JP5799892B2 - Granulation method of sintering raw material - Google Patents

Granulation method of sintering raw material Download PDF

Info

Publication number
JP5799892B2
JP5799892B2 JP2012116823A JP2012116823A JP5799892B2 JP 5799892 B2 JP5799892 B2 JP 5799892B2 JP 2012116823 A JP2012116823 A JP 2012116823A JP 2012116823 A JP2012116823 A JP 2012116823A JP 5799892 B2 JP5799892 B2 JP 5799892B2
Authority
JP
Japan
Prior art keywords
raw material
granulated
mass
value
under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012116823A
Other languages
Japanese (ja)
Other versions
JP2013241661A (en
Inventor
健一 八ヶ代
健一 八ヶ代
淳治 長田
淳治 長田
大山 浩一
浩一 大山
茂 樫村
茂 樫村
理 石山
理 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012116823A priority Critical patent/JP5799892B2/en
Publication of JP2013241661A publication Critical patent/JP2013241661A/en
Application granted granted Critical
Publication of JP5799892B2 publication Critical patent/JP5799892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、鉄鋼製造用原料の一つである焼結鉱を製造するにあたり、その原料となる焼結原料の造粒方法に関する。   The present invention relates to a method for granulating a sintered raw material as a raw material for producing a sintered ore which is one of raw materials for producing steel.

焼結原料は鉄鉱石からなる粉鉱石であり、必要に応じて成分調整する副原料や凝結材を配合し、焼成前に、この粉鉱石に水とバインダーを混合し造粒処理することで、焼結機へ装入する微粉量を低減している。この造粒は、焼結生産性の維持改善に重要な操作であり、従来から各種の造粒技術が提案されてきた。
例えば、特許文献1には、ドラムミキサーを用いて焼結原料に造粒水を添加し造粒するに際し、この造粒水のpHを7超とすることで、焼結鉱の生産性が向上することが開示されている。これは、焼結原料の帯電状態を調整して、バインダーである生石灰と焼結原料との混合を改善できることによる。
Sintering raw material is powdered ore made of iron ore, blending auxiliary materials and coagulants to adjust the ingredients as necessary, and mixing and granulating this powdered ore with water and binder before firing, The amount of fine powder charged into the sintering machine is reduced. This granulation is an important operation for maintaining and improving sintering productivity, and various granulation techniques have been proposed.
For example, in Patent Document 1, when granulating water by adding granulated water to a sintering raw material using a drum mixer, the pH of the granulated water is increased to more than 7, thereby improving the productivity of sintered ore. Is disclosed. This is because the mixing of the quick lime as a binder and the sintering raw material can be improved by adjusting the charging state of the sintering raw material.

特開平10−226825号公報Japanese Patent Laid-Open No. 10-226825

前記従来の方法では、焼結原料中への生石灰の混合を、ある程度改善することはできるものの、造粒水の添加後に得られる混練物中や造粒物中における生石灰の分散状態を把握することはできず、作製した造粒物の強度は低位である。このように、強度が低ければ、例えば、造粒物を焼結機へ装入した際に造粒物が壊れて粉化し、焼結鉱の生産性の向上が図れなくなる。
なお、今後は、粉鉱石の劣質化に伴って、焼結原料中の微粉量が増加することも予想され、特に、鉄品位を上げる目的で、粉砕処理や選鉱処理された粉鉱石の増加が予想される。この粉鉱石は、微粉のみの鉱石であることに加え、造粒に有効な微粒子の含有率が低い難造粒性の粉鉱石(即ち、微粉原料)であるため、上記した方法を用いても、効果は限定的である。
In the conventional method, although mixing of quicklime into the sintering raw material can be improved to some extent, grasping the dispersion state of quicklime in the kneaded product and granulated product obtained after addition of granulated water The strength of the produced granulated product is low. In this way, if the strength is low, for example, when the granulated material is charged into the sintering machine, the granulated material is broken and pulverized, and the productivity of the sintered ore cannot be improved.
In the future, it is expected that the amount of fine powder in the sintering raw material will increase as the quality of the powdered ore deteriorates. is expected. This powder ore is an ore containing only fine powder, and is a hardly granulated powder ore with a low content of fine particles effective for granulation (that is, a fine powder raw material). The effect is limited.

本発明はかかる事情に鑑みてなされたもので、造粒物の強度を高位に確保することが可能な焼結原料の造粒方法を提供することを目的とする。   This invention is made | formed in view of this situation, and it aims at providing the granulation method of the sintering raw material which can ensure the intensity | strength of a granulated material high.

前記目的に沿う第1の発明に係る焼結原料の造粒方法は、鉄鋼製造に用いる焼結原料に、250μmアンダーを50質量%以上含む生石灰及び消石灰のいずれか1又は2を加え、水の存在下で造粒するに際し、前記造粒処理により得られる造粒物のpH値を11以上12.6以下にする。   In the granulation method for a sintered raw material according to the first aspect of the present invention, either 1 or 2 of quicklime and slaked lime containing 50% by mass or more of 250 μm under is added to a sintered raw material used for steel production, and water is added. When granulating in the presence, the pH value of the granulated product obtained by the granulation treatment is adjusted to 11 or more and 12.6 or less.

前記目的に沿う第2の発明に係る焼結原料の造粒方法は、鉄鋼製造に用いる焼結原料に、250μmアンダーを50質量%以上含む生石灰及び消石灰のいずれか1又は2を加え、水の存在下で混練して造粒するに際し、前記混練処理により得られる混練物又は前記造粒処理により得られる造粒物のpH値を11以上12.6以下にする。   The granulation method of the sintered raw material according to the second invention in accordance with the above object is to add either 1 or 2 of quick lime and slaked lime containing 50% by mass or more of 250 μm under to the sintered raw material used for steel production, When kneading and granulating in the presence, the pH value of the kneaded product obtained by the kneading treatment or the granulated product obtained by the granulating treatment is adjusted to 11 or more and 12.6 or less.

第1、第2の発明に係る焼結原料の造粒方法において、前記焼結原料は、鉄鉱石として500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下の粒度である微粉原料を用いることが、本発明の効果がより顕著になる観点から好ましい。   In the granulation method of the sintering raw material according to the first and second inventions, the sintering raw material uses a fine powder raw material having a particle size of 500 μm under 50 μm or more and 10 μm under 5% by mass as iron ore. It is preferable from the viewpoint that the effect of the present invention becomes more remarkable.

本発明に係る焼結原料の造粒方法は、焼結原料に250μmアンダーを50質量%以上含む生石灰及び消石灰のいずれか1又は2を加え、混練物又は造粒物の焼結原料のpH値を11以上12.6以下にすることで、生石灰や消石灰が水に十分に溶解したことを確認できる。これにより、生石灰や消石灰の微粒子を混練物や造粒物に均一に分散させることができるので、作製する造粒物の強度を高位に確保することが可能となる。   In the granulation method of the sintered raw material according to the present invention, either 1 or 2 of quick lime and slaked lime containing 50% by mass or more of 250 μm under is added to the sintered raw material, and the pH value of the sintered raw material of the kneaded product or granulated product It can confirm that quick lime and slaked lime fully melt | dissolved in water by making it into 11 or more and 12.6 or less. Thereby, since the fine particles of quick lime and slaked lime can be uniformly dispersed in the kneaded product or the granulated product, the strength of the granulated product to be produced can be secured at a high level.

また、焼結原料に、鉄鉱石として500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下の粒度である微粉原料を用いる場合、難造粒性となる粒度を有する焼結原料を造粒することで、本発明の効果がより顕著になる。   In addition, when using a fine powder raw material having a particle size of 50% by mass or more and 10 μm under 5% by mass as iron ore as the iron ore, the sintered raw material having a particle size that is difficult to granulate is granulated. By doing so, the effect of the present invention becomes more remarkable.

造粒物のpH値と強度の関係を示すグラフである。It is a graph which shows the relationship between the pH value of a granulated material, and intensity | strength.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
まず、本発明に想到した経緯について説明する。
はじめに、生石灰や消石灰による鉄鉱石からなる粉鉱石(以下、焼結原料ともいう)の造粒メカニズムについて説明する。
生石灰は、混練や造粒中に水と接触することで一部が吸湿し消化(消石灰化)して微粒化し、水と共に粉鉱石に均一に混ざり易くなるものであると考えられる。なお、生石灰としては、CaOが例えば84質量%以上のものが多用されている。
ここで、生成した消石灰の一部については、水に溶解することでも、粉鉱石に均一に混ざり易くなる。
なお、粉鉱石に、生石灰の代わりに、又は生石灰と共に、消石灰を添加する場合も同様であり、一部の消石灰が水に溶解して、粉鉱石中に均一に混ざり易くなる。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
First, the background to the present invention will be described.
First, the granulation mechanism of fine ore composed of iron ore by quick lime or slaked lime (hereinafter also referred to as sintered raw material) will be described.
Quick lime is considered to be partly hygroscopic and digested (slaked calcification) and atomized by contact with water during kneading and granulation, and easily mixed with powdered ore together with water. In addition, as quicklime, that whose CaO is 84 mass% or more is used abundantly.
Here, a part of the generated slaked lime is easily mixed with the fine ore even by dissolving in water.
In addition, it is the same also when adding slaked lime to a powdered ore instead of a quicklime, or with a quicklime, and a part of slaked lime melt | dissolves in water, and it becomes easy to mix uniformly in a powdered ore.

生石灰の消化で生成する消石灰や、水の蒸発等によって再晶出する消石灰は、粒径が10μmアンダーの微粒子であり、更にはサブミクロンオーダーの微粒子も多く含まれており、固体架橋によって上記粉鉱石の造粒性向上や造粒物の強度向上に大きく寄与する。
従って、極力多くの生石灰を消化させること、生成する消石灰の粒径を小さくすること、極力多くの消石灰を造粒水に溶解させること、等で、造粒に寄与する消石灰を多量に生成させて、この生成する消石灰を粉鉱石全体に分散させ(マクロに分散させ)、粉鉱石の粒子表面に極力付着させる(ミクロに分散させる)こと、が重要となる。
上記したことから、粉鉱石のうち、特に難造粒性を有する微粉原料と、その他の原料(例えば、造粒が容易な易造粒性原料)を混合する場合は、難造粒性の微粉原料に対して、粒径を小さくする処理を施した生石灰や消石灰の添加や、その添加量を多くすること等も重要となる。
Slaked lime produced by digestion of quicklime and slaked lime recrystallized by evaporation of water, etc. are fine particles with a particle size of less than 10 μm, and also contain many fine particles of submicron order. It greatly contributes to the improvement of the granulation property of the ore and the strength of the granulated product.
Therefore, a large amount of slaked lime that contributes to granulation can be generated by digesting as much quick lime as possible, reducing the particle size of the generated slaked lime, dissolving as much slaked lime as possible in the granulated water, etc. It is important to disperse the generated slaked lime throughout the powder ore (macro disperse) and adhere as much as possible to the particle surface of the powder ore (disperse microscopically).
From the above, when mixing fine powder raw materials having particularly difficult granulation properties with other raw materials (for example, easy granulating raw materials that are easy to granulate), it is difficult to granulate fine powder. It is also important to add quick lime and slaked lime that have been processed to reduce the particle size, increase the amount of addition, and the like.

なお、炭酸カルシウム(分子式:CaCO)は、生石灰や消石灰と同様にCaOを含み、そのCaO含有率が56質量%程度のものであり、石灰石あるいは単に石灰と称される場合がある。しかし、炭酸カルシウムは、化学的に安定な物質であって、吸湿による消化や水への溶解は起こりにくい。
従って、上記した生石灰や消石灰に、炭酸カルシウムは含まれない。
以上のことから、粉鉱石に対して炭酸カルシウムを添加した場合、造粒性の改善が小さいのに対し、粉鉱石に対して生石灰や消石灰を添加した場合は、造粒性が著しく改善することを、本発明者らは初めて発見した。
これは、生石灰が水と接触することにより微粒化し、更に生成した消石灰(添加した消石灰)の一部が水に溶解することで、粉鉱石に均一に混ざり易くなり、固体架橋によって粉鉱石の造粒性向上や造粒物の強度向上に大きく寄与したためと考えられる。
In addition, calcium carbonate (molecular formula: CaCO 3 ) contains CaO similarly to quick lime and slaked lime, and has a CaO content of about 56% by mass, and may be referred to as limestone or simply lime. However, calcium carbonate is a chemically stable substance, and digestion due to moisture absorption and dissolution in water hardly occur.
Therefore, calcium carbonate is not contained in the above-mentioned quick lime and slaked lime.
From the above, when calcium carbonate is added to the fine ore, the improvement in granulation is small, whereas when quick lime or slaked lime is added to the fine ore, the granulation is remarkably improved. The present inventors discovered for the first time.
This is because quick lime is atomized by contact with water, and part of the generated slaked lime (added slaked lime) dissolves in water, making it easy to mix evenly in the powdered ore, and by the solid cross-linking This is thought to be due to the great contribution to the improvement of graininess and the strength of the granulated product.

続いて、本発明が造粒の対象とする粉鉱石の特徴について説明する。
造粒対象は、粉鉱石であれば特に限定されるものではないが、粉鉱石のうち、500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下の粒度である微粉原料であれば、本発明の効果がより顕著になる。
上記した微粉原料は、篩目10μmアンダーの粒子(微粒子)が5質量%以下と極めて少なく、500μmアンダーの粒子が50質量%以上と非常に多い、難造粒性を示す原料である。この微粉原料が通常の鉄鉱石と異なる点は、10μmアンダーの粒子が極めて少ない点であり、例えば、鉄鉱石の粉砕処理と水による比重選鉱処理を繰り返すことで、この特徴が得られることがわかった。
Then, the characteristic of the fine ore which this invention makes the object of granulation is demonstrated.
The granulation target is not particularly limited as long as it is a fine ore, but among the fine ores, if the raw material is a fine powder material having a particle size of 500 μm under 50 μm or more and 10 μm under 5% by mass, The effect of the invention becomes more remarkable.
The fine powder raw material described above is a raw material exhibiting difficult granulation properties, in which particles (fine particles) having a mesh size of 10 μm or less are extremely small as 5% by mass or less and particles having a particle size of 500 μm or less are very large as 50% by mass or more. This fine powder raw material is different from ordinary iron ore in that the number of particles under 10 μm is extremely small. For example, it is understood that this feature can be obtained by repeating iron ore crushing and specific gravity beneficiation with water. It was.

なお、500μmアンダーの粒子の質量%の測定に際しては、微粉原料(2kg)を、150℃で1時間乾燥した後、0.5mm(500μm)の篩目(JIS Z8801−1「試験用ふるい−第1部:金属製網ふるい」に拠る)で分級し、篩下の質量%を求めた。また、10μmアンダーの微粒子の質量%の測定に際しては、上記乾燥後の微粉原料を対象に、レーザー回折散乱法の測定機器(日機装株式会社製 MICROTRAC(登録商標) MT3300型、測定範囲:0.02〜1400μm)を用いた。
ここで、鉄鉱石として少なくとも1種又は複数種の粉鉱石(微粉原料の場合を含む)を含むものが焼結原料であり、この焼結原料に、副原料(成分調整用原料)や凝結材(例えば、コークス粉や石炭粉等)が含まれるか否かは任意であり、本実施の形態での焼結原料とは、生石灰と消石灰(バインダー)を含まないものをさす。なお、焼結原料に副原料や凝結材が含まれる場合、焼結原料中の副原料と凝結材の合計量が質量比で30質量%以下程度(焼結原料中の鉄鉱石量:例えば、焼結原料の70〜100質量%程度)となるように、鉄鉱石に副原料と凝結材を添加する場合があるが、焼結原料の造粒性や造粒物の強度は、これらの添加量では改善しにくい。
When measuring the mass% of particles having a size of 500 μm or less, the fine powder material (2 kg) was dried at 150 ° C. for 1 hour, and then sieved with 0.5 mm (500 μm) (JIS Z8801-1 “Test sieve—No. 1 part: according to “metal mesh sieve”), and the mass% under the sieve was determined. Further, when measuring the mass% of fine particles under 10 μm, the measurement device of the laser diffraction scattering method (MICROTRAC (registered trademark) MT3300, manufactured by Nikkiso Co., Ltd., measurement range: 0.02) is used for the fine powder raw material after drying. ˜1400 μm) was used.
Here, the iron ore containing at least one or more kinds of fine ores (including fine powder raw materials) is a sintered raw material, and the auxiliary raw materials (component adjusting raw materials) and coagulants are included in this sintered raw material. Whether or not (for example, coke powder or coal powder) is included is arbitrary, and the sintering raw material in the present embodiment refers to a material that does not include quick lime and slaked lime (binder). In addition, when the auxiliary material and the coagulant are included in the sintered raw material, the total amount of the auxiliary material and the coagulant in the sintered material is about 30% by mass or less (the amount of iron ore in the sintered material: The auxiliary raw material and the coagulant may be added to the iron ore so as to be about 70 to 100% by mass of the sintered raw material). It is difficult to improve by the amount.

上記した粒度構成、即ち10μmオーバーかつ500μmアンダー程度に概ね揃った微粉原料を造粒すると、隣接する原料粒子の間に空間が形成される。
しかし、上記したように、微粉原料中には、この空間を充填する10μmアンダーの微粒子が極めて少ないため、微粉原料は空間を内包したまま造粒され、造粒物の強度が極めて低くなる。このため、例えセルロース等の粘着質のバインダーを用いて微粉原料を造粒し、隣接する微粉原料の粒子同士を粘着できたとしても、造粒物内部には空間が残留するため、造粒物の強度を向上しにくい。
上記状況において、粉鉱石、特に難造粒性を示す微粉原料の造粒に用いるバインダーには、10μmアンダーの微粒子を供給でき、上記した空間を充填できるものが好ましいことに想到した。
When the above-mentioned particle size configuration, that is, a fine raw material that is roughly aligned to about 10 μm and under 500 μm is granulated, a space is formed between adjacent raw material particles.
However, as described above, since the fine powder raw material has very few 10 μm-undersized fine particles filling the space, the fine powder raw material is granulated while enclosing the space, and the strength of the granulated product becomes extremely low. For this reason, even if the fine powder raw material is granulated using an adhesive binder such as cellulose, and even if the particles of the adjacent fine powder raw material can be adhered to each other, a space remains in the granulated product. Hard to improve strength.
In the above situation, it has been conceived that it is preferable that the binder used for the granulation of the fine ore, particularly the fine powder raw material exhibiting difficult granulation, can supply fine particles of under 10 μm and can fill the above-mentioned space.

なお、固形バインダーには、ベントナイトや炭酸カルシウム等があるが、通常の混練処理程度では、粉鉱石へ固形バインダーを均一分散させるのが難しいことが判明した。
これは、上記したように、例えば、微粉原料の粒径が10μmオーバーかつ500μmアンダー程度の大きさに概ね揃っており、一般には広範囲な粒度分布を持つことで混練による原料の混合が進むため、粒子が微粒化せず溶解もしないベントナイトや炭酸カルシウム等を添加しても分散が進まないものと考えられ、この観点からも、別の手段で10μmアンダーの微粒子を添加することが好ましいと考えられた。
以上のことから、本発明者らは、粉鉱石、特に500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下の粒度である微粉原料を用いる焼結原料を造粒するに際し、混練や造粒を容易化するバインダーとして、生石灰と消石灰に想到した。なお、焼結パレットに入れる焼結原料は混練を行わない場合もある。
In addition, although there exist bentonite, calcium carbonate, etc. in a solid binder, it became clear that it was difficult to disperse | distribute a solid binder uniformly to a fine ore by the normal kneading | mixing process grade.
This is because, as described above, for example, the particle size of the fine powder raw material is roughly aligned with a size of about 10 μm over and under 500 μm, and generally the mixing of the raw material by kneading proceeds by having a wide particle size distribution. Even if bentonite or calcium carbonate, which does not atomize or dissolve, is added, it is considered that the dispersion does not proceed. From this point of view, it is considered preferable to add fine particles under 10 μm by another means. It was.
In view of the above, the present inventors, when granulating a sintered raw material using a fine ore, particularly a fine powder raw material having a particle size of 500 μm under 50% by mass and 10 μm under 5% by mass, As a binder for facilitating grains, quick lime and slaked lime were conceived. In addition, the sintering raw material put into a sintering pallet may not knead | mix.

上記したように、粉鉱石、特に難造粒性を有する微粉原料の増加に対して、造粒物の強度を安定的に確保するためには、生石灰や消石灰の均一な分散を確保する必要があり、そのためには、生石灰や消石灰を、水に十分に溶解させることが重要となる。その溶解状態の指標として、本発明者らは、混練物又は造粒物のpH値を用いることに想到した。
詳細には、生石灰や消石灰が水に溶解するとアルカリ性となり、水のpH値は上昇するため、このpH値を所定の値に保つことができれば、造粒物の強度を安定的に確保できると考え、生石灰や消石灰の添加量の変化に合わせて、その混練物又は造粒物のpH値を測定した。
As mentioned above, it is necessary to ensure the uniform dispersion of quicklime and slaked lime in order to stably secure the strength of the granulated material against the increase of fine ore, particularly fine powder raw materials having difficult granulation properties. For this purpose, it is important to dissolve quick lime and slaked lime sufficiently in water. As an indicator of the dissolved state, the present inventors have conceived of using the pH value of the kneaded product or the granulated product.
Specifically, when quick lime or slaked lime dissolves in water, it becomes alkaline and the pH value of water rises. Therefore, if this pH value can be maintained at a predetermined value, the strength of the granulated product can be stably secured. The pH value of the kneaded product or granulated product was measured in accordance with the change in the addition amount of quicklime and slaked lime.

即ち、鉄鋼製造に用いる粉鉱石(以下、焼結原料ともいう)に、250μmアンダーを50質量%以上含む生石灰及び消石灰のいずれか1又は2を加え、水の存在下で造粒するに際し、造粒処理により得られる造粒物(焼結原料と生石灰及び/又は消石灰の造粒後の混合物)のpH値を11以上12.6以下にする方法である。なお、造粒の前に混練を行う場合は、混練処理により得られる混練物(焼結原料と生石灰及び/又は消石灰の混練後の混合物)又は造粒物のpH値を、上記した値に調整する。特に、500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下の粒度の粉鉱石(鉄鉱石)である微粉原料(難造粒性微粉原料)を造粒する場合に、本発明の効果がより顕著になる。
以下、詳しく説明する。
That is, when either 1 or 2 of quicklime and slaked lime containing 50% by mass or more of 250 μm under is added to powdered ore used for steel production (hereinafter also referred to as a sintering raw material) and granulated in the presence of water, In this method, the pH value of a granulated product (a mixture after granulation of a sintered raw material and quick lime and / or slaked lime) obtained by grain treatment is adjusted to 11 or more and 12.6 or less. In addition, when kneading before granulation, the pH value of the kneaded product (mixture after sintering raw material and quicklime and / or slaked lime kneaded) or granulated product obtained by kneading is adjusted to the above-described value. To do. In particular, the effect of the present invention can be achieved when granulating a fine powder raw material (difficult-to-granulate fine powder raw material) that is a fine ore (iron ore) with a particle size of 500 μm under 50 mass% or more and 10 μm under 5 mass% or less Become more prominent.
This will be described in detail below.

まず、粉鉱石に生石灰を添加し、混練し造粒して得られた造粒物のpH値と強度の関係を、図1を参照しながら説明する。
図1で使用した粉鉱石は、難造粒性微粉原料(●)と易造粒性原料(△)の2種類である。なお、易造粒性原料は、500μmアンダーが50質量%未満かつ10μmアンダーが5質量%超の粒度を有する原料であり、難造粒性微粉原料は、500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下の粒度を有する原料である。
また、生石灰の粒度は、250μmアンダーを50質量%以上含むものである。
そして、造粒物の強度は、作製した造粒物から7〜9mmφ程度のものを抽出し、絶乾後、その圧壊強度を測定することで求めた。
First, the relationship between the pH value and strength of a granulated product obtained by adding quick lime to powdered ore, kneading and granulating will be described with reference to FIG.
The powder ore used in FIG. 1 is of two types, a hardly granulated raw material (●) and an easily granulated raw material (Δ). The easily granulated raw material is a raw material having a particle size in which 500 μm under is less than 50% by mass and 10 μm under is more than 5% by mass, and the hardly granulated raw material is 500 μm under with 50% by mass or more and 10 μm under. Is a raw material having a particle size of 5% by mass or less.
Moreover, the particle size of quicklime contains 50 mass% or more of 250 μm under.
And the intensity | strength of the granulated material was calculated | required by extracting the thing about 7-9 mmphi from the produced granulated material, and measuring the crushing strength after drying completely.

図1から、易造粒性原料と難造粒性微粉原料のいずれについても、造粒物のpH値の上昇と共に、造粒物の強度が上昇することを確認できた。特に、難造粒性微粉原料については、pH11程度から強度が大きく向上した(0.8MPa以上)。
また、pH11以上においても、pH値の上昇に伴い強度の上昇が確認され、pH12.6まで強度が向上することを確認できた。
以上のことから、造粒物のpH値を11以上12.6以下に規定したが、下限値を11.5にすることが好ましい。
なお、本試験結果は、生石灰の代わりに消石灰を使用した場合も、また、造粒物の代わりに混練物のpH値を測定した場合も、更には、混練を行うことなく造粒して得られた造粒物のpH値を測定した場合も、同様の傾向が得られた。
From FIG. 1, it was confirmed that the strength of the granulated product increased as the pH value of the granulated product increased for both the easily granulated raw material and the hardly granulated raw material. In particular, the strength of the hardly granulated fine powder material was greatly improved from about pH 11 (0.8 MPa or more).
In addition, even at pH 11 or higher, an increase in strength was confirmed as the pH value increased, and it was confirmed that the strength improved to pH 12.6.
From the above, the pH value of the granulated product is defined as 11 or more and 12.6 or less, but the lower limit is preferably 11.5.
This test result was obtained by granulating without kneading even when slaked lime was used instead of quick lime, or when the pH value of the kneaded material was measured instead of the granulated material. The same tendency was obtained when the pH value of the obtained granulated product was measured.

ここで、上記した混練物や造粒物のpH値を確保する手段としては、生石灰の量や消石灰の量の他に、混練時や造粒時の撹拌条件などが影響することから、それらのいずれか一つ、又は複数を組み合わせた調整が有効である。また、pH値の調整のためには、生石灰や消石灰が水に容易に溶解するように、細粒とする必要があることから、粒度として250μmアンダーを50質量%(更には60質量%)以上含むことを規定した。この250μmアンダーの上限値を規定していないのは100質量%でもよいためである。
なお、pHの測定手段には、生石灰や消石灰の溶解状態を変化させないように、焼結機側で対象物を直接測定する必要があることから、混練物や造粒物に、市販されている汎用の土壌用pH測定センサーを挿入して測定する方法等がある。
Here, as means for ensuring the pH value of the above-mentioned kneaded product and granulated product, since the amount of quick lime and the amount of slaked lime affect the stirring conditions during kneading and granulation, those Any one or a combination of the adjustments is effective. In addition, in order to adjust the pH value, it is necessary to make fine particles so that quick lime and slaked lime can be easily dissolved in water. Therefore, the particle size is more than 50% by mass (more than 60% by mass) of 250 μm under. It was stipulated to include. The reason why the upper limit value of 250 μm under is not specified is that it may be 100% by mass.
In addition, since it is necessary to measure an object directly on the sintering machine side so as not to change the dissolved state of quick lime and slaked lime, the pH measuring means is commercially available for kneaded materials and granulated materials. There is a method of measuring by inserting a general-purpose soil pH measurement sensor.

前記した図1に示す結果から、易造粒性原料に対しても、pH値の上昇に伴って造粒物の強度向上が認められたため、粉鉱石の種類については、特に限定されるものではない。
しかし、難造粒性微粉原料に対する効果が顕著であったことから、特に、難造粒性微粉原料、即ち500μmアンダーが50質量%(更には60質量%)以上かつ10μmアンダーが5質量%(更には4質量%)以下の原料を処理することが、本発明の効果がより顕著に得られることから好ましい。なお、500μmアンダーの上限値を規定していないのは100質量%でもよく、また10μmアンダーの下限値を規定していないのは0質量%でもよいためである。
ここで、易造粒性原料は、前記した粒度を有する原料に限定されるものではなく、難造粒性微粉原料以外の原料、即ち500μmアンダーが50質量%未満又は10μmアンダーが5質量%超の粒度を有する原料でもよい。
From the results shown in FIG. 1 described above, since the strength of the granulated material was increased with an increase in the pH value for the easily granulated raw material, the type of the powdered ore is not particularly limited. Absent.
However, since the effect on the difficult-to-granulate fine powder material was remarkable, in particular, the difficult-to-granulate fine powder material, that is, 500 μm under is 50% by mass (further 60% by mass) and 10 μm under is 5% by mass ( Furthermore, it is preferable to treat a raw material of 4% by mass or less since the effects of the present invention can be obtained more remarkably. The reason why the upper limit value of 500 μm under is not specified is 100% by mass, and the reason why the lower limit value of 10 μm under is not specified is that 0% by mass may be used.
Here, the easily granulated raw material is not limited to the raw material having the above-mentioned particle size, and is a raw material other than the hardly granulated raw material, that is, 500 μm under is less than 50 mass% or 10 μm under is more than 5 mass%. A raw material having a particle size of

以上に示したように、本発明では、pH値を11以上12.6以下に規定しているが、前記した特許文献1に記載のpH値とは、測定対象が異なることについて、以下説明する。
焼結原料には、通常、水分が付着しており、この焼結原料に添加する造粒水の割合は、焼結原料に付着した水分の10〜50質量%程度である。なお、焼結原料に付着した水分には、例えば、焼結原料の受入れ(輸入)時に既に付着している水や、原料ヤードに積付けた焼結原料に付着する雨水等がある。
このため、特許文献1のように、焼結原料に添加する造粒水に、例えば、pH11を有する造粒水を用い、この造粒水を、上記した範囲内で常識的な量だけ添加しても、作製した造粒物のpH値は8以下となるため、上記した結果から、造粒物の強度は低位になる。たとえ焼結原料のpH7の付着水1割とpH11の造粒水9割とを混合したとしても、pH値は8程度にしかならない。これは、pHが水素イオン濃度の関数であり、造粒水でpH値を容易に上昇させることが困難で、造粒水のpHコントロールでは、造粒物のpH値の上昇が実質的に困難であることを示している。
As described above, in the present invention, the pH value is specified to be 11 or more and 12.6 or less. However, the fact that the measurement object is different from the pH value described in Patent Document 1 will be described below. .
Moisture is usually attached to the sintered raw material, and the ratio of the granulated water added to the sintered raw material is about 10 to 50% by mass of the water attached to the sintered raw material. The water adhering to the sintering raw material includes, for example, water already adhering at the time of receiving (importing) the sintering raw material, and rain water adhering to the sintering raw material loaded in the raw material yard.
For this reason, as in Patent Document 1, for example, granulated water having a pH of 11 is used as the granulated water to be added to the sintering raw material, and this granulated water is added in a common sense amount within the above range. However, since the pH value of the produced granulated product is 8 or less, the strength of the granulated product is low from the above results. Even if 10% of the adhering water having a pH of 7 and 90% of the granulated water having a pH of 11 are mixed, the pH value is only about 8. This is because pH is a function of hydrogen ion concentration, and it is difficult to easily raise the pH value with granulated water, and it is substantially difficult to raise the pH value of the granulated product with pH control of the granulated water. It is shown that.

次に、本発明の作用効果を確認するために行った実施例について説明する。
ここでは、全粉鉱石から難造粒性微粉原料(以下、焼結原料ともいう)20質量%を分離し、これに水分(pH7〜9)を添加して高速で混練する工程において、生石灰(粒度:250μmアンダーを50質量%以上)の添加量と、得られる造粒物の関係を調査した。なお、試験は、混練後のサンプル(混練物)を採取し、前記した土壌用pH測定センサーを挿入してpH値を測定すると共に、7〜9mmφの造粒物をサンプリングして150℃で絶乾し、その圧壊強度を測定した。
試験条件と試験結果を表1に示す。なお、生石灰の添加量は、難造粒性微粉原料に対する量(外掛け)である。
Next, examples carried out for confirming the effects of the present invention will be described.
Here, in the step of separating 20% by mass of a difficult-to-granulate fine powder raw material (hereinafter also referred to as a sintered raw material) from the whole powder ore, and adding water (pH 7 to 9) to this and kneading at high speed, The relationship between the added amount of particle size: 50 μm or more under 250 μm) and the resulting granulated product was investigated. In the test, a sample after kneading (kneaded material) was collected, the pH value was measured by inserting the above-mentioned soil pH measurement sensor, and a granulated material of 7 to 9 mmφ was sampled and completely removed at 150 ° C. It was dried and its crushing strength was measured.
Test conditions and test results are shown in Table 1. In addition, the addition amount of quicklime is the quantity (outer coating) with respect to a hardly granulated fine powder raw material.

Figure 0005799892
Figure 0005799892

表1に示すように、生石灰の添加量が0.5質量%までの範囲では、pH値が10以下となり、圧壊強度が比較的低い値となった(0.8MPa未満)。
これに対し、生石灰の添加量を1質量%にした場合、pH値が11となり、これに伴い強度が飛躍的に上昇した(0.8MPa以上)。更に、生石灰の添加量を2質量%にした場合、pH値は更に上昇し、強度も上昇した。なお、生石灰の添加量を3質量%にした場合、pH値は12.6と変化しなかったが、強度が若干上昇した。
なお、本試験結果は、生石灰の代わりに消石灰を使用した場合も、また、混練物の代わりに造粒物のpH値を測定した場合も、更には、混練を行うことなく造粒して得られた造粒物のpH値を測定した場合も、同様の傾向が得られた。
As shown in Table 1, the pH value was 10 or less and the crushing strength was relatively low (less than 0.8 MPa) when the amount of quicklime added was up to 0.5 mass%.
On the other hand, when the addition amount of quicklime was 1% by mass, the pH value was 11, and the strength increased dramatically with this (0.8 MPa or more). Furthermore, when the amount of quicklime added was 2% by mass, the pH value further increased and the strength also increased. When the addition amount of quicklime was 3% by mass, the pH value did not change to 12.6, but the strength slightly increased.
This test result is obtained by granulating without kneading even when slaked lime is used instead of quick lime, or when the pH value of the granulated product is measured instead of the kneaded product. The same tendency was obtained when the pH value of the obtained granulated product was measured.

以上のことから、本発明の焼結原料の造粒方法を用いることで、粉鉱石を用いて作製した造粒物の強度、特に難造粒性微粉原料を使用した焼結原料を用いて作製した造粒物の強度を、高位に確保できることを確認できた。   From the above, by using the granulation method of the sintered raw material of the present invention, the strength of the granulated material produced using the powdered ore, especially using the sintered raw material using the difficult-to-granulate fine powder material It was confirmed that the strength of the granulated product could be secured at a high level.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の焼結原料の造粒方法を構成する場合も本発明の権利範囲に含まれる。   As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case where the granulating method for a sintered raw material of the present invention is configured by combining a part or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.

Claims (3)

鉄鋼製造に用いる焼結原料に、250μmアンダーを50質量%以上含む生石灰及び消石灰のいずれか1又は2を加え、水の存在下で造粒するに際し、前記造粒処理により得られる造粒物のpH値を11以上12.6以下にすることを特徴とする焼結原料の造粒方法。 When either 1 or 2 of quick lime and slaked lime containing 50% by mass or more of 250 μm under is added to the sintering raw material used for steel production, and granulated in the presence of water, A granulation method of a sintering raw material, wherein the pH value is 11 or more and 12.6 or less. 鉄鋼製造に用いる焼結原料に、250μmアンダーを50質量%以上含む生石灰及び消石灰のいずれか1又は2を加え、水の存在下で混練して造粒するに際し、前記混練処理により得られる混練物又は前記造粒処理により得られる造粒物のpH値を11以上12.6以下にすることを特徴とする焼結原料の造粒方法。 When either 1 or 2 of quicklime and slaked lime containing 50% by mass or more of 250 μm under is added to a sintering raw material used for steel production, and kneaded in the presence of water and granulated, the kneaded product obtained by the kneading process Or the granulation method of the sintering raw material characterized by making pH value of the granulated material obtained by the said granulation process into 11 or more and 12.6 or less. 請求項1又は2記載の焼結原料の造粒方法において、前記焼結原料は、鉄鉱石として500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下の粒度である微粉原料を用いることを特徴とする焼結原料の造粒方法。 3. The method for granulating a sintered raw material according to claim 1 or 2, wherein the sintered raw material is a fine powder raw material having a particle size of not less than 50% by mass and not more than 5% by mass of 10 μm under as the iron ore. A method for granulating a sintered raw material.
JP2012116823A 2012-05-22 2012-05-22 Granulation method of sintering raw material Active JP5799892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012116823A JP5799892B2 (en) 2012-05-22 2012-05-22 Granulation method of sintering raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012116823A JP5799892B2 (en) 2012-05-22 2012-05-22 Granulation method of sintering raw material

Publications (2)

Publication Number Publication Date
JP2013241661A JP2013241661A (en) 2013-12-05
JP5799892B2 true JP5799892B2 (en) 2015-10-28

Family

ID=49842826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012116823A Active JP5799892B2 (en) 2012-05-22 2012-05-22 Granulation method of sintering raw material

Country Status (1)

Country Link
JP (1) JP5799892B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4084906B2 (en) * 1999-05-21 2008-04-30 株式会社神戸製鋼所 Method for producing sintered ore and sintered ore
JP5130477B2 (en) * 2007-05-30 2013-01-30 新日鐵住金株式会社 Granulation method of iron ore raw material containing fine powder

Also Published As

Publication number Publication date
JP2013241661A (en) 2013-12-05

Similar Documents

Publication Publication Date Title
WO2009066796A1 (en) Method for production of raw material for use in the production of sintered ore
JP2008261016A (en) Method for manufacturing sintered ore
CN103757202B (en) Sintering method for sintering part of return ores without granulation
JP5987958B2 (en) Method of adding binder to sintering raw material
JP5853912B2 (en) Addition of coagulant to sintering raw material
WO2019033187A1 (en) Process of cold pelletization of iron-ore fines with mixture flexibility
JP5803809B2 (en) Preconditioning method of sintering raw material
JP6036295B2 (en) Pretreatment method of sintering raw materials
JP5799892B2 (en) Granulation method of sintering raw material
JP3820132B2 (en) Pretreatment method of sintering raw material
KR101328305B1 (en) Method for manufacturing sintered iron ore using pellet feed
JP6369113B2 (en) Method for producing sintered ore
JP2014136817A (en) Method of drying raw granulated material to be sintered
CN102517443A (en) Method for preparing pellet binder by using fine-graded iron tailings
JP5835099B2 (en) Pretreatment method of sintering raw material
JP2013245358A (en) Method for pretreating sintering raw material
JPWO2010098329A1 (en) Processing method of granulated material for sintering
JP2012162796A (en) Method for pretreating sintering raw material
JP5817643B2 (en) Pretreatment method of sintering raw material
JP5831361B2 (en) Pretreatment method of sintering raw material
JP5817644B2 (en) Method of adding binder to sintering raw material
CN104975171A (en) Boric sludge pellet binder/iron smelting auxiliary and preparation method of boric sludge pellet binder/iron smelting auxiliary
JP2014051702A (en) Pretreatment method of sintering raw material
JP2007113087A (en) Method for granulating raw material to be sintered
JP2009185315A (en) Method for granulating raw material to be sintered

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150810

R151 Written notification of patent or utility model registration

Ref document number: 5799892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350