。
本発明の電解セルは、塩素とアルカリ金属水酸化物を生産するためのイオン交換膜法アルカリ電解の分野をはじめとする幅広い分野で好適に利用できる。
1、2…電解セル、4…電解槽、7…プレス器、8…電解液供給管、9…電解液排出管、10…陽極室、10a…区切り部(リブ)、10b…単位陽極室、20…陰極室、30…隔壁、40…陽極側ガスケット、50…陰極側ガスケット、102…陽極、104…陽極側電解液供給部、106…陽極側気液分離部、108…バッフル板、202…陰極、204…陰極側電解液供給部、206…陰極側気液分離部、208…集電板、1041…陽極側電解液出口部(分散パイプ)、1042…陽極側接続部(ジョイントパイプ)、1043…陽極側電解液入口部(入口ノズル)、1044…孔、1045…開口部、2041…陰極側電解液出口部(分散パイプ)、2042…陰極側接続部(ジョイントパイプ)、2043…陰極側電解液入口部(入口ノズル)、2044…孔

Claims (9)

  1. 陽極室と、
    陰極室と、
    前記陽極室と前記陰極室との間に配置された隔壁と、
    前記陽極室に電解液を供給する陽極側電解液供給部と、
    前記陰極室に電解液を供給する陰極側電解液供給部と、を備え、
    前記陽極側電解液供給部は、
    前記陽極室外に配置された陽極側電解液入口部と、
    前記陽極室内に配置された陽極側電解液出口部と、
    前記陽極側電解液入口部と前記陽極側電解液出口部とを接続する陽極側接続部と、を有し;
    前記陽極側接続部の中央内径が、前記陽極側電解液入口部との接続箇所の内径より小さいか、前記陽極側電解液出口部との接続箇所の内径より小さいか、あるいは、その両方よりも小さいか;
    前記陽極側接続部は、パイプ形状であり陽極室内に位置する外周壁に孔が形成されている電解セル。
  2. 前記孔の内径は、前記陽極側接続部の中央内径より小さい、請求項1記載の電解セル。
  3. 前記陽極側接続部は、ベンチュリ部を有する、請求項1又は2に記載の電解セル。
  4. 前記陰極側電解液供給部は、
    前記陰極室外に配置された陰極側電解液入口部と、
    前記陰極室内に配置された陰極側電解液出口部と、
    前記陰極側電解液入口部と前記陰極側電解液出口部とを接続する陰極側接続部と、をさらに、有し、
    前記陰極側接続部は、パイプ形状であり陰極室内に位置する外周壁に孔が形成されている、請求項1〜のいずれか一項に記載の電解セル。
  5. 前記陰極側接続部の中央内径が、前記陰極側電解液入口部との接続箇所の内径より小さいか、前記陰極側電解液出口部との接続箇所の内径より小さいか、あるいは、その両方よりも小さい、請求項4に記載の電解セル。
  6. 前記陰極側接続部の外周壁に形成された前記孔の内径は、前記陰極側接続部の中央内径より小さい、請求項4又は5に記載の電解セル。
  7. 記陰極側接続部は、ベンチュリ部を有する、請求項のいずれか一項に記載の電解セル。
  8. 前記陽極室は、区切り板により区画された複数の単位陽極室から構成され、
    前記陽極側電解液出口部は、前記単位陽極室のそれぞれに前記電解液を分配するよう前記陽極側接続部から分岐した、請求項1〜のいずれか一項に記載の電解セル。
  9. 直列に配置された複数の請求項1〜のいずれか一項に記載の電解セルと、
    隣接する前記電解セルの間に配置されたイオン交換膜と、
    を備える電解槽。
JP2012076936A 2012-03-29 2012-03-29 電解セル及び電解槽 Active JP5818732B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012076936A JP5818732B2 (ja) 2012-03-29 2012-03-29 電解セル及び電解槽
CN201320146489.4U CN203256349U (zh) 2012-03-29 2013-03-28 电解单元及电解槽

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012076936A JP5818732B2 (ja) 2012-03-29 2012-03-29 電解セル及び電解槽

Publications (2)

Publication Number Publication Date
JP2013204130A JP2013204130A (ja) 2013-10-07
JP5818732B2 true JP5818732B2 (ja) 2015-11-18

Family

ID=49468933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012076936A Active JP5818732B2 (ja) 2012-03-29 2012-03-29 電解セル及び電解槽

Country Status (2)

Country Link
JP (1) JP5818732B2 (ja)
CN (1) CN203256349U (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107287610B (zh) * 2017-07-07 2024-01-12 浙江嘉化能源化工股份有限公司 一种高电密低电耗电解单元槽装置及其气液分离方法
JP2019090087A (ja) * 2017-11-15 2019-06-13 株式会社東芝 電解槽及び水素製造装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1263806B (it) * 1993-01-22 1996-09-03 Solvay Elettrolizzatore per la produzione di un gas
DE19646950A1 (de) * 1996-11-13 1998-05-14 Bayer Ag Elektrochemische Gasdiffusionshalbzelle
DE60045583D1 (de) * 1999-08-27 2011-03-10 Asahi Chemical Ind Elementarzelle für die verwendung in einer elektrolysezelle mit wässrigen alkalimetallchloridlösung
JP4906435B2 (ja) * 2006-08-21 2012-03-28 財団法人神奈川科学技術アカデミー 粒子の製造方法およびその方法により製造された粒子
CN101588713B (zh) * 2006-08-25 2012-07-04 株式会社富永树脂工业所 水槽用溢流装置
EP2546389A1 (de) * 2011-07-14 2013-01-16 United Initiators GmbH & Co. KG Verfahren zur Herstellung eines Ammonium- oder Akalimetallperosodisulfats im ungeteilten Elektrolyseraum

Also Published As

Publication number Publication date
CN203256349U (zh) 2013-10-30
JP2013204130A (ja) 2013-10-07

Similar Documents

Publication Publication Date Title
JP5869440B2 (ja) 電解セル及び電解槽
CN107750284B (zh) 电极组件、电极结构以及电解器
JPS59190379A (ja) 縦型電解槽及びそれを用いる電解方法
JP2013194296A (ja) 電解槽の保護部材及びそれを用いた電解槽
JP5818732B2 (ja) 電解セル及び電解槽
JP2012158775A (ja) 電解槽
US9045837B2 (en) Electrolyser with coiled inlet hose
JP2013076151A (ja) 電解セル及び電解槽
IE840552L (en) Electrolytic cell
CN101265587A (zh) 用于电化学装置的电极构件
JPS63134685A (ja) 電解槽
JP3229266B2 (ja) 複極式フィルタープレス型電解槽
JP3110720B2 (ja) イオン交換膜電解槽における気液分離方法
JP6499151B2 (ja) 電解槽
JPH05320970A (ja) イオン交換膜電解槽
JP2015120944A (ja) 電解セル及び電解槽
CN201010696Y (zh) 用于电化学装置的电极构件
JP2003183867A (ja) 塩化アルカリ水溶液の電解方法
JP6294991B1 (ja) 複極式電解槽
KR20240035882A (ko) 전해조 프레임 설계
JPS624469B2 (ja)
JPS58217683A (ja) 電解槽
JPS58217684A (ja) 電極体
JP2012255200A (ja) 電解装置及び電解方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150929

R150 Certificate of patent or registration of utility model

Ref document number: 5818732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350