WO2009066796A1 - Method for production of raw material for use in the production of sintered ore - Google Patents

Method for production of raw material for use in the production of sintered ore Download PDF

Info

Publication number
WO2009066796A1
WO2009066796A1 PCT/JP2008/071601 JP2008071601W WO2009066796A1 WO 2009066796 A1 WO2009066796 A1 WO 2009066796A1 JP 2008071601 W JP2008071601 W JP 2008071601W WO 2009066796 A1 WO2009066796 A1 WO 2009066796A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
powder
producing
ore
mass
Prior art date
Application number
PCT/JP2008/071601
Other languages
French (fr)
Japanese (ja)
Inventor
Hideaki Sato
Koichi Nushiro
Takahide Higuchi
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40667613&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009066796(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to CN2008801170144A priority Critical patent/CN101903542B/en
Priority to BRPI0819293-6A priority patent/BRPI0819293B1/en
Priority to KR1020107010325A priority patent/KR101190938B1/en
Priority to AU2008327116A priority patent/AU2008327116B2/en
Publication of WO2009066796A1 publication Critical patent/WO2009066796A1/en
Priority to ZA2010/03349A priority patent/ZA201003349B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • C22B1/205Sintering; Agglomerating in sintering machines with movable grates regulation of the sintering process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2406Binding; Briquetting ; Granulating pelletizing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a raw material used when producing a sintered ore used as a material for a blast furnace, and more particularly to a method for producing a raw material for producing a sintered ore formed (granulated).
  • Patent Document 1 describes a calcium carbonate with an average particle size of 1 / zm to less than 15 ⁇ m and a specific surface area of 3000 cm 2 Zg or more and 9500 c mV g or less, apart from limestone, which is an auxiliary material, for iron-making materials containing stone. It is proposed that a binder consisting of (CaC0 3 ) force be added to the raw material for iron making at 0.05 mass% to 5 mass%.
  • Patent Document 2 discloses a fine particle made of an inorganic material such as calcium carbonate or silica containing 5% or less of particles of 5 / m or less; ⁇ i ⁇ ; We have proposed a method for producing meteorite pellets by the cold bond method using a mixture of a chemical and a hydraulic substance.
  • Patent Document 3 proposes a method for granulating a raw material for iron making including a step of treating the raw material for iron making together with dust. This; ⁇ method features a weight average molecular weight of 1000 for dust. After adding and mixing a dust treating agent containing ⁇ 5000000 polymer compound as an essential component, the mixture is added to the raw material for iron making and difficult to process.
  • Patent Document 4 discloses a method of granulating by adding quick lime to 3 ⁇ 4K stone, etc., adding water and performing primary ⁇ , and further adding a liquid binder having a viscosity of 5 to 100 mPa ⁇ s. ing.
  • the obtained granulated particles are a technology that increases the productivity of sintered ore without the problem of deterioration of air permeability due to the release of fine powder when it is disintegrated in the process of heat drying and firing in the sintering machine.
  • Patent Document 5 discloses a binder for sintering raw materials containing stones and calcium ion generation sources, that is, a binder for burning raw materials containing bentonite and bicarbonate and / or carbonate. ing.
  • this binder the use of bicarbonate and Z or carbonate in combination with bentonite prevents gelation of bentonite by calcium ions, and bicarbonate in the node; ⁇ 3 ⁇ 4 or carbonate
  • Patent Document 1 JP-A-2005-89825
  • Patent Document 2 Japanese Patent Laid-Open No. 3-183729
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-76130
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2007-113086
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2007-113088 As described above, although there is a conventional technique for using fine and fine-grained ⁇ stone powder as a raw material for producing sinter, There remains a problem to be solved.
  • cement-based binders have a problem that it takes time to harden and requires a long-term curing treatment together with curing equipment.
  • the techniques of Patent Documents 3 and 4 are methods that use expensive organic binders, there is a problem in that the manufacturing cost is high, and transportation costs, storage, and additional equipment for organic substances are also required, which increases the product cost. There is.
  • the present invention firstly makes effective use of low-grade iron ore with a fine particle size, second solves handling problems when using fine iron ore, and thirdly produces less slag.
  • the objective is to produce high-quality, low-cost and raw materials for sinter production at Sakai IJ.
  • the present invention provides a method for producing a raw material for producing sinter having the following steps.
  • the sintering raw material powder is a sintering raw material for producing sintered ore containing ⁇ stone powder for sintering raw material.
  • the stone powder for sintering raw material preferably contains 55 mass% or more of Fe, 5 mass% or less of Sio 2 and 5 mass% or less of A 1 2 0 3 . 5 5 ⁇ 6 9 mass% of F e, 0. 5 ⁇ 5 mass% of S i 0 2 and 0. 5 to 5 mass% of A 1 2 0 3 to contain is not more preferable.
  • the ultrafine stone powder is tailing obtained as a beneficiation residue.
  • the addition amount of the ultrafine iron ore powder to the sintered raw material particles is preferably 5 to: 1 O m s s%.
  • the average particle size of ultrafine stone powder is measured by the wet laser method.
  • the scattered light when light hits the particle is scattered in all directions.
  • the larger the particle diameter the stronger the front, and the smaller the particle diameter, the more forward scattering.
  • the above-mentioned IS ultrafine powder contains Fe of 6 Oma ss% or more, 0.5 to 5 ma ss% of Si 0 2 and 0.5 to 5 ma ss% of 8 1 2 0 3 for molding aid. It is desirable to function as an agent. 60 ⁇ 70 mA ss percent Fe, 0. 5 ⁇ 5 mass% of S i 0 2 and 2.0. 5-5] 113 3 3% 1 2 O 3 for containing the more desirable.
  • the 3 ⁇ 4K ultrafine powder is preferably a hematite ore tailing from South America.
  • the South American hematite ore is preferably Carajyasu ore.
  • the ultrafine stone powder is preferably a tailing of an African hematite ore.
  • the raw material powder for sintering is not only the meteorite powder for sintering raw material, but also the blast furnace 3 ⁇ 4 ⁇ raw material that is manufactured as sintered ore.
  • the raw material powder for sintering usually contains 15-30 mass%.
  • the raw material powder for sintering may contain 3 to 5 ma SS % of iron mill recycled raw material powder having an average particle size of 5 mm or less.
  • the meteorite powder for sintering raw materials is composed of coarse-grained meteorites with an average particle size of 1.5 to 4.5 mm and fine-grained iron ores within an average particle size range smaller than coarse-grained iron ore. Become.
  • the raw material for sintering that uses fiber and ironworks recycled raw material powder will be described as the raw material powder for sintering.
  • the adding and mixing step it is desirable to add and mix the ultrafine silica powder at 2 to 5 mass% in the raw material powder for sintering to form ultrafine powdered raw material particles.
  • the molding process preferably consists of molding ultrafine powder-coated sintered raw material particles by adding one or more of a secondary material, a kinder, a water and a dispersant.
  • the auxiliary material is used to adjust the slag component of the sintered ore, and is at least one selected from the group consisting of limestone, dolomite, quicklime, silica stone, snake ⁇ , Ni slag, magnesite and TO iron. It is desirable to be one.
  • the water added in the molding step is preferably added in an amount of 5 mass% or more in terms of the amount of water before drying of the particles after molding, depending on the amount of molding aid added. More preferably, it is 6 to 10 mass%.
  • a surfactant composed of an organic compound having a functional group containing a carboxylic acid group and a sulfonic acid group is used in an amount of from 0.002 to 0.05 mass% with respect to the fine powdered mixture. It is desirable to correct.
  • the surfactant is at least one selected from gnoleop consisting of sodium naphthalene sulfonate, sodium stearate, and alkylsulfuric acid.
  • the amount of binder used that causes an increase in the slag component can be suppressed, while the molding 0 t3 ⁇ 4 process) can be easily performed.
  • Fig. 1 (a) shows the particle size distribution of the brazino 1 ⁇ ore by sieving after drying
  • Fig. 1 (b) shows the particle size distribution of the brazi A ⁇ iS stone by the wet laser method.
  • Fig. 2 (a) is an electron micrograph (SEM) of Brazilian calajiyas iron ore
  • Fig. 2 (b) is an electron micrograph (SEM) of brazinore I TO stone
  • Fig. 2 (c) is an Australian ⁇ IS stone. This is an electron micrograph (SEM).
  • Figure 3 is an electron micrograph (SEM) of Braj ⁇ ⁇ Ishio.
  • FIG. 4 (a) is a schematic diagram of conventional sintered raw material particles converted to pseudo particles
  • FIG. 4 (b) is a schematic view of sintered raw material particles converted to pseudo particles according to the present invention.
  • Fig. 5 (a) is a diagram showing the measurement result of the average particle size in the wet state by the granulation test
  • Fig. 5 (b) is a diagram showing the measurement of the average particle size in the dry state by the test.
  • Fig. 6 (a) is a graph showing the relationship between the amount of water added during granulation and the average particle size in the wet state
  • Fig. 6 (b) shows the relationship between the amount of water added during granulation and the wet state. It is a graph which shows the relationship of 5 mm.
  • Fig. 7 (a) is a graph showing the relationship between the moisture content at f3 ⁇ 4 and the average particle size in the dry state
  • Fig. 7 (b) shows the water content at difficult time and the dry state at 0.5 mm. It is a graph which shows the relationship.
  • FIG. 8 (a) is a graph showing the production rate of the pan test in Example 3.
  • FIG. 8 (b) is a graph showing the cold strength of the pan test in Example 3.
  • the gangue-containing iron ore mined at the mine is usually crushed, and the ore is first separated and recovered by sizing treatment. Next, the undersized ore powder separated and separated is further separated and recovered as sintered stone by wet sizing treatment.
  • the fine powder which is the size of the wander after the wet sizing treatment is poured into a thickener, and the fine powder is collected and used as a sintering stone.
  • the residue extracted from the thickener that is, ore, which is an ultrafine powder that could not be collected by the precipitation treatment at thickener, is taken out as tailing.
  • the extracted residue is called tailing for ins, a useful ore. Since the tailings taken out will generally be mixed in the sickner drainage, the ponds and swamps near the mine are used as troughs. This tailings is slightly less iron than it;
  • a 1 2 0 3 is 1.5-5.
  • Oma ss% which is relatively large compared to concentrate.
  • the tailings have an average diameter (indicating the arithmetic mean diameter, the same shall apply hereinafter) as small as 10 / zm or less, and so far have been regarded as unsuitable ores as molding raw materials for the production of sintered ores. . Therefore, even though it is a storage, it is practically equivalent to a situation where it is left unused. Depending on the mine, the amount of reserves can amount to several hundred million tons.
  • tailings can be useful iron resources in that they contain, for example, ⁇ of Mt. It is not preferable to leave this tailing unused, from the viewpoint of effective utilization of resources, and it is worth finding an effective utilization method. Therefore, the inventors have made various studies on the effective utilization of the beneficiation residue, that is, iron ore ultrafine powder, that is, tailings. As a result, it was found that not only the tailings can be used as a resource, but also the characteristics derived from being ultrafine powder can be used. In other words, it has been found that it can be used as a binder (molding aid) when molding sintered raw material particles (hereinafter also referred to as “standing J”).
  • the coke in the raw material layer is combusted by suction from the lower side of the raw material layer, and the agglomerated sintered ore is produced by the heat of combustion. ing.
  • the raw material powder for sintering which is the forming raw material for manufacturing the sintered ore used in the manufacturing process of such sintered ore has been used in the past. It was common to use quicklime (C a O) or the like as a binder to bind the lime during ffi.
  • This quick lime produces fine particles of Ca (OH) 2 when water is used, and these fine particles of Ca (OH) 2 enter the gaps between stone particles; By doing so, it has the effect of connecting stone particles together to form strong pseudo particles.
  • this quicklime is easy to absorb moisture and generates heat when it reacts with water, so it needs to be handled with care. If the amount added exceeds 2. O mass%, the effect is saturated. In particular, this quicklime does not contain the Fe component, but merely contains the slag component. Therefore, using quicklime is not an iron resource.
  • the tailings used as molding aids even when used as a binder when forming (granulating) raw materials for sinter ore production, have a certain amount of Fe source ⁇ It is ⁇ because it can be used without increasing slag.
  • this tailings is ultra fine, handling problems need to be solved.
  • the present invention has been obtained under the above-described concept.
  • the method for producing a raw material for producing sinter according to the present invention comprises a step of obtaining a raw material powder for sintering and an ultrafine stone powder having an average particle size of 10 ⁇ m or less, and Addition and mixing of ultrafine stone powder in an amount of 2 to 15 mass% to form ultrafine powdered raw material particles, mixing step, and forming step of forming ultrafine powdered raw material particles
  • the ftllE sintering raw material powder is a sintering raw material for producing sintered ore containing stone powder for sintering raw material.
  • the sintered for ⁇ powder preferably contains 55 mass% or more of F e, 5 mass% or less of S i 0 2 and 5 mass% or less of A 1 2 0 3. More preferably 55 ⁇ 69ma ss% of Fe, 0. 5 ⁇ 5ma ss% of S i 0 2 and 0.. 5 to 5 mass% of A 1 2 0 3.
  • the ultra-fine meteorite contains Fe of 6 Oma ss% or more, 0.5 to 5 mass% of Si 0 2 and 0.5 to 5 to 5 mass% of A 1 2 0 3 . More preferably, 60 ⁇ 69ma ss% of Fe, which is 0. 5 ⁇ 5ma ss% of S i 0 2 and 0.. 5 to 5 mass% of A 1 2 0 3. The manufacturing method will be described in detail below.
  • tailings of South American hematite ore and African hematite ore are preferably used as the tailings of interest in the present invention.
  • the Brazilian Carajas iron ore tailing which represents the hematite ore from South America, has a slightly lower grade (Fe content) than the concentrate of this Carajas iron ore, but the Fe content exceeds 6 Oma ss% In recent years, it is at a level that is not bad compared to Australian stones that have been inferior in quality.
  • African hematite ore for example, tailings of Kumba iron ore
  • tailings of Kumba iron ore is 54111 ass% in 6 minutes, but it is possible to raise the quality relatively easily by processing such as flotation and specific gravity beneficiation. is there.
  • tailings are essentially ultra-fine meteorite powder with an average particle size of 10 ⁇ m or less, and are inherently easy to adsorb moisture, and are highly adherent. Long-distance handling is difficult and the particle size is too fine as a forming raw material for sinter production, so using it as it is untreated causes a problem of significantly reducing the productivity of sintering. Atsuta. Therefore, the inventors investigated the basic physical properties and granulation properties of the tailings in order to find conditions for applying the tailings to the production method of the present invention.
  • Table 1 shows the chemical composition of African cumba ore as Brazinore I stone, Brazinorecarajiasite (sintering raw material, tailings), Australian ore (AC) and African hematite ore.
  • Figure 1 (a) shows a comparison of the particle size distribution of these ores.
  • Figure 1 (b) shows the particle size distribution of Brazilian Calajas iron ore (tail ore). The particle size distribution in Fig. 1 (b) was measured by the wet laser method.
  • the brazinoite used as a sintering raw material is a high-quality and dense ore compared to the Australian ore.
  • the Brazilian Carajiyas ⁇ S tailing which functions as a molding aid in the present invention, has a very fine grain size, as shown by the distribution in Fig. 1 and the electron micrograph in Fig. 3, according to the inventors' investigation. It can be seen that this is a very fine stone powder with an ultrafine particle size that is very small and has many irregularities on the surface. What looks large is agglomerated into aggregated particles. Stones of such ultrafine particle size with such surface properties are dispersed in the raw material powder for sintering, that is, coarse / fine grains ⁇ IS stone and water added when simulating with SIS, As shown in Fig.
  • the iron with a Fe content of 6 ⁇ ma s s% or more is used by the specific gravity ore method.
  • the raw material particles for sintering used as the raw material for sintering contain 55 to 69 mass% of Fe, which is lower than the raw material particles for sintering (if im ore is used, the raw material for sintering This is because the quality of the stone itself is reduced. Therefore, the content of the raw iron ore for sintering exceeds the Fe content of 55 mass%, and in the present invention, the tailing Fe is made to be 60 mass% or more, so that the pseudo particles formed To achieve improved strength.
  • the above tailings are ultrafine powder with an average diameter of 1 Om or less, in the present invention, if possible, in the base, pre-mixed with a sintering raw material (coarse / fine-grained ⁇ stone) and blended It is preferable to use powdered ones.
  • a sintering raw material coarse / fine-grained ⁇ stone
  • powdered ones By adopting such a configuration, for example, long-distance transportation is facilitated and it can be used economically even in remote areas such as Japan.
  • this tailing is an ultrafine ore of 1 O / zm or less recovered as a thickener precipitation residue at the time, so it has a fine particle size.
  • Excessive amount used does not work as a binder that adheres to the surface of the sintered raw material particles, and forms itself as a fine insect particle (pseudoparticle). If the proportion of such tailings pseudo-particles increases too much, when a raw material layer (bed) is formed on the sintering machine pallet, Causes air permeability to be hindered.
  • the amount of the tailings added to the sintering raw material particles is preferably 2 mass% or more and 15 mass% or less (inner number). Therefore, it can be said that the addition of about 5 to 1 O mass% is preferable.
  • Such tailings have a bulk density that is 2 to 3 times that of quicklime.
  • the sintering process uses quicklime as a granulation binder in an amount of 1 mass% or more, which has a large bulk specific gravity. For tailings, addition of at least 2 mass% is necessary.
  • a surface activity comprising an organic compound having a functional group including a ruponic acid group and a sulfonic acid group, which has an action of promoting the dispersion of particles together with water for conditioning.
  • Agents such as sodium naphthalene sulfonate, sodium stearate, alkylsulfurium alkyl sulfate, etc., are added to the ultrafine powder-coated sintered raw material particles in an additive amount of 0.02 to 0.05 mass%.
  • it is also effective to sufficiently bring out the effect as a forming aid by once dispersing the difficult pseudo-particles.
  • tailings in the blended powders processed at the base of the mountain are effective for the Brazilian ore, South Africa's cumba ore tailings, and 3 ⁇ 4 ⁇ added to other ores. It is also effective.
  • the sintered raw material particles to which the tailings are added are, as shown in FIG. 4, an average particle diameter of 1.5 mm or more, preferably 1.5 to 4.5, as the core particles 1.
  • the average particle size is about 2 to 1 O mm, which is covered with fine iron ore that is fine particles 2 with an average particle size finer than the core particle 1 on the surface of a coarse particle of mm. It is a pseudo particle.
  • the raw material for the production of (sintered) sinter is the surface of the sintered raw material particles that have been converted to pseudo particles during the molding process, in particular, the core particle 1 (coarse meteorite) and the fine particle 2
  • the tailing particles 3 that are tirtsj ores are dispersed in the added water in the gap composed of (fine-grained meteorite) and fill the gap and at the same time adhere to cover the surface. It is a pseudo particle. While the tailings are smaller in the voids between the core particles 1 and the particles 2 during molding and more dispersed, they themselves serve as a binder action by capillary action based on a large specific surface area, that is, as a molding aid. All functions.
  • the tailing particles 3 which are the former IEJ ores become pseudo particles in a state where the gaps between the coarse core particles 1 and the fine particles 2 finer than the core particles 1 are filled.
  • the tailings used are those removed as the beneficiation residue after 3 ⁇ 4is, such mimic particles are closer to the lump at the time before crushing. Therefore, the use of tailings shows the binder effect as well as the tailings become iron resources.
  • the use of binders such as general quick lime and limestone is used even during molding. Is unnecessary. Of course, these general binders can be used in combination.
  • the tailings are effective as binders or molding aids. For this reason, if the amount of water is too small, these effects are achieved, so preferably 5 ma ss% or more. More preferably, those having a water content of 6 mass% or more are suitably used. This is the moisture required during molding because it is necessary to disperse the tailings in water sufficiently and move with good filling in the gaps between fine particles adhering around the core coarse particles . Insufficient water content ⁇ , it is preferable to add according to the amount of tailings in the molding stage. Difficult example 1
  • C stone L a sintering raw material particle (coarse stone for sintering) with an average particle diameter (arithmetic average diameter, the same shall apply hereinafter) is equal to the average
  • C iron ore SJ the tailing of the C iron ore is Oma ss% (test No. 1), 2 ma ss% (Test No. 2), 4 mass% (Test No. 3), 5 mass% (Test No. 4), 8 mass% (Test No. 5), 10 ma ss% (Test No. 6), 12 ma ss % (Test No.
  • Test Nos. 1 to 10 are shown in Table 2 and FIGS. 5 (a) and 5 (b) as average particle sizes in the wet state and the dry state. From Fig. 5, 2 tailings were used as molding aids for It was found that the average particle diameter (arithmetic average diameter) of the wet state pseudo particles was increased by using ⁇ 15 ma ss% (Test No. 2 to No. 8). In addition, the particle size after drying is 5% ass% when tailing is added, especially when this forming aid is added compared to the case where this forming aid is not added. It was large in the range of Oma ss%, and it was found that even when dried in the raw material layer, it does not easily collapse and maintains good air permeability.
  • the tailing amount of the tailings exceeds 15m ass%, even if it is effective in the wet state, it will disintegrate into dry ⁇ and increase the fines of the tailings, so the average diameter will become smaller. I also understood.
  • the particle size of the blended powder mixed with tailings is not much different from that of C stone alone, but the granulated moisture is 6 ma ss% in the particle size after drying.
  • the above addition showed a remarkable effect. That is, an increase in average diameter was observed, and the proportion of fine particles of 10.5 mm or less was greatly reduced.
  • the effect was small at 5 to 5.6 mass%, which is the granulated moisture of normal Brazilian ore. From this, it was found that the amount of 3t3 ⁇ 43 ⁇ 4k of this raw material is small at 5 mass%, so that it is necessary to increase the amount of granulated water when increasing tailings.
  • this ⁇ , fine ⁇ apportion is more than 5.5mass%, and further increased as tailings increase.
  • the filling of f3 ⁇ 4K stone ultrafine powder can be achieved smoothly by intervening water, and the preferable content is 6 mass% or more.
  • sodium naphthalene sulphonate as a surfactant was added in an additional 0.002 mass% in the process, and firing experiments on difficult particles were also conducted.
  • Figure 8 shows the results of these series of firings (A to E).
  • the ultrafine powder blended powder (B) added with 10 mass% of tailings has high productivity and high strength. It became clear that things could be obtained. It was also found that the productivity improvement effect can be further enhanced by reducing the surfactant (C) (C). However, even if the same composition is used, if the moisture content is not adjusted (D, E), the productivity and the sinter cooling strength (shutter index SI) are both inferior to those of the examples of the present invention (B, C). I understood it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Disclosed is a method for producing a raw material for use in the production of a sintered ore. The method comprises: a provision step of providing a sintering raw material powder and an iron ore ultrafine powder having an average particle diameter of 10 μm or less; a formation step of adding the iron ore ultrafine powder to the sintering raw material powder in an amount of about 2 to 15 mass% and mixing the two components with each other, thereby forming a sintering raw material particle coated with the ultrafine powder; and molding step of molding the sintering raw material particle.

Description

明細書 原料の ®g ^法 分野  Description Raw material ®g ^ method
本発明は、 高炉の 料となる焼結鉱を製造する際に用いられる原料、 とくに成形 (造 粒) された焼結鉱製造用原料の製造方法に関する。 背景技術  The present invention relates to a raw material used when producing a sintered ore used as a material for a blast furnace, and more particularly to a method for producing a raw material for producing a sintered ore formed (granulated). Background art
近年、 中国における鉄鋼生産量の増大を受けて、 鉄鉱石の需要が世界的に伸びている。 我 が国鉄鋼各社では、 鉄鉱石の約 60ma s s %を主にオーストラリアから輸入している。 し かし、 そのオーストラリアでは、 焼結鉱の製造に好適な高品位へマタイト鉱石が次第に枯渴 しており、 そのため最近では、 多量のゲーサイトを含有するマラマンバ鉱石、 ピソライト鉱 石あるいはリンを多量に含有するへマタイト鉱石などが、 出荷の主力になりつつある。  In recent years, the demand for iron ore has been growing worldwide in response to an increase in steel production in China. Japanese steel companies import about 60 ma s s% of iron ore mainly from Australia. However, in Australia, high-grade matite ore suitable for the production of sinter is gradually depleted, and recently, a large amount of maramamba ore, pisolite ore containing a large amount of goethite are used. The hematite ore contained in is becoming the main shipping factor.
石のサプ イヤーとしては、 オーストラリァの他にブラジル、 ィンド等の山元が上げ られるが、 インドについては、 原則として F e含有量が 6 Oma s s %以上の ¾K石は国内 使用を優先し、 輸出を制限している。 そのため、 世界全体として見ると、 6が60^1 & s s%以上の高品位鉄鉱石は著しく不足傾向にある。 この意味において、 現在では、 これまで は未利用であつた低品位鉄鉱石の有効活用の技術開発が強く望まれている。  As a stone supplier, Brazil, India and other mountain sources can be raised in addition to Australia, but in principle, ¾K stone with an Fe content of more than 6 Oma ss% is given priority for domestic use and exported. Is limiting. Therefore, looking at the world as a whole, high-grade iron ores with 6 over 60 ^ 1 & s s% tend to be extremely short. In this sense, there is a strong demand for the development of technology for effective use of low-grade iron ore that has been unused so far.
従来、 こうした低品位^ 石を製鉄用原料、 とくに焼結鉱製造用原料として用いる幾つか の技術がある。  Conventionally, there are several techniques for using such low-grade stone as a raw material for iron making, particularly as a raw material for producing sinter.
特許文献 1は、 石を含む製鉄用原料に副原料の石灰石とは別に、 平均粒径が 1 /zm 以上 15 μ m未満、 比表面積が 3000 cm2Zg以上 9500 c mV g以下の炭酸カルシ ゥム (CaC03) 力 らなるバインダーを、 製鉄用原料に対して 0. 05ma s s%以上 5m a s s%以下添 卩して^することを提案している。 Patent Document 1 describes a calcium carbonate with an average particle size of 1 / zm to less than 15 μm and a specific surface area of 3000 cm 2 Zg or more and 9500 c mV g or less, apart from limestone, which is an auxiliary material, for iron-making materials containing stone. It is proposed that a binder consisting of (CaC0 3 ) force be added to the raw material for iron making at 0.05 mass% to 5 mass%.
また、 特許文献 2は、 5 / m以下の粒子を 5 Oma s 3 %以上含有する炭酸カルシウムや 珪石等の無機質材料よりなる微;^ i^;石用誠化剤を開示し、 且つ、 この塊成化剤と水硬性 物質との混合物によるコールドボンド法による赚石ぺレットの製造法を提案している。 また、 特許文献 3は、 製鉄用原料をダストと共に;^処理する工程を含む製鉄用原料の造 粒方法を提案している。 この;^方法の特徴は、 ダストに対し、 重量平均分子量が 1000 〜5000000の高分子化合物を必須成分とするダスト処理剤を添 卩して混合した後に、 その混合物を製鉄用原料に添 し、 難処理することである。 In addition, Patent Document 2 discloses a fine particle made of an inorganic material such as calcium carbonate or silica containing 5% or less of particles of 5 / m or less; ^ i ^; We have proposed a method for producing meteorite pellets by the cold bond method using a mixture of a chemical and a hydraulic substance. Patent Document 3 proposes a method for granulating a raw material for iron making including a step of treating the raw material for iron making together with dust. This; ^ method features a weight average molecular weight of 1000 for dust. After adding and mixing a dust treating agent containing ˜5000000 polymer compound as an essential component, the mixture is added to the raw material for iron making and difficult to process.
また、 特許文献 4は、 ¾K石等に生石灰を配合し、 水を加えて 1次^を行った後、 さら に粘度が 5〜100mPa · sの液状バインダーを加えて造粒する方法を開示している。 得 られた造粒粒子は、 焼結機内における加熱乾燥、 焼成の過程での崩壊ゃ微粉の放出による通 気性低下の問題がなく、 焼結鉱の生産性を高める技術である。  Patent Document 4 discloses a method of granulating by adding quick lime to ¾K stone, etc., adding water and performing primary ^, and further adding a liquid binder having a viscosity of 5 to 100 mPa · s. ing. The obtained granulated particles are a technology that increases the productivity of sintered ore without the problem of deterioration of air permeability due to the release of fine powder when it is disintegrated in the process of heat drying and firing in the sintering machine.
そして、 特許文献 5には、 石ならびにカルシウムイオン発生源を含む焼結原料の;^ 用バインダー、 即ち、 ベントナイトと重炭酸塩及び/又は炭酸塩とを含む焼結原料の雜用 バインダーについて開示している。 このバインダーによれば、 ベントナイトに重炭酸塩およ び Zまたは炭酸塩を併用することで、 カルシウムイオンによるベントナイトのゲル化を防止 すると共に、 ノ インダ一中の重炭酸;^ ¾び 又は炭酸塩を調整することにより、 このカルシ ゥムイオンとベントナイトとの に伴うゲル化による粘性増加発現時間を制御して、 良好 な ¾効果で擬似粒子化性に優れた IS粒子を得るという技術である。  Patent Document 5 discloses a binder for sintering raw materials containing stones and calcium ion generation sources, that is, a binder for burning raw materials containing bentonite and bicarbonate and / or carbonate. ing. According to this binder, the use of bicarbonate and Z or carbonate in combination with bentonite prevents gelation of bentonite by calcium ions, and bicarbonate in the node; ^ ¾ or carbonate This is a technique of controlling the viscosity increase onset time due to gelation associated with calcium ions and bentonite by adjusting the pH to obtain IS particles with excellent quasi-particle properties and excellent pseudo-particle formation properties.
特許文献 1 :特開 2005— 89825号公報  Patent Document 1: JP-A-2005-89825
特許文献 2 :特開平 3— 183729号公報  Patent Document 2: Japanese Patent Laid-Open No. 3-183729
特許文献 3 :特開 2004— 76130号公報  Patent Document 3: Japanese Patent Laid-Open No. 2004-76130
特許文献 4 :特開 2007— 113086号公報  Patent Document 4: Japanese Unexamined Patent Publication No. 2007-113086
特許文献 5 :特開 2007— 113088号公報 上述したように、 従来、 粒径の細かい &品位の ^石粉を焼結鉱製造用原料として用いる ための技術はあるものの、 これらの技術については、 次のような解決すべき Ι¾ が残されて いる。  Patent Document 5: Japanese Patent Application Laid-Open No. 2007-113088 As described above, although there is a conventional technique for using fine and fine-grained ^ stone powder as a raw material for producing sinter, There remains a problem to be solved.
即ち、 特許文献 1に記載の方法は、 1 IX m以上 15 β m未満の炭酸カルシウムを大量に使 用するために、 炭酸カルシウムを微粉碎する必要があり、 コスト高になると共に、 粉砕した 場所から焼結工場までの輸送および が難しく、 実用化に困難が伴うという問題がある。 特許文献 2に記載の方法では、 無機質材料粉の粒度調整とハンドリングの問題が生じる他、 セメント系物質を使用した^^に、 焼結鉱の製造にとっては不要な S i 02や A 1203等の スラグ成分が多くなり、 焼結鉱の F e分を下げることになると共に、 焼結鉱のスラグ含有量 が増加するという問題がある。 また、 セメント系バインダーは、 硬化に時間がかかり、 養生 設備とともに長時間の養生処理が必要となるという問題もある。 また、 特許文献 3、 4の技術は、 高価な有機バインダーを用いる方法であるから、 製造コ ストがかかると共に、 有機物の輸送費、 貯留、 添 の設備も必要となり、 製品コストを上げ るという問題がある。 That is, in the method described in Patent Document 1, in order to use a large amount of calcium carbonate of 1 IX m or more and less than 15 β m, it is necessary to finely grind calcium carbonate. There is a problem that it is difficult to transport from the factory to the sintering factory and it is difficult to put it into practical use. In the method described in Patent Document 2, there are problems of particle size adjustment and handling of inorganic material powder, and the use of cementitious materials ^^, which is unnecessary for the production of sintered ore, S i 0 2 and A 1 2 There is a problem that slag components such as 0 3 increase and the Fe content of the sinter decreases, and the slag content of the sinter increases. In addition, cement-based binders have a problem that it takes time to harden and requires a long-term curing treatment together with curing equipment. In addition, since the techniques of Patent Documents 3 and 4 are methods that use expensive organic binders, there is a problem in that the manufacturing cost is high, and transportation costs, storage, and additional equipment for organic substances are also required, which increases the product cost. There is.
そして、 特許文献 5に記載の方法については、 S i〇2、 A 1 203を含有するベントナイ トを用いるため、 スラグ発生量の増加を招くと共に、 炭酸塩として N aや Kを用いる^"、 焼結鉱の成分に問題が残る。 発明の開示 And, for the method described in Patent Document 5, since the use of bentonite bets containing S I_〇 2, A 1 2 0 3, with leads to an increase of the slag generation rate, using N a and K as carbonate ^ "A problem remains in the composition of the sinter. Disclosure of the Invention
本発明は、 第 1に、 粒径の細かい低品位鉄鉱石を有効利用すること、 第 2に、 微粉鉄鉱石 使用時のハンドリングの問題を解決すること、 第 3に、 スラグの生成量が少なく、 高品位で コストの安レ、焼結鉱製造用原料を舒 IJに製造することを目的とする。  The present invention firstly makes effective use of low-grade iron ore with a fine particle size, second solves handling problems when using fine iron ore, and thirdly produces less slag. The objective is to produce high-quality, low-cost and raw materials for sinter production at Sakai IJ.
上記目的を達成するために、 本発明は、 以下の工程を有する焼結鉱製造用原料の製造方法 を する。  In order to achieve the above object, the present invention provides a method for producing a raw material for producing sinter having the following steps.
焼結用原料粉と平均粒径が 1 0 μ m以下の 石超微粉を ¾1する «|工程、  «1 process of sinter raw powder and stone ultrafine powder with an average particle size of 10 μm or less
焼結用原料粉に対し前記鉄鉱石超微粉を 2〜 1 5 m a s s %の添加量で添加 .混 合し、 超微粉被難結原料粒子を形成する添 ·混合工程、 と  Addition of the above-mentioned iron ore ultrafine powder to the sintering raw material powder in an amount of 2 to 15 m s s%. Mixing and mixing to form ultrafine powder hardened raw material particles, and
前記超微粉被覆焼結原料粒子を成形する成形工程、  A molding step for molding the ultrafine powder-coated sintered raw material particles,
を有する焼結鉱製造用原料の製造方法。 前記焼結用原料粉は、 焼結原料用 ^^石粉と を含有する焼結鉱製造用の焼結原料であ る。  A method for producing a raw material for producing sintered ore. The sintering raw material powder is a sintering raw material for producing sintered ore containing ^^ stone powder for sintering raw material.
前記焼結原料用 石粉は、 5 5 m a s s %以上の F e、 5 m a s s %以下の S i O 2と 5 m a s s %以下の A 1 203を含有するのが好ましい。 5 5〜 6 9 m a s s %の F e、 0 . 5〜5 m a s s %の S i 02と 0 . 5〜5 m a s s %の A 1 203含有するのがより好まし い。 The stone powder for sintering raw material preferably contains 55 mass% or more of Fe, 5 mass% or less of Sio 2 and 5 mass% or less of A 1 2 0 3 . 5 5~ 6 9 mass% of F e, 0. 5~5 mass% of S i 0 2 and 0. 5 to 5 mass% of A 1 2 0 3 to contain is not more preferable.
前記 石超微粉が、 選鉱残渣として得られた尾鉱である。  The ultrafine stone powder is tailing obtained as a beneficiation residue.
ΙίίΙΕ鉄鉱石超微粉の前記焼結原料粒子に対する添加量は、 5〜: 1 O m a s s %であるのが 好ましい。 石超微粉の平均粒径は、 湿式レーザー法によって測定される。  The addition amount of the ultrafine iron ore powder to the sintered raw material particles is preferably 5 to: 1 O m s s%. The average particle size of ultrafine stone powder is measured by the wet laser method.
湿式レーザー法による測定は、 粒子に光が当たったときの散乱光は全方向に散乱するが、 粒子径が大きければ相対的に前方が強くなり、 粒子径が小さくなるにしたがい前方散乱より も側方散乱、 後方散乱の割合が増加することを利用し、 前方散乱以外に側方散乱、 後方散乱 を検出して微小粒子を測定する方法である。 In the wet laser method, the scattered light when light hits the particle is scattered in all directions. However, the larger the particle diameter, the stronger the front, and the smaller the particle diameter, the more forward scattering. Is a method of measuring fine particles by detecting the side scatter and back scatter in addition to the forward scatter by utilizing the increase in the ratio of side scatter and back scatter.
前記^ IS石超微粉は、 6 Oma s s%以上の F e、 0. 5〜5ma s s %の S i 02と 0· 5〜5ma s s %の八 1203含有し、 成形時に成形助剤として機能するのが望ましい。 60 ~70ma s s%の Fe、 0. 5〜 5 m a s s %の S i 02と .0. 5〜5]113 3 3 %の 12 O 3含有するのがより望ましい。 The above-mentioned IS ultrafine powder contains Fe of 6 Oma ss% or more, 0.5 to 5 ma ss% of Si 0 2 and 0.5 to 5 ma ss% of 8 1 2 0 3 for molding aid. It is desirable to function as an agent. 60 ~ 70 mA ss percent Fe, 0. 5~ 5 mass% of S i 0 2 and 2.0. 5-5] 113 3 3% 1 2 O 3 for containing the more desirable.
前記 ¾K石超微粉は、 南米産へマタイト鉱石の尾鉱であるのが好ましい。 前記南米産へマ タイト鉱石は、 カラジヤス^ 石であるのが好ましい。  The ¾K ultrafine powder is preferably a hematite ore tailing from South America. The South American hematite ore is preferably Carajyasu ore.
前記 石超微粉は、 アフリカ産へマタイト鉱石の尾鉱であるのが望ましい。  The ultrafine stone powder is preferably a tailing of an African hematite ore.
なお、 焼結用原料粉は、 焼結原料用纖石粉のほか、 焼結鉱として製造され高炉 ¾Λ原料 あるレ、は焼結機の床 » Sとしても利用できなレゝ 5 mm以下の細かな を焼結用原料粉に対 し通常 15〜30mass%を含有している。 更に、 焼結用原料粉には、 平均粒径 5mm以下の製鉄 所リサイクル原料粉 3〜5maSS%を含有する場合もある。 The raw material powder for sintering is not only the meteorite powder for sintering raw material, but also the blast furnace ¾Λ raw material that is manufactured as sintered ore. The raw material powder for sintering usually contains 15-30 mass%. In addition, the raw material powder for sintering may contain 3 to 5 ma SS % of iron mill recycled raw material powder having an average particle size of 5 mm or less.
また、 ΙίίΙΗ焼結原料用纖石粉は、 平均粒径が 1. 5〜4. 5 mmの粗粒赚石と、 粗粒 鉄鉱石よりも小さい平均粒径の範囲内にある細粒鉄鉱石からなる。  In addition, the meteorite powder for sintering raw materials is composed of coarse-grained meteorites with an average particle size of 1.5 to 4.5 mm and fine-grained iron ores within an average particle size range smaller than coarse-grained iron ore. Become.
以下、 焼結原料用纖石粉のほかに繊及び製鉄所リサイクル原料粉利用する焼結用原料 を焼結用原料粉として以下説明する。  Hereinafter, in addition to the meteorite powder for sintering raw material, the raw material for sintering that uses fiber and ironworks recycled raw material powder will be described as the raw material powder for sintering.
前記添 ·混合工程は、 焼結用原料粉に前記赚石超微粉を 2〜 5ma s s %山元で添 加 ·混合し、 超微粉被 結原料粒子を形成するのが望ましい。  In the adding and mixing step, it is desirable to add and mix the ultrafine silica powder at 2 to 5 mass% in the raw material powder for sintering to form ultrafine powdered raw material particles.
ΙίίΙΕ成形工程は、 以下のようにするのが好ましレ、。  It is recommended that the molding process be as follows.
(A) 焼結用原料粉と赚石超微粉を混合機により混合、 調湿した後、 ドラムペレタイザ一 を使用して超微粉被 ®½結原料粒子を形成する。  (A) The raw material powder for sintering and the ultrafine silica powder are mixed and conditioned by a mixer, and then the ultrafine powder coated raw material particles are formed using a drum pelletizer.
(B) 焼結用原料粉と^ IS石超微粉を混合機により混合、 調湿した後、 ディスク型ペレタイ ザ一を使用して超微粉被 結原料粒子を形成する。  (B) After mixing the raw material powder for sintering and the ultra fine powder of IS stone using a mixer and adjusting the humidity, use a disk-type pelletizer to form ultrafine powdered raw material particles.
ttf!E成形工程は、 副原料、 ノくインダー、 水および分散剤のいずれか 1種以上を加えて、 超 微粉被覆焼結原料粒子を成形することからなるのが好ましレゝ。  ttf! E The molding process preferably consists of molding ultrafine powder-coated sintered raw material particles by adding one or more of a secondary material, a kinder, a water and a dispersant.
前記副原料は、 焼結鉱のスラグ成分調整に用いるものであって、 石灰石、 ドロマイト、 生 石灰、 珪石、 蛇^、 N iスラグ、 マグネサイトおよ TO鉄からなるグループから選択され た少なくとも一つであるのが望ましい。 前記成形工程において加えられる水は、 成形助剤の添加量に応じ、 成形後粒子の乾燥前水 分量で 5 m a s s %以上添 するのが好ましい。 より好ましくは、 6〜 1 0 m a s s %であ る。 The auxiliary material is used to adjust the slag component of the sintered ore, and is at least one selected from the group consisting of limestone, dolomite, quicklime, silica stone, snake ^, Ni slag, magnesite and TO iron. It is desirable to be one. The water added in the molding step is preferably added in an amount of 5 mass% or more in terms of the amount of water before drying of the particles after molding, depending on the amount of molding aid added. More preferably, it is 6 to 10 mass%.
前記分散剤については、 カルボン酸基、 スルホン酸基を含む官能基を有する有機化合物か らなる界面活性剤を、 微細粉混^ 石に対し、 0. 0 0 2〜0. 0 0 5 m a s s %添ί)卩する のが望ましい。 前記界面活性剤は、 ナフタレンスルホン酸ナトリゥム、 ステアリン酸ナトリ ゥム、 アルキル硫酸力リゥムからなるグノレープから選択された少なくとも 1つであるのが望 ましい。 上記の本発明に係る焼結鉱製造用原料の製造方法によれば、 従来は山元などで未利用のま ま放置されていた尾鉱などの 石超微粉を、 鉄資源の一つとして有効に用いると同時に成 形助剤、 すなわちバインダ一として有効に利用することができ、 このことが安価な焼結鉱の 製造に寄与できる。  With respect to the dispersant, a surfactant composed of an organic compound having a functional group containing a carboxylic acid group and a sulfonic acid group is used in an amount of from 0.002 to 0.05 mass% with respect to the fine powdered mixture. It is desirable to correct. Preferably, the surfactant is at least one selected from gnoleop consisting of sodium naphthalene sulfonate, sodium stearate, and alkylsulfuric acid. According to the above method for producing a raw material for sinter ore production according to the present invention, it is possible to effectively use stone ultrafine powder such as tailings that have been left unused in the mountains and the like as an iron resource. At the same time it is used, it can be used effectively as a forming aid, that is, as a binder, which can contribute to the production of inexpensive sintered ore.
また、 本発明によれば、 スラグ成分の増加を招くバインダーの使用量を抑えることができ る一方で、 成形 0t¾処理) も容易に行うことができる。  In addition, according to the present invention, the amount of binder used that causes an increase in the slag component can be suppressed, while the molding 0 t¾ process) can be easily performed.
また、 本発明によれば、 困難だった尾鉱のハンドリングが容易になると.共に、 山元で発生 する尾鉱を製鉄所までで容易に運搬することができる。  In addition, according to the present invention, it becomes easy to handle tailings that were difficult, and at the same time, tailings generated in the mountains can be easily transported to the steelworks.
さらに、 本発明によれば、 高品位 石の枯渴という製鉄所が抱えている不可避の に 対して、 有効な解決手段を提供できると共に、 製品のコスト低下、 焼結鉱生産量の増大に寄 与する。 図面の簡単な説明  Furthermore, according to the present invention, it is possible to provide an effective solution to the inevitable problem of the steelworks of high-grade stone debris, and to contribute to a reduction in product cost and an increase in sinter production. Give. Brief Description of Drawings
図 1 (a ) はブラジノ1^鉱石の乾燥後篩い分けによる粒度分布を示す図であり、 図 1 ( b ) はブラジ A^iS石の湿式レーザー法による粒度分布を示す図である。  Fig. 1 (a) shows the particle size distribution of the brazino 1 ^ ore by sieving after drying, and Fig. 1 (b) shows the particle size distribution of the brazi A ^ iS stone by the wet laser method.
図 2 (a ) はブラジルカラジヤス鉄鉱石の電子顕微鏡写真 ( S EM) 、 図 2 ( b ) はブ ラジノレ I TO石の電子顕 写真 ( S EM) 、 図 2 ( c ) はオーストラリア^ IS石の電子顕 写真 ( S EM) である。  Fig. 2 (a) is an electron micrograph (SEM) of Brazilian calajiyas iron ore, Fig. 2 (b) is an electron micrograph (SEM) of brazinore I TO stone, and Fig. 2 (c) is an Australian ^ IS stone. This is an electron micrograph (SEM).
図 3は、 ブラジ Λ ^石尾鉱の電子顕微鏡写真 ( S EM) である。  Figure 3 is an electron micrograph (SEM) of Braj Λ ^ Ishio.
図 4 ( a ) は、 従来の擬似粒子化した焼結原料粒子の模式図であり、 図 4 ( b ) は、 本 発明に係る擬似粒子化した焼結原料粒子の模式図である。 図 5 (a) は造粒試験による湿潤状態の平均粒子径の測定結果を示す図であり、 図 5 ( b ) は 験による乾燥状態の平均粒子径の測 を示す図である。 FIG. 4 (a) is a schematic diagram of conventional sintered raw material particles converted to pseudo particles, and FIG. 4 (b) is a schematic view of sintered raw material particles converted to pseudo particles according to the present invention. Fig. 5 (a) is a diagram showing the measurement result of the average particle size in the wet state by the granulation test, and Fig. 5 (b) is a diagram showing the measurement of the average particle size in the dry state by the test.
図 6 (a) は、 造粒時の水分添加量と湿潤状態の平均粒径の関係を示すグラフであり、 図 6 (b) は、 造粒時の水分添加量と湿潤状態の一 0. 5 mmの関係を示すグラフである。  Fig. 6 (a) is a graph showing the relationship between the amount of water added during granulation and the average particle size in the wet state, and Fig. 6 (b) shows the relationship between the amount of water added during granulation and the wet state. It is a graph which shows the relationship of 5 mm.
図 7 (a) は、 f¾時の水分添 量と乾燥状態の平均粒径の関係を示すグラフであり、 図 7 (b) は、 難時の水分添 量と乾燥状態の一 0. 5 mmの関係を示すグラフである。  Fig. 7 (a) is a graph showing the relationship between the moisture content at f¾ and the average particle size in the dry state, and Fig. 7 (b) shows the water content at difficult time and the dry state at 0.5 mm. It is a graph which shows the relationship.
図 8 (a) は、 実施例 3における鍋試験の生産率を示すグラフである。 図 8 (b) は、 実施例 3における鍋試験の冷間強度を示すグラフである。  FIG. 8 (a) is a graph showing the production rate of the pan test in Example 3. FIG. FIG. 8 (b) is a graph showing the cold strength of the pan test in Example 3.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
鉄鉱石の山元では、 通常、 鉱山で採鉱した脈石含有鉄鉱石を破砕し、 サイジング処理によ つてまず塊鉱石を選鉱分離して回収する。 次いで、 選鉱分離されたアンダーサイズの鉱石粉 をさらに湿式のサイジング処理によって焼結用 石として分離し回収している。 一方、 こ の湿式のサイジング処理後のァンダーサイズである微粉につレ、てはシックナ一に流し込み、 した微粉については回収して焼結用 石として利用する。 一方、 このシックナ一 ら抜き出した残渣、 すなわち、 シックナ一での沈殿処理によっても捕集できなかった超微粉 である鉱石を尾鉱 (テーリング) として取り出している。 抜き出された残渣は、 有用な鉱石 である insに対して尾鉱と呼称されている。 取り出された尾鉱は、 一般的には、 いずれシッ クナー排水中に混在することになるため、 鉱山近くの池や沼地などを堆積場として trnする ようにしている。 この尾鉱は、 it ;に比べて鉄分が若干少なく一方でスラグ成分となる s i In the iron ore mountain, the gangue-containing iron ore mined at the mine is usually crushed, and the ore is first separated and recovered by sizing treatment. Next, the undersized ore powder separated and separated is further separated and recovered as sintered stone by wet sizing treatment. On the other hand, the fine powder which is the size of the wander after the wet sizing treatment is poured into a thickener, and the fine powder is collected and used as a sintering stone. On the other hand, the residue extracted from the thickener, that is, ore, which is an ultrafine powder that could not be collected by the precipitation treatment at thickener, is taken out as tailing. The extracted residue is called tailing for ins, a useful ore. Since the tailings taken out will generally be mixed in the sickner drainage, the ponds and swamps near the mine are used as troughs. This tailings is slightly less iron than it;
02、 A 1203を 1. 5〜5. Oma s s%と精鉱に比べて相対的に多く含有している。 そ して、 尾鉱は、 平均径 (算術平均径を示す、 以下同じ) が 10/zm以下と小さいため、 焼結 鉱製造用成形原料としては、 これまで、 不適当な鉱石とされていた。 従って、 貯鉱とは言つ ても、 現実的には未利用のまま放置されている状況に等しいものである。 その貯鉱量は鉱山 によっては数億トンに及ぶケースもある。 0 2 , A 1 2 0 3 is 1.5-5. Oma ss%, which is relatively large compared to concentrate. And the tailings have an average diameter (indicating the arithmetic mean diameter, the same shall apply hereinafter) as small as 10 / zm or less, and so far have been regarded as unsuitable ores as molding raw materials for the production of sintered ores. . Therefore, even though it is a storage, it is practically equivalent to a situation where it is left unused. Depending on the mine, the amount of reserves can amount to several hundred million tons.
このような尾鉱は、 例えばブラジノ 山の^^、 選鉱残渣とは言え、 Feを60ma s s %以上含有する点において有用な鉄資源となり得るものである。 この尾鉱を未利用のまま に放置しておくことは資源の有効活用の上からも好ましいことではなく、 有効な活用方法を 見出すことは価値がある。 そこで、 発明者らは、 鉄鉱石超微粉である選鉱残渣、 即ち、 尾鉱の有効活用について種々 検討した。 その結果、 尾鉱を資源として利用するだけではなく、 超微粉であることに由来す る特性を利用できることを見出した。 すなわち、 焼結原料粒子を成形 (以下、 「 立 J とも いう) するときのバインダー (成形助剤) として利用できることを見出した。 上記尾鉱を成 形工程で用いる成形助剤として活用しようという着想は、 以下に述べる技術的背景によるも のである。 一般に、 焼結鉱は、 粉 石および返鉱の他、 副原料、 バインダー、 その他の原料および 粉コークスを混合し、 水を加えてドラム式;^機^イスクペレタイザ一などにより成形 ( して焼結鉱製造用成形原料とした後、 この成形原料を焼結機上に 5 0 O mn!〜 7 0 O mmの層厚になるよう ¾Λし、 焼結機上の 料層表面に着火すると同時に、 該原料層の下 方から吸引することにより、 原料層中の粉コークスを燃焼させ、 その燃焼熱により、 塊成化 した焼結鉱を製造している。 Such tailings can be useful iron resources in that they contain, for example, ^^ of Mt. It is not preferable to leave this tailing unused, from the viewpoint of effective utilization of resources, and it is worth finding an effective utilization method. Therefore, the inventors have made various studies on the effective utilization of the beneficiation residue, that is, iron ore ultrafine powder, that is, tailings. As a result, it was found that not only the tailings can be used as a resource, but also the characteristics derived from being ultrafine powder can be used. In other words, it has been found that it can be used as a binder (molding aid) when molding sintered raw material particles (hereinafter also referred to as “standing J”). The idea of utilizing the tailings as a molding aid used in the molding process This is due to the technical background described below: Generally, sintered ore is mixed with finely divided stones and return minerals as well as by-products, binders, other raw materials, and powdered coke, and water is added to form a drum; After forming as a forming raw material for sinter ore production by using a machine with an ispel pelletizer, etc., this forming raw material is formed on the sintering machine to a layer thickness of 50 O mn! At the same time as the surface of the material layer on the sintering machine is ignited, the coke in the raw material layer is combusted by suction from the lower side of the raw material layer, and the agglomerated sintered ore is produced by the heat of combustion. ing.
このような焼結鉱の製造工程において用いられる前記焼結鉱製造用成形原料である焼結用 原料粉は、 これを雜する 、 従来、 焼結用原料粉の粗雌子と細難子とを ffiの際に 結合させるためのバインダーとして生石灰 (C a O) 等を用いるのが普通であった。 この生 石灰は、 水と すると C a (OH) 2の微細粒子を生成し、 この C a (OH) 2の微細な粒 子が、 ; ^時に; 石の各粒子間間隙に侵入して付着することにより、 石粒子どうし を結び付けて強固な擬似粒子を形成する作用がある。 ただし、 この生石灰は、 吸湿しやすく 水と反応する時に発熱するため取り扱いに注意が必要であり、 その添加量が、 2. O m a s s %を超えると効果が飽和すると言う問題がある。 とりわけ、 この生石灰は、 F e分を含む ものではなく、 単にスラグ成分を含有しているにすぎない。 したがって、 生石灰を使用する ことは鉄資源とはならない。 The raw material powder for sintering which is the forming raw material for manufacturing the sintered ore used in the manufacturing process of such sintered ore has been used in the past. It was common to use quicklime (C a O) or the like as a binder to bind the lime during ffi. This quick lime produces fine particles of Ca (OH) 2 when water is used, and these fine particles of Ca (OH) 2 enter the gaps between stone particles; By doing so, it has the effect of connecting stone particles together to form strong pseudo particles. However, this quicklime is easy to absorb moisture and generates heat when it reacts with water, so it needs to be handled with care. If the amount added exceeds 2. O mass%, the effect is saturated. In particular, this quicklime does not contain the Fe component, but merely contains the slag component. Therefore, using quicklime is not an iron resource.
これに対し、 成形助剤として用いられる上記尾鉱は、 これを焼結鉱製造用原料を成形 (造 粒) する時のバインダーとして使用した場合であっても、 一定量の F e源を^ できる点で、 しかもスラグを増大させることなく使用できる点で^^である。 ただし、 この尾鉱は、 超微 粉状であるためハンドリングの問題を解決することが必要になる。 このハンドリングの問題 に関し、 本発明においては、 できれば山元において、 焼結用粗粒鉄鉱石およびそれよりも細 かい細粒 ^石に予めプレンドすることで、 超微粉である尾鉱の與虫でのハンドリングを必 要最小限に留めることが好ましい。 このような処理を加えることで焼結原料の 1つとして、 長距離輸送にも耐えられるようになる。 上記のような考え方の下に本発明は得られたものである。 本発明の焼結鉱製造用原料の製 造方法は、 焼結用原料粉と平均粒径が 1 0 μ m以下の 石超微粉を¾1する 工程と、 前記焼結用原料粉に対し前記纖石超微粉を 2~1 5ma s s %の添卩量で添¾ .混合し、 超微粉被 結原料粒子を形成する添卩 .混合工程と、 ΙίίΙΗ超微粉被 結原料粒子を成形 する成形工程とを有する。 In contrast, the tailings used as molding aids, even when used as a binder when forming (granulating) raw materials for sinter ore production, have a certain amount of Fe source ^ It is ^^ because it can be used without increasing slag. However, since this tailings is ultra fine, handling problems need to be solved. With regard to this handling problem, in the present invention, it is possible to pre-pend the coarse iron ore for sintering and finer finer stones in advance at the foot of the mountain in the tail of the tailings that are ultrafine powder. Requires handling It is preferable to keep it to a minimum. By applying such a treatment, it can withstand long-distance transportation as one of the sintering raw materials. The present invention has been obtained under the above-described concept. The method for producing a raw material for producing sinter according to the present invention comprises a step of obtaining a raw material powder for sintering and an ultrafine stone powder having an average particle size of 10 μm or less, and Addition and mixing of ultrafine stone powder in an amount of 2 to 15 mass% to form ultrafine powdered raw material particles, mixing step, and forming step of forming ultrafine powdered raw material particles Have
ftllE焼結用原料粉は、 焼結原料用 石粉と を含有する焼結鉱製造用の焼結原料であ る。 - 前記焼結用赚石粉は、 55 m a s s %以上の F e、 5 m a s s %以下の S i 02と 5 m a s s%以下の A 1203を含有するのが好ましい。 より好ましくは、 55〜69ma s s%の Fe、 0. 5~5ma s s %の S i 02と 0. 5〜 5 m a s s %の A 1203である。 The ftllE sintering raw material powder is a sintering raw material for producing sintered ore containing stone powder for sintering raw material. - the sintered for赚石powder preferably contains 55 mass% or more of F e, 5 mass% or less of S i 0 2 and 5 mass% or less of A 1 2 0 3. More preferably 55~69ma ss% of Fe, 0. 5 ~ 5ma ss% of S i 0 2 and 0.. 5 to 5 mass% of A 1 2 0 3.
前記纖石超微粉は、 6 Oma s s%以上の F e、 0. 5〜 5 m a s s %の S i 02と 0 · 5〜5ma s s%の A 1203を含有するのが好ましい。 より好ましくは、 60〜69ma s s%の Fe、 0. 5〜5ma s s %の S i 02と 0. 5〜 5 m a s s %の A 1203である。 以下に、 この製造方法について詳しく説明する。 It is preferable that the ultra-fine meteorite contains Fe of 6 Oma ss% or more, 0.5 to 5 mass% of Si 0 2 and 0.5 to 5 to 5 mass% of A 1 2 0 3 . More preferably, 60~69ma ss% of Fe, which is 0. 5~5ma ss% of S i 0 2 and 0.. 5 to 5 mass% of A 1 2 0 3. The manufacturing method will be described in detail below.
上記尾鉱のうち、 本発明において注目している尾鉱としては、 例えば、 南米産へマタイト 鉱石やアフリカ産へマタイト鉱石の尾鉱が好適に用いられる。 例えば、 南米産へマタイト鉱 石を代表するブラジルカラジャス鉄鉱石の尾鉱は、 このカラジャス鉄鉱石の精鉱に比べて品 位 (Fe分) は若干低いものの、 Fe分は 6 Oma s s %を超え、 近年、 ^に品位の劣ィ匕 が進んでいるオーストラリア産^ ^石などと比べると、 決して悪いとは言えないレベルにあ る。 また、 アフリカ産へャタイト鉄鉱石、 例えば、 クンバ鉄鉱石の尾鉱は、 6分が54111 a s s%であるが、 浮遊選鉱、 比重選鉱等の処理により、 品位を比較的簡単に上げることは 可能である。 ただし、 尾鉱は、 平均粒径が 10 μ m以下という超微細な赚石の微粉であ ること力ら、 本質的に水分を吸着しやすく 化しやすレヽ性質があり、 付着性が高いために 長距離のハンドリングは難しいことと、 焼結鉱製造用成形原料としては粒度が細カゝすぎるた め、 これを未処理のまま使用したのでは、 焼結の生産性を著しく 匕させるという問題があ つた。 そこで、 発明者らは、 この尾鉱について、 本発明の製造方法に適用するための条件を探す ために、 それの基礎物性や造粒性について調査した。 Among the above tailings, for example, tailings of South American hematite ore and African hematite ore are preferably used as the tailings of interest in the present invention. For example, the Brazilian Carajas iron ore tailing, which represents the hematite ore from South America, has a slightly lower grade (Fe content) than the concentrate of this Carajas iron ore, but the Fe content exceeds 6 Oma ss% In recent years, it is at a level that is not bad compared to Australian stones that have been inferior in quality. In addition, African hematite ore, for example, tailings of Kumba iron ore, is 54111 ass% in 6 minutes, but it is possible to raise the quality relatively easily by processing such as flotation and specific gravity beneficiation. is there. However, tailings are essentially ultra-fine meteorite powder with an average particle size of 10 μm or less, and are inherently easy to adsorb moisture, and are highly adherent. Long-distance handling is difficult and the particle size is too fine as a forming raw material for sinter production, so using it as it is untreated causes a problem of significantly reducing the productivity of sintering. Atsuta. Therefore, the inventors investigated the basic physical properties and granulation properties of the tailings in order to find conditions for applying the tailings to the production method of the present invention.
表 1は、 ブラジノレ I 石、 ブラジノレカラジヤス 石 (焼結原料、 尾鉱) 、 オーストラ リア鉱石 (A〜C) およびアフリカ産へマタイト鉱石としてアフリカクンバ鉱石の化学成分 を示すものである。 参考のために、 ベントナイトの化学成分を併記した。 また、 図 1 (a) は、 これらの鉱石の粒度分布を比較して示すものである。 図 1 (b) は、 ブラジルカラジャ ス鉄鉱石 (尾鉱) の微粒部位の粒度分布を示すものである。 図 1 (b) の粒度分布は湿式レ 一ザ一法によって測定された。 表 1から明らかなように、 焼結原料として用いられるブラジ ノ 石は、 オーストラリア鉱石に比べると、 高品位で緻密な鉱石であることがわかる。 この ことは、 図 2 (a)〜(c) に示す電子顕微鐃写真 (SEM) におけるオーストラリア鉱石 との比較によっても明らかなように、 ブラジ 石 (a) , . (b) の は、 粒子表面性 状が平滑で、 造粒時に水分を保持し難い性状であることがわかる。 Table 1 shows the chemical composition of African cumba ore as Brazinore I stone, Brazinorecarajiasite (sintering raw material, tailings), Australian ore (AC) and African hematite ore. For reference, the chemical composition of bentonite is also shown. Figure 1 (a) shows a comparison of the particle size distribution of these ores. Figure 1 (b) shows the particle size distribution of Brazilian Calajas iron ore (tail ore). The particle size distribution in Fig. 1 (b) was measured by the wet laser method. As is clear from Table 1, the brazinoite used as a sintering raw material is a high-quality and dense ore compared to the Australian ore. This is evident from the comparison with the Australian ore in the electron micrographs (SEM) shown in Fig. 2 (a) to (c), and the brazite (a),. It can be seen that the properties are smooth and it is difficult to retain moisture during granulation.
(-:極微量) (-: Trace amount)
Figure imgf000012_0001
一方、 本発明において成形助剤として機能するブラジルカラジヤス^ S石の尾鉱は、 発明 者らの調査では、 図 1の 分布および図 3の電子顕«写真からもわかるように、 粒度が 非常に小さく、 表面に凹凸の多い超微粒子サイズの 石超微粉であることがわかる。 大き く見えるものは凝集し凝集粒子となったものである。 このような表面性状を有する超微粒子 サイズの 石は、 焼結用原料粉すなわち粗粒 ·細粒^ IS石と SISを して擬似粒化する 際に加えられた水に分散された状態で、 図 4に示すように、 核粒子 1となる粗粒 S ^石と、 W&^ 1より細粒である微粒子 2となる細粒纖石の表面に付着し、 微粒纖石と細粒雖 石との間に侵入し、 あるいはさらにこれらを被覆するように付着して全体の充填率を上げる ように働く。 且つ、 造粒時の水分がなくなった後でも充填率の高い粒子となり、 原料粒子間 に一定の付着強度を付与するバインダー (成形助剤) としての役割を果たすと考えられる。 また、 使用される ISも して擬似粒子化する^^、 粗粒部分は核粒子 1となり、 細粒 部分は微粒子 2となり、 核粒部分と細粒部分石との間に尾鉱は侵入し、 あるいはさらにこれ らを被覆するように付着して全体の充填率を上げるように働く。
Figure imgf000012_0001
On the other hand, the Brazilian Carajiyas ^ S tailing, which functions as a molding aid in the present invention, has a very fine grain size, as shown by the distribution in Fig. 1 and the electron micrograph in Fig. 3, according to the inventors' investigation. It can be seen that this is a very fine stone powder with an ultrafine particle size that is very small and has many irregularities on the surface. What looks large is agglomerated into aggregated particles. Stones of such ultrafine particle size with such surface properties are dispersed in the raw material powder for sintering, that is, coarse / fine grains ^ IS stone and water added when simulating with SIS, As shown in Fig. 4, it adheres to the surface of coarse S ^ stone that becomes core particle 1 and fine meteorite that becomes fine particle 2 that is finer than W & ^ 1. To increase the overall filling rate To work. In addition, even after the moisture during granulation is lost, it is considered that the particles have a high filling rate and serve as a binder (molding aid) that gives a certain adhesion strength between the raw material particles. In addition, the IS used also becomes pseudo-particles ^^, the coarse part becomes the core particle 1, the fine part becomes the fine particle 2, and the tailings penetrate between the core part and the fine part stone. Or, it can also be applied to cover them to increase the overall filling rate.
なお、 尾鉱として用いる 1 O/ m以下の 石超微粉の平均粒径は、 図 1 (b) に示した ように湿式レーザー法により測定したものである。  Note that the average particle size of 1 O / m or less stone ultrafine used as tailings was measured by the wet laser method as shown in Fig. 1 (b).
ところで、 従来バインダーとして用いられてきた生石灰やベントナイト等は、 スラグ形成 成分を多く含むことから使用量に制約がある上、 コストや供給の点でも 1 ^がある。 さちに は輸¾^¾¾¾の面でも問題があった。 これに対し、 同じような作用をもつ前記尾鉱の^、 供給できる量に制限が少なく、 最大の ^はパインダ一作用と同時に,ともなり、 とくに 6を60^13 3 s %以上含有している点で、 従来は見捨てられていたことを考えると、 資 源の有効活用につながるだけでなく、 高品 使用量の節約にもつながるというメリットが ある。 なお、 前記尾鉱が Fe分 60m a s s %未満の時は、 本発明においては、 比重選鉱法 等により、 Feを6 όma s s %以上にしたものを使用するようにする。 その理由は、 焼結 用原料として用いられる焼結用原料粒子は 55〜69m a s s %の F eを含有してあり、 焼 結用原料粒子より低品 {im鉱を使用すると、 焼結用原料 石自体の品位低下につながるた めである。 そのために、 焼結用原料鉄鉱石の F e分 55m a s s %を超える含有量が必要で あり、 本発明においては、 尾鉱の Feを 60ma s s%以上とすることで、 成形 さ れた擬似粒子の強度向上を達成するようにする。 上記尾鉱は、 平均径が 1 O m以下という超微粉であることから、 本発明においては、 で きれば山元において、 焼結原料 (粗粒 ·細粒^^石) と予め混合し、 ブレンド粉にしたもの を用いるようにするのが好ましい。 このような形態にすることで、 例えば、 長距離の輸送も 容易になり、 我が国のような遠隔地においても経済的に使用することが可能になる。  By the way, quick lime and bentonite, which have been used as binders in the past, have a limited amount of use because they contain many slag-forming components, and also have 1 ^ in terms of cost and supply. There was also a problem in terms of export ¾ ^ ¾¾¾. On the other hand, there is little restriction on the amount of tailings that can be supplied with the same action, and the maximum ^ is the same as the binder action, especially with 6 containing more than 60 ^ 13 3 s%. In view of what has been abandoned in the past, this has the advantage that it not only leads to effective use of resources, but also saves on the use of high-quality products. When the tailing has an Fe content of less than 60 m s s%, in the present invention, the iron with a Fe content of 6 ό ma s s% or more is used by the specific gravity ore method. The reason is that the raw material particles for sintering used as the raw material for sintering contain 55 to 69 mass% of Fe, which is lower than the raw material particles for sintering (if im ore is used, the raw material for sintering This is because the quality of the stone itself is reduced. Therefore, the content of the raw iron ore for sintering exceeds the Fe content of 55 mass%, and in the present invention, the tailing Fe is made to be 60 mass% or more, so that the pseudo particles formed To achieve improved strength. Since the above tailings are ultrafine powder with an average diameter of 1 Om or less, in the present invention, if possible, in the base, pre-mixed with a sintering raw material (coarse / fine-grained ^^ stone) and blended It is preferable to use powdered ones. By adopting such a configuration, for example, long-distance transportation is facilitated and it can be used economically even in remote areas such as Japan.
ただし、 この尾鉱は、 上述したように、 時のシックナー沈殿残渣として回収された 1 O/zm以下の超微粉鉱石であるから粒径が細かく、 これを 15ma s s (対焼結原料、 内 数) を超えて使用した 、 その過剰分は焼結原料粒子表面に付着するバインダー作用とし て働かず、 自らが戦虫の微粒子 (擬似粒子) を形造ってしまう。 こうした尾鉱の擬似粒子の 割合が多くなりすぎると、 焼結機パレット上に ¾Λし原料層 (ベッド) を形成したときに、 通気性を阻害する原因となる。 従って、 本発明において、 この尾鉱の焼結原料粒子 (擬似粒 子) への添口量は、 2 m a s s %以上 1 5 m a s s %以下 (内数) とすることがよく、 この 尾鉱の輸送のことまでを考えると、 5〜1 O m a s s %程度の添卩が好ましいと言える。 こ のような尾鉱は、 嵩比重が生石灰の 2〜 3倍もあり、 通常、 焼結工程では造粒バインダーと して生石灰が 1 m a s s %以上使用されること力ゝら、 嵩比重の大きな尾鉱では少なくとも 2 m a s s %以上の添加は必要である。 However, as mentioned above, this tailing is an ultrafine ore of 1 O / zm or less recovered as a thickener precipitation residue at the time, so it has a fine particle size. ) Excessive amount used does not work as a binder that adheres to the surface of the sintered raw material particles, and forms itself as a fine insect particle (pseudoparticle). If the proportion of such tailings pseudo-particles increases too much, when a raw material layer (bed) is formed on the sintering machine pallet, Causes air permeability to be hindered. Therefore, in the present invention, the amount of the tailings added to the sintering raw material particles (pseudoparticles) is preferably 2 mass% or more and 15 mass% or less (inner number). Therefore, it can be said that the addition of about 5 to 1 O mass% is preferable. Such tailings have a bulk density that is 2 to 3 times that of quicklime. Usually, the sintering process uses quicklime as a granulation binder in an amount of 1 mass% or more, which has a large bulk specific gravity. For tailings, addition of at least 2 mass% is necessary.
なお、 尾鉱を含んで擬似粒子化した超微粉被覆焼結原料粒子は、 これのハンドリングを操 り返すと、 その過程で超微細な尾鉱自体が難し擬似粒子化し、 バインダ一作用を利用でき なくなるおそれがある。 そのため、 本発明では、 成形 o .) 時に、 調湿用の水と共に、 粒 子の分散を促進する作用のある力ルポン酸基、 スルホン酸基を含む官能基を有する有機化合 物からなる界面活性剤、 例えば、 ナフタレンスルホン酸ナトイゥムゃステアリン酸ナトリウ ム、 アルキル硫酸力リウムなどを超微粉被覆焼結原料粒子に対して 0 . 0 0 2〜0 . 0 0 5 m a s s %m¾、 添口して併用することで、 難した擬似粒子を一旦分散させることで、 成 形助剤としての効果を十分に引き出せるようにすることも有効である。  In addition, when the handling of the ultrafine powder-coated sintered raw material particles containing tailings containing pseudo-fine particles is repeated, the ultrafine tailings themselves become difficult to pseudo-particles in the process, making it possible to use the binder action. There is a risk of disappearing. Therefore, in the present invention, during molding o.), A surface activity comprising an organic compound having a functional group including a ruponic acid group and a sulfonic acid group, which has an action of promoting the dispersion of particles together with water for conditioning. Agents, such as sodium naphthalene sulfonate, sodium stearate, alkylsulfurium alkyl sulfate, etc., are added to the ultrafine powder-coated sintered raw material particles in an additive amount of 0.02 to 0.05 mass%. Thus, it is also effective to sufficiently bring out the effect as a forming aid by once dispersing the difficult pseudo-particles.
また、 山元で処理されたブレンド粉中の尾鉱は、 例示のブラジル鉱石の外、 南アフリカ産 クンバ鉱石の尾鉱、 他の鉱石に添^した ¾ ^にも有効であり、 バインダーとの併用もまた有 効である。  In addition, the tailings in the blended powders processed at the base of the mountain are effective for the Brazilian ore, South Africa's cumba ore tailings, and ¾ ^ added to other ores. It is also effective.
ところで、本発明において、 上記尾鉱を添 する焼結原料粒子とは、 図 4に示すように、 核粒子 1となる平均粒径が 1 . 5 mm以上、 好ましくは 1 . 5〜4 . 5 mmの粗粒 石の 表面に、 平均粒径が核粒子 1より細かな微粒子 2である細粒鉄鉱石が付着して被覆された状 態にある、 平均粒径が 2 ~ 1 O mm程度の擬似粒子である。  By the way, in the present invention, the sintered raw material particles to which the tailings are added are, as shown in FIG. 4, an average particle diameter of 1.5 mm or more, preferably 1.5 to 4.5, as the core particles 1. The average particle size is about 2 to 1 O mm, which is covered with fine iron ore that is fine particles 2 with an average particle size finer than the core particle 1 on the surface of a coarse particle of mm. It is a pseudo particle.
本発明に係る焼結鉱製造用 (成形) 原料とは、 成形過程を経たときに、 擬似粒子化した前 記焼結原料粒子の表面、 特に、 核粒子 1 (粗粒赚石) と微粒子 2 (細粒纖石) とで構成 される間隙中に tirtsj 鉱であるテーリング粒子 3が加えられた水分に分散された状態で入り 込み、 その間隙を埋めると同時に表面を覆うように付着した状態の擬似粒子である。 その尾 鉱は、 成形時において核粒子 1と微粒子 2との粒子間の空隙をより小さく、 より分散させな がらそれ自身は大きな比表面積に基づく毛細管現象によるバインダ一作用、 即ち成形助剤と しての機能を発揮する。 すなわち、 本発明においては、 前 IEJ 鉱であるテーリング粒子 3が 粗粒の核粒子 1と核粒子 1より細粒の微粒子 2の間隙を埋めた状態の擬似粒子となる。 この ^,前記尾鉱は、 ¾is後の選鉱残渣として除去されたものを使用することから、 かかる擬 似粒子は、 破砕前の 時の塊^;石により近づいたものとなる。 したがって、 尾鉱を使用することは、 この尾鉱が鉄資源となると同様に、 バインダー作用 をも発揮するので、 本発明の場合、 成形に当たっても、 一般的な生石灰や石灰石の如き結合 剤の使用が不必要になる。 もちろん、 これらの一般的な結合剤との併用も可能である。 The raw material for the production of (sintered) sinter according to the present invention is the surface of the sintered raw material particles that have been converted to pseudo particles during the molding process, in particular, the core particle 1 (coarse meteorite) and the fine particle 2 The tailing particles 3 that are tirtsj ores are dispersed in the added water in the gap composed of (fine-grained meteorite) and fill the gap and at the same time adhere to cover the surface. It is a pseudo particle. While the tailings are smaller in the voids between the core particles 1 and the particles 2 during molding and more dispersed, they themselves serve as a binder action by capillary action based on a large specific surface area, that is, as a molding aid. All functions. That is, in the present invention, the tailing particles 3 which are the former IEJ ores become pseudo particles in a state where the gaps between the coarse core particles 1 and the fine particles 2 finer than the core particles 1 are filled. this ^, Since the tailings used are those removed as the beneficiation residue after ¾is, such mimic particles are closer to the lump at the time before crushing. Therefore, the use of tailings shows the binder effect as well as the tailings become iron resources.In the case of the present invention, the use of binders such as general quick lime and limestone is used even during molding. Is unnecessary. Of course, these general binders can be used in combination.
. なお、 前記尾鉱は、 バインダー (結合剤) ないし成形助剤として有効であるが、 そのため に、 水^有量があまり少ないと、 これらの作用効果が されるので、 好ましくは 5ma s s%以上、 より好ましくは 6ma s s %以上の水分含有量のものが好適に用いられる。 こ れは、 尾鉱を十分に水中に分散させ、 核となる粗粒子の周りに付着する細粒粒子間の間隙に うまく充填されながら移動する必要があるために、 成形時に必要な水分である。 水分量が不 足する^、 成形段階において尾鉱の配合量に応じて添 することが好ましい。 難例 1 The tailings are effective as binders or molding aids. For this reason, if the amount of water is too small, these effects are achieved, so preferably 5 ma ss% or more. More preferably, those having a water content of 6 mass% or more are suitably used. This is the moisture required during molding because it is necessary to disperse the tailings in water sufficiently and move with good filling in the gaps between fine particles adhering around the core coarse particles . Insufficient water content ^, it is preferable to add according to the amount of tailings in the molding stage. Difficult example 1
平均粒径 (算術平均径、 以下同じ) が 2.43 mmの焼結原料粒子 (焼結用粗粒 石) と してブラジルカラジヤス 石 (以下、 「C石 L」 と略記する) と、 同じく平均粒径が lmm以下の細粒鉄鉱石 (以下、 「C鉄鉱石 SJ と略記する) に対し、 その C鉄鉱石の尾鉱 を、 内数で Oma s s% (試験 No. 1) 、 2ma s s% (試験 No. 2) 、 4ma s s% (試験 No. 3) 、 5 m a s s % (試験 No. 4) 、 8 m a s s % (試験 No. 5) 、 10 ma s s% (試験 No. 6) 、 12ma s s% (試験 N o . 7) 、 15ma s s% (試験 N o. 8) 、 18ma s s% (試験 No. 9) 添 卩含有させてなる焼結原料粒子 (ブレンド鉄 鉱石粉) 、 および生石灰を 2. Oma s s %添加したブレンド鉄鉱石 (試験 N o · 10) を、 それぞれ 2.5 k g用いて^試験を実施した。 この^試験は、 径 40 Ommのディスクぺ レタイザ一を用いて混合、 造粒したものである。 また、 比較のために、 上記 C鉄鉱石に、 従 来、 ^用バインダーとして用いられてきた生石灰を 2· Oma s s%添 ΐΐして同様の^試 験を実施した。 IS後の試料を 1.0 k g採取し、 縮分により 2分割し、 その一方は、 直ちに 粒度分析を行って湿潤状態の粒 を測定した。 もう一方は、 110でで 12時間乾燥し、 そ の後、 大気中で冷却し、 乾燥状態の粒度分布を測定した。  Brazilian calajiyah stone (hereinafter abbreviated as “C stone L”) as a sintering raw material particle (coarse stone for sintering) with an average particle diameter (arithmetic average diameter, the same shall apply hereinafter) is equal to the average For fine iron ore with a particle size of lmm or less (hereinafter abbreviated as C iron ore SJ), the tailing of the C iron ore is Oma ss% (test No. 1), 2 ma ss% (Test No. 2), 4 mass% (Test No. 3), 5 mass% (Test No. 4), 8 mass% (Test No. 5), 10 ma ss% (Test No. 6), 12 ma ss % (Test No. 7), 15 ma ss% (Test No. 8), 18 ma ss% (Test No. 9) Sintering raw material particles (blended iron ore powder) containing 2 and 2 lime The test was carried out using 2.5 kg of blended iron ore (test No o · 10) added with Oma ss%, which was mixed and granulated using a disc pelletizer with a diameter of 40 Omm. Also, for comparison In addition, a similar test was conducted by adding 2 Oma ss% of quick lime, which was conventionally used as a binder for the above C iron ore, and taking 1.0 kg of the sample after IS. One was divided into two, and one was immediately subjected to particle size analysis to measure wet particles, and the other was dried at 110 for 12 hours, then cooled in air and dried to a dry particle size. Distribution was measured.
試験 No. l〜No. 10についての測定結果を、 表 2ならびに図 5 (a) 、 (b) に、 湿潤状態、 乾燥状態の平均粒径で示した。 この図 5より、 尾鉱を 用の成形助剤として 2 ~15ma s s% (試験 N o · 2〜No. 8) 使用することにより、 湿潤状態擬似粒子の平 均粒径 (算術平均径) が大きくなることが分った。 また、 乾燥後の粒子径も、 この成形助剤 を添加しなかった場合に比べ、 この成形助剤を添加した場合、 とくに、 尾鉱が 5m a s s% 〜:! Oma s s%の範囲では大きく、 原料層内で乾燥されたときにも、 崩壊しにくく通気性 を良好に保てることがわかった。 また、 尾鉱の添 v¾口量が 15m a s s%を超えると、 湿潤状 態では効果があっても、 乾燥した^^に崩壊し、 尾鉱の微粉が増えるため、 平均径は、 小さ くなつてしまうこと'もわかった。 The measurement results for Test Nos. 1 to 10 are shown in Table 2 and FIGS. 5 (a) and 5 (b) as average particle sizes in the wet state and the dry state. From Fig. 5, 2 tailings were used as molding aids for It was found that the average particle diameter (arithmetic average diameter) of the wet state pseudo particles was increased by using ~ 15 ma ss% (Test No. 2 to No. 8). In addition, the particle size after drying is 5% ass% when tailing is added, especially when this forming aid is added compared to the case where this forming aid is not added. It was large in the range of Oma ss%, and it was found that even when dried in the raw material layer, it does not easily collapse and maintains good air permeability. In addition, if the tailing amount of the tailings exceeds 15m ass%, even if it is effective in the wet state, it will disintegrate into dry ^^ and increase the fines of the tailings, so the average diameter will become smaller. I also understood.
表 2 Table 2
Figure imgf000017_0001
Figure imgf000017_0001
* c鉄鉱石:ブラジルカラジャス鉄鉱石  * c Iron Ore: Brazilian Carajas Iron Ore
実施例 2 Example 2
ί ^時の水分の影響を調べるため、 C鉄鉱石および C鉄鉱石 +C鉄鉱石の尾鉱 10. Oma s s%を試料として、 時の水分を 5.0〜10. Oma s s %に変化させた雜試験を、 上記^試験と同様に実施し平均径一 0. 5mm を調べた。 その結果を図 6 (湿潤粒 子) 、 図 7 (乾燥粒子) に示した。  ί ^ In order to investigate the effect of moisture at the time, C iron ore and C iron ore + C iron ore tailing 10. Oma ss% was used as the sample, and the moisture at the time was changed to 5.0 to 10. Oma ss% The test was conducted in the same manner as the above-mentioned ^ test, and an average diameter of 0.5 mm was examined. The results are shown in Fig. 6 (wet particles) and Fig. 7 (dry particles).
これらの図に示す結果より、 湿潤状態では、 尾鉱を混合したブレンド粉の粒径は、 C 石単味と比較して大差ないが、 乾燥後の粒径では、 造粒水分 6 ma s s%以上の添加で顕著 な効果を示した。 即ち、 平均径の増大が認められると共に、 一0.5 mm以下の微粒子の割合 が大きく減少した。 ただし、 通常のブラジル鉱石の造粒水分である 5〜 5. 6 m a s s %で は効果が少ないことがわかった。 このこと力ら、 この原料の 3t¾¾k分としては、 5ma s s%では少ないので、 尾鉱も増やす場合、 造粒水分の量を増やす必要のあることがわかった。 したがって、 この^、 微 ΙτΚ分は 5. 5ma s s%超とし、 尾鉱の増加に応じてさらに増 加させることが好ましい。 それは f¾K石超微粉の充填は水を介在することにより円滑に果た されるもので、 好ましい 分は 6 m a s s%以上とする。 From the results shown in these figures, in the wet state, the particle size of the blended powder mixed with tailings is not much different from that of C stone alone, but the granulated moisture is 6 ma ss% in the particle size after drying. The above addition showed a remarkable effect. That is, an increase in average diameter was observed, and the proportion of fine particles of 10.5 mm or less was greatly reduced. However, it was found that the effect was small at 5 to 5.6 mass%, which is the granulated moisture of normal Brazilian ore. From this, it was found that the amount of 3t¾¾k of this raw material is small at 5 mass%, so that it is necessary to increase the amount of granulated water when increasing tailings. Therefore, it is preferable that this ^, fine Ιτ apportion is more than 5.5mass%, and further increased as tailings increase. The filling of f¾K stone ultrafine powder can be achieved smoothly by intervening water, and the preferable content is 6 mass% or more.
• 例 3 • Example 3
(試験 A)  (Test A)
C纖石 (3 Oma s s %) と他の通常の焼結用粗!^ t£石 (30. 3 m a s s %) に、 副原料である石灰石(8.2ma s s%)、 ドロマイト(7.3ma s s%)、 硅石(2.2ma s s%)、 生石灰(2. Oma s s%)、 焼結 IS(20. Oma s s %)およ コークス(4.35 ma s s %外数)を加えた。 水分を造粒後粒子の水分量を通常ブラジル鉱石の 5. Oma s s%と、 ブラジノ 石、 豪州 ^^石を主体とし、 インドやアフリカ産^ |£石をブレンドし た焼結用鉄鉱石に通常使用する 7. 0 m a s s %の中間値である 6.0 m a s s %になるよう に調整して、 径 1 · 0 mのドラムミキサ一で 5分間造粒した後、 径 300 mmの鍋試験装置に 層厚が 60 Ommになるよう ¾Λして焼成^^を行った。 上記と同じ量の C鉄鉱石およびその C鉄鉱石の尾鉱 1 Oma s s%を加えたブレンド鉱石 (3 Oma s s %) と他の通常の焼結用粗^ IS石粉 (30. 5 m a s s %) に、 副原料で ある石灰石(8.2ma s s%)、 ドロマイト(7.3ma s s%)、 硅石(2. Oma s s%)、 生 石灰(2. Oma s s%)、 焼結繊(20. Oma s s %)およ Λコークス(4.35ma s s%外数)を加え、 水分を;^後粒子の水分量が 7.5ma s s %になるように調整して、 径 1.0 mのドラムミキサ一で 5分間造粒子した後、 径 300 mmの鍋試験装置に層厚が 600 mmになるよう ¾Λして焼成試験を行った。  C meteorite (3 Oma ss%) and other normal coarse sinter! ^ T £ stone (30.3 mass%), limestone (8.2 ma ss%), dolomite (7.3 ma ss%) ), Meteorite (2.2 ma ss%), quicklime (2. Oma ss%), sintered IS (20. Oma ss%) and coke (4.35 ma ss%). After granulating the moisture content, the amount of moisture in the particles is usually 5. Oma ss% of Brazilian ore, brazino stone, Australia ^^ stone mainly composed of Indian or African ^ | £ stone blended iron ore Adjust it to 6.0 mass%, which is the middle value of 7.0 mass% that is normally used, and granulate for 5 minutes with a drum mixer with a diameter of 1.0 m. ¾Λ and fired ^^ so that the thickness becomes 60 Omm. The same amount of C iron ore and blended ore (3 Oma ss%) plus 1 Oma ss% of the C iron ore tailings and other normal coarse coarse IS stone powder (30.5 mass%) In addition, limestone (8.2 ma ss%), dolomite (7.3 ma ss%), meteorite (2. Oma ss%), quick lime (2. Oma ss%), sintered fiber (20. Oma ss%) ) And Λ coke (4.35 ma ss% extra number), and adjusted the water content so that the water content of the post-particle was 7.5 ma ss%, and granulated for 5 minutes using a drum mixer with a diameter of 1.0 m. After that, a baking test was performed on a 300 mm diameter pan test apparatus with a layer thickness of 600 mm.
(試験 C)  (Test C)
上記 Βと同じ配合で、 界面活性剤としてナフタレンスノレホン酸ナトリウムを、 工程に おいて外数で 0.002m a s s %加え、 難した粒子の焼成実験も行った。  With the same composition as the above-mentioned soot, sodium naphthalene sulphonate as a surfactant was added in an additional 0.002 mass% in the process, and firing experiments on difficult particles were also conducted.
(試験 D) (Test D)
Figure imgf000018_0001
(36. 0 m a s s %) に、 畐 ij 原料である石灰石(8.2ma s s%)、 ドロマイト(7.3ma s s%)、 硅石(1.5ma s s%)、 生右灰(2. Oma s s%)、 焼結纖(20. Oma s s %)およ Ό¾ &コークス(4.35 ma s s%外数)を配合し、 水分は通常と同じ 6. Oma s s%で雕したのち、 上記鍋試験 装置により、 焼成試験を行った。
Figure imgf000018_0001
(36. 0 mass%), limestone (8.2 ma ss%), dolomite (7.3 ma ss%), meteorite (1.5 ma ss%), raw right ash (2. Oma ss%), baked Liquor (20. Oma ss%) and Ό¾ & coke (4.35 After mixing with Oma ss%, the baking test was conducted using the above-mentioned pan test apparatus.
(試験 E)  (Test E)
< 赚石および C赚石の尾鉱 1 Oma s s%からなるブレンド鉱石 (25m a s s %) と他の通常の焼結用粗!^ IS石 (36. 3ma s s %) に、 副原料である石灰石(8.2ma s s%)、 ドロマイト(7.3m a s s%)、 硅石(1.2ma s s%)、 生石灰(2. Oma s s%)、 焼結 ilt£(20. Oma s s %)および粉コークス(4.35 m a s s%外数)を配合し、 水分を通常と同じ 6. Oma s s %で調整することなく したのち、 上記鍋試験装置によ り、 焼成試験を実施した。  <Meteorite and C meteorite tailings 1 Oma ss% blended ore (25m ass%) and other normal coarse sinter! ^ IS stones (36.3 ma ss%) and limestone as a secondary material (8.2ma ss%), dolomite (7.3mass%), meteorite (1.2ma ss%), quicklime (2. Oma ss%), sintered ilt £ (20. Oma ss%) and powder coke (4.35 mass% outside) After adjusting the water content to 6. Oma ss% as usual, the baking test was carried out using the pan test equipment.
これら、 一連の焼成 (A〜E) の結果を図 8に示す。 この図 8に示すように、 C 石を 30 m a s s %以上使用して焼結鉱を製造した場合、 尾鉱を 10 m a s s %添加した超 微粉被覆ブレンド粉 (B) は生産性が高く強度の高いものが得られることが明らかとなった。 さらに、 界面活性剤を少 »¾]えることで (C) 、 生産性改善効果がさらに高められることも わかった。 しかしながら、 同じような配合を行っても、 水分調整を行わないと (D、 E) 、 生産性ならびに焼結鉱冷却強度 (シャッターインデックス S I) ともに、 本発明適合例 (B、 C) に比べ劣ることがわかった。  Figure 8 shows the results of these series of firings (A to E). As shown in Fig. 8, when a sintered ore is produced using 30 mass% or more of C stone, the ultrafine powder blended powder (B) added with 10 mass% of tailings has high productivity and high strength. It became clear that things could be obtained. It was also found that the productivity improvement effect can be further enhanced by reducing the surfactant (C) (C). However, even if the same composition is used, if the moisture content is not adjusted (D, E), the productivity and the sinter cooling strength (shutter index SI) are both inferior to those of the examples of the present invention (B, C). I understood it.

Claims

請求の範囲 The scope of the claims
1. 焼結用原料粉と平均粒径が 10 n m以下の 石超微粉を ¾1する «1工程、 1. Raw material powder for sintering and stone ultrafine powder with an average particle size of 10 nm or less ¾1 «1 step,
前記焼結用原料粉に対し前記鉄鉱石超微粉を 2〜 15 m a s s %の添加量で添加 -混 合し、 超微粉被覆焼結原料粒子を形成する添卩 '混合工程、 と ' 前記超微粉被覆焼結原料粒午を成形する成形工程、  The iron ore ultrafine powder is added to the sintering raw material powder in an addition amount of 2 to 15 mass%, and mixed to form ultrafine powder-coated sintered raw material particles. Forming process for forming coated sintered raw material particles,
を有する焼結鉱製造用原料の製造方法。  A method for producing a raw material for producing sintered ore.
2. tins焼結用原料粉が、 焼結原料用 ¾K石粉と ¾tsを含有する請求項 1に記載の焼結鉱 製造用原料の製造方法。 2. The method for producing a raw material for producing sintered ore according to claim 1, wherein the raw material powder for sintering tins contains ¾K stone powder for sintering raw material and ¾ts.
3. 前記焼結原料用 ^^石粉が、 55 m a s s %以上の F e、 5 m a s s %以下の S i O 2 と 5ma s s%以下の A 1203含有する請求項 2に記載の焼結鉱製造用原料の製造方法。 3. The sintered feedstock ^^ stone dust is sintered according to claim 2 containing 55 mass% or more of F e, 5 mass% or less of S i O 2 and 5 ma ss% or less of A 1 2 0 3 A method for producing raw materials for ore production.
4. ΙίίΙΞ焼結原科用 ^石粉が、 55〜69ma s s%の F e、 0. 5〜5ma s s%の S i 02と 0. 5〜5ma s s%の A1203含有する請求項 3に記載の焼結鉱製造用原料の 製造方法。 4. 石 ίίΙΞ Sintered Raw Materials ^ Stone powder contains 55 ~ 69ma ss% Fe, 0.5 ~ 5ma ss% Si 0 2 and 0.5 ~ 5ma ss% A1 2 0 3 4. A method for producing a raw material for producing sintered ore according to 3.
5. 前記 石超微粉の平均粒径力 湿式レーザー法によつて測定された平均粒径である 請求項 1に記載の焼結鉱製造用原料の製造方法。 5. The method for producing a raw material for producing sinter according to claim 1, wherein the average particle size force of the ultrafine stone powder is an average particle size measured by a wet laser method.
6. 前記赚石超微粉が、 60 m a s s %以上の F e、 0. 5〜 5 m a s s %の S i O 2と 0 · 5〜 5 m a s s %の A 12 O 3含有し、 成形時に成形助剤として機能する請求項 1に記載 の焼結鉱製造用原料の製造方法。 6. The赚石super fine powder, 60 mass% or more of F e, 0. 5~ 5 mass% of S i O 2 and 0 · 5~ 5 mass% of A 1 2 O 3 contained, molding assistant during molding The method for producing a raw material for sinter production according to claim 1, which functions as an agent.
7. 前記^ K石超微粉が、 60~69ma s s0 /。の F e、 0. 5〜 5 m a s s %の S i 02 と 0. 5〜5ma s s%の A1203含有し、 成形時に成形助剤として機能する請求項 5に記 載の焼結鉱製造用原料の製造方法。 7. The ultrafine powder of ^ K is 60-69 ma ss 0 /. The sintered ore according to claim 5, containing 0.5 to 5 mass% of Si 0 2 and 0.5 to 5 mass% of A1 2 0 3 and functioning as a molding aid during molding. A manufacturing method of manufacturing raw materials.
8 . tins 石超微粉が、 選鉱残渣として得られた尾鉱である請求項 1に記載の焼結鉱製 造用原料の製造方法。 8. The method for producing a raw material for sinter ore production according to claim 1, wherein the tins ultrafine powder is tailing obtained as a beneficiation residue.
9 . 前記 石超微粉が、 南米産へマタイト鉱石の尾鉱である請求項 1に記載の焼結鉱製 造用原料の製造方法。 9. The method for producing a raw material for sinter ore production according to claim 1, wherein the ultrafine stone is a tailing of a hematite ore from South America.
1 0 . 前記南米産へマタイト鉱石が、 カラジヤス鉄鉱石である請求項 9に記載の焼結鉱製 造用原料の製造方法。 10. The method for producing a raw material for producing a sintered ore according to claim 9, wherein the South American hematite ore is Calajiyas iron ore.
1 1 . 前記鉄鉱石超微粉が、 ァフリ力産へマタイト鉱石の尾鉱である請求項 1に記載の焼 結鉱 造用原料の製造方法。 11. The method for producing a raw material for sinter ore as claimed in claim 1, wherein the ultrafine iron ore powder is a tailing of a matite ore produced in Africa.
1 2. 前記纖石超微粉の前記焼結用原料粉に対する添卩量が、 5〜: I O m a s s %であ る請求項 1に記載の焼結鉱製造用原料の製造方法。 1 2. The method for producing a raw material for sinter ore production according to claim 1, wherein an amount of the ultrafine silica powder added to the raw material powder for sintering is 5 to: I O ma s s%.
1 3 . l己添口'混合工程が、 焼結用原料粉と纖石超微粉を混合機により混合、 調湿す ることからなり、 1 3. The self-injection mixing process consists of mixing the raw material powder for sintering and ultrafine meteorite powder using a mixer and adjusting the humidity.
前記成形工程が、 ドラムペレタイザ一を使用して超微粉被 «結原料粒子を成形す ることからなる、  The forming step comprises forming ultrafine powdered raw material particles using a drum pelletizer;
請求項 1に記載の焼結鉱製造用原料の製造方法。  The manufacturing method of the raw material for sinter manufacture of Claim 1.
1 4. rn ·混合工程が、 焼結用原料粉と纖石超微粉を混合機により混合、 調湿す ることからなり、 1 4. rn · The mixing process consists of mixing the raw material powder for sintering and ultrafine silica powder with a mixer and conditioning
前記成形工程が、 ディスク型ペレタイザ一を使用して超微粉被 a¾結原料粒子を成 形することからなる、  The molding step comprises forming ultrafine powder coated raw material particles using a disk-type pelletizer.
請求項 1に記載の焼結鉱製造用原料の製造方法。  The manufacturing method of the raw material for sinter manufacture of Claim 1.
1 5 · 前記添 .混合工程が、 焼結用原料粉に前記赚石超微粉を 2〜: I 5 m a s s %山 元で添 ιι ·混合し、 超微粉被覆焼結原料粒子を形成することからなる請求項 1に記載の焼結 鉱製造用原料の製造方法。 1 5 · The additive. The mixing step involves mixing the ultrafine powder of the meteorite to the raw material powder for sintering 2 ~: I 5 mass% Yamamoto · Mixing to form ultrafine powder-coated sintered raw material particles The method for producing a raw material for producing sinter according to claim 1.
1 6 . 前記成形工程が、 副原料、 バインダー、 水および分散剤のいずれか 1種以上を加えて、 超微粉被覆焼結原料粒子を成形することからなる請求項 1に記載の焼結鉱製造用原料の製造 方法。 16. The sinter production according to claim 1, wherein the forming step comprises forming ultrafine powder-coated sintered raw material particles by adding one or more of a secondary raw material, a binder, water, and a dispersing agent. Of raw materials.
1 7 . 前記副原料が、 焼結鉱のスラグ成分調整に用いるものであって、 石灰石、 ドロマイト、 生石灰、 珪石、 蛇 N iスラグ、 マグネサイトおよ 鉄からなるグループから選択さ れた少なくとも一つである請求項 1 6に記載の焼結鉱製造用原料の製造方法。 1 7. The auxiliary material is used for adjusting the slag component of sintered ore, and is at least one selected from the group consisting of limestone, dolomite, quicklime, silica, snake Ni slag, magnesite and iron. The method for producing a raw material for producing sinter according to claim 16.
1 8 . 前記水は、 成形助剤の添加量に応じ、 成形後粒子の乾燥前水分量で 5 m a s s %以上 添 される請求項 1 6に記載の焼結鉱製造用原料の製造方法。 18. The method for producing a raw material for sinter ore production according to claim 16, wherein the water is added in an amount of 5 mass% or more of the pre-drying water content of the particles after molding according to the amount of the molding aid added.
1 9 . ΙίίΙΕ乾燥前水分量が 6〜 1 0 m a s s %である請求項 1 8に記載の焼結鉱製造用原料 の製造方法。 19. The method for producing a raw material for producing sintered ore according to claim 18, wherein the moisture content before drying is 6 to 10 m s s%.
2 0 . fi!lB分散剤は、 カルボン酸基、 スルホン酸基を含む官能基を有する有機化合物からな る界面活性剤であり、 超微粉被難結原料粒子に対し、 0. 0 0 2〜 0. 0 0 5 m a s s % 添 される請求項 1 6に記載の焼結鉱製造用原料の製造 法。 ' The fi! LB dispersant is a surfactant made of an organic compound having a functional group containing a carboxylic acid group and a sulfonic acid group. The method for producing a raw material for producing sinter according to claim 16, which is added at 0.0.05 mass%. '
2 1 . 前記界面活性剤が、 ナフタレンスルホン酸ナトリウム、 ステアリン酸ナトリウム、 ァ ルキル硫酸力リゥムからなるグループから選択された少なくとも 1つである請求項 2 0に記 載の焼結鉱製造用原料の製造方法。 21. The surfactant according to claim 20, wherein the surfactant is at least one selected from the group consisting of sodium naphthalenesulfonate, sodium stearate, and alkylsulfuric acid. Production method.
PCT/JP2008/071601 2007-11-22 2008-11-20 Method for production of raw material for use in the production of sintered ore WO2009066796A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2008801170144A CN101903542B (en) 2007-11-22 2008-11-20 Method for production of raw material for use in the production of sintered ore
BRPI0819293-6A BRPI0819293B1 (en) 2007-11-22 2008-11-20 METHOD FOR THE PRODUCTION OF RAW MATERIAL FOR THE PRODUCTION OF SINTERED ORE
KR1020107010325A KR101190938B1 (en) 2007-11-22 2008-11-20 Method for production of raw material for use in the production of sintered ore
AU2008327116A AU2008327116B2 (en) 2007-11-22 2008-11-20 Method for production of raw material for use in the production of sintered ore
ZA2010/03349A ZA201003349B (en) 2007-11-22 2010-05-12 Method for producing raw material for producing sintered ore

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-302510 2007-11-22
JP2007302510 2007-11-22

Publications (1)

Publication Number Publication Date
WO2009066796A1 true WO2009066796A1 (en) 2009-05-28

Family

ID=40667613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/071601 WO2009066796A1 (en) 2007-11-22 2008-11-20 Method for production of raw material for use in the production of sintered ore

Country Status (8)

Country Link
JP (1) JP5464317B2 (en)
KR (1) KR101190938B1 (en)
CN (1) CN101903542B (en)
AU (1) AU2008327116B2 (en)
BR (1) BRPI0819293B1 (en)
TW (1) TWI411687B (en)
WO (1) WO2009066796A1 (en)
ZA (1) ZA201003349B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482729A (en) * 2009-07-10 2012-05-30 Jfe钢铁株式会社 Method For Producing Starting Material For Sintering
CN104030328A (en) * 2014-06-27 2014-09-10 西南科技大学 Method for extracting magnesium oxide and preparing active porous silicon dioxide material by using serpentine
WO2015037220A1 (en) * 2013-09-13 2015-03-19 Jfeスチール株式会社 Method for producing sintered mineral
RU2638487C2 (en) * 2013-07-25 2017-12-13 Кабусики Кайся Кобе Сейко Се (Кобе Стил,Лтд.) Method for manufacturing agglomerates and reduced iron
CN113136468A (en) * 2021-04-20 2021-07-20 山东鑫华特钢集团有限公司 Iron-making sintering rotary drum and particle size grading method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5459655B2 (en) * 2008-07-18 2014-04-02 Jfeスチール株式会社 How to treat tailings
JP4885311B2 (en) * 2008-12-26 2012-02-29 新日本製鐵株式会社 Granulation method of sintering raw material using X-ray CT
JP5471852B2 (en) * 2010-06-03 2014-04-16 新日鐵住金株式会社 Preparation method of sintering raw material
JP5146573B1 (en) * 2010-07-30 2013-02-20 Jfeスチール株式会社 Method for manufacturing raw materials for sintering
TWI558657B (en) * 2011-09-08 2016-11-21 淡水河谷公司 Application of carbon nanotubes on agglomerates of fine ore to increase the mechanical strength
KR101325204B1 (en) * 2011-09-21 2013-11-04 한국지질자원연구원 Method of obtaining matte and slag from tailings
US9045809B2 (en) * 2012-05-05 2015-06-02 Nu-Iron Technology, Llc Reclaiming and inhibiting activation of DRI fines
TWI468522B (en) * 2012-05-30 2015-01-11 Jfe Steel Corp Method for producing granulation material for sintering, producing apparatus thereof, and method for producing sinter ore for blast furnace
JP6331639B2 (en) * 2014-04-18 2018-05-30 新日鐵住金株式会社 Sintering raw material blending method
CN104195328B (en) * 2014-07-31 2016-08-24 甘肃酒钢集团宏兴钢铁股份有限公司 A kind of method utilizing iron selection tailings to make ferric oxide ore reduction roasting green-ball
JP6715861B2 (en) 2015-11-16 2020-07-01 日本碍子株式会社 Manufacturing method of oriented sintered body
KR102189069B1 (en) * 2016-03-04 2020-12-09 제이에프이 스틸 가부시키가이샤 Method for manufacturing sintered ore
JP2018172704A (en) * 2017-03-31 2018-11-08 Jfeスチール株式会社 Manufacturing method of granulated sintering raw material and manufacturing method of sintered ore
KR102139634B1 (en) 2018-07-12 2020-07-30 주식회사 포스코 Method of manufacturing sintered ore
JP7419155B2 (en) * 2020-05-07 2024-01-22 株式会社神戸製鋼所 Method for manufacturing iron ore pellets

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163220A (en) * 1985-01-08 1986-07-23 Nippon Steel Corp Pretreatment of raw material to be sintered
JP2003155525A (en) * 2001-09-07 2003-05-30 Nippon Steel Corp Granulation treatment method for raw material in ironmaking
JP2005171388A (en) * 2000-05-29 2005-06-30 Jfe Steel Kk Pseudo particle raw material for sintering, sintered ore for blast furnace, and method of producing pseudo particle raw material for sintering

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170224A (en) * 1983-03-18 1984-09-26 Kawasaki Steel Corp Method for adding ultrafine powder dust to raw material for sintering
JPS60248827A (en) * 1984-05-24 1985-12-09 Nippon Steel Corp Preliminary treatment of sintered raw material
JPS6254036A (en) * 1985-09-03 1987-03-09 Nippon Kokan Kk <Nkk> Manufacture of minipellet for sintering
JPH089739B2 (en) * 1989-08-23 1996-01-31 日本鋼管株式会社 Method for producing calcined agglomerated ore
CN1198948C (en) * 2000-05-29 2005-04-27 杰富意钢铁株式会社 Raw material for sintering in form of pseudo grain and method for producing the same
KR100550438B1 (en) * 2001-02-22 2006-02-08 신닛뽄세이테쯔 카부시키카이샤 Method of Granulation Treatment of Raw Material for Iron Making and Granulation Treatment Agent for Iron Making
JP4368245B2 (en) * 2004-05-17 2009-11-18 株式会社リケン Hard particle dispersion type iron-based sintered alloy
JP5119462B2 (en) * 2005-11-17 2013-01-16 新日鐵住金株式会社 Pretreatment method of sintered raw material and method of manufacturing sintered ore
JP5180438B2 (en) * 2006-01-18 2013-04-10 新日鐵住金株式会社 Method for producing charcoal-containing pellets
JP2007277684A (en) 2006-04-11 2007-10-25 Jfe Steel Kk Nonfired agglomerated ore for iron manufacture
JP5098248B2 (en) * 2006-08-03 2012-12-12 新日鐵住金株式会社 Granulation method of iron-containing dust collection dusts for iron making
JP5000366B2 (en) * 2007-04-12 2012-08-15 新日本製鐵株式会社 Method for producing sintered ore

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163220A (en) * 1985-01-08 1986-07-23 Nippon Steel Corp Pretreatment of raw material to be sintered
JP2005171388A (en) * 2000-05-29 2005-06-30 Jfe Steel Kk Pseudo particle raw material for sintering, sintered ore for blast furnace, and method of producing pseudo particle raw material for sintering
JP2003155525A (en) * 2001-09-07 2003-05-30 Nippon Steel Corp Granulation treatment method for raw material in ironmaking

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482729A (en) * 2009-07-10 2012-05-30 Jfe钢铁株式会社 Method For Producing Starting Material For Sintering
CN102482729B (en) * 2009-07-10 2015-01-07 Jfe钢铁株式会社 Method For Producing Starting Material For Sintering
RU2638487C2 (en) * 2013-07-25 2017-12-13 Кабусики Кайся Кобе Сейко Се (Кобе Стил,Лтд.) Method for manufacturing agglomerates and reduced iron
WO2015037220A1 (en) * 2013-09-13 2015-03-19 Jfeスチール株式会社 Method for producing sintered mineral
CN104030328A (en) * 2014-06-27 2014-09-10 西南科技大学 Method for extracting magnesium oxide and preparing active porous silicon dioxide material by using serpentine
CN104030328B (en) * 2014-06-27 2016-04-06 西南科技大学 The method of active porous shape earth silicon material is prepared with serpentine extraction magnesium oxide
CN113136468A (en) * 2021-04-20 2021-07-20 山东鑫华特钢集团有限公司 Iron-making sintering rotary drum and particle size grading method

Also Published As

Publication number Publication date
CN101903542B (en) 2013-01-02
ZA201003349B (en) 2012-05-30
TWI411687B (en) 2013-10-11
JP5464317B2 (en) 2014-04-09
KR101190938B1 (en) 2012-10-12
AU2008327116A1 (en) 2009-05-28
AU2008327116B2 (en) 2011-08-18
KR20100101562A (en) 2010-09-17
JP2009144240A (en) 2009-07-02
BRPI0819293B1 (en) 2019-04-09
CN101903542A (en) 2010-12-01
TW200936774A (en) 2009-09-01
BRPI0819293A2 (en) 2016-08-02

Similar Documents

Publication Publication Date Title
WO2009066796A1 (en) Method for production of raw material for use in the production of sintered ore
JP5000366B2 (en) Method for producing sintered ore
JP4746410B2 (en) Method for producing sintered ore
CN109563426A (en) Moulded coal
CN100580106C (en) Cold briquetting and pelletisation method
JP2008101263A (en) Method for granulating raw material to be sintered
JP5935979B2 (en) Method for producing pseudo-particles for producing sinter and method for producing sinter
JP5682286B2 (en) Method for producing granulated and sintered raw materials
JP2010138445A (en) Method for preliminarily treating granulated raw material to be sintered
JP5398820B2 (en) Processing method of granulated material for sintering
JP2000256756A (en) Method for granulating sintering raw material
JP6051883B2 (en) Method for drying sintered raw material granulation
JP4231468B2 (en) Method for producing sintered ore
JP6331639B2 (en) Sintering raw material blending method
JP2016176130A (en) Raw pellet for manufacturing iron ore calcinated pellet and method for manufacturing iron ore calcinated pellet
JP2009167466A (en) Method for producing sintered ore
RU2463362C2 (en) Method to prepare iron ore for metallurgical processing
CN105331806A (en) Pellets manufactured through magnesium smelting waste and manufacturing method of pellets
JP2004027245A (en) Method for pelletizing sintering material
JP5831397B2 (en) Method for producing sintered ore
RU2466196C1 (en) Iron-containing material processing method
JP2004027319A (en) Method of recycling waste gypsum board to sintering
JP5799892B2 (en) Granulation method of sintering raw material
JP2018053355A (en) Manufacturing method of carbon-containing agglomerate and carbon-containing agglomerate
JP2008291331A (en) Method for manufacturing zinc-containing dust agglomerate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880117014.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08852399

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008327116

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12010500885

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2008327116

Country of ref document: AU

Date of ref document: 20081120

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20107010325

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1712/KOLNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08852399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0819293

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100519