JP5835099B2 - Pretreatment method of sintering raw material - Google Patents

Pretreatment method of sintering raw material Download PDF

Info

Publication number
JP5835099B2
JP5835099B2 JP2012115830A JP2012115830A JP5835099B2 JP 5835099 B2 JP5835099 B2 JP 5835099B2 JP 2012115830 A JP2012115830 A JP 2012115830A JP 2012115830 A JP2012115830 A JP 2012115830A JP 5835099 B2 JP5835099 B2 JP 5835099B2
Authority
JP
Japan
Prior art keywords
raw material
mass
granulated
sintering
under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012115830A
Other languages
Japanese (ja)
Other versions
JP2013241651A (en
Inventor
淳治 長田
淳治 長田
健一 八ヶ代
健一 八ヶ代
大山 浩一
浩一 大山
茂 樫村
茂 樫村
理 石山
理 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012115830A priority Critical patent/JP5835099B2/en
Publication of JP2013241651A publication Critical patent/JP2013241651A/en
Application granted granted Critical
Publication of JP5835099B2 publication Critical patent/JP5835099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glanulating (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、焼結原料を造粒する際の焼結原料の事前処理方法に関する。     The present invention relates to a pretreatment method for a sintered material when granulating the sintered material.

焼結原料は鉄鉱石からなる粉鉱石であり、必要に応じて成分調整する副原料や凝結材を配合し、焼成前に、この粉鉱石に水とバインダーを混合し造粒処理することで、焼結機へ装入する微粉量を低減している。この造粒は、焼結生産性の維持改善に重要な操作であり、従来から各種の造粒技術が提案されてきた。
例えば、特許文献1には、焼結鉱の製造において、二系列の造粒ラインを用い、この両ラインで使用する生石灰の合計量を変えることなく、各造粒ラインで使用する生石灰の配合比を変えることで、焼結原料の造粒性を改善する方法が開示されている。これにより、微粉で高結晶水である焼結性の悪い原料(マラマンバ鉱石)を、焼結原料として使用できるようにしている。
Sintering raw material is powdered ore made of iron ore, blending auxiliary materials and coagulants to adjust the ingredients as necessary, and mixing and granulating this powdered ore with water and binder before firing, The amount of fine powder charged into the sintering machine is reduced. This granulation is an important operation for maintaining and improving sintering productivity, and various granulation techniques have been proposed.
For example, in Patent Document 1, in the production of sintered ore, two series of granulation lines are used, and the mixing ratio of quick lime used in each granulation line without changing the total amount of quick lime used in both lines. A method of improving the granulation property of the sintering raw material by changing the above is disclosed. This makes it possible to use a raw material with poor sinterability (maramanba ore), which is fine powder and high crystal water, as a sintering raw material.

特開平5−9601号公報JP-A-5-9601

しかしながら、近年、劣質な鉄鉱石を粉砕処理し浮遊選鉱処理して得られる難造粒性の粉鉱石(即ち、微粉原料)が増加してきており、この微粉原料を従来の方法で造粒処理しようとすると、高価なバインダーの添加量を大幅に増加させる必要があった。   However, in recent years, the number of difficult-to-granulate powdered ores obtained by crushing inferior iron ore and flotation processing (that is, raw materials for fine powder) has increased. Then, it was necessary to significantly increase the amount of expensive binder added.

本発明はかかる事情に鑑みてなされたもので、バインダーの使用量増加を抑制し、焼結原料の造粒性を改善して、難造粒性を有する微粉原料の造粒を可能とし、更には、造粒物の崩壊を抑制して、焼結鉱の製造に使用できるようにする焼結原料の事前処理方法を提供することを目的とする。   The present invention has been made in view of such circumstances, suppressing an increase in the amount of binder used, improving the granulation property of the sintered raw material, enabling granulation of a fine powder material having difficult granulation property, An object of the present invention is to provide a pretreatment method of a sintering raw material that can be used for the production of sintered ore by suppressing the collapse of the granulated product.

前記目的に沿う本発明に係る焼結原料の事前処理方法は、鉄鉱石として、500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下の粒度の粉鉱石である微粉原料を用いる焼結原料A群を、250μmアンダーが50質量%以上の粒度を有する生石灰及び消石灰のいずれか1又は2を用いて造粒して造粒物とする。   The sintering raw material pre-treatment method according to the present invention that meets the above-mentioned object is a sintering raw material that uses a fine powder raw material that is a fine ore having a particle size of 500 μm under and 50 μm under 10 μm under 5% by weight as iron ore. The A group is granulated by using either 1 or 2 of quicklime and slaked lime having a particle size of 250% by mass of 250 μm or less to obtain a granulated product.

本発明に係る焼結原料の事前処理方法において、鉄鉱石として、500μmアンダーが50質量%未満又は10μmアンダーが5質量%超の粒度の粉鉱石を用いる焼結原料B群に、250μmアンダーが10質量%以上50質量%未満の粒度を有する生石灰及び消石灰のいずれか1又は2を配合し、前記焼結原料A群の造粒物との合流前又は合流後に造粒して造粒物とすることもできる。   In the pretreatment method of the sintered raw material according to the present invention, as the iron ore, a sintered raw material B group using a powdered ore having a particle size of less than 50% by mass or less than 5% by mass of 10 μm is 10 μm under 250 μm. One or two of quicklime and slaked lime having a particle size of 50% by mass or more and less than 50% by mass are blended, and granulated before or after merging with the granulated product of the sintered raw material A group to obtain a granulated product. You can also.

本発明に係る焼結原料の事前処理方法において、前記焼結原料B群には少なくとも酸化発熱する凝結材が添加されていることが好ましい。 In the sintering raw material pretreatment method according to the present invention, it is preferable that at least a coagulating material that generates heat by oxidation is added to the sintering raw material group B.

本発明に係る焼結原料の事前処理方法は、鉄鉱石として微粉原料を使用する焼結原料A群を、250μmアンダーが50質量%以上の粒度を有する生石灰及び消石灰のいずれか1又は2を用いて造粒するので、バインダーとなる生石灰や消石灰の使用量を顕著に増加させることなく、造粒性を改善して、焼結原料A群を造粒でき、更には、造粒物の崩壊を抑制して、焼結鉱を製造できる。
これは、粒度構成が、10μmオーバー500μmアンダー程度に揃った焼結原料A群のみを造粒した際には、造粒物内部に空間が形成されるため、上記した粒度を有する生石灰や消石灰を用いることで、これらが造粒物内部の空間に充填されることによる。
なお、前記した特許文献1に記載のマラマンバ鉱石は、10μmアンダーの微粒子が多い焼結原料(後述する焼結原料B群に該当する焼結原料)であり、上記した焼結原料A群程度の難造粒性は呈さない。
The sintering raw material pretreatment method according to the present invention uses a sintered raw material A group using a fine powder raw material as iron ore, either 1 or 2 of quick lime and slaked lime having a particle size of 250 μm under 50% by mass or more. Therefore, without significantly increasing the amount of quicklime or slaked lime used as a binder, the granulating property can be improved and the sintered raw material group A can be granulated. Sintered ore can be manufactured with suppression.
This is because when only the sintered raw material A group having a particle size composition of about 10 μm over 500 μm is granulated, a space is formed inside the granulated material, so quick lime and slaked lime having the above particle sizes are used. By using these, the space inside the granulated product is filled.
The Mara Mamba ore described in Patent Document 1 is a sintering raw material (sintering raw material corresponding to a sintering raw material B group to be described later) with a large amount of fine particles of 10 μm under, which is about the above-described sintering raw material group A. Does not exhibit difficult granulation.

また、焼結原料B群に、250μmアンダーが10質量%以上50質量%未満の粒度を有する生石灰及び消石灰のいずれか1又は2を配合して造粒する場合、生石灰や消石灰の全てを細粒化することなく、焼結原料A群の造粒性を確保できる。
これは、焼結原料B群が、上記した焼結原料A群と比較して、易造粒性となる粒度を有するため、比較的細粒の生石灰や消石灰を焼結原料A群に使用すると共に、比較的粗粒の生石灰や消石灰を焼結原料B群に使用できることによる。
Further, when granulating by mixing either 1 or 2 of quick lime and slaked lime having a particle size of 250 mass% under 10% by mass and less than 50% by mass in the sintering raw material group B, all of the quick lime and slaked lime are finely granulated. The granulating property of the sintering raw material group A can be ensured without conversion.
This is because the sintered raw material B group has a particle size that makes it easy to granulate as compared with the above-described sintered raw material A group, so that relatively fine-grained quicklime and slaked lime are used for the sintered raw material A group. Moreover, it is because comparatively coarse-grain quicklime and slaked lime can be used for the sintering raw material B group.

そして、焼結原料B群に少なくとも凝結材が添加されている場合、焼結現象(酸化発熱現象)を促進することができるため、凝結材の添加量を抑制することが可能となる。また、凝結材の添加量を変えない場合は、焼結鉱の生産性を向上できる。
一般に凝結材は、焼結鉱の強度等を確保する目的で焼結原料に添加するが、凝結材の使用はコストの上昇を招くため、その添加量は必要最小限であることが求められている。一方、凝結材が微粉(粒度構成:10μmオーバー500μmアンダー程度)の付着により造粒物内部に埋没すると、酸化発熱現象に寄与し難くなるため、凝結材の添加量を抑制することが困難となる。
このため、凝結材を微粉の少ない焼結原料B群に添加することで、凝結材の埋没を抑制することができる。
When at least a coagulant is added to the sintering raw material group B, the sintering phenomenon (oxidation exothermic phenomenon) can be promoted, so that the amount of the coagulant added can be suppressed. Further, when the amount of the coagulant is not changed, the productivity of the sintered ore can be improved.
In general, the coagulant is added to the sintering raw material for the purpose of securing the strength of the sintered ore. However, the use of the coagulant causes an increase in cost, so the addition amount is required to be the minimum necessary. Yes. On the other hand, if the agglomerated material is buried inside the granulated material due to adhesion of fine powder (particle size composition: about 10 μm over 500 μm under), it becomes difficult to contribute to the oxidation exothermic phenomenon, so it becomes difficult to suppress the amount of the agglomerated material added. .
For this reason, burying of the coagulant can be suppressed by adding the coagulant to the sintered raw material group B with a small amount of fine powder.

添加するバインダーの種類が造粒物の造粒性に及ぼす影響を示すグラフである。It is a graph which shows the influence which the kind of binder to add has on the granulation property of a granulated material. (A)は原料中の500μmアンダーの割合が造粒後の粉率に及ぼす影響を示すグラフ、(B)は原料中の10μmアンダーの割合が造粒後の粉率に及ぼす影響を示すグラフである。(A) is a graph showing the effect of the proportion of 500 μm under in the raw material on the powder rate after granulation, (B) is a graph showing the effect of the proportion of the 10 μm under in the raw material on the powder rate after granulation is there. 生石灰中の250μmアンダーの割合が造粒後の粉率に及ぼす影響を示すグラフである。It is a graph which shows the influence which the ratio of 250 micrometers under in quicklime has on the powder rate after granulation. (A)〜(E)はそれぞれ焼結原料の造粒過程を示す説明図である。(A)-(E) are explanatory drawings which respectively show the granulation process of a sintering raw material. 易造粒性原料への凝結材の添加割合が焼結生産性に及ぼす影響を示すグラフである。It is a graph which shows the influence which the addition ratio of the coagulant | flocculant to an easily granulated raw material has on sintering productivity.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
まず、本発明に想到した経緯について説明する。
はじめに、粉鉱石(鉄鉱石)のうち、難造粒性を示す微粉原料の造粒性について説明する。
篩目10μmアンダーの粒子(微粒子)が5質量%以下と極めて少なく、500μmアンダーの粒子が50質量%以上と非常に多い微粉原料(鉄鉱石)が、通常の鉄鉱石と異なる点は、10μmアンダーの粒子が極めて少ない点であり、例えば、鉄鉱石の粉砕処理と水による比重選鉱処理を繰り返すことで、この特徴が得られることがわかった。なお、500μmアンダーの粒子の質量%の測定に際しては、微粉原料(2kg)を、150℃で1時間乾燥した後、0.5mmの篩目(JIS Z8801−1「試験用ふるい−第1部:金属製網ふるい」に拠る)で分級し、篩下の質量%を求めた。また、10μmアンダーの微粒子の質量%の測定に際しては、上記乾燥後の微粉原料を対象に、レーザー回折散乱法の測定機器(日機装株式会社製 MICROTRAC(登録商標) MT3300型、測定範囲:0.02〜1400μm)を用いた。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
First, the background to the present invention will be described.
First, the granulation property of the fine powder raw material which shows difficult granulation property among powder ores (iron ore) is demonstrated.
The finer raw material (iron ore) with very small particles (fine particles) with a mesh size of 10 μm or less, less than 5% by mass, and very much with particles of 500 μm or less with 50% by mass or more, is different from ordinary iron ore. It has been found that this feature can be obtained by repeating, for example, iron ore crushing treatment and water specific gravity separation treatment. In the measurement of the mass% of particles having a size of 500 μm or less, a fine powder material (2 kg) was dried at 150 ° C. for 1 hour, and then a 0.5 mm sieve mesh (JIS Z8801-1 “Test sieve—Part 1: (Based on “metal mesh sieve”), and the mass% under the sieve was determined. Further, when measuring the mass% of fine particles under 10 μm, the measurement device of the laser diffraction scattering method (MICROTRAC (registered trademark) MT3300, manufactured by Nikkiso Co., Ltd., measurement range: 0.02) is used for the fine powder raw material after drying. ˜1400 μm) was used.

ここで、鉄鉱石として少なくとも1種又は複数種の粉鉱石(微粉原料の場合を含む)を含むものが焼結原料であり、この焼結原料に、副原料(成分調整用原料)や凝結材(例えば、コークス粉や石炭粉等)が含まれるか否かは任意であり、本実施の形態での焼結原料とは、生石灰と消石灰(バインダー)を含まないものをさす。なお、焼結原料に副原料や凝結材が含まれる場合、焼結原料中の副原料と凝結材の合計量が質量比で30質量%以下程度(焼結原料中の鉄鉱石量:例えば、焼結原料の70〜100質量%程度)となるように、鉄鉱石に副原料と凝結材を添加する場合があるが、焼結原料の造粒性や造粒物の強度は、これらの添加量では改善しにくい。   Here, the iron ore containing at least one or more kinds of fine ores (including fine powder raw materials) is a sintered raw material, and the auxiliary raw materials (component adjusting raw materials) and coagulants are included in this sintered raw material. Whether or not (for example, coke powder or coal powder) is included is arbitrary, and the sintering raw material in the present embodiment refers to a material that does not include quick lime and slaked lime (binder). In addition, when the auxiliary material and the coagulant are included in the sintered raw material, the total amount of the auxiliary material and the coagulant in the sintered material is about 30% by mass or less (the amount of iron ore in the sintered material: The auxiliary raw material and the coagulant may be added to the iron ore so as to be about 70 to 100% by mass of the sintered raw material). It is difficult to improve by the amount.

上記した粒度構成、即ち10μmオーバーかつ500μmアンダー程度に概ね揃った微粉原料を造粒すると、隣接する原料粒子の間に空間が形成される。
しかし、上記したように、微粉原料中には、この空間を充填する10μmアンダーの微粒子が極めて少ないため、微粉原料は空間を内包したまま造粒され、造粒物の強度が極めて低くなる。このため、例えセルロース等の粘着質のバインダーを用いて微粉原料を造粒し、隣接する微粉原料の粒子同士を粘着できたとしても、造粒物内部には空間が残留するため、造粒物の強度を向上しにくい。
更に一般に、粉鉱石は水を用いて造粒するが、結晶水を4質量%以上含む高結晶水鉱石を、微粉原料に30質量%以上60質量%以下含める場合、高結晶水鉱石の気孔に水が吸収され、造粒物強度が経時劣化(低下)する問題もある。
上記状況において、上記した微粉原料の造粒に用いるバインダーには、10μmアンダーの微粒子を供給でき、上記した空間を充填できるものが好ましいことに想到した。
When the above-mentioned particle size configuration, that is, a fine raw material that is roughly aligned to about 10 μm and under 500 μm is granulated, a space is formed between adjacent raw material particles.
However, as described above, since the fine powder raw material has very few 10 μm-undersized fine particles filling the space, the fine powder raw material is granulated while enclosing the space, and the strength of the granulated product becomes extremely low. For this reason, even if the fine powder raw material is granulated using an adhesive binder such as cellulose, and even if the particles of the adjacent fine powder raw material can be adhered to each other, a space remains in the granulated product. Hard to improve strength.
More generally, the powdered ore is granulated using water, but when high crystal water ore containing 4% by mass or more of crystal water is included in the fine powder material by 30% by mass or more and 60% by mass or less, the pores of the high crystal water ore are included. There is also a problem that water is absorbed and the strength of the granulated material deteriorates (decreases) with time.
In the above situation, it was conceived that the binder used for the granulation of the fine powder raw material is preferably one that can supply fine particles of under 10 μm and can fill the space described above.

なお、固形バインダーには、ベントナイトや炭酸カルシウム等があるが、通常の混練処理程度では、上記した微粉原料へ固形バインダーを均一分散させるのが難しいことが判明した。
これは、上記したように、微粉原料の粒径が10μmオーバーかつ500μmアンダー程度の大きさに概ね揃っており、一般には広範囲な粒度分布を持つことで混練による原料の混合が進むため、粒子が微粒化せず溶解もしないベントナイトや炭酸カルシウム等を添加しても分散が進まないものと考えられ、この観点からも、別の手段で10μmアンダーの微粒子を添加することが好ましいと考えられた。
以上のことから、本発明者らは、鉄鉱石として、500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下の粒度である微粉原料を用いた焼結原料A群を造粒するに際し、混練や造粒を容易化するバインダーとして、生石灰と消石灰に想到した。なお、焼結パレットに入れる焼結原料は混練を行わない場合もある。
In addition, although there exist bentonite, calcium carbonate, etc. in a solid binder, it turned out that it is difficult to disperse | distribute a solid binder uniformly to the above-mentioned fine powder raw material by the grade of a normal kneading | mixing process.
This is because, as described above, the particle size of the fine powder material is almost uniform in a size of about 10 μm over and under 500 μm, and generally the mixing of the raw material by kneading proceeds by having a wide particle size distribution. Even if bentonite, calcium carbonate, or the like that does not atomize or dissolve is added, it is considered that the dispersion does not proceed. From this point of view, it is considered preferable to add fine particles of 10 μm or less by another means.
From the above, the present inventors, as iron ore, when granulating the sintered raw material A group using a fine powder raw material having a particle size of 500 μm under 50% by mass and 10 μm under 5% by mass, As a binder for facilitating kneading and granulation, the inventors came up with quick lime and slaked lime. In addition, the sintering raw material put into a sintering pallet may not knead | mix.

次に、生石灰と消石灰による造粒メカニズムについて説明する。
生石灰は、混練や造粒中に水と接触することで一部が吸湿し消化(消石灰化)して微粒化し、水と共に微粉原料に均一に混ざり易くなるものであると考えられる。なお、生石灰としては、CaOが例えば84質量%以上のものが多用されている。
ここで、生成した消石灰の一部については、水に溶解することでも、微粉原料に均一に混ざり易くなる。
なお、微粉原料に、生石灰の代わりに、又は生石灰と共に、消石灰を添加する場合も同様であり、一部の消石灰が水に溶解して、微粉原料中に均一に混ざり易くなる。
Next, the granulation mechanism by quicklime and slaked lime will be described.
It is considered that quick lime is partly absorbed by digestion (slaked calcification) and atomized by contact with water during kneading and granulation, and easily mixed with the fine powder raw material together with water. In addition, as quicklime, that whose CaO is 84 mass% or more is used abundantly.
Here, a part of the generated slaked lime is easily mixed with the fine powder raw material even by dissolving in water.
In addition, it is the same also when adding slaked lime to a fine powder raw material instead of quick lime or with quick lime, and a part of slaked lime melt | dissolves in water, and it becomes easy to mix uniformly in a fine powder raw material.

生石灰の消化で生成する消石灰や、水の蒸発等によって再晶出する消石灰は、粒径が10μmアンダーの微粒子であり、更にはサブミクロンオーダーの微粒子も多く含まれており、固体架橋によって上記微粉原料の造粒性向上や造粒物の強度向上に大きく寄与する。
従って、極力多くの生石灰を消化させることが重要となる。
上記したことから、難造粒性の微粉原料と、その他の原料(例えば、造粒が容易な易造粒性原料)を混合する場合は、難造粒性の微粉原料に対して、粒径を小さくする処理を施した生石灰や消石灰の添加や、その添加量を多くすること等も重要となる。
Slaked lime produced by digestion of quick lime and slaked lime recrystallized by evaporation of water, etc. are fine particles with a particle size of under 10 μm, and also contain many fine particles of submicron order. This greatly contributes to the improvement of the granulation properties of the raw materials and the strength of the granules.
Therefore, it is important to digest as much quicklime as possible.
From the above, when mixing a difficult-to-granulate fine powder raw material and other raw materials (for example, easy-to-granulate raw material that is easy to granulate), It is also important to add quick lime and slaked lime that have been subjected to a treatment for reducing the amount of lime and to increase the amount of addition.

なお、炭酸カルシウム(分子式:CaCO)は、生石灰や消石灰と同様にCaOを含み、そのCaO含有率が56質量%程度のものであり、石灰石あるいは単に石灰と称される場合がある。しかし、炭酸カルシウムは、化学的に安定な物質であって、吸湿による消化や水への溶解は起こりにくい。
従って、上記した生石灰や消石灰に、炭酸カルシウムは含まれない。
ここで、添加するバインダーの種類が造粒物の造粒性に及ぼす影響について、図1を参照しながら説明する。
In addition, calcium carbonate (molecular formula: CaCO 3 ) contains CaO similarly to quick lime and slaked lime, and has a CaO content of about 56% by mass, and may be referred to as limestone or simply lime. However, calcium carbonate is a chemically stable substance, and digestion due to moisture absorption and dissolution in water hardly occur.
Therefore, calcium carbonate is not contained in the above-mentioned quick lime and slaked lime.
Here, the influence which the kind of binder to add has on the granulation property of a granulated material is demonstrated, referring FIG.

なお、試験は、結晶水を4質量%以上含む高結晶水鉱石を0又は0を超え10質量%以下配合した500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下の粒度である微粉原料(焼結原料A群)に、バインダー(炭酸カルシウム、消石灰、生石灰)を外掛けで2質量%添加し、これを万能ミキサー(自転する撹拌羽根の軸を公転させる竪型ミキサー)で混練した後、ドラムミキサーで造粒処理した。ここでは、バインダー添加の評価基準として、バインダーを添加していない難造粒性の微粉原料(原料)のみのものについても、万能ミキサーで混練した後、ドラムミキサーで造粒処理した。
詳細条件は、水分:9〜12質量%の範囲で一定、混練:周速2.2m/秒、処理時間90秒、造粒:周速1.0m/秒、処理時間60秒、である。なお、周速は、万能ミキサー(混練機)とドラムミキサー(造粒機)において、回転するもの(羽根、ドラム等)で、一番速い部分の速度を意味する。
In addition, the test is a fine powder raw material in which a high crystal water ore containing 4% by mass or more of crystal water is blended 0 or more than 0 and 10% by mass or less, and a particle size of 500 μm under is 50% by mass and 10 μm under is 5% by mass After adding 2% by mass of binder (calcium carbonate, slaked lime, quicklime) to (sintering raw material A group) and kneading this with a universal mixer (a vertical mixer that revolves the axis of a rotating stirring blade) And granulated with a drum mixer. Here, as an evaluation standard for addition of the binder, only the hardly granulated fine powder raw material (raw material) to which no binder was added was kneaded with a universal mixer and then granulated with a drum mixer.
The detailed conditions are: moisture: constant in the range of 9 to 12% by mass, kneading: peripheral speed 2.2 m / second, processing time 90 seconds, granulation: peripheral speed 1.0 m / second, processing time 60 seconds. The peripheral speed means the speed of the fastest part of a universal mixer (kneader) and drum mixer (granulator) that rotate (blades, drums, etc.).

また、評価は、以下の手順で行った。
まず、上記した造粒処理した微粉原料(2kg)を、150℃で1時間乾燥した後、0.5mmの篩目(JIS Z8801−1「試験用ふるい−第1部:金属製網ふるい」に拠る)で分級し、0.5mmアンダーの割合を粉率と定義した。なお、粉率は、バインダーを添加していない微粉原料のみの粉率を「1.0」として、それぞれ算出した。
図1から、微粉原料に対して炭酸カルシウムを添加した場合、造粒性の改善が小さい(粉率:0.70)のに対し、微粉原料に対して生石灰又は消石灰を添加した場合は、造粒性が著しく改善(生石灰:0.41、消石灰:0.43)することを、本発明者らは初めて発見した。
これは、生石灰が水と接触することにより微粒化し、更に生成した消石灰(添加した消石灰)の一部が水に溶解することで、微粉原料に均一に混ざり易くなり、固体架橋によって微粉原料の造粒性向上や造粒物の強度向上に大きく寄与したためと考えられる。
Moreover, evaluation was performed in the following procedures.
First, the above granulated fine powder material (2 kg) was dried at 150 ° C. for 1 hour, and then passed through a 0.5 mm sieve mesh (JIS Z8801-1 “Test sieve—Part 1: Metal mesh sieve”). The ratio of 0.5 mm under was defined as the powder rate. The powder ratio was calculated by setting the powder ratio of only the fine powder raw material to which no binder was added to “1.0”.
From FIG. 1, when calcium carbonate is added to the fine powder raw material, the improvement in granulation is small (powder rate: 0.70), whereas when quick lime or slaked lime is added to the fine powder raw material, The present inventors have discovered for the first time that the graininess is remarkably improved (quick lime: 0.41, slaked lime: 0.43).
This is because quick lime is atomized by contact with water, and part of the generated slaked lime (added slaked lime) dissolves in water, making it easy to mix uniformly into the fine powder raw material. This is thought to be due to the great contribution to the improvement of graininess and the strength of the granulated product.

上記粉率は平均値であり、いずれのバインダーを用いた場合も、粉率値は5%程度のばらつきをもった。
一方、上記試験に用いた微粉原料として、結晶水を4質量%以上含む高結晶水鉱石を30〜60質量%配合したものを用いた場合、粉率が全体的に悪化(増加)し、特に、バインダーとして炭酸カルシウムを用いた場合は、概ね2〜3割程度のばらつきを示すのに対し、バインダーとして生石灰や消石灰を用いた場合は、炭酸カルシウムの粉率値のばらつきよりも小さな1割程度であった。これは、造粒時や造粒後に気孔に水が吸収され得る高結晶水鉱石を用いたとしても、バインダーとして炭酸カルシウムを用いると上記した固体架橋が安定せず、一方、生石灰や消石灰を用いると上記した固体架橋が安定するものと推定され、吸湿による消化や水への溶解が起きると、気孔への吸水が起こっても固体架橋が比較的安定しているものと推定された。
The powder ratio is an average value, and the powder ratio value varied by about 5% when any binder was used.
On the other hand, when the fine powder raw material used in the above test was blended with 30 to 60% by mass of high crystal water ore containing 4% by mass or more of crystal water, the powder rate was deteriorated (increased) as a whole. When calcium carbonate is used as a binder, it shows a variation of about 20 to 30%, whereas when quick lime or slaked lime is used as a binder, it is about 10% smaller than the variation of the powder rate value of calcium carbonate. Met. This is because even if a high crystal water ore that can absorb water into pores after granulation or after granulation is used, if calcium carbonate is used as a binder, the above-mentioned solid cross-linking is not stabilized, while quick lime or slaked lime is used. It was presumed that the above-mentioned solid cross-linking was stable. When digestion by moisture absorption or dissolution in water occurred, it was presumed that the solid cross-linking was relatively stable even if water absorption into the pores occurred.

以上のことから、本発明者らは、難造粒性を有する微粉原料の造粒性を向上できる焼結原料の事前処理方法に想到した。即ち、鉄鉱石として、500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下の粒度の粉鉱石である微粉原料を用いた焼結原料A群(難造粒性微粉原料)を、250μmアンダーが50質量%以上の粒度を有する生石灰及び消石灰のいずれか1又は2を用いて造粒して造粒物とする方法である。更に、鉄鉱石として、500μmアンダーが50質量%未満又は10μmアンダーが5質量%超の粒度の粉鉱石を用いる焼結原料B群(易造粒性原料)に、250μmアンダーが10質量%以上50質量%未満の粒度を有する生石灰及び消石灰のいずれか1又は2を配合し、焼結原料A群の造粒物との合流前又は合流後に造粒して造粒物とすることができる。
ここで、難造粒性微粉原料と易造粒性原料の粒度の関係を、表1に示す。
In view of the above, the present inventors have come up with a pretreatment method for a sintered material that can improve the granulation property of a fine powder material having difficult granulation properties. That is, as the iron ore, a sintering raw material group A (difficult-to-granulate fine powder raw material) using a fine powder raw material having a particle size of 500 μm under with 50% by mass or more and 10 μm under with 5% by mass or less is used under 250 μm. Is a method of granulating by using either 1 or 2 of quicklime and slaked lime having a particle size of 50% by mass or more. Furthermore, as the iron ore, a sintered raw material group B (easy granulating raw material) using a powdered ore having a particle size of 500 μm under less than 50% by weight or 10 μm under over 5% by weight, 250 μm under is 10% by weight to 50%. Either 1 or 2 of quicklime and slaked lime having a particle size of less than mass% can be blended and granulated before or after merging with the granulated material of the sintering raw material group A to obtain a granulated material.
Here, the relationship between the particle sizes of the hardly granulated raw material and the easily granulated raw material is shown in Table 1.

Figure 0005835099
Figure 0005835099

上記した難造粒性微粉原料、即ち500μmアンダー(−500μm)が50質量%以上かつ10μmアンダー(−10μm)が5質量%以下の粒度を有する原料は、表1中の「A」に該当する。
一方、粉鉱石(鉄鉱石)から、上記した難造粒性微粉原料を除いた焼結原料である易造粒性原料は、表1中の「B1」、「B2」、及び「B3」に該当する。即ち、500μmアンダーが50質量%未満かつ10μmアンダーが5質量%以下の粒度を有する原料は、表1中の「B1」に、500μmアンダーが50質量%以上かつ10μmアンダーが5質量%超の粒度を有する原料は、表1中の「B2」に、500μmアンダーが50質量%未満かつ10μmアンダーが5質量%超の粒度を有する原料は、表1中の「B3」に、それぞれ該当する。
以上のように、造粒処理する焼結原料は、表1のように分類できる。
The above-mentioned hardly granulated raw material, that is, a raw material having a particle size in which 500 μm under (−500 μm) is 50% by mass or more and 10 μm under (−10 μm) is 5% by mass or less corresponds to “A” in Table 1. .
On the other hand, easily granulated raw materials which are sintering raw materials obtained by removing the above-mentioned hardly granulated fine powder raw materials from fine ores (iron ores) are listed in “B1”, “B2”, and “B3” in Table 1. Applicable. That is, a raw material having a particle size of 500 μm under less than 50% by mass and 10 μm under 5% by mass or less has a particle size of “B1” in Table 1 with 500 μm under 50% by mass and 10 μm under 5% by mass. The raw materials having a particle size of “B2” in Table 1 with a particle size of 500 μm under less than 50 mass% and 10 μm under 5 mass% correspond to “B3” in Table 1, respectively.
As described above, the sintering raw materials to be granulated can be classified as shown in Table 1.

なお、上記した「B1」、「B2」、「B3」の分類は、粒度分布を調べた鉄鉱石銘柄で決定でき、これらの配合後でも、粒度分布に基づいて決定できる。更に、篩処理や粉砕処理によっても粒度が調整できるため、上記した「A」、「B1」、「B2」、「B3」の分類に決定できる。この篩処理と粉砕処理のいずれか一方(単独)又は双方の処理方法は、粒度が安定するため、造粒状況が安定して好ましい。   The classification of “B1”, “B2”, and “B3” described above can be determined based on the iron ore brand whose particle size distribution is examined, and can be determined based on the particle size distribution even after blending them. Furthermore, since the particle size can be adjusted by sieving or grinding, the classification can be made to the above-mentioned classifications “A”, “B1”, “B2”, and “B3”. Either one (single) or both processing methods of the sieving and pulverization are preferable because the granulation state is stable because the particle size is stable.

次に、難造粒性微粉原料の粒度構成を、上記した範囲に規定した理由について、図2(A)、(B)を参照しながら説明する。
試験は、結晶水を4質量%以上含む高結晶水鉱石を30〜60質量%配合した原料に生石灰(粒度:250μmアンダーが50質量%未満)を、外掛けで2質量%添加し、これを前記した万能ミキサーで混練した後、ドラムミキサーで造粒して行った。この原料には、図2(A)の場合、原料中の10μmアンダーの質量割合を5質量%に固定し、500μmアンダーの質量割合を、20質量%、50質量%、75質量%に変更した原料を、図2(B)の場合、原料中の500μmアンダーの質量割合を50質量%に固定し、10μmアンダーの質量割合を、2.5質量%、5質量%、8質量%に変更した原料を、それぞれ使用した。
なお、水分、混練、及び造粒の各条件は、前記した詳細条件と同一である。
Next, the reason why the particle size constitution of the hardly granulated fine powder raw material is defined in the above-described range will be described with reference to FIGS. 2 (A) and 2 (B).
In the test, quick lime (particle size: 250 μm under is less than 50% by mass) is added to the raw material in which high crystal water ore containing 4% by mass or more of crystal water is blended in an amount of 2% by mass. After kneading with the above-mentioned universal mixer, it was granulated with a drum mixer. In this raw material, in the case of FIG. 2A, the mass ratio of 10 μm under in the raw material was fixed to 5 mass%, and the mass ratio of 500 μm under was changed to 20 mass%, 50 mass%, and 75 mass%. In the case of FIG. 2 (B), the mass ratio of the 500 μm under in the raw material was fixed to 50 mass%, and the mass ratio of the 10 μm under mass was changed to 2.5 mass%, 5 mass%, and 8 mass%. Each raw material was used.
The conditions for moisture, kneading, and granulation are the same as the detailed conditions described above.

また、評価についても、前記した0.5mmアンダーの割合を粉率と定義して行った。なお、粉率は、図2(A)の場合、原料中の10μmアンダーの質量割合を5質量%に固定し、500μmアンダーの質量割合を50質量%にした造粒物の粉率を、また図2(B)の場合、原料中の500μmアンダーの質量割合を50質量%に固定し、10μmアンダーの質量割合を5質量%にした造粒物の粉率を、それぞれ「1」として算出した。
図2(A)に示すように、原料中の10μmアンダーの質量割合を5質量%に固定した場合、500μmアンダーの質量割合が50質量%以上になることで、造粒物の粉率が急激に上昇する傾向が得られた。
また、図2(B)に示すように、原料中の500μmアンダーの質量割合を50質量%に固定した場合、10μmアンダーの質量割合が5質量%以下になることで、造粒物の粉率が急激に上昇する傾向が得られた。
Moreover, also about evaluation, the above-mentioned ratio of 0.5 mm under was defined as the powder rate. In addition, in the case of FIG. 2 (A), a powder rate is the powder rate of the granulated material which fixed the mass ratio of 10 micrometers under in the raw material to 5 mass%, and made the mass ratio of 500 micrometers under 50 mass%, In the case of FIG. 2 (B), the powder ratio of the granulated product in which the mass ratio of 500 μm under in the raw material is fixed to 50% by mass and the mass ratio of 10 μm under is 5% by mass was calculated as “1”. .
As shown in FIG. 2 (A), when the mass ratio of 10 μm under in the raw material is fixed to 5 mass%, the mass ratio of 500 μm under becomes 50 mass% or more, so that the powder rate of the granulated product is rapidly increased. A tendency to rise was obtained.
Moreover, as shown in FIG. 2 (B), when the mass ratio of 500 μm under in the raw material is fixed to 50% by mass, the mass ratio of 10 μm under becomes 5% by mass or less. A tendency to increase rapidly was obtained.

以上のことから、本発明は、造粒物の粉率が高くなる難造粒性を示す微粉原料の粒度として、500μmアンダーが50質量%(更には60質量%)以上かつ10μmアンダーが5質量%(更には4質量%)以下を規定した。なお、500μmアンダーの上限値を規定していないのは100質量%でもよく、また10μmアンダーの下限値を規定していないのは0質量%でもよいためである。
以上から、500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下の粒度の微粉原料であれば、造粒物の粉率が極めて上昇(悪化)することがわかる。また、これに対し、500μmアンダーが50質量%未満又は10μmアンダーが5質量%超の粒度の粉鉱石であれば、粉率が一定レベル下がる(改善する)ことがわかる。
From the above, in the present invention, as the particle size of the fine powder raw material exhibiting difficult granulation which increases the powder rate of the granulated product, 500 μm under is 50% by mass (further 60% by mass) and 10 μm under is 5% by mass. % (Further 4% by mass) or less. The reason why the upper limit value of 500 μm under is not specified is 100% by mass, and the reason why the lower limit value of 10 μm under is not specified is that 0% by mass may be used.
From the above, it can be seen that if the raw material has a particle size of 500 μm under 50% by mass or more and 10 μm under 5% by mass or less, the powder rate of the granulated product is extremely increased (deteriorated). On the other hand, it can be seen that if the powder ore has a particle size of 500 μm under less than 50% by mass or 10 μm under over 5% by mass, the powder rate is lowered (improved) by a certain level.

続いて、微粉原料に添加する生石灰の粒度構成について、図3を参照しながら説明する。
試験は、結晶水を4質量%以上含む高結晶水鉱石を30〜60質量%配合した500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下の粒度である難造粒性微粉原料と、結晶水を4質量%以上含む高結晶水鉱石を30〜60質量%配合した500μmアンダーが50質量%未満又は10μmアンダーが5質量%超の粒度である易造粒性原料に、それぞれ250μmアンダーの質量割合が異なる生石灰を、外掛けで2質量%添加し、これを前記した万能ミキサーで混練した後、ドラムミキサーで造粒して行った。なお、水分、混練、及び造粒の各条件は、前記した詳細条件と同一である。
また、評価についても、前記した0.5mmアンダーの質量割合を粉率と定義して行った。なお、粉率は、易造粒性原料の造粒に際し、粉率の低下が顕著でなくなる場合、即ち生石灰中の250μmアンダーの質量割合を10質量%にした場合を「1」として算出し、この粉率(図3中の点線)以下を合格とした。
Then, the particle size structure of the quicklime added to a fine powder raw material is demonstrated, referring FIG.
The test consists of a hardly granulated fine powder raw material having a particle size of 50 to 50% by mass and 5 to 10% by mass of 10 μm under and containing 30 to 60% by mass of high crystal water ore containing 4% by mass or more of crystal water, The easily granulated raw material having a particle size of less than 50% by mass or less than 5% by mass of 10 μm under which 30 to 60% by mass of high crystal water ore containing 4% by mass or more of crystal water is blended is 250 μm under each. After adding 2% by mass of quick lime having a different mass ratio, the mixture was kneaded with the above-mentioned universal mixer and then granulated with a drum mixer. The conditions for moisture, kneading, and granulation are the same as the detailed conditions described above.
Moreover, also about evaluation, the above-mentioned mass ratio of 0.5 mm under was defined as the powder rate. In addition, the powder rate is calculated as “1” when granulating the easily granulated raw material, when the decrease in the powder rate is not significant, that is, when the mass ratio of 250 μm under in quicklime is 10% by mass, This powder ratio (dotted line in FIG. 3) or less was regarded as acceptable.

図3に示すように、難造粒性微粉原料の造粒に際しては、生石灰中の250μmアンダーの質量割合を50質量%以上にすることで、造粒物の粉率が急激に低下して、粉率が合格の基準を満たした(図3中の太線)。
また、易造粒性原料を造粒する場合、難造粒性微粉原料と比較して造粒性が良好であるため、生石灰中の250μmアンダーの質量割合を10質量%以上にすることで、造粒物の粉率が低下して、粉率が合格の基準を満たした(図3中の細線)。
なお、上記した結果は、生石灰の代わりに消石灰を使用した場合も、同様の傾向が得られた。
As shown in FIG. 3, when granulating the difficult-to-granulate fine powder raw material, by making the mass ratio of 250 μm under in the quicklime 50% by mass or more, the powder ratio of the granulated product is drastically reduced, The powder rate met the acceptance criteria (thick line in FIG. 3).
Moreover, when granulating an easily granulated raw material, since the granulation property is good compared to the difficult granulated fine powder raw material, by making the mass ratio of 250 μm under in quicklime be 10% by mass or more, The powder rate of the granulated product decreased, and the powder rate met the acceptance criteria (thin line in FIG. 3).
In addition, the above-mentioned result showed the same tendency, when using slaked lime instead of quick lime.

以上のことから、難造粒性微粉原料を造粒するに際しては、250μmアンダーが50質量%(更には60質量%)以上の粒度を有する生石灰及び消石灰のいずれか1又は2を用いることとした。なお、ここで、250μmアンダーの上限値を規定していないのは、100質量%でもよいためである。
また、易造粒性原料を造粒する場合は、250μmアンダーが10質量%(更には20質量%)以上50質量%未満の粒度を有する生石灰及び消石灰のいずれか1又は2を用いる。
From the above, when granulating a difficult-to-granulate fine powder raw material, either 1 or 2 of quick lime and slaked lime having a particle size of 250 mass% or more of 50 mass% (or 60 mass%) or more is used. . Here, the reason why the upper limit value of 250 μm under is not specified is that 100% by mass may be used.
Moreover, when granulating an easily granulated raw material, either 1 or 2 of the quick lime and slaked lime which have a particle size whose 250 micrometers under has a particle size of 10 mass% (further 20 mass%) or more and less than 50 mass% is used.

なお、易造粒性原料に使用する生石灰や消石灰の250μmアンダーの量を50質量%未満としたのは、粉率が抑制できたためであり、更に、上記した難造粒性微粉原料を造粒するに際し、難造粒性微粉原料の造粒に使用した残りの生石灰や消石灰を、易造粒性原料の造粒に使用することが可能となり、生石灰や消石灰を有効利用できるためである。
これにより、生石灰や消石灰は、その全てを細粒化することなく、比較的粗粒の状態で易造粒性原料の造粒に使用できるため、製造コストの低減が図れて経済的である。
The reason why the amount of quick lime and slaked lime 250 μm under used in the easily granulated raw material was set to less than 50% by mass was that the powder rate could be suppressed, and the above-mentioned hardly granulated fine powder raw material was granulated. In doing so, it is possible to use the remaining quicklime and slaked lime used for the granulation of the difficult-to-granulate fine powder raw material for the granulation of the easily granulated raw material, and to effectively use the quicklime and slaked lime.
Thereby, quick lime and slaked lime can be used for granulation of an easily granulated raw material in a relatively coarse state without making all of them fine, so that the production cost can be reduced and it is economical.

上記した難造粒性微粉原料(以下、焼結原料A群ともいう)や易造粒性原料(以下、焼結原料B群ともいう)の造粒処理には、アイリッヒミキサーのような撹拌機や、レディゲミキサーのような混練機を用いることができ、またドラムミキサーや皿型造粒機のような転動型造粒機を用いてもよい。
なお、転動型造粒機であるドラムミキサーは、造粒の途中段階から、凝結材や副原料を添加することが可能であり、凝結材の埋没抑制や副原料の局所濃化による焼結時の原料溶融をコントロールできるため好適である。
For the granulation treatment of the above-mentioned difficult-to-granulate fine powder raw material (hereinafter also referred to as sintering raw material A group) and easy-to-granulate raw material (hereinafter also referred to as sintered raw material B group), stirring such as an Eirich mixer is used. Or a kneading machine such as a Redige mixer, or a rolling granulator such as a drum mixer or a dish granulator may be used.
In addition, the drum mixer, which is a rolling granulator, can add a coagulating material and auxiliary materials from the middle of the granulation, and suppresses the flocculation of the coagulating material and sintering by local concentration of the auxiliary materials. It is preferable because the melting of the raw material at the time can be controlled.

ここで、上記した焼結原料A群、更には焼結原料B群の造粒過程の一例を、図4(A)〜(E)に示す。
図4(A)に示すように、焼結原料A群と生石灰(及び/又は消石灰、以下同様)を、撹拌機で撹拌処理し、又は混練機で混練処理して、得られた造粒物を焼結機へ供給する。
また、図4(B)に示すように、焼結原料A群と生石灰を、転動型造粒機で造粒処理して、得られた造粒物を焼結機へ供給する。
そして、図4(C)に示すように、焼結原料A群と生石灰を、撹拌機で撹拌処理し、又は混練機で混練処理し、更に転動型造粒機で造粒処理して、得られた造粒物を焼結機へ供給する。
Here, an example of the granulation process of the above-described sintered raw material A group and further the sintered raw material B group is shown in FIGS. 4 (A) to 4 (E).
As shown in FIG. 4 (A), the sintered raw material group A and quicklime (and / or slaked lime, the same applies hereinafter) are agitated with a stirrer or kneaded with a kneader to obtain a granulated product. Is supplied to the sintering machine.
Moreover, as shown to FIG. 4 (B), the sintering raw material A group and quicklime are granulated with a rolling granulator, and the obtained granulated material is supplied to a sintering machine.
And as shown in FIG.4 (C), the sintering raw material A group and quicklime are stirred with a stirrer, or kneaded with a kneader, and further granulated with a rolling granulator, The obtained granulated material is supplied to a sintering machine.

更に、図4(D)に示すように、上記した方法による焼結原料A群の造粒処理と、焼結原料B群の造粒処理を並列して行い、双方の造粒処理で得られた造粒物を合流させて、この造粒物を焼結機へ供給することもできる(焼結原料B群の造粒処理は、焼結原料A群の造粒物との合流前に行う)。なお、焼結原料B群の造粒処理も、上記した焼結原料A群の造粒処理と同様の方法により実施できる(即ち、焼結原料B群と生石灰(及び/又は消石灰)に対し、図4(A)〜(C)の処理を行う)。
ここで、焼結原料A群の造粒物と焼結原料B群の造粒物との合流は、例えば、ベルトコンベア(搬送手段)上に、双方の造粒物を供給するものでもよく、また各造粒物をドラムミキサーで混合してもよい。
Further, as shown in FIG. 4 (D), the granulation treatment of the sintering raw material group A and the granulation treatment of the sintering raw material group B by the above-described method are performed in parallel, and obtained by both granulation treatments. The granulated product can be merged and the granulated product can be supplied to the sintering machine (granulation treatment of the sintered raw material B group is performed before joining with the granulated product of the sintered raw material A group. ). In addition, the granulation process of the sintering raw material B group can be performed by the same method as the granulation process of the above-described sintering raw material group A (that is, for the sintering raw material group B and quicklime (and / or slaked lime), 4 (A) to 4 (C) are performed).
Here, the merging of the granulated product of the sintered raw material group A and the granulated product of the sintered raw material group B may, for example, supply both granulated products on a belt conveyor (conveying means), Moreover, you may mix each granulated material with a drum mixer.

また、図4(E)に示すように、上記した方法で得られた焼結原料A群の造粒物を、焼結原料B群に供給して合流させ、焼結原料A群の造粒物と焼結原料B群とを合流させたものに対し、上記した焼結原料B群の造粒処理を施して、得られた造粒物を焼結機へ供給することもできる(焼結原料B群の造粒処理は、焼結原料A群の造粒物との合流後に行う)。即ち、焼結原料A群の造粒物と、焼結原料B群と、生石灰(及び/又は消石灰)に対し、図4(A)〜(C)の処理を行う。
これは、焼結原料B群のみでも造粒性が良好であるところに、焼結原料A群の造粒物を合流させると、焼結原料A群の造粒物が核となって焼結原料B群の造粒が進み、より好適な造粒効果が得られるためである。
Further, as shown in FIG. 4 (E), the granulated product of the sintering raw material A group obtained by the above-described method is supplied to the sintering raw material B group to be merged, and the granulation of the sintering raw material A group is performed. It is also possible to supply the resulting granulated product to a sintering machine by subjecting the material and the sintered raw material B group to the granulation treatment of the sintered raw material B group described above. The granulation treatment of the raw material B group is performed after merging with the granulated product of the sintered raw material A group). That is, the process of FIG. 4 (A)-(C) is performed with respect to the granulated material of the sintering raw material A group, the sintering raw material B group, and quicklime (and / or slaked lime).
This is because when the granulated product of the sintering raw material A group is merged with the sintered raw material B group alone, the granulated product of the sintering raw material A group is sintered. This is because granulation of the raw material B group proceeds and a more suitable granulation effect is obtained.

また、上記した焼結原料A群と焼結原料B群を造粒した後、焼結機に装入するに際しては、凝結材も焼結機に装入している(例えば、焼結機に装入する全焼結原料に対して、外掛けで3〜6質量%程度)。
上記したように、凝結材は、最終的に焼結機に装入されればよいため、焼結原料A群及び焼結原料B群のいずれか一方又は双方に添加できるが、焼結原料B群に添加する方が好ましい。これは、焼結原料B群に凝結材を添加する方が、凝結材の埋没を抑制でき、焼結現象に寄与できることによって、焼結原料B群に添加する凝結材の割合を増やすほど、埋没の抑制効果が得られるためである。
これにより、凝結材の使用量削減や焼結鉱品質の向上に寄与できる。
In addition, after granulating the sintering raw material group A and the sintering raw material group B described above, when charging into the sintering machine, the coagulant is also charged into the sintering machine (for example, in the sintering machine). The outer shell is about 3 to 6% by mass with respect to all the sintered raw materials to be charged).
As described above, since the coagulation material may be finally charged into the sintering machine, it can be added to one or both of the sintering raw material group A and the sintering raw material group B. It is preferable to add to the group. This is because adding the coagulant to the sintering raw material B group can suppress the burying of the coagulating material and contribute to the sintering phenomenon, so that the proportion of the coagulating material added to the sintering raw material B group increases. This is because an inhibitory effect is obtained.
Thereby, it can contribute to the reduction of the usage-amount of a condensing material, and the improvement of a sintered ore quality.

次に、本発明の作用効果を確認するために行った実施例について説明する。
試験は、原料に生石灰を外掛けで2質量%添加し、これを前記した万能ミキサーで混練した後、ドラムミキサーで造粒して行った。なお、水分、混練、及び造粒の各条件は、前記した詳細条件と同一である。
この原料には、表2に示す粒度を有する原料を使用した。なお、表2に記載の各鉱石種は、表1に記載の「A」、「B1」、「B2」、「B3」にそれぞれ該当し、焼結原料群の「A群」とは難造粒性微粉原料(結晶水を4質量%以上含む高結晶水鉱石を30〜60質量%配合した微粉原料)を、「B群」とは易造粒性原料を、それぞれ意味する。
また、原料に添加する生石灰には、表3に示す粒度を有する生石灰(CRやCF)を使用した。
Next, examples carried out for confirming the effects of the present invention will be described.
The test was performed by adding 2% by mass of quick lime as a raw material to the raw material, kneading it with the above-mentioned universal mixer, and granulating it with a drum mixer. The conditions for moisture, kneading, and granulation are the same as the detailed conditions described above.
As this raw material, a raw material having a particle size shown in Table 2 was used. Each ore type listed in Table 2 corresponds to “A”, “B1”, “B2”, and “B3” listed in Table 1, respectively. The granular fine powder material (fine powder raw material containing 30 to 60% by mass of high crystal water ore containing 4% by mass or more of crystal water), and “Group B” means an easily granulated raw material.
Moreover, the quicklime (CR and CF) which has the particle size shown in Table 3 was used for the quicklime added to a raw material.

Figure 0005835099
Figure 0005835099

Figure 0005835099
Figure 0005835099

評価は、前記した0.5mmアンダーの割合を粉率と定義して行った。
ここで、試験条件と試験結果を、表4に示す。
The evaluation was performed by defining the above-mentioned ratio of 0.5 mm under as the powder rate.
Here, Table 4 shows test conditions and test results.

Figure 0005835099
Figure 0005835099

表4において、ライン1とライン2は、原料を造粒する別ラインであり、並列に配置したものである。つまり、ライン1で難造粒性微粉原料を、ライン2で易造粒性原料を、それぞれ造粒処理する場合は、難造粒性微粉原料の造粒処理と、易造粒性原料の造粒処理が、並列して行われることを意味する(図4(D)参照)。
また、表4中の従来例1は、ライン1で「B3」を、ライン2で「B2」を、それぞれ造粒するに際し、比較的粗粒の生石灰「CR」を使用した場合の結果であり、従来例2は、ライン1、2で「B1」をそれぞれ造粒するに際し、ライン1では比較的粗粒の生石灰「CR」を使用し、ライン2では生石灰を使用しなかった場合の結果である。
In Table 4, line 1 and line 2 are separate lines for granulating the raw material and are arranged in parallel. That is, in the case of granulating the difficult-to-granulate fine powder raw material in line 1 and the easy-to-granulate raw material in line 2, respectively, This means that the grain processing is performed in parallel (see FIG. 4D).
Further, Conventional Example 1 in Table 4 is a result of using relatively coarse-grained quick lime “CR” when granulating “B3” on line 1 and “B2” on line 2 respectively. In the conventional example 2, when “B1” is granulated in each of the lines 1 and 2, the relatively coarse-grained quick lime “CR” is used in the line 1, and the quick lime is not used in the line 2. is there.

そして、総合評価は、従来例1、2のライン1、2で造粒した各原料の粉率を用いて行った。なお、総合評価の欄において、「○」は実機で採用可、「×」は実機で採用不可を、それぞれ示しており、粉率で「×」の評価がある場合を、総合評価で「×」とした。
ここで、従来例1、2のライン1、2で造粒した各原料の粉率は、ベース1、ベース3、ベース2、ベース4の順に多くなっており、比較例1、2と実施例1〜7の粉率の評価においては、粉率が、ベース1〜4のいずれよりも高い場合を「×」とし、いずれよりも低い場合を「○」とし、「○」や「×」に該当しない場合を粉率が同等として「△」とした。
And comprehensive evaluation was performed using the powder rate of each raw material granulated by the lines 1 and 2 of the prior art examples 1 and 2. FIG. In the comprehensive evaluation column, “○” indicates that the actual machine can be used, and “×” indicates that the actual machine cannot be used. "
Here, the powder ratio of each raw material granulated in lines 1 and 2 of Conventional Examples 1 and 2 increases in the order of Base 1, Base 3, Base 2, and Base 4, and Comparative Examples 1, 2 and Examples In the evaluation of the powder ratio of 1 to 7, the case where the powder ratio is higher than any of the bases 1 to 4 is “X”, the case where the powder ratio is lower than any is “◯”, and “○” or “×” When it was not applicable, the powder ratio was equivalent and “△” was assigned.

表4に示すように、比較例1は、ライン1で難造粒性微粉原料「A」に生石灰「CR」を添加し、ライン2で易造粒性原料「B1」に生石灰「CR」を添加して、それぞれ造粒した場合の結果である。
ライン1では、難造粒性微粉原料の造粒に、比較的粗粒の生石灰「CR」を使用したため、造粒性が悪くなり、粉率がベース1〜4よりも悪化した(×)。また、ライン2は、従来例2のライン1と同様の条件であるため、粉率はベース3と同程度であった(△)。
従って、実機で採用できなかった(総合評価:×)。
なお、上記した比較例1は、原料への生石灰の添加量を、現状の2質量%から6質量%以上(外掛け)に増量すると、粉率の評価が「×」から「△」〜「○」となるが、生石灰の通常の添加量は5質量%以下(下限は0.1質量%程度)であるため、粉率の評価を「×」とし、総合評価も「×」とした。
As shown in Table 4, in Comparative Example 1, quick lime “CR” was added to the hardly granulated fine powder raw material “A” in line 1, and quick lime “CR” was added to easy granulated raw material “B1” in line 2. It is a result at the time of adding and granulating each.
In line 1, since relatively coarse-grained quick lime “CR” was used for granulation of the difficult-to-granulate fine powder raw material, the granulation property was deteriorated and the powder rate was worse than those of the bases 1 to 4 (×). Moreover, since the line 2 is the same conditions as the line 1 of the prior art example 2, the powder rate was comparable to the base 3 ((triangle | delta)).
Therefore, it was not able to be adopted with an actual machine (overall evaluation: x).
In addition, in the comparative example 1 described above, when the amount of quicklime added to the raw material is increased from 2% by mass to 6% by mass or more (outer coating), the evaluation of the powder rate is changed from “×” to “Δ” to “Δ”. However, since the normal addition amount of quick lime is 5% by mass or less (the lower limit is about 0.1% by mass), the evaluation of the powder rate is “x”, and the overall evaluation is also “x”.

また、比較例2は、難造粒性微粉原料として、結晶水を4質量%以上含む高結晶水鉱石を0又は0を超え10質量%以下配合した微粉原料「A」を用い、当該微粉原料「A」に、生石灰「CR」を添加してライン1のみで造粒した場合の結果である。
上記したように、高結晶水鉱石の配合割合が低いため、比較例1よりも造粒性は向上するものと考えられるが、微粉原料「A」の粒度分布の影響や、比較的粗粒の生石灰「CR」を用いている影響で、粉率はベース1〜4よりも悪化した(×)。
従って、実機で採用できなかった(総合評価:×)。
Comparative Example 2 uses a fine powder raw material “A * ” in which high crystal water ore containing 4% by mass or more of crystal water is blended 0 or more than 0% by mass and less than 10% by mass as the hardly granulated fine powder raw material. This is a result when granulated only in line 1 by adding quick lime “CR” to raw material “A * ”.
As described above, since the blending ratio of the high crystal water ore is low, it is considered that the granulation property is improved as compared with Comparative Example 1, but the influence of the particle size distribution of the fine raw material “A * ” and the relatively coarse particles The powder rate was worse than that of Bases 1 to 4 due to the use of quick lime “CR” (×).
Therefore, it was not able to be adopted with an actual machine (overall evaluation: x).

一方、実施例1〜4は、ライン1で難造粒性微粉原料「A」に生石灰「CF」を添加して造粒した場合の結果である。なお、実施例1、2、4のライン2は、易造粒性原料「B1」、「B2」、又は「B3」に生石灰「CF」を添加して、それぞれ造粒し、また実施例3のライン2は、易造粒性原料「B1」に生石灰を添加することなく造粒した。
ライン1では、難造粒性微粉原料の造粒に、比較的細粒の生石灰「CF」を使用したため、造粒性が良好になり、粉率がベース1〜4よりも低下した(○)。また、実施例1、2、4のライン2では、易造粒性原料の造粒に、比較的細粒の生石灰「CF」を使用したため、造粒性が良好になり、粉率がベース1〜4よりも低下した(○)。そして、実施例3のライン2は、従来例2のライン2と同様の条件であるため、粉率はベース4と同程度であった(△)。
従って、実機で採用できた(総合評価:○)。
On the other hand, Examples 1-4 are the results at the time of granulating by adding quick lime "CF" to the hardly granulated fine powder raw material "A" in line 1. In addition, the lines 2 of Examples 1, 2, and 4 are respectively granulated by adding quick lime “CF” to the easily granulated raw materials “B1”, “B2”, or “B3”. Line 2 was granulated without adding quicklime to the easily granulated raw material “B1”.
In line 1, since relatively fine-grained quick lime “CF” was used for granulation of the difficult-to-granulate fine powder raw material, the granulation property was improved and the powder rate was lower than the bases 1 to 4 (◯). . Moreover, in the line 2 of Examples 1, 2, and 4, since the comparatively fine grain quick lime "CF" was used for granulation of an easily granulated raw material, granulation property became favorable and the powder rate was base 1 It was lower than ~ 4 (◯). And since the line 2 of Example 3 is the same conditions as the line 2 of the prior art example 2, the powder rate was comparable as the base 4 ((triangle | delta)).
Therefore, it was able to be adopted with the actual machine (overall evaluation: ○).

また、実施例5〜7は、ライン1で難造粒性微粉原料「A」に生石灰「CF」を添加し、ライン2で易造粒性原料「B1」、「B2」、又は「B3」に生石灰「CR」を添加して、それぞれ造粒した場合の結果である。
ライン1では、難造粒性微粉原料の造粒に、比較的細粒の生石灰「CF」を使用したため、造粒性が良好になり、粉率がベース1〜4よりも低下した(○)。また、ライン2は、従来例1のライン1、2、従来例2のライン1と同様の条件であるため、粉率はベース1〜3と同程度であった(△)。
従って、実機で採用できた(総合評価:○)。
なお、実施例5〜7では、細粒化処理せずに、粗い状態の生石灰を易造粒性原料の造粒に使用できるため、粉率全体の改善と、生石灰の安価化の両立が図れた。
以上の試験結果は、生石灰の代わりに消石灰を使用した場合も、同様の傾向が得られた。
In Examples 5 to 7, quick lime “CF” is added to the hardly granulated fine powder raw material “A” in line 1, and easily granulated raw material “B1”, “B2”, or “B3” in line 2. It is a result at the time of adding quick lime "CR" to and granulating each.
In line 1, since relatively fine-grained quick lime “CF” was used for granulation of the difficult-to-granulate fine powder raw material, the granulation property was improved and the powder rate was lower than the bases 1 to 4 (◯). . Moreover, since the line 2 is the same conditions as the lines 1 and 2 of the prior art example 1 and the line 1 of the prior art example 2, the powder rate was comparable to the bases 1 to 3 (Δ).
Therefore, it was able to be adopted with the actual machine (overall evaluation: ○).
In Examples 5-7, quick lime in a coarse state can be used for granulation of an easily granulated raw material without carrying out a fine granulation treatment, so that both improvement of the whole powder rate and cost reduction of quick lime can be achieved. It was.
The above test results showed the same tendency when using slaked lime instead of quick lime.

また、表4に示す実施例6については、凝結材を添加した造粒物を作製し、焼結生産性を検討した。
試験は、難造粒性微粉原料「A」に生石灰「CF」を添加した造粒物50質量%と、易造粒性原料「B2」に生石灰「CR」を添加した造粒物50質量%を、吸引圧1000mmAq(9.8kPa)のラボ焼結機(80kg焼成)に装入し焼結させることで行った。なお、凝結材は、難造粒性微粉原料「A」と易造粒性原料「B2」の合計量に、外掛けで4質量%添加することを前提条件にして、難造粒性微粉原料「A」と易造粒性原料「B2」への添加量を種々変更した。
Moreover, about Example 6 shown in Table 4, the granulated material which added the coagulant was produced and sintering productivity was examined.
In the test, 50% by mass of the granulated product obtained by adding quick lime “CF” to the hardly granulated fine powder raw material “A” and 50% by mass of the granulated product obtained by adding quick lime “CR” to the easily granulated raw material “B2”. Was loaded into a laboratory sintering machine (80 kg firing) with a suction pressure of 1000 mmAq (9.8 kPa) and sintered. The agglomerated material is based on the premise that 4% by mass is added to the total amount of the hardly granulated raw material “A” and the easily granulated raw material “B2” as an outer shell. Various addition amounts to “A” and the easily granulated raw material “B2” were changed.

上記した試験結果を、図5に示す。
なお、図5の横軸は、易造粒性原料「B2」への凝結材の添加量を示しており、横軸「0質量%」は全て(上記した外掛けの4質量%)の凝結材を難造粒性微粉原料「A」に添加して造粒した場合を、また横軸「100質量%」は全ての凝結材を易造粒性原料「B2」に添加して造粒した場合を、それぞれ示している。また、図5の縦軸は、焼結生産性を示しており、全ての凝結材を難造粒性微粉原料「A」に添加して造粒した場合の焼結生産性を「1.00」として、評価している。なお、焼結生産性は、焼成速度と歩留の積で表され、焼成速度の単位は(kg/分)、歩留の単位は(質量%)、で表される。
The test results described above are shown in FIG.
The horizontal axis in FIG. 5 indicates the amount of the coagulant added to the easily granulated raw material “B2”, and the horizontal axis “0% by mass” indicates the total (4% by mass of the above-described outer coating). When the material is added to the difficult-to-granulate fine powder raw material “A” and granulated, the horizontal axis “100% by mass” is granulated by adding all the agglomerated materials to the easily granulated raw material “B2”. Each case is shown. The vertical axis in FIG. 5 indicates the sintering productivity, and the sintering productivity when all the agglomerated materials are added to the hardly granulated fine powder raw material “A” and granulated is “1.00”. " The sintering productivity is represented by the product of the firing rate and the yield. The unit of the firing rate is (kg / min), and the unit of the yield is (mass%).

図5に示すように、易造粒性原料「B2」への凝結材の添加量が、0質量%から増加すると共に、一定の勾配で焼結生産性は増加し、全体の30質量%を添加すると、焼結生産性は1.05となった。そして、凝結材の添加量が30質量%から更に増加すると共に、勾配は少し緩やかに変化するものの焼結生産性は増加し、60質量%添加すると焼結生産性は1.08となった。凝結材の添加量を60質量%から更に増加すると、焼結生産性への効果は概ね飽和するものの徐々に増加し、100質量%添加すると、焼結生産性は1.09まで上昇した。
なお、本試験結果は、生石灰の代わりに消石灰を使用した場合も、同様の傾向が得られた。
As shown in FIG. 5, as the amount of the coagulant added to the readily granulated raw material “B2” increases from 0% by mass, the sintering productivity increases at a constant gradient, and 30% by mass of the whole is obtained. When added, the sintering productivity was 1.05. The addition amount of the coagulant further increased from 30% by mass, and although the gradient slightly changed, the sintering productivity increased. When 60% by mass was added, the sintering productivity became 1.08. When the addition amount of the coagulant was further increased from 60% by mass, the effect on the sintering productivity was almost saturated, but gradually increased. When 100% by mass was added, the sintering productivity was increased to 1.09.
In addition, the same tendency as this test result was obtained also when using slaked lime instead of quick lime.

以上のことから、本発明の焼結原料の事前処理方法を使用することで、バインダーの使用量増加を抑制し、焼結原料の造粒性を改善して、微粉原料の造粒を可能とし、更には、造粒物の崩壊を抑制して、焼結鉱の製造に使用できることを確認できた。   From the above, by using the sintering raw material pretreatment method of the present invention, it is possible to suppress the increase in the amount of binder used, improve the granulating property of the sintering raw material, and enable granulation of the fine powder raw material. In addition, it was confirmed that the granulated product can be used for the production of sintered ore by suppressing the collapse of the granulated product.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の焼結原料の事前処理方法を構成する場合も本発明の権利範囲に含まれる。   As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case in which the sintering raw material pretreatment method of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.

Claims (3)

鉄鉱石として、500μmアンダーが50質量%以上かつ10μmアンダーが5質量%以下の粒度の粉鉱石である微粉原料を用いる焼結原料A群を、250μmアンダーが50質量%以上の粒度を有する生石灰及び消石灰のいずれか1又は2を用いて造粒して造粒物とすることを特徴とする焼結原料の事前処理方法。 As the iron ore, a sintered raw material A group using a fine raw material that is a fine ore having a particle size of 500 μm under 50 μm or more and 10 μm under 5% by mass, quick lime having a particle size of 250 μm under 50 μ% or more and A pretreatment method for a sintering raw material, characterized by granulating a slaked lime using any one or two of slaked lime. 請求項1記載の焼結原料の事前処理方法において、鉄鉱石として、500μmアンダーが50質量%未満又は10μmアンダーが5質量%超の粒度の粉鉱石を用いる焼結原料B群に、250μmアンダーが10質量%以上50質量%未満の粒度を有する生石灰及び消石灰のいずれか1又は2を配合し、前記焼結原料A群の造粒物との合流前又は合流後に造粒して造粒物とすることを特徴とする焼結原料の事前処理方法。 In the pretreatment method of the sintering raw material according to claim 1, 250 μm under is present in the sintering raw material B group using a fine ore having a particle size of 500 μm under less than 50 mass% or 10 μm under over 5 mass% as iron ore. Mixing either 1 or 2 of quicklime and slaked lime having a particle size of 10% by mass or more and less than 50% by mass, granulating before or after merging with the granulated product of the sintered raw material A group, A pretreatment method for a sintering raw material characterized by: 請求項2記載の焼結原料の事前処理方法において、前記焼結原料B群には少なくとも酸化発熱する凝結材が添加されていることを特徴とする焼結原料の事前処理方法。 3. The pretreatment method for a sintering material according to claim 2, wherein at least a coagulant that generates heat by oxidation is added to the sintering material B group.
JP2012115830A 2012-05-21 2012-05-21 Pretreatment method of sintering raw material Active JP5835099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012115830A JP5835099B2 (en) 2012-05-21 2012-05-21 Pretreatment method of sintering raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012115830A JP5835099B2 (en) 2012-05-21 2012-05-21 Pretreatment method of sintering raw material

Publications (2)

Publication Number Publication Date
JP2013241651A JP2013241651A (en) 2013-12-05
JP5835099B2 true JP5835099B2 (en) 2015-12-24

Family

ID=49842818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012115830A Active JP5835099B2 (en) 2012-05-21 2012-05-21 Pretreatment method of sintering raw material

Country Status (1)

Country Link
JP (1) JP5835099B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6459724B2 (en) * 2015-03-31 2019-01-30 新日鐵住金株式会社 Method for producing sintered ore

Also Published As

Publication number Publication date
JP2013241651A (en) 2013-12-05

Similar Documents

Publication Publication Date Title
JP5987958B2 (en) Method of adding binder to sintering raw material
JP5853912B2 (en) Addition of coagulant to sintering raw material
JP5828305B2 (en) Pretreatment method of sintering raw material
WO2015005218A1 (en) Method for producing granulated raw material for sintering applications
JP6036295B2 (en) Pretreatment method of sintering raw materials
JP5835099B2 (en) Pretreatment method of sintering raw material
JP3820132B2 (en) Pretreatment method of sintering raw material
JP6380762B2 (en) Method for producing sintered ore
JP5811066B2 (en) Pretreatment method of sintering raw material
JP6369113B2 (en) Method for producing sintered ore
JP6468367B2 (en) Method for producing sintered ore
JP6051883B2 (en) Method for drying sintered raw material granulation
JP6071409B2 (en) Pre-granulation method for sintering raw materials
JP5482684B2 (en) Pretreatment method of sintering raw materials
JP5821778B2 (en) Pretreatment method of sintering raw material
WO2019181672A1 (en) Granulated material, method for producing granulated material, and method for producing sintered ore
JP5831361B2 (en) Pretreatment method of sintering raw material
JP5817644B2 (en) Method of adding binder to sintering raw material
JP5803809B2 (en) Preconditioning method of sintering raw material
JP5817643B2 (en) Pretreatment method of sintering raw material
JP2006312786A (en) Method for pretreating raw material for sintering
JP5799892B2 (en) Granulation method of sintering raw material
JP6489093B2 (en) Method for producing sintered ore
JP5831397B2 (en) Method for producing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151019

R151 Written notification of patent or utility model registration

Ref document number: 5835099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350