JP5821778B2 - Pretreatment method of sintering raw material - Google Patents

Pretreatment method of sintering raw material Download PDF

Info

Publication number
JP5821778B2
JP5821778B2 JP2012117841A JP2012117841A JP5821778B2 JP 5821778 B2 JP5821778 B2 JP 5821778B2 JP 2012117841 A JP2012117841 A JP 2012117841A JP 2012117841 A JP2012117841 A JP 2012117841A JP 5821778 B2 JP5821778 B2 JP 5821778B2
Authority
JP
Japan
Prior art keywords
raw material
mass
water
amount
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012117841A
Other languages
Japanese (ja)
Other versions
JP2013245358A (en
Inventor
淳治 長田
淳治 長田
健一 八ヶ代
健一 八ヶ代
大山 浩一
浩一 大山
茂 樫村
茂 樫村
理 石山
理 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012117841A priority Critical patent/JP5821778B2/en
Publication of JP2013245358A publication Critical patent/JP2013245358A/en
Application granted granted Critical
Publication of JP5821778B2 publication Critical patent/JP5821778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、焼結原料を混合(撹拌)し造粒する際の焼結原料の事前処理方法に関する。   The present invention relates to a pretreatment method for a sintered material when the sintered material is mixed (stirred) and granulated.

焼結原料は鉄鉱石からなる粉鉱石であり、必要に応じて成分調整する副原料や凝結材を配合し、焼成前に、この粉鉱石に水とバインダーを混合し造粒処理することで、焼結機へ装入する微粉量を低減している。この造粒は、焼結生産性の維持改善に重要な操作であり、従来から各種の造粒技術が提案されてきた。
例えば、特許文献1には、焼結原料(混合原料)の水分を目標水分値に調整するため、ミキサーでの散水量を、フィードフォワード制御系とフィードバック制御系とを組合せて制御する方法が開示されている。これにより、焼結原料中の水分を精度よく、時間遅れなく連続的に目標値に制御できるため、品質の安定した焼結鉱を効率的に製造できる。
Sintering raw material is powdered ore made of iron ore, blending auxiliary materials and coagulants to adjust the ingredients as necessary, and mixing and granulating this powdered ore with water and binder before firing, The amount of fine powder charged into the sintering machine is reduced. This granulation is an important operation for maintaining and improving sintering productivity, and various granulation techniques have been proposed.
For example, Patent Document 1 discloses a method of controlling the amount of water sprayed by a mixer in combination with a feedforward control system and a feedback control system in order to adjust the water content of the sintering raw material (mixed raw material) to a target water value. Has been. As a result, the moisture in the sintered raw material can be accurately controlled to the target value continuously without a time delay, so that a sintered ore with stable quality can be efficiently produced.

特開平10−17946号公報Japanese Patent Laid-Open No. 10-17946

しかしながら、近年、劣質な鉄鉱石を粉砕処理し浮遊選鉱処理して得られる難造粒性の粉鉱石(即ち、微粉原料)が増加してきており、この微粉原料を従来の方法で造粒処理しようとすると、高価なバインダーの添加量を大幅に増加させる必要があった。   However, in recent years, the number of difficult-to-granulate powdered ores obtained by crushing inferior iron ore and flotation processing (that is, raw materials for fine powder) has increased. Then, it was necessary to significantly increase the amount of expensive binder added.

本発明はかかる事情に鑑みてなされたもので、バインダーの使用量を増加させることなく、焼結鉱の製造時における造粒性を効率的に改善して、難造粒性を有する微粉原料を使用可能にする焼結原料の事前処理方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and without increasing the amount of binder used, efficiently improves the granulation properties during the production of sintered ore, and provides a fine powder material having difficult granulation properties. It aims at providing the pre-processing method of the sintering raw material which makes it usable.

前記目的に沿う本発明は、鉄鉱石の量が70〜100質量%、コークス粉及び/又は石炭粉からなる凝結材と成分調整用原料である副原料の合計量が30質量%以下とされた焼結原料と、生石灰とを撹拌機に装入する焼結原料の事前処理方法であって、
前記鉄鉱石は、500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下の粒度を有し、結晶水を4質量%以上含む高結晶水鉱石が30〜60質量%配合された微粉原料からなり、
前記焼結原料と生石灰とを、前記撹拌機に装入して撹拌するに際し、該撹拌機の撹拌羽根の周速を2m/秒以上にし、撹拌時に、前記生石灰中のCaO成分の質量をMとして(18/56×2×M)以上(18/56×6×M)以下の水を添加する。
In the present invention that meets the above-mentioned purpose, the total amount of the iron ore is 70 to 100% by mass, the coagulating material composed of coke powder and / or coal powder, and the auxiliary material that is the raw material for component adjustment is 30% by mass or less. A sintering raw material pretreatment method in which a sintering raw material and quick lime are charged into a stirrer,
The iron ore is a fine powder material in which 500 μm under has a particle size of 50% by mass or more and 10 μm under has a particle size of 5% by mass or less, and 30 to 60% by mass of high crystal water ore containing 4% by mass or more of crystal water is blended. Become
And the sintered material and quicklime, when stirred was charged with the stirrer, the peripheral speed of the stirring blade of the stirrer was more than 2m / s, during stirring, a mass of CaO component in the quicklime M (18/56 × 2 × M) or more and (18/56 × 6 × M) or less of water is added.

本発明に係る焼結原料の事前処理方法は、生石灰と、鉄鉱石として難造粒性となる粒度の微粉原料を用いる焼結原料との撹拌時に、生石灰中のCaO成分の質量をMとして(18/56×2×M)以上(18/56×6×M)以下の水を添加するので、水分の過剰添加による消石灰の凝集を抑制、更には防止しながら、生石灰の消化及び均一分散を可能にする十分な量の水を供給できる。
また、生石灰と難造粒性となる粒度の微粉原料を用いる焼結原料との撹拌に、撹拌機を使用し、しかもこの撹拌羽根の周速を2m/秒以上にするので、生成する消石灰を焼結原料全体に分散させると共に、この消石灰を各焼結原料の粒子表面に極力付着させることができる。
従って、バインダーの使用量を増加させることなく、焼結鉱の製造時における造粒性を効率的に改善して、難造粒性を有する微粉原料を使用できる。
In the pretreatment method of the sintered raw material according to the present invention, the mass of the CaO component in the quick lime is M when stirring the quick lime and the sintered raw material using a fine powder material having a particle size that is difficult to granulate as iron ore ( 18/56 × 2 × M) or more (18/56 × 6 × M) of water is added, so that digestion and uniform dispersion of quick lime can be achieved while suppressing and further preventing aggregation of slaked lime due to excessive addition of moisture. Can supply enough water to make it possible.
In addition, a stirrer is used to stir the quick lime and the sintering raw material using a fine powder raw material having a particle size that is difficult to granulate, and the peripheral speed of the stirring blade is set to 2 m / second or more. This slaked lime can be dispersed as much as possible on the particle surface of each sintered raw material while being dispersed throughout the sintered raw material.
Therefore, it is possible to efficiently improve the granulation property at the time of producing the sintered ore and to use a fine powder material having difficult granulation property without increasing the amount of the binder used.

添加するバインダーの種類が造粒物の造粒性に及ぼす影響を示すグラフである。It is a graph which shows the influence which the kind of binder to add has on the granulation property of a granulated material. 原料への添加水量と撹拌羽根の周速が造粒物の造粒性に及ぼす影響を示すグラフである。It is a graph which shows the influence which the amount of water added to a raw material and the peripheral speed of a stirring blade have on the granulation property of a granulated material.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
まず、本発明に想到した経緯について説明する。
はじめに、粉鉱石(鉄鉱石)のうち、難造粒性を示す微粉原料の造粒性について説明する。
本発明が造粒の対象とする焼結原料は、篩目10μmアンダーの粒子(微粒子)が5質量%以下と極めて少なく、500μmアンダーの粒子が50質量%以上と非常に多い、難造粒性を示す微粉原料(鉄鉱石)である。この微粉原料が、通常の鉄鉱石と異なる点は、10μmアンダーの微粒子が極めて少ない点であり、例えば、鉄鉱石の粉砕処理と水による比重選鉱処理を繰り返すことで、この特徴が得られることがわかった。なお、500μmアンダーの粒子の質量%の測定に際しては、微粉原料(2kg)を、150℃で1時間乾燥した後、0.5mm(500μm)の篩目(JIS Z8801−1「試験用ふるい−第1部:金属製網ふるい」に拠る)で分級し、篩下の質量%を求めた。また、10μmアンダーの微粒子の質量%の測定に際しては、上記乾燥後の微粉原料を対象に、レーザー回折散乱法の測定機器(日機装株式会社製 MICROTRAC(登録商標) MT3300型、測定範囲:0.02〜1400μm)を用いた。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
First, the background to the present invention will be described.
First, the granulation property of the fine powder raw material which shows difficult granulation property among powder ores (iron ore) is demonstrated.
The sintering raw material to be granulated according to the present invention has extremely small particles (fine particles) with a mesh size of 10 μm or less as 5% by mass or less, and very few particles with 500 μm or less as 50% by mass or more. Is a fine powder raw material (iron ore). This fine powder raw material is different from ordinary iron ore in that the number of fine particles under 10 μm is extremely small. For example, this feature can be obtained by repeating iron ore crushing treatment and specific gravity beneficiation treatment with water. all right. When measuring the mass% of particles having a size of 500 μm or less, the fine powder material (2 kg) was dried at 150 ° C. for 1 hour, and then sieved with 0.5 mm (500 μm) (JIS Z8801-1 “Test sieve—No. 1 part: according to “metal mesh sieve”), and the mass% under the sieve was determined. Further, when measuring the mass% of fine particles under 10 μm, the measurement device of the laser diffraction scattering method (MICROTRAC (registered trademark) MT3300, manufactured by Nikkiso Co., Ltd., measurement range: 0.02) is used for the fine powder raw material after drying. ˜1400 μm) was used.

ここで、鉄鉱石として少なくとも1種又は複数種の粉鉱石(微粉原料の場合を含む)を含むものが焼結原料であり、この焼結原料に、副原料(成分調整用原料)や凝結材(例えば、コークス粉や石炭粉等)が含まれるか否かは任意であり、本実施の形態での焼結原料とは、生石灰と消石灰(バインダー)を含まないものをさす。なお、焼結原料に副原料や凝結材が含まれる場合、焼結原料中の副原料と凝結材の合計量が質量比で30質量%以下程度(焼結原料中の鉄鉱石量:例えば、焼結原料の70〜100質量%程度)となるように、鉄鉱石に副原料と凝結材を添加する場合があるが、焼結原料の造粒性や造粒物の強度は、これらの添加量では改善しにくい。   Here, the iron ore containing at least one or more kinds of fine ores (including fine powder raw materials) is a sintered raw material, and the auxiliary raw materials (component adjusting raw materials) and coagulants are included in this sintered raw material. Whether or not (for example, coke powder or coal powder) is included is arbitrary, and the sintering raw material in the present embodiment refers to a material that does not include quick lime and slaked lime (binder). In addition, when the auxiliary material and the coagulant are included in the sintered raw material, the total amount of the auxiliary material and the coagulant in the sintered material is about 30% by mass or less (the amount of iron ore in the sintered material: The auxiliary raw material and the coagulant may be added to the iron ore so as to be about 70 to 100% by mass of the sintered raw material). It is difficult to improve by the amount.

上記した粒度構成、即ち10μmオーバーかつ500μmアンダー程度に概ね揃った微粉原料を造粒すると、隣接する原料粒子の間に空間が形成される。
しかし、上記したように、微粉原料中には、この空間を充填する10μmアンダーの微粒子が極めて少ないため、微粉原料は空間を内包したまま造粒され、造粒物の強度が極めて低くなる。このため、例えセルロース等の粘着質のバインダーを用いて微粉原料を造粒し、隣接する微粉原料の粒子同士を粘着できたとしても、造粒物内部には空間が残留するため、造粒物の強度を向上しにくい。
更に一般に、粉鉱石は水を用いて造粒するが、結晶水を4質量%以上含む高結晶水鉱石を、微粉原料に30質量%以上60質量%以下含む場合、高結晶水鉱石の気孔に水が吸収され、造粒物強度が経時劣化(低下)する問題もある。
上記状況において、上記した微粉原料の造粒に用いるバインダーには、10μmアンダーの微粒子を供給でき、上記した空間を充填できるものが好ましいことに想到した。
When the above-mentioned particle size configuration, that is, a fine raw material that is roughly aligned to about 10 μm and under 500 μm is granulated, a space is formed between adjacent raw material particles.
However, as described above, since the fine powder raw material has very few 10 μm-undersized fine particles filling the space, the fine powder raw material is granulated while enclosing the space, and the strength of the granulated product becomes extremely low. For this reason, even if the fine powder raw material is granulated using an adhesive binder such as cellulose, and even if the particles of the adjacent fine powder raw material can be adhered to each other, a space remains in the granulated product. Hard to improve strength.
More generally, the powdered ore is granulated using water. However, when the high-crystal water ore containing 4% by mass or more of crystal water is contained in the fine powder raw material by 30 to 60% by mass, the pores of the high-crystal water ore There is also a problem that water is absorbed and the strength of the granulated material deteriorates (decreases) with time.
In the above situation, it was conceived that the binder used for the granulation of the fine powder raw material is preferably one that can supply fine particles of under 10 μm and can fill the space described above.

なお、固形バインダーには、ベントナイトや炭酸カルシウム等があるが、通常の撹拌処理程度では、上記した微粉原料へ固形バインダーを均一分散させるのが難しいことが判明した。
これは、上記したように、微粉原料の粒径が10μmオーバーかつ500μmアンダー程度の大きさに概ね揃っており、一般には広範囲な粒度分布を持つことで撹拌(混練)による原料の混合が進むため、粒子が微粒化せず溶解もしないベントナイトや炭酸カルシウム等を添加しても分散が進まないものと考えられ、この観点からも、別の手段で10μmアンダーの微粒子を添加することが好ましいと考えられた。
以上のことから、本発明者らは、鉄鉱石として、500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下の粒度である微粉原料を用いた焼結原料を造粒するに際し、撹拌や造粒を容易化するバインダーとして、生石灰に想到した。なお、生石灰の添加量は、焼結原料に対する外掛けで、通常、0.1質量%以上6.0質量%以下である。
In addition, although there exist bentonite, calcium carbonate, etc. in a solid binder, it turned out that it is difficult to disperse | distribute a solid binder uniformly to the above-mentioned fine powder raw material by the normal stirring process grade.
This is because, as described above, the particle size of the fine powder raw material is almost uniform in the size of about 10 μm over and under 500 μm, and generally the mixing of the raw material by stirring (kneading) progresses due to the wide particle size distribution. It is considered that dispersion does not proceed even when bentonite, calcium carbonate, or the like, in which the particles are not atomized and dissolved, is added, and from this viewpoint, it is preferable to add fine particles under 10 μm by another means. It was.
From the above, the present inventors, as iron ore, agitation and agitation were performed when granulating a sintered raw material using a fine powder raw material having a particle size of 500 μm under 50% by mass and 10 μm under 5% by mass. We came up with quicklime as a binder to facilitate granulation. In addition, the addition amount of quicklime is usually 0.1 mass% or more and 6.0 mass% or less by the outer coating with respect to a sintering raw material.

次に、生石灰による微粉原料を用いた焼結原料の造粒メカニズムについて説明する。
生石灰は、撹拌や造粒中に水と接触することで一部が吸湿し消化(消石灰化)して微粒化し、水と共に微粉原料に均一に混ざり易くなるものであると考えられる。なお、生石灰としては、CaOが例えば84質量%以上のものが多用されている。
ここで、生成した消石灰の一部については、水に溶解することでも、微粉原料に均一に混ざり易くなる。
Next, the granulation mechanism of the sintering raw material using the fine powder raw material by quick lime is demonstrated.
Quick lime is considered to be partly hygroscopic and digested (slaked calcification) and atomized by contact with water during stirring and granulation, and easily mixed with the fine powder raw material together with water. In addition, as quicklime, that whose CaO is 84 mass% or more is used abundantly.
Here, a part of the generated slaked lime is easily mixed with the fine powder raw material even by dissolving in water.

生石灰の消化で生成する消石灰や、水の蒸発等によって再晶出する消石灰は、粒径が10μmアンダーの微粒子であり、更にはサブミクロンオーダーの微粒子も多く含まれており、固体架橋によって上記微粉原料の造粒性向上や造粒物の強度向上に大きく寄与する。
従って、極力多くの生石灰を消化させること、生成する消石灰の粒径を小さくすること、極力多くの消石灰を造粒水に溶解すること、等で、造粒に寄与する消石灰を多量に生成させて、生成する消石灰を微粉原料全体に分散させ(マクロに分散させ)、各微粉原料の粒子表面に極力付着させる(ミクロに分散させる)こと、が重要となる。
上記したことから、難造粒性の微粉原料と、その他の原料(例えば、造粒が容易な易造粒性原料)を混合する場合は、難造粒性の微粉原料に対して、粒径を小さくする処理を施した生石灰の添加や、その添加量を多くすること等も重要となる。
Slaked lime produced by digestion of quick lime and slaked lime recrystallized by evaporation of water, etc. are fine particles with a particle size of under 10 μm, and also contain many fine particles of submicron order. This greatly contributes to the improvement of the granulation properties of the raw materials and the strength of the granules.
Therefore, a large amount of slaked lime that contributes to granulation can be generated by digesting as much quick lime as possible, reducing the particle size of slaked lime generated, dissolving as much slaked lime as possible in granulated water, etc. It is important to disperse the slaked lime to be produced throughout the fine powder raw material (macro dispersion) and to adhere as much as possible to the particle surface of each fine powder raw material (disperse into the micro).
From the above, when mixing a difficult-to-granulate fine powder raw material and other raw materials (for example, easy-to-granulate raw material that is easy to granulate), It is also important to add quick lime that has been subjected to a treatment for reducing the amount of the lime, and to increase the amount of addition.

なお、炭酸カルシウム(分子式:CaCO)は、生石灰と同様にCaOを含み、そのCaO含有率が56質量%程度のものであり、石灰石あるいは単に石灰と称される場合がある。しかし、炭酸カルシウムは、化学的に安定な物質であって、吸湿による消化や水への溶解は起こりにくい。
従って、上記した生石灰に、炭酸カルシウムは含まれない。
ここで、添加するバインダーの種類が造粒物の造粒性に及ぼす影響について、図1を参照しながら説明する。
Calcium carbonate (molecular formula: CaCO 3 ) contains CaO in the same manner as quicklime, and has a CaO content of about 56% by mass, and may be referred to as limestone or simply lime. However, calcium carbonate is a chemically stable substance, and digestion due to moisture absorption and dissolution in water hardly occur.
Therefore, calcium carbonate is not contained in the above-mentioned quicklime.
Here, the influence which the kind of binder to add has on the granulation property of a granulated material is demonstrated, referring FIG.

なお、試験は、結晶水を4質量%以上含む高結晶水鉱石を0又は0を超え10質量%以下配合した500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下の粒度である難造粒性の微粉原料(焼結原料)に、バインダー(炭酸カルシウム、生石灰)を外掛けで2質量%添加し、これを万能ミキサー(自転する撹拌羽根の軸を公転させる竪型ミキサー)で撹拌した後、ドラムミキサーで造粒処理した。ここでは、バインダー添加の評価基準として、バインダーを添加していない難造粒性の微粉原料(原料)のみのものについても、万能ミキサーで撹拌した後、ドラムミキサーで造粒処理した。
詳細条件は、水分:9〜12質量%の範囲で一定、撹拌:周速2.2m/秒、処理時間90秒、造粒:周速1.0m/秒、処理時間60秒、である。なお、使用した原料に含まれる水分は、通常3〜10質量%の範囲である。この水分は、(原料中の水分量)/{(絶乾後の原料質量)+(原料中の水分量)}×100(質量%)、で算出した。また、周速は、万能ミキサー(撹拌機)とドラムミキサー(造粒機)において、回転するもの(羽根、ドラム等)で、一番速い部分の速度を意味する。
In addition, the test is a difficult structure in which 500 μm under which high crystal water ore containing 4% by weight or more of crystal water is blended with 0 or more than 0 and 10% by weight is 50 μm or more and 10 μm under is 5% by weight or less. 2% by mass of binder (calcium carbonate, quicklime) was added to the granular fine powder raw material (sintered raw material) and stirred with a universal mixer (a vertical mixer that revolves the axis of the rotating stirring blade). Then, it was granulated with a drum mixer. Here, as an evaluation standard for adding a binder, only a hardly granulated fine powder raw material (raw material) to which a binder was not added was stirred with a universal mixer and then granulated with a drum mixer.
Detailed conditions are: moisture: constant in the range of 9 to 12% by mass, stirring: peripheral speed 2.2 m / sec, treatment time 90 seconds, granulation: peripheral speed 1.0 m / sec, treatment time 60 seconds. In addition, the water | moisture content contained in the used raw material is the range of 3-10 mass% normally. This moisture was calculated by (Moisture content in raw material) / {(Mass of raw material after absolutely dry) + (Moisture content in raw material)} × 100 (mass%). Further, the peripheral speed means the speed of the fastest part of the universal mixer (stirrer) and drum mixer (granulator) that rotate (blades, drums, etc.).

そして、評価は、以下の手順で行った。
まず、上記した造粒処理した微粉原料(2kg)を、150℃で1時間乾燥した後、0.5mmの篩目(JIS Z8801−1「試験用ふるい−第1部:金属製網ふるい」に拠る)で分級し、0.5mmアンダーの割合を粉率と定義した。なお、粉率は、バインダーを添加していない微粉原料のみの粉率を「1.0」として、それぞれ算出した。
図1から、微粉原料に対して炭酸カルシウムを添加した場合、造粒性の改善が小さい(粉率:0.70)のに対し、微粉原料に対して生石灰を添加した場合、造粒性が著しく改善(生石灰:0.41)することを、本発明者らは初めて発見した。
これは、生石灰が水と接触することにより微粒化し、更に生成した消石灰の一部が水に溶解することで、微粉原料に均一に混ざり易くなり、固体架橋によって微粉原料の造粒性向上や造粒物の強度向上に大きく寄与したためと考えられる。
And evaluation was performed in the following procedures.
First, the above granulated fine powder material (2 kg) was dried at 150 ° C. for 1 hour, and then passed through a 0.5 mm sieve mesh (JIS Z8801-1 “Test sieve—Part 1: Metal mesh sieve”). The ratio of 0.5 mm under was defined as the powder rate. The powder ratio was calculated by setting the powder ratio of only the fine powder raw material to which no binder was added to “1.0”.
From FIG. 1, when calcium carbonate is added to the fine powder material, the improvement in granulation is small (powder rate: 0.70), whereas when quick lime is added to the fine powder material, the granulation property is The present inventors discovered for the first time that it improved remarkably (quick lime: 0.41).
This is because quick lime is atomized by contact with water, and part of the generated slaked lime is dissolved in water, so that it can be easily mixed into the fine powder raw material. This is thought to be due to the significant contribution to improving the strength of the granules.

上記粉率は平均値であり、いずれのバインダーを用いた場合も、粉率値は5%程度のばらつきをもった。
一方、上記試験に用いた微粉原料として、結晶水を4質量%以上含む高結晶水鉱石を30〜60質量%配合したものを用いた場合、粉率が全体的に悪化(増加)し、特に、バインダーとして炭酸カルシウムを用いた場合は、概ね2〜3割程度のばらつきを示すのに対し、バインダーとして生石灰を用いた場合は、炭酸カルシウムの粉率値のばらつきよりも小さな1割程度であった。これは、造粒時や造粒後に気孔に水が吸収され得る高結晶水鉱石を用いたとしても、バインダーとして炭酸カルシウムを用いると上記した固体架橋が安定せず、一方、生石灰を用いると上記した固体架橋が安定するものと推定され、吸湿による消化や水への溶解が起きると、気孔への吸水が起こっても固体架橋が比較的安定しているものと推定された。
The powder ratio is an average value, and the powder ratio value varied by about 5% when any binder was used.
On the other hand, when the fine powder raw material used in the above test was blended with 30 to 60% by mass of high crystal water ore containing 4% by mass or more of crystal water, the powder rate was deteriorated (increased) as a whole. When calcium carbonate is used as the binder, it shows a variation of about 20 to 30%, whereas when quick lime is used as the binder, it is about 10% smaller than the variation of the powder rate value of calcium carbonate. It was. This is because even when using a high crystal water ore that can absorb water into the pores during granulation or after granulation, the above-mentioned solid cross-linking is not stable when calcium carbonate is used as a binder, whereas when quick lime is used, It was estimated that the solid cross-linking was stable, and when digestion due to moisture absorption and dissolution in water occurred, it was presumed that the solid cross-linking was relatively stable even if water absorption into the pores occurred.

以上のことから、本発明者らは、難造粒性を有する微粉原料の造粒性を向上できる焼結原料の事前処理方法に想到した。即ち、生石灰と、鉄鉱石として500μmアンダーが50質量%(更には60質量%)以上かつ10μmアンダーが5質量%(更には4質量%)以下の粒度の微粉原料を用いる焼結原料(難造粒性微粉原料)とを、撹拌機に装入して撹拌するに際し、撹拌機の撹拌羽根の周速を2m/秒以上にし、撹拌時に、生石灰中のCaO成分の質量をMとして(18/56×2×M)以上(18/56×6×M)以下の量の水を添加する方法である。なお、500μmアンダーの上限値を規定していないのは100質量%でもよく、また10μmアンダーの下限値を規定していないのは0質量%でもよいためである。
以下、詳しく説明する。
In view of the above, the present inventors have come up with a pretreatment method for a sintered material that can improve the granulation property of a fine powder material having difficult granulation properties. That is, a sintered raw material (difficulty) using quick lime and a fine raw material having a particle size of not less than 50% by mass (more than 60% by mass) and not more than 5% by mass (more than 4% by mass) of 10 μm under as iron ore. (Granular fine powder raw material) is charged into a stirrer and stirred, the peripheral speed of the stirring blade of the stirrer is set to 2 m / second or more, and the mass of the CaO component in quicklime is M (18 / 56 × 2 × M) or more (18/56 × 6 × M) of water is added. The reason why the upper limit value of 500 μm under is not specified is 100% by mass, and the reason why the lower limit value of 10 μm under is not specified is that 0% by mass may be used.
This will be described in detail below.

生石灰の水和反応(消化反応)に消費される水分量を理論水量とし、生石灰中のCaO成分の質量をMとすると、理論水量は、「18/56×M」(CaO+H
→ Ca(OH))で表される。従って、上記した(18/56×2×M)とは理論水量の2倍の水量を、また(18/56×6×M)とは理論水量の6倍の水量を、それぞれ意味するため、撹拌機による撹拌時に添加する水の量は、生石灰との水和反応に使用される理論水量の2倍以上6倍以下の量となる。
Assuming that the amount of water consumed for the hydration reaction (digestion reaction) of quicklime is the theoretical amount of water and the mass of the CaO component in quicklime is M, the theoretical amount of water is “18/56 × M” (CaO + H 2 O
→ Ca (OH) 2 ) Therefore, the above-mentioned (18/56 × 2 × M) means twice the theoretical amount of water, and (18/56 × 6 × M) means six times the theoretical amount of water. The amount of water added during stirring by the stirrer is 2 to 6 times the amount of theoretical water used for the hydration reaction with quicklime.

ここで、撹拌時に添加する水の量が理論水量の2倍未満では、未反応の生石灰が多量に発生することになる。即ち、理論水量の2倍以上とすることで、生石灰の消化及び均一分散に必要な水を十分に供給することができ、極力多くの生石灰を消化させること、生成する消石灰の粒径を小さくすること、極力多くの消石灰を造粒水に溶解すること、ができる。
しかしながら、撹拌時に添加する水の量が理論水量の6倍超になると、生石灰が消化した後に、生成した消石灰が水分過多で凝集し、その均一拡散が阻害される。
なお、焼結原料に始めから含まれている水分については、焼結原料の一部表面上にある水分が、生石灰の消化反応に寄与するが、上記した添加する水と比較すると、その効果は著しく小さい。つまり、消化反応は添加水量に大きく左右される。
Here, if the amount of water added during stirring is less than twice the theoretical amount of water, a large amount of unreacted quicklime is generated. That is, by setting the amount of water more than twice the theoretical amount of water, water necessary for digestion and uniform dispersion of quick lime can be sufficiently supplied, digesting as much quick lime as possible, and reducing the particle size of slaked lime produced. It is possible to dissolve as much slaked lime as possible in the granulated water.
However, when the amount of water added at the time of stirring exceeds 6 times the theoretical amount of water, after the quick lime is digested, the generated slaked flocculates due to excessive moisture, and the uniform diffusion is inhibited.
In addition, about the water | moisture content contained in the sintering raw material from the beginning, the water | moisture content on the partial surface of a sintering raw material contributes to the digestive reaction of quicklime, but the effect is compared with the water added above. Remarkably small. That is, the digestion reaction greatly depends on the amount of added water.

上記したように、本発明は、撹拌時に添加する水の量を、理論水量を基にして、その倍数で規定するものである。
一方、前記した特許文献1には、「各原料による持込み水分の算定量は、前記各原料中の生石灰による水和反応により消費される水分量を差し引いた値を用いる」との記載がある。この記載を、本発明の観点から推測すると、撹拌時に添加する水の量は、理論水量の1倍と考えることができる。
しかし、前記したように、特許文献1は、そもそも焼結原料の水分を目標水分値に調整するための制御方法であるため、本発明のように、添加する水の量を理論水量で規定するという技術思想はなく、このため理論水量の倍数で規定するという概念もない。
従って、本発明は、本発明者らが、撹拌時に添加する水の量を、理論水量を基にして、その倍数で規定するということに想到して得られた極めて優れた発明である。
As described above, according to the present invention, the amount of water added at the time of stirring is defined by a multiple thereof based on the theoretical amount of water.
On the other hand, the above-described Patent Document 1 has a description that “the calculated amount of moisture brought in by each raw material uses a value obtained by subtracting the amount of water consumed by the hydration reaction by quick lime in each raw material”. If this description is presumed from the viewpoint of the present invention, the amount of water added at the time of stirring can be considered to be one time the theoretical amount of water.
However, as described above, since Patent Document 1 is a control method for adjusting the water content of the sintering raw material to the target water value, the amount of water to be added is defined by the theoretical water amount as in the present invention. There is no technical idea of this, and therefore there is no concept of prescribing it as a multiple of the theoretical water volume.
Therefore, the present invention is an extremely excellent invention obtained by conceiving that the present inventors define the amount of water to be added at the time of stirring by a multiple thereof based on the theoretical amount of water.

また、上記した生石灰と焼結原料を、撹拌機を用いて撹拌するに際しては、撹拌羽根の周速を2m/秒(更に好ましくは、3m/秒)以上にする。
ここで、撹拌羽根の周速を2m/秒以上にすることで、生成する消石灰を焼結原料全体(マクロ)に分散させ、各焼結原料の粒子表面に極力付着(ミクロに分散)させることができる。
従って、撹拌機は、撹拌羽根の周速を2m/秒以上にできるものであれば、特に限定されるものではなく、例えば、前記した万能ミキサー等を使用できる。なお、撹拌羽根の周速の上限値は、上記した記載から特に限定していないが、世の中で一般的に使用されている撹拌機を考慮すれば、例えば、35m/秒程度である。また、撹拌羽根の直径は、0.1〜1.5m程度である。
Further, when the quick lime and the sintered raw material are stirred using a stirrer, the peripheral speed of the stirring blade is set to 2 m / second (more preferably 3 m / second) or more.
Here, by setting the peripheral speed of the stirring blade to 2 m / second or more, the generated slaked lime is dispersed in the entire sintered raw material (macro) and adhered to the surface of each sintered raw material as much as possible (dispersed microscopically). Can do.
Therefore, the stirrer is not particularly limited as long as the peripheral speed of the stirring blade can be 2 m / second or more, and for example, the above-described universal mixer can be used. Although the upper limit value of the peripheral speed of the stirring blade is not particularly limited from the above description, it is, for example, about 35 m / second in consideration of a stirrer generally used in the world. The diameter of the stirring blade is about 0.1 to 1.5 m.

以上のことから、生石灰と焼結原料とを撹拌機を用いて撹拌するに際し、撹拌羽根の周速を2m/秒以上にし、撹拌時に添加する水の量を、生石灰の消化反応に使用される理論水量の2倍以上6倍以下にすることで、造粒に寄与する消石灰を多量に生成させて、生成する消石灰を焼結原料全体に分散させ、各焼結原料の粒子表面に極力付着させることができ、焼結原料の造粒性を向上させることができる。
なお、撹拌時に添加する水の量は、焼結原料の造粒性を向上させるため、下限を、2.5倍、更には3倍とし、上限を、5.5倍、更には5倍とすることが望ましい。
上記した方法で、生石灰と焼結原料を撹拌した後、更に造粒機(例えば、ドラムミキサー)で造粒して、焼結パレットに装入し、焼結鉱を製造する。
From the above, when the quick lime and the sintered raw material are stirred using a stirrer, the peripheral speed of the stirring blade is set to 2 m / second or more, and the amount of water added during stirring is used for the quick lime digestion reaction. A slaked lime that contributes to granulation is produced in a large amount by making it 2 times or more and 6 times or less of the theoretical water volume, and the produced slaked lime is dispersed throughout the sintered raw material and adhered to the surface of each sintered raw material as much as possible. It is possible to improve the granulation property of the sintering raw material.
The amount of water added at the time of stirring is 2.5 times, further 3 times, and the upper limit is 5.5 times, further 5 times, in order to improve the granulation property of the sintering raw material. It is desirable to do.
After stirring quick lime and a sintering raw material by the above-described method, the mixture is further granulated with a granulator (for example, a drum mixer) and charged into a sintering pallet to produce a sintered ore.

次に、本発明の作用効果を確認するために行った実施例について説明する。
試験は、結晶水を4質量%以上含む高結晶水鉱石を30〜60質量%配合した難造粒性微粉原料と、結晶水を4質量%以上含む高結晶水鉱石を30〜60質量%配合した易造粒性原料に、それぞれ生石灰を、外掛けで2質量%添加し、更に水分を添加して前記した万能ミキサー(撹拌機)で撹拌した後、ドラムミキサーで造粒して行った。なお、詳細条件は、使用した原料に含まれる水分量:7〜8質量%、造粒時の水分量:8〜12質量%、造粒時の周速:1.0m/秒(処理時間60秒)、である。また、難造粒性微粉原料(500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下、造粒性:難)と易造粒性原料(難造粒性微粉原料の粒度を除く粒度、即ち500μmアンダーが50質量%未満又は10μmアンダーが5質量%超、造粒性:易)には、表1に示す粒度条件の鉄鉱石を使用した。
Next, examples carried out for confirming the effects of the present invention will be described.
In the test, a highly granulated fine raw material containing 30 to 60% by mass of high crystal water ore containing 4% by mass or more of crystal water and 30 to 60% by mass of high crystal water ore containing 4% or more of crystal water by weight. Each of the easily granulated raw materials was added with 2% by mass of quick lime on the outside, added with water, stirred with the above-mentioned universal mixer (stirrer), and granulated with a drum mixer. The detailed conditions are as follows: the amount of water contained in the raw material used: 7 to 8% by mass; the amount of water during granulation: 8 to 12% by mass; and the peripheral speed during granulation: 1.0 m / second (treatment time 60 Second). Also, the hardly granulated fine powder raw material (500 μm under is 50% by mass or more and 10 μm under is 5% by mass or less, granulation property: difficult) and easily granulated raw material (particle size excluding the particle size of the difficult granulated fine powder raw material, That is, iron ore having the particle size conditions shown in Table 1 was used for less than 50% by mass of 500 μm under or more than 5% by mass of 10 μm under, granulation property: easy).

Figure 0005821778
Figure 0005821778

上記した条件のもと、万能ミキサーでの撹拌時に添加する水(水温:15℃(常温))の量を種々変更し、また万能ミキサーの撹拌羽根の周速を、0.5m/秒、2m/秒、6m/秒で変更して(撹拌時間:90秒)、造粒後の粉率を評価した。
なお、評価は、前記した0.5mmアンダーの質量割合を粉率と定義して行った。ここで、粉率は、易造粒性原料の撹拌に際し、撹拌羽根の周速が2m/秒で、原料への添加水量を理論水量で除した値α(=(添加水の質量)/(理論水の質量))が「1」の場合を、粉率「1.0」として算出し、この粉率(図2中の点線)以下を合格とした。
Under the above-mentioned conditions, the amount of water (water temperature: 15 ° C. (room temperature)) added at the time of stirring with the universal mixer is variously changed, and the peripheral speed of the stirring blade of the universal mixer is 0.5 m / second, 2 m / G, and 6 m / s (stirring time: 90 seconds), and the powder rate after granulation was evaluated.
The evaluation was performed by defining the above-described mass ratio of 0.5 mm under as the powder rate. Here, the powder rate is a value α (= (mass of added water) / () obtained by dividing the amount of water added to the raw material by the theoretical amount of water when the peripheral speed of the stirring blade is 2 m / sec. The case where the mass of theoretical water)) was “1” was calculated as the powder rate “1.0”, and the powder rate (dotted line in FIG. 2) or less was regarded as acceptable.

図2に示すように、値αが1から2までの範囲における粉率低下の勾配(傾き)は、易造粒性原料(▲)よりも難造粒性微粉原料(図1中の○、■、×)の方が、大きくなることがわかった。
難造粒性微粉原料と易造粒性原料のいずれの撹拌についても、値αを2以上とした水量を添加することで、生石灰の消化が同程度生じて微粒子が生成する。しかし、難造粒性微粉原料は、前記したように、10μmアンダーの粒子が極めて少ないため、生石灰の消化の有無で粉率が極端に増減する。一方、易造粒性原料は、もともと10μmアンダーの粒子を含むため、生石灰の消化量が多少増減しても粉率の急激な増減はない。
このように、図2から、難造粒性微粉原料を撹拌するに際し、値αを2以上6以下とすることで、粉率の低下が顕著になる(造粒性が顕著に変わる)という知見が得られた。
As shown in FIG. 2, the slope (gradient) of the reduction in the powder ratio in the range of the value α from 1 to 2 is more difficult to granulate raw material (◯) than the easily granulated raw material (▲). (3), x) was found to be larger.
For any of the stirring of the difficult-to-granulate fine powder material and the easily-granulated material, by adding a water amount having a value α of 2 or more, the digestion of quick lime occurs to the same extent and fine particles are generated. However, as described above, the hardly granulated fine powder raw material has very few under 10 μm particles, and therefore the powder rate extremely increases or decreases depending on whether or not quick lime is digested. On the other hand, since the easily granulated raw material originally contains particles under 10 μm, there is no sudden increase or decrease in the powder rate even if the digestion amount of quick lime is slightly increased or decreased.
Thus, from FIG. 2, when stirring the hardly granulated fine powder raw material, the value α is set to 2 or more and 6 or less, whereby the decrease in the powder rate becomes remarkable (granulation property changes remarkably). was gotten.

また、難造粒性微粉原料の撹拌に際し、万能ミキサーを用い、その撹拌羽根の周速を速くすることで、造粒後の粉率の発生量を低下できることがわかった。特に、撹拌羽根の周速を2m/秒以上にすることで、易造粒性原料を撹拌した場合と同程度まで、粉率を低減できた(造粒性を改善できた)。
これは、万能ミキサーを使用し、しかもこの撹拌羽根の周速を2m/秒以上にすることで、生成する消石灰を焼結原料全体に分散させると共に、この消石灰を各焼結原料の粒子表面に極力付着させることができることによる。
Moreover, it turned out that the generation amount of the powder rate after granulation can be lowered | hung by speeding up the peripheral speed of the stirring blade using a universal mixer in stirring difficult-to-granulate fine powder raw material. In particular, by setting the peripheral speed of the stirring blade to 2 m / second or more, the powder rate could be reduced to the same extent as when the easily granulated raw material was stirred (granulation property could be improved).
This is achieved by using a universal mixer and setting the peripheral speed of the stirring blade to 2 m / second or more to disperse the slaked lime produced throughout the sintered raw material, and the slaked lime on the surface of each sintered raw material particle. By being able to adhere as much as possible.

以上のことから、本発明の焼結原料の事前処理方法を用いることで、バインダーの使用量を増加させることなく、焼結鉱の製造時における造粒性を効率的に改善してして、難造粒性を有する微粉原料を使用できることを確認できた。   From the above, by using the sintering raw material pretreatment method of the present invention, without increasing the amount of binder used, efficiently improve the granulation properties during the production of sintered ore, It was confirmed that a fine powder material having difficult granulation properties can be used.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の焼結原料の事前処理方法を構成する場合も本発明の権利範囲に含まれる。   As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case in which the sintering raw material pretreatment method of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.

Claims (1)

鉄鉱石の量が70〜100質量%、コークス粉及び/又は石炭粉からなる凝結材と成分調整用原料である副原料の合計量が30質量%以下とされた焼結原料と、生石灰とを撹拌機に装入する焼結原料の事前処理方法であって、
前記鉄鉱石は、500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下の粒度を有し、結晶水を4質量%以上含む高結晶水鉱石が30〜60質量%配合された微粉原料からなり、
前記焼結原料と生石灰とを、前記撹拌機に装入して撹拌するに際し、該撹拌機の撹拌羽根の周速を2m/秒以上にし、撹拌時に、前記生石灰中のCaO成分の質量をMとして(18/56×2×M)以上(18/56×6×M)以下の水を添加することを特徴とする焼結原料の事前処理方法。
A sintered raw material in which the amount of iron ore is 70 to 100% by mass, a coagulating material composed of coke powder and / or coal powder and a total amount of auxiliary raw materials as component adjusting raw materials is 30% by mass or less, and quicklime A pre-treatment method for sintering raw material charged in a stirrer,
The iron ore is a fine powder material in which 500 μm under has a particle size of 50% by mass or more and 10 μm under has a particle size of 5% by mass or less, and 30 to 60% by mass of high crystal water ore containing 4% by mass or more of crystal water is blended. Become
And the sintered material and quicklime, when stirred was charged with the stirrer, the peripheral speed of the stirring blade of the stirrer was more than 2m / s, during stirring, a mass of CaO component in the quicklime M (18/56 × 2 × M) or more and (18/56 × 6 × M) or less water is added as a sintering raw material pretreatment method.
JP2012117841A 2012-05-23 2012-05-23 Pretreatment method of sintering raw material Active JP5821778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012117841A JP5821778B2 (en) 2012-05-23 2012-05-23 Pretreatment method of sintering raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012117841A JP5821778B2 (en) 2012-05-23 2012-05-23 Pretreatment method of sintering raw material

Publications (2)

Publication Number Publication Date
JP2013245358A JP2013245358A (en) 2013-12-09
JP5821778B2 true JP5821778B2 (en) 2015-11-24

Family

ID=49845381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012117841A Active JP5821778B2 (en) 2012-05-23 2012-05-23 Pretreatment method of sintering raw material

Country Status (1)

Country Link
JP (1) JP5821778B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6459724B2 (en) * 2015-03-31 2019-01-30 新日鐵住金株式会社 Method for producing sintered ore

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838494B2 (en) * 1980-06-26 1983-08-23 日本鋼管株式会社 Manufacturing method of sintered ore
JPH01168825A (en) * 1987-12-24 1989-07-04 Kawasaki Steel Corp Production of iron sintered ore
JP2000034525A (en) * 1998-07-13 2000-02-02 Nippon Steel Corp Treatment of sintering raw material
JP4568243B2 (en) * 2006-03-17 2010-10-27 新日本製鐵株式会社 Method of kneading fine powder material
JP5326592B2 (en) * 2008-03-11 2013-10-30 新日鐵住金株式会社 Granulation method of sintering raw material
JP5375742B2 (en) * 2010-05-27 2013-12-25 新日鐵住金株式会社 Granulation method of sintering raw material
JP5073873B2 (en) * 2010-10-08 2012-11-14 新日本製鐵株式会社 Method for producing granulated product of iron ore raw material and granulated product of iron ore raw material

Also Published As

Publication number Publication date
JP2013245358A (en) 2013-12-09

Similar Documents

Publication Publication Date Title
JP5987958B2 (en) Method of adding binder to sintering raw material
JP5853912B2 (en) Addition of coagulant to sintering raw material
JP6132114B2 (en) Method for producing granulated raw material for sintering
JP5828305B2 (en) Pretreatment method of sintering raw material
JP5821778B2 (en) Pretreatment method of sintering raw material
CN106435170A (en) Method and mineral powder mixture for preparing alkaline pellets
JP6036295B2 (en) Pretreatment method of sintering raw materials
CN103757202A (en) Sintering method with part of return mine being sintered without pelletization being pelletized
JP3820132B2 (en) Pretreatment method of sintering raw material
JP6051883B2 (en) Method for drying sintered raw material granulation
JP2015226985A (en) Cement composition processing method
JP5817643B2 (en) Pretreatment method of sintering raw material
JP5835099B2 (en) Pretreatment method of sintering raw material
JP5811066B2 (en) Pretreatment method of sintering raw material
JP5803809B2 (en) Preconditioning method of sintering raw material
JP5398820B2 (en) Processing method of granulated material for sintering
JP2017036480A (en) Manufacturing method of sintered ore
JP5482684B2 (en) Pretreatment method of sintering raw materials
JP5817644B2 (en) Method of adding binder to sintering raw material
JP2014234332A (en) Carbonization method for seel making slag
JP5799892B2 (en) Granulation method of sintering raw material
JP5831361B2 (en) Pretreatment method of sintering raw material
JP2014227568A (en) Method of producing granulation raw material for sintering
CN115108738B (en) Calcium hydroxide suspension and preparation method thereof
JP2017132873A (en) Preliminary treatment method of high moisture granular coal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150819

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150921

R150 Certificate of patent or registration of utility model

Ref document number: 5821778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350