JP5812588B2 - Gasification furnace, operation method of gasification furnace, and coal gasification combined power plant - Google Patents

Gasification furnace, operation method of gasification furnace, and coal gasification combined power plant Download PDF

Info

Publication number
JP5812588B2
JP5812588B2 JP2010206218A JP2010206218A JP5812588B2 JP 5812588 B2 JP5812588 B2 JP 5812588B2 JP 2010206218 A JP2010206218 A JP 2010206218A JP 2010206218 A JP2010206218 A JP 2010206218A JP 5812588 B2 JP5812588 B2 JP 5812588B2
Authority
JP
Japan
Prior art keywords
gasification
side wall
oxygen
nitrogen
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010206218A
Other languages
Japanese (ja)
Other versions
JP2012062376A (en
Inventor
琢也 石賀
琢也 石賀
木曽 文彦
文彦 木曽
文彦 流森
文彦 流森
正徳 山藤
正徳 山藤
秀樹 今村
秀樹 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Mitsubishi Power Ltd
Original Assignee
Electric Power Development Co Ltd
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Mitsubishi Hitachi Power Systems Ltd filed Critical Electric Power Development Co Ltd
Priority to JP2010206218A priority Critical patent/JP5812588B2/en
Publication of JP2012062376A publication Critical patent/JP2012062376A/en
Application granted granted Critical
Publication of JP5812588B2 publication Critical patent/JP5812588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Gasification And Melting Of Waste (AREA)

Description

本発明は、石炭等の固体燃料を用いたガス化炉、ガス化炉の運転方法、及びガス化複合発電プラントに関する。   The present invention relates to a gasification furnace using a solid fuel such as coal, a gasification furnace operation method, and a gasification combined power plant.

石炭等の固体燃料をガス化するガス化炉の運転には、ガス化炉の炉内温度、ガス化炉の炉壁耐火材の溶損及び付着物の成長、及びガス化炉内で生成する溶融スラグの流下状況を監視して、ガス化炉の炉内の燃焼条件を調整する必要がある。     In the operation of a gasification furnace that gasifies solid fuel such as coal, the temperature inside the gasification furnace, the melting and deposit growth of the refractory material of the furnace wall of the gasification furnace, and the generation in the gasification furnace It is necessary to adjust the combustion conditions in the gasification furnace by monitoring the flow of molten slag.

特開2007−271205号公報の第1図には、ガス化炉の生成ガスや炉内温度、及び溶融スラグ流下状況を、炉壁の冷却水温度の出入口の温度差の変化で監視してガス化炉の運転条件を調整するガス化炉の運転方法が開示されている。   FIG. 1 of Japanese Patent Application Laid-Open No. 2007-271205 monitors the gas generated in the gasifier, the furnace temperature, and the molten slag flow status by monitoring the change in temperature difference between the inlet and outlet of the cooling water temperature of the furnace wall. A gasification furnace operation method for adjusting the operation conditions of the gasification furnace is disclosed.

また、特開2002−250512号公報の第1図には、燃焼溶融炉における同一平面で90度間隔に4本の気体供給ノズルを備えた溶融炉において、対向する2本の気体供給ノズルを交互に使用する運用を繰り返すことで、ノズル近傍に形成される付着物の成長を抑制する燃焼溶融炉の運転方法が開示されている。   Further, FIG. 1 of Japanese Patent Application Laid-Open No. 2002-250512 shows that two gas supply nozzles opposed to each other are alternately arranged in a melting furnace having four gas supply nozzles at 90 ° intervals on the same plane in the combustion melting furnace. The operation method of the combustion melting furnace which suppresses the growth of the deposit | attachment formed in the nozzle vicinity by repeating the operation | use used for is disclosed.

特開2007−271205号公報(第1図)JP 2007-271205 A (FIG. 1) 特開2002−250512号公報(第1図)Japanese Patent Laid-Open No. 2002-250512 (FIG. 1)

ガス化炉においては、ガス化炉の炉壁耐火材にチャーやスラグによる付着物の形成と、高温の溶融スラグによる耐火材侵食のリスクが存在する。   In a gasification furnace, there is a risk of formation of deposits due to char and slag on the furnace wall refractory material of the gasification furnace and refractory material erosion due to high-temperature molten slag.

ガス化炉の炉内の付着物の成長は、ガス化炉の閉塞や、バーナ火炎の流動変化による炉壁耐火材の局所的な溶損加速に繋がる可能性がある。   The growth of deposits in the gasification furnace may lead to local gasification acceleration of the furnace wall refractory due to blockage of the gasification furnace or changes in the flow of the burner flame.

また、高温の溶融スラグによる耐火材の侵食は、耐火材溶損による耐火材厚み低下により、外筒の金属材を焼損させ、ガス化炉破損に繋がる可能性がある。   Moreover, erosion of the refractory material due to the high-temperature molten slag may cause the metal material of the outer cylinder to burn out due to a decrease in the thickness of the refractory material due to refractory material melting and damage to the gasifier.

本発明の目的はガス火炉の炉内の付着物の成長及び耐火材の溶損を抑制してガス化炉が運転停止に至る状況を回避し、長期の連続運転に耐える信頼性の高いガス化炉、ガス化炉の運転方法、及び石炭ガス化複合発電プラントを提供することにある。   The object of the present invention is to prevent the gasification furnace from shutting down by suppressing the growth of deposits in the furnace of the gas furnace and the refractory loss of the refractory material, and highly reliable gasification that can withstand long-term continuous operation. It is providing the furnace, the operation method of a gasification furnace, and a coal gasification combined cycle power plant.

本発明のガス化炉は、石炭と窒素及び酸素をガス化炉の内部に供給する上段バーナ及び下段バーナと、前記ガス化炉に設置されてガス化炉の壁面を構成する側壁耐火材と、前記上段バーナ及び下段バーナから供給された石炭中の可燃分をガス化して石炭中の灰分を溶融スラグ化させるように前記側壁耐火材の内側に形成されたガス化部と、前記ガス化部内でガス化した生成ガスを外部に抜き出す開口部を有する天井部及び溶融スラグを下方に流下させる別の開口部を有するスラグタップを底部にそれぞれ備えたガス化炉において、 前記上段バーナと下段バーナとの間の前記側壁耐火材の内部に温度測定器をガス炉の高さ方向に沿って複数個設置し、前記側壁耐火材の内部に設置する温度測定器は、側壁耐火材の厚み方向にも複数個設置し、複数個設置した前記温度測定器で測定した温度測定値に基づいてガス化部の内部の前記側壁耐火材近傍の温度分布を演算し、この側壁耐火材近傍の温度分布に基づいて前記上段バーナ及び下段バーナからガス化部内に供給する石炭と窒素及び酸素の流量を調整する制御装置を備えたことを特徴とする。 The gasification furnace of the present invention includes an upper burner and a lower burner that supply coal, nitrogen, and oxygen into the gasification furnace, a side wall refractory material that is installed in the gasification furnace and constitutes the wall of the gasification furnace, A gasification part formed inside the side wall refractory so as to gasify the combustible component in the coal supplied from the upper burner and the lower burner to melt the ash in the coal into molten slag, and in the gasification unit In a gasification furnace provided with a ceiling having an opening for extracting gasified product gas to the outside and a slag tap having another opening for allowing molten slag to flow downward, respectively, the upper burner and the lower burner A plurality of temperature measuring devices are installed inside the side wall refractory material along the height direction of the gasifier , and the temperature measuring device installed inside the side wall refractory material is also installed in the thickness direction of the side wall refractory material. Multiple installations, A temperature distribution in the vicinity of the side wall refractory material inside the gasification unit is calculated based on temperature measurement values measured by a plurality of temperature measuring devices installed, and the upper burner and the temperature distribution in the vicinity of the side wall refractory material are calculated. A control device for adjusting the flow rates of coal , nitrogen, and oxygen supplied from the lower burner into the gasification section is provided.

本発明のガス化炉の運転方法は、ガス化炉の上段と下段とに設けた上段バーナ及び下段バーナから石炭と窒素及び酸素をガス化炉の壁面を構成する側壁耐火材の内側に形成されたガス化部に供給して石炭中の可燃分をガス化して石炭中の灰分を溶融スラグ化させ、前記ガス化部内でガス化した生成ガスを外部に抜き出す開口部を有する天井部及び溶融スラグを下方に流下させる別の開口部を有するスラグタップを底部にそれぞれ備えたガス化炉の運転方法において、ガス化炉の側壁耐火材の内部にガス化炉の高さ方向に沿って複数個設置した温度測定器及び前記側壁耐火材の厚み方向にも複数個設置させた温度測定器で計測した温度測定値に基づいてガス化部の内部の前記側壁耐火材近傍の温度分布を演算し、この演算で求めた側壁耐火材近傍の温度分布に基づいて前記上段バーナ及び下段バーナからガス化部内に供給する石炭と窒素及び酸素の流量を調整し、ガス化部内に形成する火炎の温度を調節するようにしたことを特徴とする。
また本発明のガス化炉の運転方法は、ガス化炉の上段と下段とに設けた上段バーナ及び下段バーナから石炭と窒素及び酸素をガス化炉の壁面を構成する側壁耐火材の内側に形成されたガス化部に供給して石炭中の可燃分をガス化して石炭中の灰分を溶融スラグ化させ、前記ガス化部内でガス化した生成ガスを外部に抜き出す開口部を有する天井部及び溶融スラグを下方に流下させる別の開口部を有するスラグタップを底部にそれぞれ備えたガス化炉の運転方法において、ガス化炉の側壁耐火材の内部にガス化炉の高さ方向に沿って複数個設置した温度測定器で計測した温度測定値に基づいてガス化部の内部の前記側壁耐火材近傍の温度分布を演算し、この演算で求めた前記側壁耐火材近傍の温度分布に基づいて側壁耐火材の厚さ減少の有無及び場所、又は側壁耐火材への付着物成長の有無及び場所を検知して前記上段バーナ及び下段バーナからガス化部内に供給する石炭と窒素及び酸素の流量をそれぞれ調整し、ガス化部内に形成する火炎の温度を調節するようにしたことを特徴とする。
また本発明のガス化炉の運転方法は、ガス化炉の上段と下段とに設けた上段バーナ及び下段バーナから石炭と窒素及び酸素をガス化炉の壁面を構成する側壁耐火材の内側に形成されたガス化部に供給して石炭中の可燃分をガス化して石炭中の灰分を溶融スラグ化させ、前記ガス化部内でガス化した生成ガスを外部に抜き出す開口部を有する天井部及び溶融スラグを下方に流下させる別の開口部を有するスラグタップを底部にそれぞれ備えたガス化炉の運転方法において、ガス化炉の側壁耐火材の内部にガス化炉の高さ方向に沿って複数個設置した温度測定器及び前記側壁耐火材の厚み方向にも複数個設置させた温度測定器で計測した温度測定値に基づいてガス化部の内部の前記側壁耐火材近傍の温度分布を演算し、この演算で求めた前記側壁耐火材近傍の温度分布に基づいて側壁耐火材の厚さ減少の有無及び場所、又は側壁耐火材への付着物成長の有無及び場所を検知して前記上段バーナ及び下段バーナからガス化部内に供給する石炭と窒素及び酸素の流量をそれぞれ調整し、ガス化部内に形成する火炎の温度を調節するようにしたことを特徴とする。
The operation method of the gasification furnace of the present invention is formed inside the side wall refractory material constituting the wall of the gasification furnace with coal, nitrogen and oxygen from the upper and lower burners provided in the upper and lower stages of the gasification furnace. A ceiling portion having an opening for extracting combustible components in the coal by gasifying the combustible components in the coal to convert the ash content in the coal into molten slag, and extracting the gas generated in the gasification portion to the outside, and the molten slag In the operation method of the gasification furnace each provided with a slag tap having another opening for allowing the gas to flow downward, a plurality of gas taps are installed along the height direction of the gasification furnace inside the side wall refractory material of the gasification furnace. The temperature distribution in the vicinity of the side wall refractory material inside the gasification part is calculated based on the temperature measurement value measured by a plurality of temperature measuring devices installed in the thickness direction of the temperature measuring device and the side wall refractory material, Near the side wall refractory obtained by calculation Wherein adjusting the coal and the flow rate of nitrogen and oxygen is supplied from the upper burner and lower stage burner in the gasification portion, characterized in that so as to regulate the temperature of the flame to be formed in the gasification portion based of the temperature distribution .
The operation method of the gasification furnace of the present invention is such that coal, nitrogen and oxygen are formed inside the side wall refractory material constituting the wall of the gasification furnace from the upper and lower burners provided in the upper and lower stages of the gasification furnace. Supplied to the gasified section, gasified combustible components in the coal to melt the ash in the coal into a molten slag, and a ceiling section having an opening for extracting the gas generated in the gasified section to the outside and melting In the operation method of the gasification furnace provided with slag taps each having another opening for allowing the slag to flow downward at the bottom part, a plurality of gasification furnace side walls of the gasification furnace along the height direction of the gasification furnace The temperature distribution in the vicinity of the side wall refractory material inside the gasification unit is calculated based on the temperature measurement value measured by the installed temperature measuring device, and the side wall refractory resistance is calculated based on the temperature distribution in the vicinity of the side wall refractory material obtained by this calculation. Whether there is a decrease in material thickness Location, or sidewalls of the deposit growth of refractory material presence and location detected by the upper stage burner and coal supplied from the lower burner the gasification portion, nitrogen and oxygen flow rate were respectively adjusted to form the gasification portion It is characterized by adjusting the flame temperature.
The operation method of the gasification furnace of the present invention is such that coal, nitrogen and oxygen are formed inside the side wall refractory material constituting the wall of the gasification furnace from the upper and lower burners provided in the upper and lower stages of the gasification furnace. Supplied to the gasified section, gasified combustible components in the coal to melt the ash in the coal into a molten slag, and a ceiling section having an opening for extracting the gas generated in the gasified section to the outside and melting In the operation method of a gasification furnace provided with slag taps each having another opening for allowing the slag to flow downward at the bottom, a plurality of gasification furnace side walls of the gasification furnace along the height direction of the gasification furnace Calculate the temperature distribution in the vicinity of the side wall refractory material inside the gasification unit based on the temperature measurement value measured by the temperature measuring device installed in the thickness direction of the temperature measuring device and the side wall refractory material installed multiple times, The side wall obtained by this calculation Based on the temperature distribution in the vicinity of the fire material, the presence or absence of the thickness reduction of the side wall refractory material or the presence or location of the deposit growth on the side wall refractory material is detected and supplied from the upper burner and the lower burner into the gasification section. The flow rates of coal , nitrogen and oxygen are adjusted to adjust the temperature of the flame formed in the gasification section.

本発明の石炭ガス化複合発電プラントは、石炭と窒素及び酸素をガス化炉の内部に供給する上段バーナ及び下段バーナと、前記ガス化炉に設置されてガス化炉の壁面を構成する側壁耐火材と、前記上段バーナ及び下段バーナから供給された石炭中の可燃分をガス化して石炭中の灰分を溶融スラグ化させるように前記側壁耐火材の内側に形成されたガス化部と、前記ガス化部内でガス化した生成ガスを外部に抜き出す開口部を有する天井部及び溶融スラグを下方に流下させる別の開口部を有するスラグタップを底部にそれぞれ備え、前記上段バーナと下段バーナとの間の前記側壁耐火材の内部に温度測定器をガス化炉の高さ方向に沿って複数個設置し、前記側壁耐火材の内部に設置する温度測定器は、側壁耐火材の厚み方向にも複数個設置し、複数個設置した前記温度測定器で測定した温度測定値に基づいてガス化部の内部の前記側壁耐火材近傍の温度分布を演算し、この側壁耐火材近傍の温度分布に基づいて前記上段バーナ及び下段バーナからガス化部内に供給する石炭と窒素及び酸素の流量を調整する制御装置を備えたガス化炉を備えており、前記ガス化炉のガス化部で生成されて該ガス化炉から導出された生成ガスを脱塵する脱塵装置と、前記脱塵装置で生成ガス中から回収したチャーをガス化炉に設置されたチャーバーナに供給するチャー供給系統と、脱塵装置で脱塵された生成ガスの脱硫を行なう脱硫装置と、前記脱硫装置で脱硫された生成ガスを燃料として燃焼する燃焼器と、前記燃焼器で発生した燃焼ガスで駆動するガスタービンと、前記ガスタービンで駆動して発電する発電機と、前記燃焼器に圧縮空気を供給する圧縮機を備えたことを特徴とする。 The combined coal gasification combined power plant of the present invention includes an upper burner and a lower burner for supplying coal, nitrogen and oxygen into the gasification furnace, and a side wall refractory that is installed in the gasification furnace and constitutes the wall of the gasification furnace. A gasification part formed on the inside of the side wall refractory material so as to gasify the combustible component in the coal supplied from the upper burner and the lower burner to melt the ash in the coal into molten slag, and the gas A ceiling portion having an opening for extracting the product gas gasified in the gasification portion to the outside, and a slag tap having another opening for flowing down the molten slag downward, respectively, between the upper burner and the lower burner A plurality of temperature measuring devices are installed inside the side wall refractory material along the height direction of the gasifier, and a plurality of temperature measuring devices installed inside the side wall refractory material are also provided in the thickness direction of the side wall refractory material. Install The temperature distribution in the vicinity of the side wall refractory material inside the gasification part is calculated based on the temperature measurement value measured by the several temperature measuring devices installed, and the upper burner and the temperature distribution in the vicinity of the side wall refractory material are calculated. A gasification furnace having a control device for adjusting the flow rates of coal and nitrogen and oxygen supplied from the lower burner into the gasification section is provided, and is generated in the gasification section of the gasification furnace and is derived from the gasification furnace. A dust removing device for removing the generated gas, a char supply system for supplying the char recovered from the generated gas by the dust removing device to a char burner installed in the gasification furnace, and a dust removing device for removing the dust. A desulfurizer that desulfurizes the generated gas, a combustor that uses the generated gas desulfurized in the desulfurizer as a fuel, a gas turbine that is driven by the combustion gas generated in the combustor, and a gas turbine that is driven by the gas turbine. Power generation A generator that, characterized by comprising a compressor for supplying compressed air to the combustor.

本発明によれば、ガス火炉の炉内の付着物の成長及び耐火材の溶損を抑制してガス化炉が運転停止に至る状況を回避し、長期の連続運転に耐える信頼性の高いガス化炉、ガス化炉の運転方法、及び石炭ガス化複合発電プラントが実現できる。   According to the present invention, it is possible to prevent the gasification furnace from shutting down by suppressing the growth of deposits in the furnace of the gas furnace and the refractory loss of the refractory, and a highly reliable gas that can withstand long-term continuous operation. A gasification furnace, a gasification furnace operation method, and a coal gasification combined power plant can be realized.

本発明の第1実施例であるガス化炉の概略構造を示す断面図。Sectional drawing which shows schematic structure of the gasification furnace which is 1st Example of this invention. 図1に示す第1実施例のガス化炉の上段バーナ高さにおける断面図。Sectional drawing in the height of the upper stage burner of the gasification furnace of 1st Example shown in FIG. 図1に示す第1実施例のガス化炉の下段バーナ高さにおける断面図。Sectional drawing in the height of the lower stage burner of the gasification furnace of 1st Example shown in FIG. 図1に示す第1実施例のガス化炉の側壁近傍ガス温度分布の一例を表したガス温度分布図。The gas temperature distribution figure showing an example of the side wall gas temperature distribution of the gasification furnace of 1st Example shown in FIG. 本発明の第2実施例であるガス化炉の概略構造を示す断面図。Sectional drawing which shows schematic structure of the gasification furnace which is 2nd Example of this invention. 本発明の第3実施例であるガス化炉の概略構造を示す断面図。Sectional drawing which shows schematic structure of the gasification furnace which is 3rd Example of this invention. 本発明の第4実施例であるガス化炉の概略構造を示す断面図。Sectional drawing which shows schematic structure of the gasification furnace which is 4th Example of this invention. 本発明の第5実施例であるガス化炉の概略構造を示す断面図。Sectional drawing which shows schematic structure of the gasification furnace which is 5th Example of this invention. 図8に示す第5実施例のガス化炉の下段バーナ高さにおける断面図。Sectional drawing in the height of the lower stage burner of the gasification furnace of 5th Example shown in FIG. 本発明の第6実施例であるガス化炉を備えた石炭ガス化複合発電プラントの概略構造を示すプラント系統図。The plant system diagram which shows schematic structure of the coal gasification combined cycle power plant provided with the gasification furnace which is 6th Example of this invention.

本発明の実施例であるガス化炉、ガス化炉の運転方法、及び石炭ガス化複合発電プラントについて図面を用いて以下に説明する。   A gasification furnace, a gasification furnace operating method, and a coal gasification combined power plant that are embodiments of the present invention will be described below with reference to the drawings.

本発明の実施例であるガス化炉及びガス化炉の運転方法について図1を用いて説明する。   The gasification furnace which is an embodiment of the present invention and the operation method of the gasification furnace will be described with reference to FIG.

図1は本発明の第1実施例であるガス化炉1の概略構成を示す断面図であり、図1に示したように、ガス化炉1は外形が円筒状に形成されており、このガス化炉1の頂部には精製ガスを外部に抜き出す天井部開口部2が、ガス化炉1の底部に設けたスラグタップ10の中心部には溶融スラグを流下させるスラブタップ開口部9がそれぞれ形成されている。   FIG. 1 is a cross-sectional view showing a schematic configuration of a gasification furnace 1 according to a first embodiment of the present invention. As shown in FIG. 1, the gasification furnace 1 is formed in a cylindrical shape. At the top of the gasification furnace 1 is a ceiling opening 2 for extracting purified gas to the outside, and at the center of the slag tap 10 provided at the bottom of the gasification furnace 1 is a slab tap opening 9 for allowing molten slag to flow down. Is formed.

そしてガス化炉1の内部には燃料の石炭中の可燃分を酸素と燃焼反応させてガス化してCO及びHを主成分とする生成ガスを発生させるガス化部4が形成されている。 Inside the gasification furnace 1 is formed a gasification section 4 for generating a product gas mainly composed of CO and H 2 by gasifying the combustible component in the coal of fuel by combustion reaction with oxygen.

前記ガス化炉1は、前記ガス化部4で石炭中の灰分が溶融した溶融スラグをその中心部に開口させたスラグタップ開口部9から下方に流下させるスラグタップ10と、スラグタップ10の直下に位置して溶融したスラグを下方に導くバッファ空間となるクエンチ部11と、クエンチ部11の下方に位置して溶融したスラグを冷却するスラグ冷却水槽6とを備えている。   The gasification furnace 1 includes a slag tap 10 that flows down from a slag tap opening 9 in which molten slag in which ash in coal is melted in the gasification unit 4 is opened at the center thereof, and immediately below the slag tap 10. The quench part 11 which becomes the buffer space which guides the molten slag located in the lower part and the slag cooling water tank 6 which cools the molten slag located below the quench part 11 are provided.

ガス化炉1の外筒としてガス化炉1の頂部に金属製の天井部外筒3が設置され、ガス化炉1の外周には金属製の側壁外筒8が設置されている。   As an outer cylinder of the gasification furnace 1, a metal ceiling outer cylinder 3 is installed on the top of the gasification furnace 1, and a metal side wall outer cylinder 8 is installed on the outer periphery of the gasification furnace 1.

ガス化炉1の内部は高温ガスに晒されるため、側壁外筒8の内部には円筒状に側壁耐火材7を張り側壁外筒8を保護している。   Since the inside of the gasification furnace 1 is exposed to high-temperature gas, the side wall outer cylinder 8 is protected by extending the side wall outer cylinder 8 with a side wall refractory material 7 in a cylindrical shape.

これらの天井部外筒3及び側壁外筒8は温度上昇を抑制するため、水冷して保護することが多い。   The ceiling outer cylinder 3 and the side wall outer cylinder 8 are often protected by water cooling in order to suppress a temperature rise.

ガス化部4を内部に形成するガス化炉1の壁面を構成する側壁耐火材7には、上段バーナ5と下段バーナ6が上下方向に相互に離間して、それぞれ接線方向に取り付けられており、前記上段バーナ5と下段バーナ6から微粉にした固体燃料の石炭と酸素含有ガスである窒素及び酸素とを前記側壁耐火材7の内部に形成したガス化部4内に投入して、このガス化部4内で旋回流を形成させる。   An upper burner 5 and a lower burner 6 are vertically attached to the side wall refractory material 7 constituting the wall of the gasification furnace 1 in which the gasification section 4 is formed, and are respectively attached in the tangential direction. The solid fuel coal finely pulverized from the upper burner 5 and the lower burner 6 and nitrogen and oxygen which are oxygen-containing gases are introduced into the gasification section 4 formed inside the side wall refractory material 7, and this gas A swirling flow is formed in the conversion unit 4.

即ち、制御装置21からの指令信号によって上段バーナ石炭流量調整器23、上段バーナ窒素流量調整器24、及び上段バーナ酸素流量調整器25がそれぞれ制御され、上段バーナ石炭流量調整器23で調節された流量の石炭26、上段バーナ窒素流量調整器24で調節された流量の窒素27、及び上段バーナ酸素流量調整器25で調節された流量の酸素28が前記上段バーナ5からガス化部4内に投入されるように構成されている。   That is, the upper burner coal flow regulator 23, the upper burner nitrogen flow regulator 24, and the upper burner oxygen flow regulator 25 are respectively controlled by the command signal from the control device 21 and adjusted by the upper burner coal flow regulator 23. The flow rate of coal 26, the flow rate of nitrogen 27 adjusted by the upper burner nitrogen flow rate regulator 24, and the flow rate of oxygen 28 adjusted by the upper burner oxygen flow rate regulator 25 are input from the upper burner 5 into the gasification unit 4. It is configured to be.

同様に制御装置21からの指令信号によって下段バーナ石炭流量調整器29、下段バーナ窒素流量調整器30、及び下段バーナ酸素流量調整器31がそれぞれ制御され、下段バーナ石炭流量調整器29で調節された流量の石炭32、下段バーナ窒素流量調整器30で調節された流量の窒素33、及び下段バーナ酸素流量調整器31で調節された流量の酸素34が前記下段バーナ6からガス化部4内に投入されるように構成されている。   Similarly, the lower burner coal flow regulator 29, the lower burner nitrogen flow regulator 30, and the lower burner oxygen flow regulator 31 are respectively controlled by the command signal from the control device 21, and are adjusted by the lower burner coal flow regulator 29. The flow rate of coal 32, the flow rate of nitrogen 33 adjusted by the lower burner nitrogen flow rate regulator 30, and the flow rate of oxygen 34 adjusted by the lower burner oxygen flow rate regulator 31 are input from the lower burner 6 into the gasification unit 4. It is configured to be.

上段バーナ5及び下段バーナ6からガス化部4内に投入された石炭中の可燃分はガス化部4内で酸素と反応してガス化し、CO及びHを主成分とする生成ガス20となる。これは、ガス化部4に投入される酸素量が、石炭の完全燃焼に必要な酸素量より少ない条件で運転されることによる。 The combustible component in the coal charged into the gasification unit 4 from the upper burner 5 and the lower burner 6 reacts with oxygen in the gasification unit 4 to be gasified, and the generated gas 20 mainly contains CO and H 2. Become. This is because the amount of oxygen supplied to the gasification unit 4 is operated under a condition that is less than the amount of oxygen necessary for complete combustion of coal.

一方、石炭中の灰分(不燃物)を含むチャーは、ガス化部4内の旋回流によって遠心力を受け、側壁耐火材7の炉壁側に移動する。   On the other hand, the char containing ash (incombustible material) in the coal receives centrifugal force by the swirling flow in the gasification unit 4 and moves to the furnace wall side of the side wall refractory material 7.

灰分はガス化部4内の高温火炎により溶融スラグ化して側壁耐火材7の壁面に付着する。溶融スラグは、炉壁耐火材7の壁面からスラグタップ10の上面を通り、スラグタップ開口部9から下方に流下する。   Ash is melted into slag by the high-temperature flame in the gasification section 4 and adheres to the wall surface of the side wall refractory material 7. The molten slag passes from the wall surface of the furnace wall refractory material 7 through the upper surface of the slag tap 10 and flows downward from the slag tap opening 9.

スラグタップ開口部9を流下した溶融スラグは、クエンチ部11を経由してスラグ冷却水槽12に流入し、このスラグ冷却水槽12にて冷却されてガラス状の固形スラグとして回収される。   The molten slag that has flowed down the slag tap opening 9 flows into the slag cooling water tank 12 via the quench part 11, is cooled in the slag cooling water tank 12, and is recovered as a glassy solid slag.

スラグ冷却水槽12の底部から排出されて回収される固形スラグの回収量は、スラグ重量計測器50で計測し、スラグ重量計測器50で計測されたスラグ重量の計測データは制御装置21に取り込まれる。   The recovered amount of solid slag discharged and recovered from the bottom of the slag cooling water tank 12 is measured by the slag weight measuring device 50, and the measurement data of the slag weight measured by the slag weight measuring device 50 is taken into the control device 21. .

ガス化部4内の温度分布については、側壁耐火材7に設置する高さが異なるように埋め込まれた複数個の温度測定器16によって計測する。   About the temperature distribution in the gasification part 4, it measures with the several temperature measuring device 16 embedded so that the height installed in the side wall refractory material 7 might differ.

前記複数の温度測定器16を側壁耐火材7に埋め込んで測定した温度検出値に基づいて計測された炉内温度分布データ22は制御装置21に取り込まれる。   In-furnace temperature distribution data 22 measured based on temperature detection values measured by embedding the plurality of temperature measuring devices 16 in the side wall refractory material 7 is taken into the control device 21.

このように温度測定器16によってガス化部4内の温度分布を計測することで、ガス化部4内の高温火炎インピンジによる温度測定器16の焼損、溶融スラグによる側壁耐火材7の溶損、飛散粒子の衝突による側壁耐火材7の損耗のリスクを低減できる。   By measuring the temperature distribution in the gasification unit 4 with the temperature measuring device 16 in this way, the temperature measuring device 16 burns out due to the high-temperature flame impingement in the gasification unit 4, and the side wall refractory material 7 melts down due to the molten slag. The risk of wear of the side wall refractory material 7 due to the collision of scattered particles can be reduced.

さらに、ガス化部4内の側壁近傍のガス温度については、温度測定器16で計測した温度検出値、温度測定器16が設置されたガス化部4における設置深さ(側壁耐火材7の表面からの厚み方向の距離)、側壁耐火材7の耐火材の物性、側壁外筒8の温度に基づいて制御装置21にて推定演算される。   Furthermore, about the gas temperature of the side wall vicinity in the gasification part 4, the temperature detection value measured with the temperature measuring device 16, the installation depth in the gasification part 4 in which the temperature measuring device 16 was installed (surface of the side wall refractory material 7) Is calculated by the control device 21 based on the physical property of the refractory material of the side wall refractory material 7 and the temperature of the side wall outer cylinder 8.

次に、本実施例であるガス化炉1のガス化部4内に形成される火炎の流れについて説明する。   Next, the flow of the flame formed in the gasification part 4 of the gasification furnace 1 which is a present Example is demonstrated.

図1において、上段バーナ5から投入される石炭26、窒素27、及び酸素28は、ガス化部4内で着火し、上段バーナ5によって形成された火炎14となって、ガス化部4内部を旋回流で下降する。   In FIG. 1, coal 26, nitrogen 27, and oxygen 28 introduced from the upper burner 5 are ignited in the gasification unit 4 to form a flame 14 formed by the upper burner 5, It descends with a swirl flow.

下段バーナ6から投入される石炭32、窒素33、及び酸素34についても、ガス化部4内で着火し、下段バーナ6によって形成された火炎15となる。下段バーナ6によって形成された火炎15は、ガス化部4内部を旋回流で下降し、スラグタップ10によって反転して上昇流となる。   The coal 32, nitrogen 33, and oxygen 34 introduced from the lower burner 6 are also ignited in the gasification unit 4, and become a flame 15 formed by the lower burner 6. The flame 15 formed by the lower burner 6 descends in a swirl flow inside the gasification unit 4 and reverses by the slag tap 10 to become an upward flow.

この上昇流となった下段バーナによって形成された火炎15は、ガス化部4内部を旋回流で側壁耐火材7の壁面近傍を上昇し、上段バーナ5と下段バーナ6の間となるガス化部4内の場所で上段バーナ5によって形成された火炎14と衝突することになる。   The flame 15 formed by the lower burner that has become the upward flow rises in the vicinity of the wall surface of the side wall refractory material 7 by a swirling flow inside the gasification unit 4, and becomes a gasification unit between the upper burner 5 and the lower burner 6. 4 will collide with the flame 14 formed by the upper burner 5 at a location within 4.

上段バーナ5の火炎14と下段バーナ6の火炎15とが衝突するガス化部4内の場所では、火炎に同伴されるチャー粒子が滞流しやすく、温度条件によっては側壁耐火材7の壁面に庇状に付着物19を形成・成長させやすい。   In the place in the gasification section 4 where the flame 14 of the upper burner 5 and the flame 15 of the lower burner 6 collide, char particles accompanying the flame are likely to flow, and depending on temperature conditions, It is easy to form and grow the deposit 19 in a shape.

一方、ガス化効率の面からも、ガス化炉1のガス化部4内で生成された生成ガス20に同伴して飛散するチャー量を減らした方が有利である。   On the other hand, from the aspect of gasification efficiency, it is advantageous to reduce the amount of char scattered along with the generated gas 20 generated in the gasification section 4 of the gasification furnace 1.

従って、上段バーナ5の火炎14と下段バーナ6の火炎15とが衝突するガス化部4内の場所より下部となるガス化部4内のガス温度を、灰分の溶流点以上となるように高めて灰溶融領域とし、側壁耐火材7の壁面に付着した溶融スラグでチャーを多く捕捉できる運転条件とすることが望ましい。   Therefore, the gas temperature in the gasification unit 4 below the location in the gasification unit 4 where the flame 14 of the upper burner 5 and the flame 15 of the lower burner 6 collide with each other is set to be equal to or higher than the melting point of ash. It is desirable to raise the ash melting region to an operating condition in which a large amount of char can be captured by the molten slag adhering to the wall surface of the side wall refractory material 7.

一方、上段バーナ5の火炎14と下段バーナ6の火炎15との衝突によって減衰した上段バーナ5の火炎14と下段バーナの火炎15中の気体成分は、ガス化部4内の軸心側となる中心部より上昇流となって、生成ガス20として天井部開口部2からガス化炉1の外部に放出される。これは、ガス化部4内の中心部が、火炎14及び火炎15の旋回流の影響によって側壁耐火材7の壁面近傍よりも低圧となることによる。   On the other hand, the gas components in the flame 14 of the upper burner 5 and the flame 15 of the lower burner 5 attenuated by the collision between the flame 14 of the upper burner 5 and the flame 15 of the lower burner 6 are on the axial center side in the gasification unit 4. It becomes an upward flow from the center and is discharged as product gas 20 from the ceiling opening 2 to the outside of the gasification furnace 1. This is because the central portion in the gasification section 4 has a lower pressure than the vicinity of the wall surface of the side wall refractory material 7 due to the swirling flow of the flame 14 and the flame 15.

ガス化炉1の側壁耐火材7に設置した複数個の温度測定器16によって計測された炉内温度分布データ22であるガス化部4の側壁近傍ガス温度分布の一例を、図4に示す。本図は、ガス化部4を対象とした熱流動解析に基づく演算によって求めたものである。   FIG. 4 shows an example of the gas temperature distribution in the vicinity of the side wall of the gasification unit 4 as the furnace temperature distribution data 22 measured by the plurality of temperature measuring devices 16 installed on the side wall refractory material 7 of the gasification furnace 1. This figure is obtained by calculation based on the thermal flow analysis for the gasification section 4.

図4に示されたガス化炉1のガス化部4の側壁近傍ガス温度分布から明らかなように、ガス化部4の下部では、ガス温度が灰溶流点よりもかなり高くなっており、溶融スラグによる側壁耐火材7の溶損領域である。   As is apparent from the gas temperature distribution near the side wall of the gasification unit 4 of the gasification furnace 1 shown in FIG. 4, the gas temperature is considerably higher than the ash melting point at the lower part of the gasification unit 4, This is a melting area of the side wall refractory material 7 caused by molten slag.

ガス化部4の上部は、ガス温度が灰溶流点より低く、側壁耐火材7にチャーが付着する領域である。この領域では、石炭ガス化反応(吸熱反応)を利用し、ガス温度の上昇を防ぐ。   The upper part of the gasification part 4 is an area where the gas temperature is lower than the ash melting point and char adheres to the side wall refractory material 7. In this region, coal gasification reaction (endothermic reaction) is used to prevent the gas temperature from rising.

これに対し、上段バーナ高さ付近、及び上下段バーナの中間付近のガス温度は、灰溶流点並みである。   On the other hand, the gas temperature near the upper burner height and near the middle of the upper and lower burners is about the same as the ash melting point.

これら領域では、スラグとチャーが側壁耐火材7の壁面に付着する。粘度の高い溶融スラグにチャーが付着すると、側壁耐火材7の壁面に付着した付着物が成長しやすい。   In these regions, slag and char adhere to the wall surface of the side wall refractory material 7. When the char adheres to the molten slag having a high viscosity, the adhering matter adhering to the wall surface of the side wall refractory material 7 is likely to grow.

以上より、付着物の成長有無や耐火材溶損の監視方法、及び付着物を成長抑制させる運転方法の確立が必須である。   From the above, it is essential to establish a method for monitoring the presence or absence of deposits and refractory material melting loss, and an operation method for suppressing the growth of deposits.

図2に記載した上段バーナ5のガス化炉1への設置位置については図1にII−IIとして示し、図3に記載した下段バーナ6のガス化炉1への設置位置については図1にIII−IIIとして示した。   The installation position of the upper burner 5 shown in FIG. 2 in the gasification furnace 1 is shown as II-II in FIG. 1, and the installation position of the lower burner 6 shown in FIG. 3 in the gasification furnace 1 is shown in FIG. Indicated as III-III.

そして、上段バーナ5及び下段バーナ6による各旋回径17、18については図2及び図3に記載したガス化炉1の内部のガス化部4にそれぞれ示した。   And each turning diameter 17 and 18 by the upper stage burner 5 and the lower stage burner 6 was shown to the gasification part 4 inside the gasification furnace 1 described in FIG.2 and FIG.3, respectively.

そこで本実施例のガス火炉1においては、まず、上下段バーナ5、6の火炎14、15の旋回流の大小関係を監視するガス化炉の運転条件の一つである角運動量比について説明する。定義式は、(1)〜(3)式にそれぞれ示されている。   Therefore, in the gas furnace 1 of the present embodiment, first, the angular momentum ratio which is one of the operating conditions of the gasifier for monitoring the magnitude relationship of the swirling flow of the flames 14 and 15 of the upper and lower burners 5 and 6 will be described. . The definition formulas are shown in formulas (1) to (3), respectively.

角運動量比=上段バーナの角運動量/(上段バーナの角運動量+下段バーナの角運動量)・・・(1)
上段バーナの角運動量=上段バーナによる旋回径×(上段バーナの石炭質量流量×上段バーナの石炭の投入流速+上段バーナの窒素質量流量×上段バーナの窒素の投入流速+上段バーナの酸素質量流量×上段バーナの酸素の投入流速)・・・(2)
下段バーナの角運動量=下段バーナによる旋回径×(下段バーナの石炭質量流量×下段バーナの石炭の投入流速+下段バーナの窒素質量流量×下段バーナの窒素の投入流速+下段バーナの酸素質量流量×下段バーナの酸素の投入流速)・・・(3)
例えば、上段バーナ5の角運動量を高くすると、角運動量比も高くなり、図1の上段バーナ5によって形成された火炎14の旋回力が増す。
Angular momentum ratio = angular momentum of upper burner / (angular momentum of upper burner + angular momentum of lower burner) (1)
Angular momentum of upper burner = swirling diameter by upper burner x (mass flow rate of upper burner x coal flow rate of upper burner + nitrogen mass flow rate of upper burner x nitrogen flow rate of upper burner + oxygen mass flow rate of upper burner x (Oxygen flow rate of upper burner) (2)
Lower burner angular momentum = swirling diameter by lower burner x (lower burner coal mass flow rate x lower burner coal input flow rate + lower burner nitrogen mass flow rate x lower burner nitrogen input flow rate + lower burner oxygen mass flow rate x Lower oxygen burner flow rate) (3)
For example, when the angular momentum of the upper burner 5 is increased, the angular momentum ratio is also increased, and the turning force of the flame 14 formed by the upper burner 5 in FIG. 1 is increased.

これにより、上段バーナ5の火炎14と下段バーナ6の火炎15の衝突位置が低くなり、粒子の滞流しやすい領域も下方に移動する。   Thereby, the collision position of the flame 14 of the upper stage burner 5 and the flame 15 of the lower stage burner 6 becomes low, and the area | region where a particle tends to stagnate also moves below.

図4に示すガス化部4内の側壁近傍のガス温度分布についても、ガス化部4内の下部の側壁耐火材7に溶損が生じる可能性がある溶損領域の高さが低くなり、ガス化部4内の中段のスラグ・チャー付着領域も下方に移動する。以上より、側壁耐火材7の壁面に付着する付着物19が成長する位置も、下方に移動する。   As for the gas temperature distribution in the vicinity of the side wall in the gasification part 4 shown in FIG. 4, the height of the erosion area where the flaming damage may occur in the lower side wall refractory material 7 in the gasification part 4 is reduced. The middle slag and char adhesion region in the gasification section 4 also moves downward. From the above, the position where the deposit 19 attached to the wall surface of the side wall refractory material 7 also moves downward.

次に、ガス化炉1を定常条件で運用中のガス化部4の監視方法について説明する。上段バーナ5と下段バーナ6からガス化部4内にそれぞれ投入される石炭、窒素、酸素の流量を一定条件で運用し、単位時間あたりの回収スラグ重量も安定すれば、複数の温度測定器16によって計測されるガス化部4内のガス温度の分布を示す炉内温度分布データ22も定常状態で安定するはずである。   Next, a method for monitoring the gasification unit 4 operating the gasification furnace 1 under steady conditions will be described. If the flow rates of coal, nitrogen, and oxygen introduced into the gasification unit 4 from the upper burner 5 and the lower burner 6 are operated under constant conditions and the recovered slag weight per unit time is stabilized, a plurality of temperature measuring devices 16 The furnace temperature distribution data 22 indicating the gas temperature distribution in the gasification unit 4 measured by the above should also be stable in a steady state.

炉内温度分布データ22の有意な変動の有無、及びその場所を検知することで、側壁耐火材7に異常が発生した場所と原因を特定することができる。   By detecting the presence / absence of significant fluctuation in the furnace temperature distribution data 22 and its location, the location and cause of the abnormality in the side wall refractory material 7 can be specified.

例えば、側壁外筒8の温度が一定で、側壁耐火材7に埋め込まれた温度測定器16の温度が単調上昇の傾向を示した場合は、その場所の側壁耐火材7の厚みが減少したことを意味する。   For example, when the temperature of the side wall outer cylinder 8 is constant and the temperature of the temperature measuring device 16 embedded in the side wall refractory material 7 shows a monotonically increasing tendency, the thickness of the side wall refractory material 7 at that location has decreased. Means.

この原因は、側壁耐火材7に生じた溶融スラグによる溶損か、粒子による磨耗である。両者のいずれかは、温度測定器16で測定した温度側壁耐火材7の側壁近傍のガス温度で判定する。すなわち、温度測定器16で測定した側壁近傍の前記ガス温度が、供試した石炭中の灰分の溶流点以上(図4に破線で示すガス温度)の温度領域であれば、溶融スラグの溶損による可能性が高いことになる。   The cause of this is melting due to molten slag generated in the side wall refractory material 7 or wear due to particles. Either of them is determined by the gas temperature near the side wall of the temperature side refractory material 7 measured by the temperature measuring device 16. That is, if the gas temperature in the vicinity of the side wall measured by the temperature measuring device 16 is a temperature region that is equal to or higher than the melting point of the ash in the tested coal (the gas temperature indicated by the broken line in FIG. 4), the molten slag is dissolved. This is likely due to loss.

逆に、温度測定器16で測定した側壁近傍の前記ガス温度が、灰分の溶流点未満の温度領域であれば、粒子の磨耗による可能性が高いことになる。   Conversely, if the gas temperature in the vicinity of the side wall measured by the temperature measuring device 16 is a temperature region below the melting point of ash, the possibility of wear of particles is high.

本実施例のガス化炉においては、原因推定の基準値として灰分の溶流点を用いて説明したが、実際のガス化炉1の運用で経験的に得た温度基準値に変更しても構わない。   In the gasification furnace of the present embodiment, the melting point of ash is used as the reference value for estimating the cause, but even if it is changed to the temperature reference value empirically obtained in the actual operation of the gasification furnace 1. I do not care.

溶融スラグによる溶損、又は石炭粒子の磨耗によって側壁耐火材7の厚さ減少が続くと、側壁耐火材7に埋め込まれた温度測定器16の破損や、側壁外筒8の温度の上昇に繋がる。   If the thickness of the side wall refractory material 7 continues to decrease due to melting damage due to molten slag or the wear of coal particles, the temperature measuring device 16 embedded in the side wall refractory material 7 is damaged or the temperature of the side wall outer cylinder 8 is increased. .

特に側壁外筒8が焼損した場合は、ガス化炉1の運転停止のみならず、ガス化部4内からCOやH2などの有毒ガスな可燃ガスが系外に放出されることになるので、このような事態は回避しなければならない。   In particular, when the side wall outer cylinder 8 is burned out, not only the operation of the gasification furnace 1 is stopped, but also toxic and flammable gases such as CO and H2 are released from the gasification section 4 to the outside of the system. This situation must be avoided.

一方、側壁外筒8の温度が一定で、側壁耐火材7に埋め込まれた温度測定器16の温度が単調減少の傾向を示した場合は、その場所の側壁耐火材7の壁面に付着した付着物の厚みが増加したことを意味する。   On the other hand, when the temperature of the side wall outer cylinder 8 is constant and the temperature of the temperature measuring device 16 embedded in the side wall refractory material 7 shows a monotonically decreasing tendency, the attached to the wall surface of the side wall refractory material 7 is attached. It means that the thickness of the kimono has increased.

前記付着物はチャー又は粘度の高い溶融スラグからなる。側壁耐火材7の壁面に付着した付着物の成長は、バーナ付近などの、粒子濃度が高く低温箇所のある領域や、ガス温度が灰分の軟化点〜溶流点の間で粒子の滞流しやすい領域で見られる。   The deposit is made of char or high-viscosity molten slag. The growth of deposits adhering to the wall surface of the side wall refractory material 7 tends to cause particle stagnation between areas where the particle concentration is high and there are low-temperature areas, such as the vicinity of the burner, and the gas temperature is between the softening point and the melting point of ash. Seen in the area.

前記付着物の成長を放置すると、ガス化部4を閉塞させるだけでなく、上下段バーナ火炎14、15の流動変化によるバーナ火炎のインピンジにより、側壁耐火材7の溶損に繋がる可能性が高くなる。   If the growth of the deposits is left as it is, not only the gasification section 4 is blocked, but also the impregnation of the burner flame due to the flow change of the upper and lower burner flames 14 and 15 is likely to cause the side wall refractory material 7 to be melted. Become.

ここで、上段バーナ5の設置高さII−IIにおけるガス化炉1の断面図を図2に、下段バーナ6の設置高さIII―IIIにおけるガス化炉1の断面図を図3にそれぞれ示す。   Here, a sectional view of the gasification furnace 1 at the installation height II-II of the upper burner 5 is shown in FIG. 2, and a sectional view of the gasification furnace 1 at the installation height III-III of the lower burner 6 is shown in FIG. .

図2及び図3には、ガス化炉1の各断面と共に、このガス化炉1に設ける上段バーナ5及び下段バーナ6を等間隔に4本ずつ設置し、偏りのない火炎14及び火炎15の各旋回流の形成を目指したバーナ配置の一例が示されている。   2 and FIG. 3, four upper burners 5 and four lower burners 6 provided in the gasification furnace 1 are installed at equal intervals together with each section of the gasification furnace 1, and there is no uneven flame 14 and flame 15. An example of the burner arrangement aiming at the formation of each swirl flow is shown.

温度測定器16も同様に側壁耐火材7の壁面の周囲に等間隔に4本ずつ設置することで、バーナ5及びバーナ6のそれぞれの間の流量偏差、及び側壁耐火材7の溶損状況や付着物の成長状況の差の有無についても監視することができる。   Similarly, by installing four temperature measuring instruments 16 around the wall surface of the side wall refractory material 7 at equal intervals, the flow rate deviation between the burner 5 and the burner 6 and the state of the refractory damage of the side wall refractory material 7 It is also possible to monitor whether there is a difference in the growth of deposits.

上下段バーナ5、6の配置について、下段バーナ6による旋回径18は、上段バーナ5による旋回径17より小さい方が良い。これは、図4を用いて前述したように、下段バーナ6付近の温度が上段バーナ5付近の温度よりも高いためである。   Regarding the arrangement of the upper and lower burners 5, 6, the turning diameter 18 by the lower burner 6 is preferably smaller than the turning diameter 17 by the upper burner 5. This is because the temperature near the lower burner 6 is higher than the temperature near the upper burner 5 as described above with reference to FIG.

下段バーナ6による旋回径18を拡大すると、高温火炎のインピンジが起こり易くなり、側壁耐火材7の溶損リスクが高まる。   If the swirl diameter 18 by the lower burner 6 is enlarged, impingement of the high temperature flame is likely to occur, and the risk of erosion of the side wall refractory material 7 is increased.

これに対し、上段バーナ5では、上段バーナ5からガス化部4内に投入する酸素量を抑えることで火炎温度の上昇を抑えつつ、下降流を形成させることができる。   On the other hand, in the upper burner 5, a downward flow can be formed while suppressing an increase in flame temperature by suppressing the amount of oxygen input from the upper burner 5 into the gasification unit 4.

上段バーナ5による旋回径17は、粒子の磨耗による耐火材保護、付着物の成長抑制の観点でその大きさを設定する。   The swirl diameter 17 by the upper burner 5 is set in size from the viewpoint of protecting the refractory material by wear of particles and suppressing the growth of deposits.

次に、計測された炉内温度分布データ22に基づいて下記した(1)〜(3)の3種類の側壁耐火材7の異常状態、及び(4)に示すスラグタップ9からのスラグ流下の異常状態に対処するガス化炉の運転方法について、図1と図4を用いて説明する。   Next, based on the measured temperature distribution data 22 in the furnace, the abnormal states of the three types of side wall refractory materials 7 (1) to (3) described below, and the slag flow from the slag tap 9 shown in (4) The operation method of the gasifier which copes with the abnormal state will be described with reference to FIGS.

(1)粒子の磨耗による側壁耐火材の損耗:
上段バーナ5での実施を例にとって説明する。上段バーナ5からガス化部4内に投入する流速の低減対策が最も効果的である。ガス化炉1の運転を停止して上段バーナ5の口径を拡大する方法が良い。
(1) Abrasion of side wall refractory due to particle wear:
A description will be given of an example in which the upper burner 5 is used. The most effective measure is to reduce the flow velocity introduced into the gasification unit 4 from the upper burner 5. A method of expanding the diameter of the upper burner 5 by stopping the operation of the gasification furnace 1 is preferable.

ガス化炉1の運転を停止させずに対処する場合は、制御装置21から上段バーナ石炭流量調整器23、上段バーナ窒素流量調整器24、及び上段バーナ酸素流量調整器25に指令信号をそれぞれ出力して、上段バーナ5からガス化部4内に投入する石炭26、窒素27、及び酸素28の各流量を低減させれば良い。また、投入する石炭26の粒径を細かくしても効果的である。   When coping without stopping the operation of the gasification furnace 1, command signals are output from the control device 21 to the upper burner coal flow rate adjuster 23, the upper burner nitrogen flow rate adjuster 24, and the upper burner oxygen flow rate adjuster 25, respectively. Then, the flow rates of the coal 26, nitrogen 27, and oxygen 28 introduced into the gasification unit 4 from the upper burner 5 may be reduced. It is also effective to reduce the particle size of the coal 26 to be input.

(2)溶融スラグの侵食による側壁耐火材の溶損:
下段バーナ6での実施を例にとって説明する。側壁耐火材7近傍のガス及びスラグの温度の低減対策が最も効果的である。
(2) Melting damage of side wall refractory due to erosion of molten slag:
An explanation will be given by taking an example of the lower burner 6 as an example. The most effective measure is to reduce the temperature of the gas and slag near the side wall refractory material 7.

制御装置21から下段バーナ酸素流量調整器31に酸素流量低減の指令を出力して該下段バーナ酸素流量調整器31の調節によって下段バーナ6からガス化部4内に投入する酸素34の流量を減少させる。   The controller 21 outputs a command to reduce the oxygen flow rate to the lower burner oxygen flow rate regulator 31 and the flow rate of the oxygen 34 introduced from the lower burner 6 into the gasification unit 4 is reduced by the adjustment of the lower burner oxygen flow rate regulator 31. Let

下段バーナ6から投入する酸素34の低減量は、運転条件や石炭性状(発熱量や水分量など)などにもよるが、下段バーナ6から投入する石炭量に対する重量比で5〜10%程度を目安にすると良い。この場合、ガス化部4の底部のガス温度は、約100〜200℃程度低減すると見込まれる。   The reduction amount of oxygen 34 input from the lower burner 6 is about 5 to 10% in terms of the weight ratio to the amount of coal input from the lower burner 6, although it depends on the operating conditions and the properties of the coal (such as calorific value and water content). A good guide. In this case, the gas temperature at the bottom of the gasification unit 4 is expected to be reduced by about 100 to 200 ° C.

或いは、生成ガス20流量に対する制約がなければ、制御装置21から下段バーナ石炭流量調整器29及び酸素流量調整器31に指令信号を出力して下段バーナ6からガス化部4内に投入する石炭32及び酸素34の流量を低減し、下段バーナ窒素流量調整器30に指令信号を出力して下段バーナ6からガス化部4内に投入する窒素33の流量を増加させるようにしても構わない。石炭重量に対する酸素重量を一定で制御すれば、下段バーナ6からの入熱量は、石炭32流量に比例して低下する。   Alternatively, if there is no restriction on the flow rate of the produced gas 20, the control device 21 outputs a command signal to the lower burner coal flow regulator 29 and the oxygen flow regulator 31 and inputs the coal 32 into the gasification unit 4 from the lower burner 6. The flow rate of nitrogen 34 may be reduced by reducing the flow rate of oxygen 34 and outputting a command signal to the lower burner nitrogen flow regulator 30 to increase the flow rate of nitrogen 33 introduced into the gasification unit 4 from the lower burner 6. If the oxygen weight relative to the coal weight is controlled to be constant, the heat input from the lower burner 6 decreases in proportion to the coal 32 flow rate.

これらの操作によってガス化部4内の火炎温度を低下させて溶融スラグの粘度を高め、耐火材の溶損箇所をスラグコーティングする。また、投入する石炭32に一時的にSiO、Al等の粉末を添加して溶融スラグの粘度を高める方法も効果的である。 By these operations, the flame temperature in the gasification section 4 is lowered to increase the viscosity of the molten slag, and the slag coating of the refractory material is slag coated. In addition, a method of increasing the viscosity of the molten slag by temporarily adding powders such as SiO 2 and Al 2 O 3 to the coal 32 to be input is also effective.

(3)付着物の成長:
まず、ガス化部4の中段の側壁耐火材7の壁面に付着物19が成長した場合を例にとって説明する。下段バーナ6の火炎15の旋回力を高めて角運動量比を低減し、図4に示すガス化部4の下部の高温領域の高さを拡大させる。
これにより、付着物19が側壁耐火材7の壁面に付着する場所を灰溶融領域とすることで、付着物19の焼切り運転を行なう。そしてこの焼切り運転が終了すれば、元の運転条件に戻す。
(3) Growth of deposits:
First, the case where the deposit 19 grows on the wall surface of the middle side wall refractory material 7 of the gasification unit 4 will be described as an example. The turning force of the flame 15 of the lower burner 6 is increased to reduce the angular momentum ratio, and the height of the high temperature region below the gasification section 4 shown in FIG. 4 is increased.
Thereby, the burn-out operation of the deposit 19 is performed by setting the place where the deposit 19 adheres to the wall surface of the side wall refractory material 7 as an ash melting region. When this burn-out operation is completed, the original operating conditions are restored.

具体的な操作としては、制御装置21から上段バーナ酸素流量調整器25に酸素量低減の指令信号と、下段バーナ酸素量調整器31に酸素量増加の指令信号をそれぞれ出力する。   Specifically, the controller 21 outputs an oxygen amount reduction command signal to the upper burner oxygen flow rate regulator 25 and an oxygen amount increase command signal to the lower burner oxygen amount regulator 31.

そして上段バーナ酸素流量調整器25の調節によって上段バーナ5からガス化部4内に投入する酸素28の流量を低減させ、下段バーナ酸素量調整器31の調節によって下段バーナ6からガス化部4内に投入する酸素34の流量を増加させるようにするものである。
下段バーナ6から投入する酸素34の増加量は、運転条件や石炭性状(発熱量や水分量など)などにもよるが、下段バーナ6から投入する石炭量に対する重量比で5〜10%程度を目安にすると良い。この場合、ガス化部4の底部から中段におけるガス温度の上昇は、約100〜200℃程度と見込まれる。
Then, the flow rate of the oxygen 28 introduced from the upper burner 5 into the gasification unit 4 is reduced by adjusting the upper burner oxygen flow rate regulator 25, and the lower burner oxygen amount regulator 31 is adjusted to adjust the flow rate of the oxygen 28 from the lower burner 6 to the gasification unit 4. The flow rate of oxygen 34 input to the gas is increased.
The increase amount of oxygen 34 input from the lower burner 6 is about 5 to 10% by weight with respect to the amount of coal input from the lower burner 6, although it depends on operating conditions and coal properties (such as calorific value and water content). A good guide. In this case, the increase in gas temperature from the bottom of the gasification unit 4 to the middle stage is expected to be about 100 to 200 ° C.

付着物19の焼切り状況は、側壁耐火材7に埋め込んだ温度測定器16で検知する。側壁耐火材7の壁面上に付着した付着物19の焼切り運転が終了すると、この温度測定器16で検知する温度が上昇して高くなる。   The burn-out state of the deposit 19 is detected by the temperature measuring device 16 embedded in the side wall refractory material 7. When the burn-out operation of the deposit 19 attached on the wall surface of the side wall refractory material 7 is completed, the temperature detected by the temperature measuring device 16 increases and becomes higher.

この付着物19の焼切り運転の終了後は、元の運転条件(付着物19が側壁耐火材7の壁面に付着する前の運転条件)に戻すべく、制御装置21から各流量調整器に指令を出力する。   After the burn-out operation of the deposit 19 is completed, a command is sent from the control device 21 to each flow rate regulator in order to return to the original operating conditions (operating conditions before the deposit 19 adheres to the wall surface of the side wall refractory material 7). Is output.

次に、上段バーナ5より上部における側壁耐火材7への付着物19の成長した場合を例にとって説明する。この場合は、焼切り運転を実施せず、付着物19の自重で剥離・落下するのを待つか、パージなどで強制的に落下させる運用が良い。付着物19の成長しにくい上段バーナ5の配置、付着物19の除去に有効なパージ方法については、ガス化部4の運転実績に基づき、決定すると良い。   Next, the case where the deposit 19 grows on the side wall refractory material 7 above the upper burner 5 will be described as an example. In this case, it is preferable to wait for the deposit 19 to peel off and fall off due to its own weight, or to forcibly drop it by purging or the like without carrying out the burn-out operation. The arrangement of the upper burner 5 in which the deposit 19 is difficult to grow and the purge method effective for removing the deposit 19 may be determined based on the operation results of the gasification unit 4.

この部位の付着物19に対して、焼切り運転を推奨しない理由は、次の2点である。
・上段バーナ5の火炎インピンジや天井開口部2の縮小・閉塞に繋がらなければ、ガス化部4の運用に支障ない。
・焼切り運転を実施する場合、上段バーナ5の熱負荷を高めるか、天井部直下に焼切り運転用のバーナ設置が必要となる。溶融スラグの液滴が、天井部開口部2に飛散・付着すると、天井部開口部2の閉塞が懸念される。
There are two reasons why the burn-out operation is not recommended for the deposit 19 at this site.
-If it does not lead to the flame impingement of the upper burner 5 or the reduction / blockage of the ceiling opening 2, there is no problem in the operation of the gasification unit 4.
-When carrying out the burning-out operation, it is necessary to increase the heat load of the upper burner 5 or to install a burner for burning-out operation directly under the ceiling. If the molten slag droplets scatter and adhere to the ceiling opening 2, the ceiling opening 2 may be clogged.

万が一、上段バーナ5より上部の側壁耐火材7の付着物19についての焼切り運転を実施する場合には、上段バーナ5高さから天井部にかけての側壁耐火材7内の温度測定器16の温度データだけでなく、天井部外筒3の金属温度の監視も必要となる。これは、天井部には耐火材を施工しておらず、金属製の天井部外筒3の焼損を防ぐためである。   In the event that a burn-out operation is performed on the deposit 19 on the side wall refractory material 7 above the upper burner 5, the temperature of the temperature measuring device 16 in the side wall refractory material 7 from the height of the upper burner 5 to the ceiling portion In addition to the data, it is necessary to monitor the metal temperature of the ceiling outer cylinder 3. This is because no refractory material is applied to the ceiling portion, and the metal ceiling portion outer cylinder 3 is prevented from being burned out.

(4)ガス化部底部へのスラグ堆積:
スラグタップ開口部9に溶融スラグが付着し、スラグタップ開口部9が縮小すると、ガス化部4底部における溶融スラグの排出も阻害されて、ガス化部4底部に溶融スラグが堆積する。
(4) Slag accumulation on bottom of gasification part:
When molten slag adheres to the slag tap opening 9 and the slag tap opening 9 shrinks, discharge of the molten slag at the bottom of the gasification unit 4 is also inhibited, and molten slag accumulates at the bottom of the gasification unit 4.

これは、スラグタップ開口部9からガス化部4底部のガス温度が、灰溶流点付近まで低下したためである。この場合、溶融スラグ温度が低下するだけでなく、ガス化部4底部に堆積する溶融スラグ厚みも増す。従って、ガス化部4底部の側壁耐火材7内部に設置された温度測定器16の温度も低下することで、検知できる。   This is because the gas temperature from the slag tap opening 9 to the bottom of the gasification unit 4 has dropped to near the ash melting point. In this case, not only the molten slag temperature is lowered, but also the thickness of the molten slag deposited at the bottom of the gasification unit 4 is increased. Accordingly, the temperature of the temperature measuring device 16 installed inside the side wall refractory material 7 at the bottom of the gasification unit 4 can be detected by decreasing.

対策となる運用方法としては、下段バーナ6の酸素34の流量の増加が有効である。酸素34の増加量は、運転条件や石炭性状(発熱量や水分量など)などにもよるが、上述の(3)と同様に、まずは、下段バーナ6から投入する石炭量に対する重量比で5〜10%程度を目安にすると良い。   As an operation method as a countermeasure, an increase in the flow rate of oxygen 34 in the lower burner 6 is effective. The increase amount of the oxygen 34 depends on the operating conditions and the properties of the coal (such as calorific value and water content), but as with the above (3), first, the weight ratio to the coal amount input from the lower burner 6 is 5 It is better to use about -10%.

以上説明したように、本実施例では付着物の成長有無や耐火材溶損の監視方法、付着物を成長抑制させる運転方法を実施することで、ガス化炉の運転停止を回避して長期の連続運転に耐える信頼性の高いガス化炉、及びガス化炉の運転方法が可能となる。   As explained above, in this embodiment, by implementing the monitoring method of the presence or absence of deposits and refractory material erosion, and the operation method of suppressing the growth of deposits, the gasification furnace can be stopped for a long time. A highly reliable gasifier capable of withstanding continuous operation and an operation method of the gasifier are possible.

本実施例によれば、ガス火炉の炉内の付着物の成長及び耐火材の溶損を抑制してガス化炉が運転停止に至る状況を回避し、長期の連続運転に耐える信頼性の高いガス化炉、並びにガス化炉の運転方法が実現できる。   According to the present embodiment, the growth of deposits in the furnace of the gas furnace and the refractory loss of the refractory material are suppressed, the situation where the gasification furnace is shut down is avoided, and the long-term continuous operation is highly reliable. A gasification furnace and a gasification furnace operation method can be realized.

図5は本発明の第2実施例であるガス化炉1の概略構成を示す断面図である。   FIG. 5 is a cross-sectional view showing a schematic configuration of the gasification furnace 1 according to the second embodiment of the present invention.

図5に示した本実施例のガス化炉1は図1に示した第1実施例のガス化炉1と基本的な構成及び運転方法は共通しているので、両実施例に共通した構成の説明は省略して相違する部分のみ以下に説明する。   The gasification furnace 1 of this embodiment shown in FIG. 5 has the same basic configuration and operation method as the gasification furnace 1 of the first embodiment shown in FIG. Description of the above will be omitted, and only the differences will be described below.

図5に示した本実施例のガス化炉1においては、ガス化部4の側壁耐火材7の内部に設置する温度測定器16を、側壁耐火材7の厚み方向にも複数個設置した構成を採用したものであり、第1実施例のガス化炉1とは、側壁耐火材7の内部に設置した温度測定器16の数が、側壁耐火材7の厚み方向に1箇所から3箇所に増加させた点が異なっている。   In the gasification furnace 1 of the present embodiment shown in FIG. 5, a configuration in which a plurality of temperature measuring devices 16 installed in the side wall refractory material 7 of the gasification section 4 are also installed in the thickness direction of the side wall refractory material 7. In the gasification furnace 1 of the first embodiment, the number of temperature measuring devices 16 installed inside the side wall refractory material 7 is changed from 1 to 3 in the thickness direction of the side wall refractory material 7. The increase is different.

側壁耐火材7の内面の溶損や、側壁耐火材7の壁面上の付着物19の成長を検知する応答性を高めるには、ガス化部4の内面近傍に温度測定器16を設置することが有効である。その反面、側壁耐火材7の溶損が進行すると、ガス化部4の内面近傍の温度測定器16が損傷するリスクが高まる。   In order to improve the responsiveness of detecting the melting damage on the inner surface of the side wall refractory material 7 and the growth of the deposit 19 on the wall surface of the side wall refractory material 7, a temperature measuring device 16 is installed in the vicinity of the inner surface of the gasification section 4. Is effective. On the other hand, when the refractory damage of the side wall refractory material 7 progresses, the risk that the temperature measuring device 16 near the inner surface of the gasification unit 4 is damaged increases.

そこで、本実施例のように、温度測定器16を側壁耐火材7の厚み方向に沿って、内面近傍、側壁の厚み中央、側壁外筒8の近傍と3箇所程度、温度測定器16を設置することによって、運用上の信頼性を高めることが可能となる。   Therefore, as in the present embodiment, the temperature measuring device 16 is installed along the thickness direction of the side wall refractory material 7 in the vicinity of the inner surface, in the middle of the side wall thickness, in the vicinity of the side wall outer cylinder 8 and in about three places. By doing so, operational reliability can be improved.

尚、側壁近傍のガス温度の推定方法は、第1実施例における制御装置21による演算と同様にして推定する。側壁近傍のガス温度の推定精度は、側壁耐火材7の厚み方向に沿って3箇所設置した温度測定器16のうち、ガス化部4の内面近傍に設置した温度測定器16の測定データを用いた場合の方が精度を高めることができる。   The method for estimating the gas temperature near the side wall is estimated in the same manner as the calculation by the control device 21 in the first embodiment. For the estimation accuracy of the gas temperature in the vicinity of the side wall, the measurement data of the temperature measuring device 16 installed in the vicinity of the inner surface of the gasification unit 4 among the three temperature measuring devices 16 installed in the thickness direction of the side wall refractory material 7 is used. The accuracy can be improved when there is.

従って、側壁耐火材7の側壁の厚み中央の温度測定器16の測定データは内面近傍のバックアップに、側壁外筒8の近傍の温度測定器16の測定データは側壁外筒8の保護に用いる監視方法が適している。   Therefore, the measurement data of the temperature measuring device 16 at the center of the side wall thickness of the side wall refractory material 7 is used for backup near the inner surface, and the measurement data of the temperature measuring device 16 near the side wall outer tube 8 is used for protection of the side wall outer tube 8. The method is suitable.

本実施例によれば、ガス火炉の炉内の付着物の成長及び耐火材の溶損を抑制してガス化炉が運転停止に至る状況を回避し、長期の連続運転に耐える信頼性の高いガス化炉、並びにガス化炉の運転方法が実現できる。   According to the present embodiment, the growth of deposits in the furnace of the gas furnace and the refractory loss of the refractory material are suppressed, the situation where the gasification furnace is shut down is avoided, and the long-term continuous operation is highly reliable. A gasification furnace and a gasification furnace operation method can be realized.

図6は本発明の第3実施例であるガス化炉1の概略構成を示す断面図である。   FIG. 6 is a cross-sectional view showing a schematic configuration of a gasification furnace 1 according to a third embodiment of the present invention.

図6に示した本実施例のガス化炉1は図1に示した第1実施例のガス化炉1と基本的な構成及び運転方法は共通しているので、両実施例に共通した構成の説明は省略して相違する部分のみ以下に説明する。   The gasification furnace 1 of the present embodiment shown in FIG. 6 has the same basic configuration and operation method as the gasification furnace 1 of the first embodiment shown in FIG. Description of the above will be omitted, and only the differences will be described below.

図6に示した本実施例のガス化炉1においては、ガス化炉1のクエンチ部11に酸素と窒素を供給する酸素・窒素ノズル13を設けた構成を採用したものであり、第1実施例のガス化炉1とは、ガス化炉1に酸素と窒素を供給する酸素・窒素ノズル13を設け、この酸素・窒素ノズル13からクエンチ部11内に供給する窒素の流量を調節する窒素流量調整器35及び酸素の流量を調節する酸素流量調整器36をそれぞれ設けた点が異なっている。   In the gasification furnace 1 of the present embodiment shown in FIG. 6, a configuration in which an oxygen / nitrogen nozzle 13 for supplying oxygen and nitrogen is provided in the quenching section 11 of the gasification furnace 1 is adopted. The gasifier 1 of the example is provided with an oxygen / nitrogen nozzle 13 for supplying oxygen and nitrogen to the gasifier 1, and a nitrogen flow rate for adjusting the flow rate of nitrogen supplied from the oxygen / nitrogen nozzle 13 into the quench unit 11 The difference is that an adjuster 35 and an oxygen flow rate adjuster 36 for adjusting the flow rate of oxygen are provided.

前記酸素・窒素ノズル13からクエンチ部11内に供給する酸素38の投入は、ガス化部4の底部、特にスラグタップ10に開口させたスラグタップ開口部9付近の局所的な加熱に有効である。   The introduction of oxygen 38 supplied from the oxygen / nitrogen nozzle 13 into the quenching section 11 is effective for local heating near the bottom of the gasification section 4, particularly in the vicinity of the slag tap opening 9 opened in the slag tap 10. .

スラグタップ開口部9は、ガス化部4内からクエンチ部11に流下する溶融スラグの唯一の排出口であり、スラグの安定流下がガス化炉1を安定運転することに不可欠である。   The slag tap opening 9 is the only outlet for molten slag flowing down from the gasification unit 4 to the quenching unit 11, and the stable flow of slag is essential for stable operation of the gasification furnace 1.

酸素・窒素ノズル13からクエンチ部11内に投入される酸素38により、下段バーナ6によってガス化部4の内部に形成する火炎15の温度も上昇する。   The temperature of the flame 15 formed inside the gasification unit 4 by the lower burner 6 is also raised by the oxygen 38 introduced into the quenching unit 11 from the oxygen / nitrogen nozzle 13.

これは、実施例1のガス化炉1でも説明したように、ガス化部4に投入される酸素量は、石炭の完全燃焼に必要な酸素量より少ないためである。   This is because, as described in the gasification furnace 1 of Example 1, the amount of oxygen charged into the gasification unit 4 is smaller than the amount of oxygen necessary for complete combustion of coal.

下段バーナ6の角運動量を一定として、下段バーナ6によってガス化部4内に形成する火炎15の温度を調整できるので、ガス化部4の底部に形成される灰溶融領域での溶融スラグの粘度も調整できる。   Since the temperature of the flame 15 formed in the gasification unit 4 can be adjusted by the lower burner 6 while the angular momentum of the lower burner 6 is constant, the viscosity of the molten slag in the ash melting region formed at the bottom of the gasification unit 4 Can also be adjusted.

本実施例におけるガス化炉の運転方法は、特に融点の高い溶融スラグを扱う場合に有効である。これは、融点の高い溶融スラグほど、スラグタップ開口部9に溶融スラグが付着するリスクが高まるためである。   The operation method of the gasification furnace in this embodiment is effective particularly when handling molten slag having a high melting point. This is because the higher the melting point, the higher the risk that the molten slag adheres to the slag tap opening 9.

溶融スラグの付着により、スラグタップ開口部9が縮小すると、ガス化部4底部における溶融スラグの排出も阻害され、溶融スラグがガス化部4底部に堆積する。堆積した溶融スラグの温度は、側壁耐火材7への放熱の影響により、ガス化部4底部のガス温度よりも低くなるので、側壁耐火材7内の温度測定器16で計測したガス化部4底部温度は低下する。   When the slag tap opening 9 shrinks due to the adhesion of the molten slag, the discharge of the molten slag at the bottom of the gasification unit 4 is also inhibited, and the molten slag accumulates at the bottom of the gasification unit 4. Since the temperature of the accumulated molten slag is lower than the gas temperature at the bottom of the gasification unit 4 due to the influence of heat radiation to the side wall refractory material 7, the gasification unit 4 measured by the temperature measuring device 16 in the side wall refractory material 7. The bottom temperature decreases.

これにより、ガス化部4底部への溶融スラグ堆積有無を検知でき、温度低下のあった温度測定器16の高さで、堆積した溶融スラグ深さの推定も可能である。   Thereby, the presence or absence of molten slag accumulation on the bottom of the gasification unit 4 can be detected, and the accumulated molten slag depth can be estimated at the height of the temperature measuring device 16 where the temperature has decreased.

対策となる運用方法については、まず下段バーナ6の酸素34の増量である。これと併用して、制御装置21によって窒素流量調整器35を制御して酸素・窒素ノズル13からクエンチ部11内に投入する窒素37の供給量を調節すると、ガス化部4の底部保護に有効である。すなわち、下段バーナ6によるガス化部4内の火炎15の急激な温度上昇を防ぎ、スラグタップ10の開口部9付近やスラグタップ10の上面の耐火材、ガス化部4の側壁耐火材7の溶損加速を防止する。   Regarding the operation method as a countermeasure, first, the amount of oxygen 34 in the lower burner 6 is increased. In combination with this, if the nitrogen flow rate regulator 35 is controlled by the control device 21 to adjust the supply amount of nitrogen 37 introduced into the quenching section 11 from the oxygen / nitrogen nozzle 13, it is effective for protecting the bottom of the gasification section 4. It is. That is, a rapid temperature rise of the flame 15 in the gasification unit 4 due to the lower burner 6 is prevented, the refractory material in the vicinity of the opening 9 of the slag tap 10 and the upper surface of the slag tap 10, and the side wall refractory material 7 of the gasification unit 4. Prevent erosion acceleration.

また、制御装置21によって酸素流量調整器36を制御して酸素・窒素ノズル13からクエンチ部11内に投入する酸素38の供給量及び酸素濃度を調整することで、下段バーナ6の操作条件を一定のままで、スラグタップ開口部9からガス化部4底部を加熱できるだけでなく、酸素・窒素ノズル13自身も保護する。   Further, the operation condition of the lower burner 6 is kept constant by controlling the oxygen flow rate regulator 36 by the control device 21 and adjusting the supply amount and oxygen concentration of the oxygen 38 introduced into the quenching section 11 from the oxygen / nitrogen nozzle 13. In addition to heating the bottom of the gasification unit 4 from the slag tap opening 9, the oxygen / nitrogen nozzle 13 itself is protected.

特に、融点の低い溶融スラグを扱う場合には、酸素・窒素ノズル13からクエンチ部11内に窒素37を多く投入すると良い。   In particular, when handling molten slag having a low melting point, it is preferable to introduce a large amount of nitrogen 37 into the quenching section 11 from the oxygen / nitrogen nozzle 13.

これにより、下段バーナ6によりガス化部4内に形成される火炎15の温度が低下するため、ガス化部4の底部に形成される灰溶融領域での溶融スラグの粘度が増加し、側壁耐火材7の溶損を抑制できる。   As a result, the temperature of the flame 15 formed in the gasification unit 4 by the lower burner 6 is lowered, so that the viscosity of the molten slag in the ash melting region formed at the bottom of the gasification unit 4 is increased, and the side wall fire resistance Melting damage of the material 7 can be suppressed.

以上の説明から明らかなように、酸素・窒素ノズル13は、下段バーナ6の運転条件、すなわち角運動量比を一定のままで、下段バーナ6による火炎15の温度を調整することが可能となる。   As is clear from the above description, the oxygen / nitrogen nozzle 13 can adjust the temperature of the flame 15 by the lower burner 6 while the operating condition of the lower burner 6, that is, the angular momentum ratio remains constant.

本実施例によれば、ガス火炉の炉内の付着物の成長及び耐火材の溶損を抑制してガス化炉が運転停止に至る状況を回避し、長期の連続運転に耐える信頼性の高いガス化炉、並びにガス化炉の運転方法が実現できる。   According to the present embodiment, the growth of deposits in the furnace of the gas furnace and the refractory loss of the refractory material are suppressed, the situation where the gasification furnace is shut down is avoided, and the long-term continuous operation is highly reliable. A gasification furnace and a gasification furnace operation method can be realized.

図7は本発明の第4実施例であるガス化炉1の概略構成を示す断面図である。   FIG. 7 is a sectional view showing a schematic configuration of a gasification furnace 1 according to a fourth embodiment of the present invention.

図7に示した本実施例のガス化炉1は図1に示した第1実施例のガス化炉1と基本的な構成及び運転方法は共通しているので、両実施例に共通した構成の説明は省略して相違する部分のみ以下に説明する。   The gasification furnace 1 of the present embodiment shown in FIG. 7 has the same basic configuration and operation method as the gasification furnace 1 of the first embodiment shown in FIG. Description of the above will be omitted, and only the differences will be described below.

図7に示した本実施例のガス化炉1においては、ガス化炉1の上段バーナ5に酸素28を供給する酸素供給系に窒素又は水蒸気40を添加する窒素または水蒸気の流量調整器39が設置され、ガス化炉1の下段バーナ6に酸素34を供給する酸素供給系に窒素または水蒸気42を添加する窒素または水蒸気の流量調整器41が設置された構成となっている。   In the gasification furnace 1 of the present embodiment shown in FIG. 7, a nitrogen or water vapor flow regulator 39 for adding nitrogen or water vapor 40 to the oxygen supply system for supplying oxygen 28 to the upper burner 5 of the gasification furnace 1 is provided. A nitrogen or steam flow regulator 41 for adding nitrogen or steam 42 is installed in an oxygen supply system that is installed and supplies oxygen 34 to the lower burner 6 of the gasification furnace 1.

本実施例のガス化炉1では、上段バーナ5に供給する酸素28に窒素又は水蒸気40を添加することで、上段バーナ5自身の焼損を防ぎ、上段バーナ5によって形成した該上段バーナ5近傍のガス化部4内の火炎14の温度を低減する。   In the gasification furnace 1 of the present embodiment, nitrogen or water vapor 40 is added to the oxygen 28 supplied to the upper burner 5 to prevent burning of the upper burner 5 itself, and the vicinity of the upper burner 5 formed by the upper burner 5 is prevented. The temperature of the flame 14 in the gasification part 4 is reduced.

これにより、ガス化部4内の上段バーナ5付近の側壁近傍ガス温度を低減し、この領域での側壁耐火材7の溶損や側壁耐火材7の壁面へのスラグ付着を抑制する。   Thereby, the gas temperature near the side wall near the upper burner 5 in the gasification unit 4 is reduced, and the refractory damage of the side wall refractory material 7 and the slag adhesion to the wall surface of the side wall refractory material 7 in this region are suppressed.

上段バーナ5から供給する酸素28に添加する窒素又は水蒸気40の流量は制御装置21からの指令に基づいて前記窒素または水蒸気の流量調整器39を制御することで調整される。   The flow rate of nitrogen or water vapor 40 added to the oxygen 28 supplied from the upper burner 5 is adjusted by controlling the flow rate regulator 39 of nitrogen or water vapor based on a command from the control device 21.

本実施例では、上段バーナ5の高さ付近の側壁耐火材7に設置した温度測定器16で検出した温度が上昇し、側壁耐火材7の溶損が懸念される場合に有効である。   This embodiment is effective when the temperature detected by the temperature measuring device 16 installed on the side wall refractory material 7 near the height of the upper burner 5 rises and there is a concern that the side wall refractory material 7 may be melted.

また、本実施例のガス化炉1では、下段バーナ6から供給する酸素34に窒素又は水蒸気42を添加することで、下段バーナ6自身の焼損を防ぎ、下段バーナ6によって形成した該下段バーナ6近傍のガス化部4内の火炎15の温度を低減する。   Further, in the gasification furnace 1 of the present embodiment, the lower burner 6 formed by the lower burner 6 is prevented by adding nitrogen or water vapor 42 to the oxygen 34 supplied from the lower burner 6 to prevent the lower burner 6 itself from burning. The temperature of the flame 15 in the gasification part 4 of the vicinity is reduced.

これにより、ガス化部4下部の側壁耐火材7の溶損領域である側壁近傍ガス温度を低減し、この領域での側壁耐火材7の溶損を抑制する。   Thereby, the gas temperature in the vicinity of the side wall, which is the erosion region of the side wall refractory material 7 below the gasification section 4, is reduced, and the refractory loss of the side wall refractory material 7 in this region is suppressed.

下段バーナ6から供給する酸素34に添加する窒素又は水蒸気42流量は制御装置21からの指令に基づいて前記窒素または水蒸気の流量調整器41を制御することで調整される。   The flow rate of nitrogen or water vapor 42 added to the oxygen 34 supplied from the lower burner 6 is adjusted by controlling the flow rate regulator 41 of nitrogen or water vapor based on a command from the control device 21.

本実施例により、上段バーナ5及び下段バーナ6から投入する石炭及び酸素の流量を一定にして、上段バーナ5及び下段バーナ6によりガス化部4内に形成する火炎14、15の火炎温度をそれぞれ調整できるので、ガス化部4を構成する側壁耐火材7の溶損抑制する運用が可能となる。   According to the present embodiment, the flow rates of coal and oxygen input from the upper burner 5 and the lower burner 6 are made constant, and the flame temperatures of the flames 14 and 15 formed in the gasification unit 4 by the upper burner 5 and the lower burner 6 are respectively set. Since it can adjust, the operation | movement which suppresses the melting damage of the side wall refractory material 7 which comprises the gasification part 4 is attained.

特に本実施例は、実施例1の(1)式に示した角運動量比を変えることなく、上段バーナ5及び下段バーナ6の火炎温度のみを調整できるため、ガス化炉1を一定負荷で連続運転する場合の調整手段として有効である。   In particular, since the present embodiment can adjust only the flame temperatures of the upper burner 5 and the lower burner 6 without changing the angular momentum ratio shown in the expression (1) of the first embodiment, the gasification furnace 1 is continuously operated at a constant load. It is effective as an adjustment means when driving.

また、上段バーナ5に供給する窒素又は水蒸気40、下段バーナ6に供給する窒素又は水蒸気42について、水蒸気を供給すると、還元雰囲気で運転されるガス化部4内では、(4)式に示すシフト反応が促進する。   Further, when nitrogen or water vapor 40 supplied to the upper burner 5 or nitrogen or water vapor 42 supplied to the lower burner 6 is supplied with water vapor, the shift shown in the equation (4) is performed in the gasification section 4 operated in a reducing atmosphere. The reaction is accelerated.

CO+HO→CO+H・・・(4)
これにより、ガス化部4で発生する生成ガスのCO、H濃度が高まる。よって、生成ガス中のCOを回収し、Hを発電用燃料又はアンモニア製造等の工業用材料として利用するガス化システムに適した運用となる。
本実施例によれば、ガス火炉の炉内の付着物の成長及び耐火材の溶損を抑制してガス化炉が運転停止に至る状況を回避し、長期の連続運転に耐える信頼性の高いガス化炉、並びにガス化炉の運転方法が実現できる。
CO + H 2 O → CO 2 + H 2 (4)
Thereby, the CO 2 and H 2 concentrations of the product gas generated in the gasification unit 4 are increased. Therefore, the CO 2 in the product gas is recovered, the operation which is suitable for gasification system utilizing of H 2 as an industrial material for the power generation fuel or ammonia production and the like.
According to the present embodiment, the growth of deposits in the furnace of the gas furnace and the refractory loss of the refractory material are suppressed, the situation where the gasification furnace is shut down is avoided, and the long-term continuous operation is highly reliable. A gasification furnace and a gasification furnace operation method can be realized.

図8及び図9は本発明の第5実施例であるガス化炉1の概略構成を示す断面図である。   8 and 9 are sectional views showing a schematic configuration of a gasification furnace 1 according to a fifth embodiment of the present invention.

図8は本発明の第5実施例であるガス化炉1の概略構成を示す断面図であり、図9は下段バーナ6の設置高さにおけるガス化炉1の断面を示す断面図である。   FIG. 8 is a sectional view showing a schematic configuration of the gasification furnace 1 according to the fifth embodiment of the present invention, and FIG. 9 is a sectional view showing a section of the gasification furnace 1 at the installation height of the lower burner 6.

図8に示した本実施例のガス化炉1は図1に示した第1実施例のガス化炉1と基本的な構成及び運転方法は共通しているので、両実施例に共通した構成の説明は省略して相違する部分のみ以下に説明する。   The gasification furnace 1 of the present embodiment shown in FIG. 8 has the same basic configuration and operation method as the gasification furnace 1 of the first embodiment shown in FIG. Description of the above will be omitted, and only the differences will be described below.

図8及び図9に示した本実施例のガス化炉1では、ガス化炉1のガス化部4内にチャー47、窒素48、酸素49を投入するチャーバーナ43を4本設置し、このチャーバーナ43の設置高さを、下段バーナ6と同一とした構成である。   In the gasification furnace 1 of this embodiment shown in FIGS. 8 and 9, four char burners 43 into which char 47, nitrogen 48, and oxygen 49 are introduced are installed in the gasification section 4 of the gasification furnace 1. The installation height of the char burner 43 is the same as that of the lower burner 6.

図9に下段バーナ6の設置高さのガス化炉1の断面図で示したように、ガス化炉1には下段バーナ6とチャーバーナ43とを交互に45度間隔でそれぞれ4本ずつ設置し、チャーバーナ43による旋回径は、下段バーナ6による旋回径18と同一とした。   As shown in the sectional view of the gasification furnace 1 at the installation height of the lower burner 6 in FIG. 9, four lower burners 6 and four char burners 43 are alternately installed in the gasification furnace 1 at intervals of 45 degrees. The swirl diameter by the char burner 43 was the same as the swirl diameter 18 by the lower burner 6.

これにより、本実施例のガス化炉1では側壁耐火材7の周方向の熱負荷分布の均等化を図ることが可能となる。   Thereby, in the gasification furnace 1 of a present Example, it becomes possible to aim at equalization of the heat load distribution of the circumferential direction of the side wall refractory material 7. FIG.

また、第1実施例のガス化炉1で説明した角運動量比については、チャーバーナ43から投入するチャー47、窒素48、酸素49の角運動量を、下段バーナ6の角運動量比に加えて管理すると良い。   As for the angular momentum ratio described in the gasification furnace 1 of the first embodiment, the angular momentum of the char 47, nitrogen 48, and oxygen 49 supplied from the char burner 43 is managed in addition to the angular momentum ratio of the lower burner 6. Good.

チャーバーナ43から投入するチャー、酸素、窒素の流量制御は、制御装置21からの指令信号に基づいてチャー47の流量を調節するチャー流量調整器44、窒素48の流量を調節するチャーバーナ窒素流量調整器45、酸素49の流量を調節するチャーバーナ酸素流量調整器46を制御することによって行なう。   The flow control of the char, oxygen, and nitrogen supplied from the char burner 43 is performed by adjusting a flow rate of the char 47 based on a command signal from the control device 21 and a flow rate of the char burner adjusting the flow rate of the nitrogen 48. This is done by controlling a regulator 45 and a char burner oxygen flow regulator 46 that regulates the flow of oxygen 49.

ガス化炉1で発生する生成ガス20にはチャーも含まれる。生成ガス20に同伴したチャーを回収し、その全量をこのチャーバーナ43からガス化炉1のガス化部4内に再投入することで、石炭中の全量の可燃分のガス化と灰分の溶融スラグ化が可能となる。   The product gas 20 generated in the gasification furnace 1 includes char. The char accompanying the produced gas 20 is recovered, and the entire amount thereof is reintroduced from the char burner 43 into the gasification section 4 of the gasification furnace 1 so that the entire amount of combustible gas in the coal is gasified and the ash is melted. Slag can be made.

また、制御装置21によってチャーバーナ酸素流量調整器46を制御し、チャーバーナ43から投入される酸素49の流量をチャー47の完全燃焼に必要な酸素量よりも少なくすると良い。投入したチャー47が、ガス化部4内でガス化反応(吸熱反応)を起こすこととなり、下段バーナ6高さ付近の火炎15の温度上昇を抑制することが可能となる。   In addition, the control device 21 may control the char burner oxygen flow controller 46 so that the flow rate of oxygen 49 supplied from the char burner 43 is less than the amount of oxygen required for complete combustion of the char 47. The charged char 47 causes a gasification reaction (endothermic reaction) in the gasification section 4, and the temperature rise of the flame 15 near the height of the lower burner 6 can be suppressed.

付着物19の成長有無、及びガス化部4内の温度分布の監視は、温度測定器16で計測する炉内温度分布データ22を用いる。また各バーナの運用条件の監視は、(5)〜(7)式に示した、チャーバーナ43も含めた角運動量比で監視する。
・角運動量比=上段バーナの角運動量/(上段バーナの角運動量+下段の角運動量)・・・(5)
・上段バーナの角運動量=上段バーナによる旋回径×(上段バーナの石炭質量流量×上段バーナの石炭の投入流速+上段バーナの窒素質量流量×上段バーナの窒素の投入流速+上段バーナの酸素質量流量×上段バーナの酸素の投入流速)・・・(6)
・下段の角運動量=下段バーナによる旋回径×(下段バーナの石炭質量流量×下段バーナの石炭の投入流速+下段バーナの窒素質量流量×下段バーナの窒素の投入流速+下段バーナの酸素質量流量×下段バーナの酸素の投入流速)+チャーバーナによる旋回径×(チャーバーナのチャー質量流量×チャーバーナのチャーの投入流速+チャーバーナの窒素質量流量×チャーバーナの窒素の投入流速+チャーバーナの酸素質量流量×チャーバーナの酸素の投入流速)・・・(7)
付着物19の成長時の焼切り運転、炉内温度分布に対応した角運動量比の調整方法は、実施例1の場合と同様である。しかし、本実施例では、下段の角運動量=下段バーナの角運動量+チャーバーナの角運動量であることから、チャーバーナの運用条件のみを調整することで、下段の角運動量、及び角運動量比を調整することも可能である。
The temperature distribution in the furnace 22 measured by the temperature measuring device 16 is used to monitor the presence / absence of growth of the deposit 19 and the temperature distribution in the gasification unit 4. Further, the operation condition of each burner is monitored by the angular momentum ratio including the char burner 43 shown in the equations (5) to (7).
・ Angular momentum ratio = Angular momentum of upper burner / (Angular momentum of upper burner + Lower angular momentum) (5)
-Angular momentum of upper burner = swirling diameter by upper burner x (coal mass flow rate of upper burner x coal flow rate of upper burner + nitrogen mass flow rate of upper burner x nitrogen flow rate of nitrogen of upper burner + oxygen mass flow rate of upper burner × Oxygen flow rate of upper burner) (6)
Lower angular momentum = swirling diameter of lower burner x (lower burner coal mass flow rate x lower burner coal input flow rate + lower burner nitrogen mass flow rate x lower burner nitrogen input flow rate + lower burner oxygen mass flow rate x Lower burner oxygen input flow rate) + swirling diameter of the char burner x (char burner char mass flow rate x char burner char input flow rate + char burner nitrogen mass flow rate x char burner nitrogen input flow rate + char burner oxygen (Mass flow rate x char burner oxygen input flow rate) (7)
The method of adjusting the angular momentum ratio corresponding to the burn-out operation during the growth of the deposit 19 and the temperature distribution in the furnace is the same as in the first embodiment. However, in this embodiment, since the lower angular momentum = the angular momentum of the lower burner + the angular momentum of the char burner, the lower angular momentum and the angular momentum ratio are adjusted by adjusting only the operating conditions of the char burner. It is also possible to adjust.

本実施例によれば、ガス火炉の炉内の付着物の成長及び耐火材の溶損を抑制してガス化炉が運転停止に至る状況を回避し、長期の連続運転に耐える信頼性の高いガス化炉、並びにガス化炉の運転方法が実現できる。   According to the present embodiment, the growth of deposits in the furnace of the gas furnace and the refractory loss of the refractory material are suppressed, the situation where the gasification furnace is shut down is avoided, and the long-term continuous operation is highly reliable. A gasification furnace and a gasification furnace operation method can be realized.

図10は、本発明の第6実施例であるガス化炉1を備えた石炭ガス化複合発電プラントの概略構成を示す断面図である。   FIG. 10 is a sectional view showing a schematic configuration of a combined coal gasification combined power plant including a gasification furnace 1 according to a sixth embodiment of the present invention.

本実施例の石炭ガス化複合発電プラントに備えられたガス化炉1の一例として、図8及び図9に示した第5実施例のガス化炉1を採用している。   As an example of the gasification furnace 1 provided in the combined coal gasification combined power plant of this embodiment, the gasification furnace 1 of the fifth embodiment shown in FIGS. 8 and 9 is adopted.

本実施例の石炭ガス化複合発電プラントの概略構成を説明すると、図10に示したように、ガス化炉1の上段バーナ5及び下段バーナ6からガス化部4内に投入された石炭26、32はガス化部4内でガス化して、CO及びHを主成分とする生成ガスとなる。 The schematic configuration of the combined coal gasification combined power plant of the present embodiment will be described. As shown in FIG. 10, as shown in FIG. 10, the coal 26 introduced into the gasification unit 4 from the upper burner 5 and the lower burner 6 of the gasification furnace 1, 32 is gasified in the gasification unit 4 and becomes a product gas mainly composed of CO and H 2 .

ガス化部4で発生した生成ガス20はガス化炉1の頂部からガス化炉1の外部に導出されるが、この生成ガス20は熱回収部51に流入して冷却され、次に脱塵装置52に供給される。   The generated gas 20 generated in the gasification unit 4 is led out from the top of the gasification furnace 1 to the outside of the gasification furnace 1, and this generated gas 20 flows into the heat recovery unit 51 to be cooled, and then dedusted. Supplied to the device 52.

生成ガス20に同伴したチャーはこの脱塵装置52によって脱塵され、前記脱塵装置52で回収された回収チャー67は、ガス化炉1に設けたチャー流量調整器44、チャーバーナ43を通じてガス化路1のガス化部4に再投入される。   The char accompanying the generated gas 20 is dedusted by the dust removing device 52, and the recovered char 67 collected by the dust removing device 52 is gas passed through the char flow rate regulator 44 and the char burner 43 provided in the gasification furnace 1. The gasification section 4 of the chemical conversion path 1 is recharged.

脱塵装置52で脱塵後の生成ガス20は、塩素除去装置53に流入して脱塩し、次に脱硫装置54に流入して脱硫されて精製され、発電用の生成ガス55となる。   The product gas 20 after being dedusted by the dedusting device 52 flows into the chlorine removal device 53 to be desalted, and then flows into the desulfurization device 54 where it is desulfurized and purified to become a product gas 55 for power generation.

この発電用の生成ガス55は、ガスタービン装置の燃焼器56に燃料として供給され、燃焼して高温の燃焼ガスを発生する。   The generated gas 55 for power generation is supplied as fuel to the combustor 56 of the gas turbine device, and burns to generate high-temperature combustion gas.

燃焼器56に供給される燃焼用空気は、燃焼ガスによって駆動されるガスタービン59と同軸で駆動する圧縮機57から取り込まれた空気66が用いられる。   As the combustion air supplied to the combustor 56, air 66 taken in from a compressor 57 driven coaxially with a gas turbine 59 driven by combustion gas is used.

燃焼器56で生成ガス55を燃焼して発生した燃焼ガスはガスタービン59を駆動し、このタービン59によって発電機(図示せず)を駆動して発電する。   Combustion gas generated by burning the generated gas 55 in the combustor 56 drives a gas turbine 59, and a power generator (not shown) is driven by the turbine 59 to generate electric power.

また、ガスタービン59から排出された燃焼ガスは燃焼排ガスとなってボイラ61に供給され、このボイラ61での熱交換によって燃焼排ガスから熱回収して発生した蒸気63を蒸気タービン装置の蒸気タービン60に供給し、この蒸気タービン60によって発電機(図示せず)を駆動して発電する。   The combustion gas discharged from the gas turbine 59 is supplied to the boiler 61 as combustion exhaust gas, and steam 63 generated by heat recovery from the combustion exhaust gas by heat exchange in the boiler 61 is generated in the steam turbine 60 of the steam turbine apparatus. The steam turbine 60 drives a generator (not shown) to generate electricity.

また、蒸気タービン60を駆動した後の蒸気63は復水器(図示せず)で冷却されて復水68となって、再度、ボイラ61に供給される。   Further, the steam 63 after driving the steam turbine 60 is cooled by a condenser (not shown) to become condensate 68 and is supplied to the boiler 61 again.

また、ボイラ61で熱を回収されて冷却した燃焼排ガスは煙突62から系外に放出される。   Further, the combustion exhaust gas whose heat is recovered by the boiler 61 and cooled is discharged from the chimney 62 to the outside of the system.

本実施例の石炭ガス化複合発電プラントでは、ガスタービン装置と蒸気タービン装置とを組み合わせた複合発電とすることで、発電効率の高いガス化炉を備えた石炭ガス化複合発電プラントを提供できる。   In the coal gasification combined power plant of the present embodiment, a combined gasification combined power plant including a gasification furnace with high power generation efficiency can be provided by using combined power generation that combines a gas turbine device and a steam turbine device.

本実施例によれば、ガス火炉の炉内の付着物の成長及び耐火材の溶損を抑制してガス化炉が運転停止に至る状況を回避し、長期の連続運転に耐える信頼性の高いガス化炉を備えた石炭ガス化複合発電プラントが実現できる。   According to the present embodiment, the growth of deposits in the furnace of the gas furnace and the refractory loss of the refractory material are suppressed, the situation where the gasification furnace is shut down is avoided, and the long-term continuous operation is highly reliable. A coal gasification combined power plant equipped with a gasification furnace can be realized.

本発明は、石炭等の固体燃料を用いたガス化炉、ガス化炉の運転方法、及びガス化複合発電プラントに適用可能である。   The present invention is applicable to a gasification furnace using a solid fuel such as coal, a gasification furnace operating method, and a gasification combined power plant.

1:ガス化炉、2:天井部開口部、3:天井部外筒、4:ガス化部、5:上段バーナ、6:下段バーナ、7:側壁耐火材、8:側壁外筒、9:スラグタップ開口部、10:スラグタップ、11:クエンチ部、12:スラグ冷却水槽、13:酸素・窒素ノズル、14:上段バーナの火炎、15:下段バーナの火炎、16:温度測定器、17:上段バーナによる旋回径、18:下段バーナによる旋回径、19:付着物、20:生成ガス、21:制御装置、22:炉内温度分布データ、23:上段バーナ石炭流量調整器、24:上段バーナ窒素流量調整器、25:上段バーナ酸素流量調整器、26:石炭、27:窒素、28:酸素、29:下段バーナ石炭流量調整器、30:下段バーナ窒素流量調整器、31:下段バーナ酸素流量調整器、32:石炭、33:窒素、34:酸素、35:窒素流量調整器、36:酸素流量調整器、37:窒素、38:酸素、39:窒素又は水蒸気の流量調整器、40:窒素又は水蒸気、41:窒素又は水蒸気の流量調整器、42:窒素又は水蒸気、43:チャーバーナ、44:チャー流量調整器、45:チャーバーナ窒素流量調整器、46:チャーバーナ酸素流量調整器、47:チャー、48:窒素、49:酸素、50:スラグ重量計測器、51:熱回収部、52:脱塵装置、53:塩素除去装置、54:脱硫装置、55:発電用の生成ガス、56:燃焼器、57:圧縮機、58:空気分離器、59:ガスタービン、60:蒸気タービン、61:ボイラ、62:煙突、63:蒸気、64:窒素、65:酸素、66:空気、67:回収チャー、68:復水。   1: Gasification furnace, 2: Ceiling opening, 3: Ceiling outer cylinder, 4: Gasification section, 5: Upper burner, 6: Lower burner, 7: Side wall refractory material, 8: Side wall outer cylinder, 9: Slag tap opening, 10: slag tap, 11: quenching part, 12: slag cooling water tank, 13: oxygen / nitrogen nozzle, 14: flame of upper burner, 15: flame of lower burner, 16: temperature measuring instrument, 17: Swivel diameter by upper burner, 18: Swivel diameter by lower burner, 19: Deposit, 20: Generated gas, 21: Controller, 22: Temperature distribution data in furnace, 23: Upper burner coal flow regulator, 24: Upper burner Nitrogen flow regulator, 25: Upper burner oxygen flow regulator, 26: Coal, 27: Nitrogen, 28: Oxygen, 29: Lower burner coal flow regulator, 30: Lower burner nitrogen flow regulator, 31: Lower burner oxygen flow Adjuster, 32: stone 33: nitrogen, 34: oxygen, 35: nitrogen flow regulator, 36: oxygen flow regulator, 37: nitrogen, 38: oxygen, 39: nitrogen or steam flow regulator, 40: nitrogen or steam, 41: nitrogen Or water flow rate regulator, 42: nitrogen or water vapor, 43: char burner, 44: char flow rate regulator, 45: char burner nitrogen flow rate regulator, 46: char burner oxygen flow rate regulator, 47: char, 48: nitrogen 49: oxygen, 50: slag weight measuring device, 51: heat recovery unit, 52: dedusting device, 53: chlorine removal device, 54: desulfurization device, 55: generated gas for power generation, 56: combustor, 57: Compressor, 58: Air separator, 59: Gas turbine, 60: Steam turbine, 61: Boiler, 62: Chimney, 63: Steam, 64: Nitrogen, 65: Oxygen, 66: Air, 67: Recovery char, 68: Condensing.

Claims (12)

石炭と窒素及び酸素をガス化炉の内部に供給する上段バーナ及び下段バーナと、前記ガス化炉に設置されてガス化炉の壁面を構成する側壁耐火材と、前記上段バーナ及び下段バーナから供給された石炭中の可燃分をガス化して石炭中の灰分を溶融スラグ化させるように前記側壁耐火材の内側に形成されたガス化部と、前記ガス化部内でガス化した生成ガスを外部に抜き出す開口部を有する天井部及び溶融スラグを下方に流下させる別の開口部を有するスラグタップを底部にそれぞれ備えたガス化炉において、
前記上段バーナと下段バーナとの間の前記側壁耐火材の内部に温度測定器をガス炉の高さ方向に沿って複数個設置し、
前記側壁耐火材の内部に設置する温度測定器は、側壁耐火材の厚み方向にも複数個設置し、
複数個設置した前記温度測定器で測定した温度測定値に基づいてガス化部の内部の前記側壁耐火材近傍の温度分布を演算し、この側壁耐火材近傍の温度分布に基づいて前記上段バーナ及び下段バーナからガス化部内に供給する石炭と窒素及び酸素の流量を調整する制御装置を備えたことを特徴とするガス化炉。
Supply from the upper and lower burners, upper and lower burners for supplying coal, nitrogen and oxygen into the gasification furnace, side wall refractories that are installed in the gasification furnace and constitute the wall of the gasification furnace The gasification part formed inside the side wall refractory so as to gasify the combustible component in the coal and melt the ash in the coal into a molten slag, and the product gas gasified in the gasification unit to the outside In the gasification furnace each provided with a slag tap having a ceiling part having an opening part to be extracted and another opening part for causing the molten slag to flow downward,
The temperature measuring instrument plurality placed along the height direction of the gasification furnace to the inside of the side wall refractory material between the upper burner and lower stage burner,
A plurality of temperature measuring devices installed inside the side wall refractory material are also installed in the thickness direction of the side wall refractory material,
A temperature distribution in the vicinity of the side wall refractory material inside the gasification unit is calculated based on temperature measurement values measured by a plurality of temperature measuring devices installed, and the upper burner and the temperature distribution in the vicinity of the side wall refractory material are calculated. A gasification furnace comprising a control device for adjusting flow rates of coal , nitrogen and oxygen supplied from a lower burner into a gasification unit.
請求項1に記載のガス化炉において、
前記ガス化部のスラグタップ直下にクエンチ部を備え、前記クエンチ部の内部に酸素及び窒素を供給する酸素・窒素ノズルを設置し、前記酸素・窒素ノズルに供給する酸素の流量を調整する第2の酸素流量調整器と窒素の流量を調整する窒素流量調整器とをそれぞれ設置し、前記制御装置によって前記第2の酸素流量調整器及び窒素流量調整器を制御して前記酸素・窒素ノズルからクエンチ部内に供給する酸素の流量及び窒素の流量を調整することを特徴とするガス化炉。
In the gasifier according to claim 1,
A second quenching section provided immediately below the slag tap of the gasification section, wherein an oxygen / nitrogen nozzle for supplying oxygen and nitrogen is installed in the quench section, and a flow rate of oxygen supplied to the oxygen / nitrogen nozzle is adjusted; An oxygen flow rate regulator and a nitrogen flow rate regulator for regulating the flow rate of nitrogen, respectively, and the second oxygen flow rate regulator and the nitrogen flow rate regulator are controlled by the control device to quench from the oxygen / nitrogen nozzle A gasification furnace characterized by adjusting a flow rate of oxygen and a flow rate of nitrogen supplied into the section.
請求項1に記載のガス化炉において、
前記上段バーナ及び下段バーナからガス化炉内に酸素を供給する酸素供給系統に、窒素又は水蒸気を添加する窒素又は水蒸気の流量調整器をそれぞれ設置し、前記制御装置によって前記窒素又は水蒸気の流量調整器を制御して前記窒素又は水蒸気の流量調整器から酸素供給系統に添加する窒素の流量又は水蒸気の流量を調整することを特徴とするガス化炉。
In the gasifier according to claim 1,
A nitrogen or water vapor flow controller for adding nitrogen or water vapor is installed in the oxygen supply system for supplying oxygen into the gasifier from the upper and lower burners, and the flow rate of the nitrogen or water vapor is adjusted by the control device. A gasification furnace characterized by controlling a flow rate of nitrogen added to the oxygen supply system from the flow rate regulator of nitrogen or water vapor or a flow rate of water vapor.
請求項1に記載のガス化炉において、
チャーと酸素をガス化部内に供給するチャーバーナを前記下段バーナが設置されたガス化炉の高さ位置と同じ高さに設置し、前記チャーバーナからガス化炉内にチャーを供給するチャー流量調整器及び酸素を供給する第3の酸素流量調整器をそれぞれ設置し、前記制御装置によって前記チャー流量調整器及び第3の酸素流量調整器を制御して前記チャーバーナからガス化炉内に供給するチャー及び酸素の流量を調整することを特徴とするガス化炉。
In the gasifier according to claim 1,
A char flow rate for supplying char to the gasification furnace from the char burner by installing a char burner for supplying char and oxygen into the gasification unit at the same height as the gasification furnace where the lower burner is installed. A regulator and a third oxygen flow regulator for supplying oxygen are installed, and the char flow regulator and the third oxygen flow regulator are controlled by the controller and supplied from the char burner into the gasifier. A gasification furnace characterized by adjusting the flow rate of char and oxygen.
ガス化炉の上段と下段とに設けた上段バーナ及び下段バーナから石炭と窒素及び酸素をガス化炉の壁面を構成する側壁耐火材の内側に形成されたガス化部に供給して石炭中の可燃分をガス化して石炭中の灰分を溶融スラグ化させ、前記ガス化部内でガス化した生成ガスを外部に抜き出す開口部を有する天井部及び溶融スラグを下方に流下させる別の開口部を有するスラグタップを底部にそれぞれ備えたガス化炉の運転方法において、
ガス化炉の前記上段バーナと下段バーナとの間の前記側壁耐火材の内部にガス化炉の高さ方向に沿って複数個設置した温度測定器及び前記側壁耐火材の厚み方向にも複数個設置させた温度測定器で計測した温度測定値に基づいてガス化部の内部の前記側壁耐火材近傍の温度分布を演算し、
この演算で求めた側壁耐火材近傍の温度分布に基づいて前記上段バーナ及び下段バーナからガス化部内に供給する石炭と窒素及び酸素の流量を調整し、ガス化部内に形成する火炎の温度を調節するようにしたことを特徴とするガス化炉の運転方法。
Coal, nitrogen, and oxygen are supplied from the upper and lower burners provided at the upper and lower stages of the gasifier to the gasification section formed inside the side wall refractory that constitutes the wall of the gasifier. Gasification of combustible components to melt ash in coal into molten slag, and a ceiling portion having an opening for extracting gasified product gas in the gasification portion to the outside and another opening for allowing molten slag to flow downward In the operation method of the gasifier equipped with slag taps at the bottom,
A plurality of temperature measuring devices installed along the height direction of the gasification furnace in the side wall refractory material between the upper burner and the lower burner of the gasification furnace, and a plurality of temperature measuring devices in the thickness direction of the side wall refractory material Calculate the temperature distribution in the vicinity of the side wall refractory inside the gasification unit based on the temperature measurement value measured with the installed temperature measuring instrument,
Based on the temperature distribution in the vicinity of the side wall refractory obtained by this calculation, the flow rate of coal , nitrogen and oxygen supplied from the upper and lower burners into the gasification unit is adjusted, and the temperature of the flame formed in the gasification unit is adjusted. An operation method of a gasification furnace, characterized in that:
ガス化炉の上段と下段とに設けた上段バーナ及び下段バーナから石炭と窒素及び酸素をガス化炉の壁面を構成する側壁耐火材の内側に形成されたガス化部に供給して石炭中の可燃分をガス化して石炭中の灰分を溶融スラグ化させ、前記ガス化部内でガス化した生成ガスを外部に抜き出す開口部を有する天井部及び溶融スラグを下方に流下させる別の開口部を有するスラグタップを底部にそれぞれ備えたガス化炉の運転方法において、
ガス化炉の前記上段バーナと下段バーナとの間の前記側壁耐火材の内部にガス化炉の高さ方向に沿って複数個設置した温度測定器で計測した温度測定値に基づいてガス化部の内部の前記側壁耐火材近傍の温度分布を演算し、
演算で求めた前記側壁耐火材近傍の温度分布に基づいて側壁耐火材の厚さ減少の有無及び場所、又は側壁耐火材への付着物成長の有無及び場所を検知して前記上段バーナ及び下段バーナからガス化部内に供給する石炭と窒素及び酸素の流量をそれぞれ調整し、ガス化部内に形成する火炎の温度を調節するようにしたことを特徴とするガス化炉の運転方法。
Coal, nitrogen, and oxygen are supplied from the upper and lower burners provided at the upper and lower stages of the gasifier to the gasification section formed inside the side wall refractory that constitutes the wall of the gasifier. Gasification of combustible components to melt ash in coal into molten slag, and a ceiling portion having an opening for extracting gasified product gas in the gasification portion to the outside and another opening for allowing molten slag to flow downward In the operation method of the gasifier equipped with slag taps at the bottom,
Gasification section based on temperature measurement values measured by a plurality of temperature measuring instruments installed along the height direction of the gasification furnace inside the side wall refractory material between the upper and lower burners of the gasification furnace The temperature distribution in the vicinity of the side wall refractory inside is calculated,
Based on the temperature distribution in the vicinity of the side wall refractory material obtained by calculation, the upper and lower burners are detected by detecting the presence or absence and location of the thickness of the side wall refractory material or the presence or absence of deposit growth on the side wall refractory material. The operation method of the gasification furnace characterized by adjusting the temperature of the flame formed in a gasification part by adjusting the flow volume of coal , nitrogen, and oxygen supplied into the gasification part from each.
ガス化炉の上段と下段とに設けた上段バーナ及び下段バーナから石炭と窒素及び酸素をガス化炉の壁面を構成する側壁耐火材の内側に形成されたガス化部に供給して石炭中の可燃分をガス化して石炭中の灰分を溶融スラグ化させ、前記ガス化部内でガス化した生成ガスを外部に抜き出す開口部を有する天井部及び溶融スラグを下方に流下させる別の開口部を有するスラグタップを底部にそれぞれ備えたガス化炉の運転方法において、
ガス化炉の前記上段バーナと下段バーナとの間の前記側壁耐火材の内部にガス化炉の高さ方向に沿って複数個設置した温度測定器及び前記側壁耐火材の厚み方向にも複数個設置させた温度測定器で計測した温度測定値に基づいてガス化部の内部の前記側壁耐火材近傍の温度分布を演算し、
演算で求めた前記側壁耐火材近傍の温度分布に基づいて側壁耐火材の厚さ減少の有無及び場所、又は側壁耐火材への付着物成長の有無及び場所を検知して前記上段バーナ及び下段バーナからガス化部内に供給する石炭と窒素及び酸素の流量をそれぞれ調整し、ガス化部内に形成する火炎の温度を調節するようにしたことを特徴とするガス化炉の運転方法。
Coal, nitrogen, and oxygen are supplied from the upper and lower burners provided at the upper and lower stages of the gasifier to the gasification section formed inside the side wall refractory that constitutes the wall of the gasifier. Gasification of combustible components to melt ash in coal into molten slag, and a ceiling portion having an opening for extracting gasified product gas in the gasification portion to the outside and another opening for allowing molten slag to flow downward In the operation method of the gasifier equipped with slag taps at the bottom,
A plurality of temperature measuring devices installed along the height direction of the gasification furnace in the side wall refractory material between the upper burner and the lower burner of the gasification furnace, and a plurality of temperature measuring devices in the thickness direction of the side wall refractory material Calculate the temperature distribution in the vicinity of the side wall refractory inside the gasification unit based on the temperature measurement value measured with the installed temperature measuring instrument,
Based on the temperature distribution in the vicinity of the side wall refractory material obtained by calculation, the upper and lower burners are detected by detecting the presence or absence and location of the thickness of the side wall refractory material or the presence or absence of deposit growth on the side wall refractory material. The operation method of the gasification furnace characterized by adjusting the temperature of the flame formed in a gasification part by adjusting the flow volume of coal , nitrogen, and oxygen supplied into the gasification part from each.
請求項5乃至請求項7の何れか1項に記載のガス化炉の運転方法において、
演算で求めた前記側壁耐火材近傍の温度分布に基づいて側壁耐火材の厚さ減少の有無及び場所、又は側壁耐火材への付着物成長の有無及び場所を検知して前記上段バーナ及び下段バーナからガス化部内に供給する石炭と窒素及び酸素による上段バーナ及び下段バーナの角運動量をそれぞれ調節し、ガス化部の下部に形成される灰溶融領域の高さを調整するようにしたことを特徴とするガス化炉の運転方法。
In the operating method of the gasifier according to any one of claims 5 to 7,
Based on the temperature distribution in the vicinity of the side wall refractory material obtained by calculation, the upper and lower burners are detected by detecting the presence or absence and location of the thickness of the side wall refractory material or the presence or absence of deposit growth on the side wall refractory material. The angular momentum of the upper and lower burners by coal , nitrogen, and oxygen supplied from the gasification section to the gasification section is adjusted to adjust the height of the ash melting region formed at the bottom of the gasification section. The operation method of the gasifier.
請求項5乃至請求項8の何れか1項に記載のガス化炉の運転方法において、
前記ガス化部のスラグタップ直下に備えたクエンチ部の内部に酸素・窒素ノズルから酸素及び窒素を供給するように構成し、演算で求めた前記側壁耐火材近傍の温度分布に基づいて前記酸素・窒素ノズルからクエンチ部内に投入する酸素及び窒素の混合ガスの流量と酸素濃度を調整してガス化部の底部の加熱を調節することを特徴とするガス化炉の運転方法。
In the operating method of the gasifier according to any one of claims 5 to 8,
It is configured to supply oxygen and nitrogen from an oxygen / nitrogen nozzle to the inside of the quench unit provided immediately below the slag tap of the gasification unit, and based on the temperature distribution in the vicinity of the side wall refractory obtained by calculation, A method for operating a gasification furnace, wherein the heating of the bottom of the gasification unit is adjusted by adjusting the flow rate and oxygen concentration of a mixed gas of oxygen and nitrogen introduced into the quenching unit from a nitrogen nozzle.
請求項5乃至請求項9のいずれか1項に記載のガス化炉の運転方法において、
前記上段バーナ及び下段バーナからガス化部内に供給する酸素の供給系統に設置された窒素又は水蒸気の流量調整器から窒素又は水蒸気を添加するように構成し、演算で求めた前記側壁耐火材近傍の温度分布に基づいて前記窒素又は水蒸気の流量調整器から前記酸素の供給系統に添加する窒素又は水蒸気の供給量を調節することを特徴とするガス化炉の運転方法。
In the operating method of the gasifier according to any one of claims 5 to 9,
It is configured to add nitrogen or water vapor from a flow controller of nitrogen or water vapor installed in an oxygen supply system to be supplied into the gasification unit from the upper and lower burners, and near the side wall refractory obtained by calculation. A method for operating a gasification furnace, comprising adjusting a supply amount of nitrogen or water vapor added to the oxygen supply system from the flow controller of nitrogen or water vapor based on a temperature distribution.
請求項5乃至請求項10のいずれか1項に記載のガス化炉の運転方法において、
前記下段バーナが設置されたガス化炉の高さ位置と同じ高さに設置したチャーバーナからチャーと酸素をガス化部内に供給するように構成し、
演算で求めた前記側壁耐火材近傍の温度分布に基づいて前記チャーバーナからガス化部内に供給するチャーと酸素の供給量を調節することを特徴とするガス化炉の運転方法。
The operation method of the gasifier according to any one of claims 5 to 10,
The char burner installed at the same height as the height position of the gasification furnace in which the lower burner is installed is configured to supply char and oxygen into the gasification unit,
An operation method of a gasification furnace, characterized in that a supply amount of char and oxygen supplied from the char burner into a gasification unit is adjusted based on a temperature distribution in the vicinity of the side wall refractory obtained by calculation.
石炭と窒素及び酸素をガス化炉の内部に供給する上段バーナ及び下段バーナと、前記ガス化炉に設置されてガス化炉の壁面を構成する側壁耐火材と、前記上段バーナ及び下段バーナから供給された石炭中の可燃分をガス化して石炭中の灰分を溶融スラグ化させるように前記側壁耐火材の内側に形成されたガス化部と、前記ガス化部内でガス化した生成ガスを外部に抜き出す開口部を有する天井部及び溶融スラグを下方に流下させる別の開口部を有するスラグタップを底部にそれぞれ備え、前記上段バーナと下段バーナとの間の前記側壁耐火材の内部に温度測定器をガス化炉の高さ方向に沿って複数個設置し、前記側壁耐火材の内部に設置する温度測定器は、側壁耐火材の厚み方向にも複数個設置し、複数個設置した前記温度測定器で測定した温度測定値に基づいてガス化部の内部の前記側壁耐火材近傍の温度分布を演算し、この側壁耐火材近傍の温度分布に基づいて前記上段バーナ及び下段バーナからガス化部内に供給する石炭と窒素及び酸素の流量を調整する制御装置を備えたガス化炉を備えており、
前記ガス化炉のガス化部で生成されて該ガス化炉から導出された生成ガスを脱塵する脱塵装置と、前記脱塵装置で生成ガス中から回収したチャーをガス化炉に設置されたチャーバーナに供給するチャー供給系統と、脱塵装置で脱塵された生成ガスの脱硫を行なう脱硫装置と、前記脱硫装置で脱硫された生成ガスを燃料として燃焼する燃焼器と、前記燃焼器で発生した燃焼ガスで駆動するガスタービンと、前記ガスタービンで駆動して発電する発電機と、前記燃焼器に圧縮空気を供給する圧縮機を備えたことを特徴とする石炭ガス化複合発電プラント。
Supply from the upper and lower burners, upper and lower burners for supplying coal, nitrogen and oxygen into the gasification furnace, side wall refractories that are installed in the gasification furnace and constitute the wall of the gasification furnace The gasification part formed inside the side wall refractory so as to gasify the combustible component in the coal and melt the ash in the coal into a molten slag, and the product gas gasified in the gasification unit to the outside A ceiling portion having an opening to be extracted and a slag tap having another opening for causing the molten slag to flow downward are provided at the bottom, respectively, and a temperature measuring device is provided inside the side wall refractory material between the upper burner and the lower burner. A plurality of temperature measuring devices installed along the height direction of the gasifier and installed inside the side wall refractory material, a plurality of temperature measuring devices installed in the thickness direction of the side wall refractory material, and a plurality of temperature measuring devices installed Measured in They based on degrees measured value to calculate the temperature distribution of the side wall refractory material near the inside of the gasification unit, and coal supplied to the gasifying portion from the upper burner and lower stage burner based on the temperature distribution of the side wall refractory material near It has a gasifier equipped with a control device that adjusts the flow rate of nitrogen and oxygen,
A dedusting device for dedusting the product gas generated in the gasification unit of the gasification furnace and derived from the gasification furnace, and a char recovered from the product gas in the dedusting device are installed in the gasification furnace. A char supply system for supplying to the char burner, a desulfurization device for desulfurization of the product gas dedusted by the dedusting device, a combustor that burns the product gas desulfurized by the desulfurization device as fuel, and the combustor A coal gasification combined power plant comprising: a gas turbine driven by the combustion gas generated in step 1; a generator driven by the gas turbine to generate electric power; and a compressor for supplying compressed air to the combustor. .
JP2010206218A 2010-09-15 2010-09-15 Gasification furnace, operation method of gasification furnace, and coal gasification combined power plant Active JP5812588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010206218A JP5812588B2 (en) 2010-09-15 2010-09-15 Gasification furnace, operation method of gasification furnace, and coal gasification combined power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010206218A JP5812588B2 (en) 2010-09-15 2010-09-15 Gasification furnace, operation method of gasification furnace, and coal gasification combined power plant

Publications (2)

Publication Number Publication Date
JP2012062376A JP2012062376A (en) 2012-03-29
JP5812588B2 true JP5812588B2 (en) 2015-11-17

Family

ID=46058426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010206218A Active JP5812588B2 (en) 2010-09-15 2010-09-15 Gasification furnace, operation method of gasification furnace, and coal gasification combined power plant

Country Status (1)

Country Link
JP (1) JP5812588B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9102882B2 (en) * 2012-09-04 2015-08-11 General Electric Company Gasification system and method
EP2926100B1 (en) 2012-11-30 2020-07-29 Lummus Technology LLC Thermal sensing system
JP5211369B1 (en) * 2012-12-25 2013-06-12 新日鉄住金エンジニアリング株式会社 Coal pyrolysis method
KR102231153B1 (en) * 2014-09-24 2021-03-25 한국전력공사 Apparatus and method for anti adhesive coating in coal-fired boiler
JP6289343B2 (en) * 2014-11-05 2018-03-07 三菱日立パワーシステムズ株式会社 boiler
KR101881959B1 (en) * 2016-12-22 2018-07-26 두산중공업 주식회사 Down shot multi-stage gasifier
JP7471986B2 (en) 2020-10-01 2024-04-22 三菱重工業株式会社 Slag melting burner device, gasification furnace, combined gasification power generation facility, and method for controlling the slag melting burner device
CN114479942A (en) * 2020-10-26 2022-05-13 中国石化工程建设有限公司 Method and system for preparing coal gasification synthesis gas

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2552806B2 (en) * 1993-06-11 1996-11-13 株式会社日立製作所 Coal gasifier
JP2001288482A (en) * 2000-04-03 2001-10-16 Babcock Hitachi Kk Airborne layer coal gasification apparatus
JP2003302017A (en) * 2002-04-10 2003-10-24 Fuji Electric Co Ltd Pressure-reduced incineration method and its device
JP2003302024A (en) * 2002-04-11 2003-10-24 Ebara Corp Melting furnace and slag removing method for molten slag discharge portion
JP5139714B2 (en) * 2007-04-24 2013-02-06 バブコック日立株式会社 Gasifier and gasifier

Also Published As

Publication number Publication date
JP2012062376A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
JP5812588B2 (en) Gasification furnace, operation method of gasification furnace, and coal gasification combined power plant
US6463864B2 (en) Gasification melting furnace for wastes and gasification melting method
EP1816396B1 (en) Treatment method for combustible gas in waste melting furnace
AU2010246510B2 (en) Gasifier, thermal power plant using gasifier, operating procedure of gasifier, and operating procedure of thermal power plant using gasifier
JP2008121513A (en) Gas turbine power generation system and method of detecting calorie abnormality thereof
JP4295291B2 (en) Fluidized bed gasifier and its fluidized bed monitoring and control method
US7077069B2 (en) U-type slag-tap firing boiler and method of operating the boiler
JP5139714B2 (en) Gasifier and gasifier
JP5611418B2 (en) Combustion control method for gasification melting system and system
JP5154094B2 (en) Combustion control method for gasification melting system and system
JP4938043B2 (en) Coke dry fire extinguishing method
JP4299841B2 (en) Coke dry fire extinguishing method and apparatus
JP4234727B2 (en) In-furnace condition monitoring / control method and apparatus for melting furnace
JP4918834B2 (en) Waste melting furnace and waste melting furnace operating method
JP4126317B2 (en) Operation control method of gasification and melting system and system
JP2010065932A (en) Device and method for controlling combustion in secondary combustion furnace for pyrolysis gas
WO2019159873A1 (en) Powder fuel supply device, gasification furnace facility, gasification compound power generation facility, and control method for powder fuel supply device
AU2011301418B2 (en) Method for generating synthesis gas
JP5893956B2 (en) Gasification furnace and slag tap blockage detection method thereof
JP2002130632A (en) Waste gasifying melting furnace and its operation method
JP2005282910A (en) Combustion control method of waste gasifying melting furnace
JP2007003035A (en) Thermal decomposition gasification melting equipment capable of preventing blocking by deposit of high-temperature gas duct of high temperature thermal decomposition gasification melting equipment, and blocking prevention method for high temperature gas duct in the same
JP5783078B2 (en) Waste gasification melting furnace clinker destruction and suppression device
JP2009019125A (en) Gasification method and apparatus
JP2002303412A (en) Method for gasifying and melting waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140729

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150915

R150 Certificate of patent or registration of utility model

Ref document number: 5812588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250