JP2006312786A - Method for pretreating raw material for sintering - Google Patents
Method for pretreating raw material for sintering Download PDFInfo
- Publication number
- JP2006312786A JP2006312786A JP2006186893A JP2006186893A JP2006312786A JP 2006312786 A JP2006312786 A JP 2006312786A JP 2006186893 A JP2006186893 A JP 2006186893A JP 2006186893 A JP2006186893 A JP 2006186893A JP 2006312786 A JP2006312786 A JP 2006312786A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- ore
- granulated product
- mass
- fine powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、焼結原料の事前処理方法に関する。 The present invention relates to a pretreatment method for a sintering raw material.
近年、焼結機において従来主流として使用されていた赤鉄鉱等の鉄鉱石の供給量が減少し、結晶水含有率が高い(3mass%以上)鉄鉱石の供給量が増加してきた。この結晶水含有率の高い鉄鉱石は、従来使用してきた鉄鉱石に比べて微粉が多いため、この鉄鉱石を事前処理することなく焼結機に装入した場合、焼結機の通気性を阻害し、品質が良好な焼結鉱を生産性良く製造できない。このため、焼結機に装入する前に鉄鉱石を造粒する必要性があるが、従来使用してきた鉄鉱石に比べて水とのぬれ性が悪く、造粒性が低いという欠点があるため、これを造粒する技術が必要となってきた。
そこで、例えば、特許文献1には、鉄鉱石と石灰石を250μm以下が80重量%以上となるように粉砕し、水の存在下で造粒物を製造する技術が開示されている。また、特許文献2には、粉鉱石の造粒物を2度の造粒を経て製造する技術が開示されている。
In recent years, the supply amount of iron ore such as hematite, which has been conventionally used in sintering machines, has decreased, and the supply amount of iron ore having a high crystal water content (3 mass% or more) has increased. This iron ore with a high content of water of crystallization contains more fine powder than the iron ore that has been used in the past, so if this iron ore is charged into the sintering machine without pretreatment, the air permeability of the sintering machine will be reduced. The sinter with good quality cannot be produced with good productivity. For this reason, it is necessary to granulate iron ore before charging it into the sintering machine, but it has the disadvantage that it is poor in wettability with water and has low granulation properties compared to iron ore that has been used in the past. Therefore, a technique for granulating this has become necessary.
Therefore, for example,
しかしながら、前記従来の焼結原料の事前処理方法においては、未だ解決すべき以下のような問題があった。
特許文献1に開示された方法は、バインダーの役割を果たす石灰石を全て粉砕する手間が必要であり、また粉砕による製造コストの増大を招き経済的でなく、造粒物の生産性も非常に悪い。また、粉砕粒径250μm以下が80重量%以上とするだけで、これを用いて製造した造粒物、即ちP型造粒物の強度を目的とする強度まで高めることができず、例えば、造粒物を複数のベルトコンベアーを経由して搬送する場合、その乗り継ぎ時に造粒物が粉化する恐れがあった。
また、特許文献2に開示された方法は、造粒物の強度を向上できる可能性がある。しかし、例えば、核粒子となる粗粒に微粉を付着させた造粒物、即ちS型造粒物を製造する場合、微粉の付着厚さを制御できない。このため、付着厚みが厚ければ、造粒物内部にコークスが埋没し、目的とする品質を備える焼結鉱を製造することが困難になり、焼結鉱の歩留り低下を招き、焼結鉱の生産性が損なわれる。
However, the conventional sintering raw material pretreatment method still has the following problems to be solved.
The method disclosed in
Moreover, the method disclosed in
本発明はかかる事情に鑑みてなされたもので、従来よりも多量の微粉を含む鉄鉱石の原料に対応可能で、造粒性及び強度を従来よりも向上させた造粒物を製造し、良好な品質を備えた焼結鉱を製造可能な焼結原料の事前処理方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and can be used for raw materials of iron ore containing a larger amount of fine powder than before, and can produce a granulated product with improved granulation properties and strength than before. An object of the present invention is to provide a method for pre-processing a sintering raw material capable of producing a sintered ore with excellent quality.
前記目的に沿う第1の発明に係る焼結原料の事前処理方法は、それぞれ粗粒及び微粉を含む2種以上の鉄鉱石を原料とし、核粒子となる粗粒に微粉を付着させて造粒物Sを製造する第1の造粒装置と、微粉のみで又は微粉を主体として造粒させる造粒物Pを製造する第2の造粒装置を備え、前記造粒物S及び前記造粒物Pを用いる焼結原料の事前処理方法であって、
前記造粒物Sは、前記核粒子への微粉付着平均厚さが50〜300μmとなるように前記第1の造粒装置への微粉配合量を調整し、
前記第1の造粒装置に供給しない残部の微粉を、前記第2の造粒装置の原料として使用する。
The sintering raw material pretreatment method according to the first aspect of the present invention is a granulation method in which two or more types of iron ore containing coarse particles and fine powders are used as raw materials, and fine particles are adhered to the coarse particles that become core particles. A first granulator for producing a product S, and a second granulator for producing a granulated product P for granulating only fine powder or mainly fine powder, the granulated product S and the granulated product A pretreatment method of a sintering raw material using P,
The granulated product S adjusts the fine powder blending amount to the first granulator so that the fine powder adhesion average thickness to the core particles is 50 to 300 μm,
The remaining fine powder not supplied to the first granulator is used as a raw material for the second granulator.
前記目的に沿う第2の発明に係る焼結原料の事前処理方法は、それぞれ粗粒及び微粉を含む2種以上の鉄鉱石を原料とし、核粒子となる粗粒に微粉を付着させて造粒物Sを製造する第1の造粒装置と、微粉のみで又は微粉を主体として造粒させる造粒物Pを製造する第2の造粒装置を備え、前記造粒物S及び前記造粒物Pを用いる焼結原料の事前処理方法であって、
前記造粒物Sは、前記核粒子への微粉付着平均厚さが50〜300μmとなるように前記第1の造粒装置への粗粒配合量を調整する。
The sintering raw material pretreatment method according to the second invention in accordance with the above object uses two or more types of iron ore containing coarse particles and fine powders as raw materials, and granulates by attaching fine powders to coarse particles that become core particles. A first granulator for producing a product S, and a second granulator for producing a granulated product P for granulating only fine powder or mainly fine powder, the granulated product S and the granulated product A pretreatment method of a sintering raw material using P,
The granulated product S adjusts the amount of coarse particles blended in the first granulator so that the fine powder adhesion average thickness on the core particles is 50 to 300 μm.
ここで、核粒子となる粗粒に微粉を付着させた造粒物S(以下、S型造粒物ともいう)を製造する際には、核粒子(粗粒鉄鉱石又は粗粒コークス)への微粉付着厚さが増加すると、造粒物が内部まで燃えにくくなり、焼結機での焼結鉱の生産性が悪化する。また、微粉のみで又は微粉を主体として造粒させた造粒物P(以下、P型造粒物ともいう)を製造する際には、鉄鉱石をP型造粒物とするために最適な粒度まですべてを粉砕する必要があり、粉砕装置の負荷が多大なものとなり現実的ではない。 Here, when producing a granulated product S (hereinafter also referred to as “S-type granulated product”) in which fine powder is adhered to coarse particles serving as core particles, to core particles (coarse iron ore or coarse coke). When the fine powder adhesion thickness increases, the granulated material does not easily burn to the inside, and the productivity of sintered ore in the sintering machine deteriorates. In addition, when producing a granulated product P (hereinafter also referred to as a P-type granulated product) that is granulated with only fine powder or mainly composed of fine powder, it is optimal for making iron ore into a P-type granulated product. It is necessary to grind everything up to the particle size, which imposes a heavy load on the grinder and is not realistic.
従って、第1の発明に係る焼結原料の事前処理方法においては、焼結機での焼結鉱の生産性を良好にする最適な微粉付着平均厚さ、即ち平均厚さ50〜300μm(好ましくは上限を250μm、更に好ましくは220μm)をもつS型造粒物を製造できるように、第1の造粒装置へ供給する鉄鉱石の微粉配合量を調整し、残部の微粉をP型造粒物の原料として使用する。なお、微粉配合量の調整には、微粉を第1の造粒装置へ供給しない調整方法も含まれる。
また、第2の発明に係る焼結原料の事前処理方法においては、焼結機での焼結鉱の生産性を良好にする最適な微粉付着平均厚さ、即ち平均厚さ50〜300μm(好ましくは上限を250μm、更に好ましくは220μm)をもつS型造粒物を製造できるように、鉄鉱石の核粒子となる粗粒を第1の造粒装置へ供給する。このとき、微粉量に対する核粒子の数を相対的に増加させることで、微粉付着平均厚さを現状よりも薄くでき、また微粉量に対する核粒子の数を相対的に減少させることで、微粉付着平均厚さを現状よりも厚くできる。
Therefore, in the pretreatment method of the sintered raw material according to the first invention, the optimum fine powder adhesion average thickness for improving the productivity of the sintered ore in the sintering machine, that is, the average thickness of 50 to 300 μm (preferably Adjust the amount of fine iron ore powder supplied to the first granulator so that an S-type granulated product having an upper limit of 250 μm, more preferably 220 μm can be produced, and the remaining fine powder is P-type granulated. Used as a raw material. In addition, the adjustment method which does not supply fine powder to a 1st granulator is also contained in adjustment of fine powder compounding quantity.
Moreover, in the pre-processing method of the sintering raw material which concerns on 2nd invention, optimal fine powder adhesion average thickness which makes favorable the productivity of the sintered ore with a sintering machine, ie, average thickness of 50-300 micrometers (preferably Feeds coarse particles, which are core particles of iron ore, to the first granulator so that an S-type granulated product having an upper limit of 250 μm, more preferably 220 μm can be produced. At this time, by increasing the number of core particles relative to the amount of fine powder, the average thickness of the fine particle adhesion can be made thinner than the current state, and by reducing the number of core particles relative to the amount of fine powder, The average thickness can be made thicker than it currently is.
第3の発明に係る焼結原料の事前処理方法は、第2の発明に係る焼結原料の事前処理方法において、前記第1の造粒装置に供給する粗粒は、前記第2の造粒装置に供給する微粉を除いた前記鉄鉱石中の粗粒を含む。
第3の発明に係る焼結原料の事前処理方法において、それぞれ粗粒及び微粉を含む2種以上の鉄鉱石を、第1と第2の造粒装置に分けて処理する場合、第2の造粒装置で製造するP型造粒物の原料として適さない鉄鉱石中の粗粒を、粉砕処理等を施すことなく、第1の造粒装置で製造するS型造粒物の核粒子として使用することが可能になる。
The pretreatment method of the sintering raw material according to the third invention is the pretreatment method of the sintering raw material according to the second invention, wherein the coarse particles supplied to the first granulating device are the second granulation device. Coarse grains in the iron ore excluding fine powder supplied to the apparatus are included.
In the pretreatment method of the sintering raw material according to the third invention, when the two or more types of iron ores containing coarse particles and fine powder are separately processed in the first and second granulating apparatuses, Coarse grains in iron ore that are not suitable as raw materials for P-type granules produced with a granulator are used as core particles for S-type granules produced with the first granulator without being pulverized. It becomes possible to do.
前記目的に沿う第4の発明に係る焼結原料の事前処理方法は、それぞれ粗粒及び微粉を含む2種以上の鉄鉱石を原料とし、核粒子となる粗粒に微粉を付着させて造粒物Sを製造する第1の造粒装置と、微粉のみで又は微粉を主体として造粒させる造粒物Pを製造する第2の造粒装置を備え、前記造粒物S及び前記造粒物Pを用いる焼結原料の事前処理方法であって、
前記第2の造粒装置に供給する前記鉄鉱石を、0.5〜10mm望ましくは0.5〜7mm(より望ましくは0.5〜2mm)の範囲の篩目で篩分け、篩下の鉄鉱石を粉砕し、500μmアンダー(より望ましくは100μmアンダー)が40mass%以上、かつ22μmアンダーが5mass%以上となるように整粒して前記造粒物Pの原料とし、篩上の鉄鉱石は前記第2の造粒装置に供給しない残余の鉄鉱石と共に前記第1の造粒装置に供給する。
The sintering raw material pretreatment method according to the fourth aspect of the invention that meets the above-mentioned object uses two or more types of iron ore containing coarse particles and fine powder as raw materials, and granulates by attaching fine powder to coarse particles that become core particles. A first granulator for producing a product S, and a second granulator for producing a granulated product P for granulating only fine powder or mainly fine powder, the granulated product S and the granulated product A pretreatment method of a sintering raw material using P,
The iron ore to be supplied to the second granulator is sieved with a sieve mesh in the range of 0.5 to 10 mm, preferably 0.5 to 7 mm (more preferably 0.5 to 2 mm). The stone is crushed and sized so that the 500 μm under (more desirably 100 μm under) is 40 mass% or more and the 22 μm under is 5 mass% or more to obtain the raw material of the granulated product P. The remaining iron ore not supplied to the second granulator is supplied to the first granulator.
焼結機での焼結鉱の生産性を向上させるには、焼結機の通気性の確保が必要である。
ここで、焼結機に装入される鉄鉱石中に、例えば1mm以下の微粉が混在する場合、焼結機の通気性が阻害される。なお、1mm以下の微粉の内、例えば250μm以下の微粉については、S型造粒物の核粒子への付着微粉となるため、焼結機の通気性阻害を回避できる。また、1mm以下の微粉の内、250μmを超え1mm以下の微粉については、S型造粒物の核粒子や付着微粉とならない中間粒子となるため、依然として焼結機の通気性阻害の原因となりうるが、従来の鉄鉱石ではこの中間粒子を多く含まず、焼結機での焼結鉱の生産性を悪化させる問題としては顕在化しにくかった。
In order to improve the productivity of sintered ore in the sintering machine, it is necessary to ensure the air permeability of the sintering machine.
Here, when fine powder of 1 mm or less, for example, is mixed in the iron ore charged into the sintering machine, the air permeability of the sintering machine is hindered. In addition, among the fine powders of 1 mm or less, for example, fine powders of 250 μm or less become adhering fine powders to the core particles of the S-type granulated product, so that the air permeability of the sintering machine can be prevented. Further, among fine powders of 1 mm or less, fine powders of more than 250 μm and 1 mm or less become core particles of S-type granulated material and intermediate particles that do not become adhering fine powders, which may still cause the air permeability of the sintering machine to be hindered. However, the conventional iron ore does not contain many of these intermediate particles, and it has been difficult to realize as a problem that deteriorates the productivity of the sintered ore in the sintering machine.
しかし、近年供給量が増加している結晶水含有率が高い(3mass%以上)鉄鉱石においては、微粉が多く、焼結機での焼結鉱の生産性を悪化させる問題が顕在化する。
そこで、第4の発明に係る焼結原料の事前処理方法において、焼結鉱の生産性を向上させ、また中間粒子の増加抑制あるいは減少させることを目的に、篩目を0.5〜10mm(好ましくは下限を0.8mm、更に好ましくは1mm)の範囲とした。これにより、S型造粒物の微粉付着平均厚さの最適化によって焼結鉱の歩留りを向上させ、また中間粒子を粉砕しP型造粒物の原料に使用して焼結機の通気性を向上させた。なお、この篩分けは、焼結機に供給する全ての鉄鉱石に行う必要はなく、少なくとも1種以上の鉄鉱石種又は鉱石銘柄に適用すれば良い。
また、篩分け方法としては、従来公知の篩選別機等を使用して行うことが可能である。
そして、篩下の粉砕は、粒径を小さくする方法であれば何でも良く、例えば、対となるロールを僅少の隙間を有して隣接配置し、ロールの押し付け圧力で粉砕するロール式粉砕機を使用することが好ましい。この場合、ロールの押し付け圧力により、粉砕と同時に造粒の効果もある。
粉砕後の篩下鉄鉱石が所定の粒度分布にならない場合、例えば22μmアンダーが5mass%に満たない場合は、22μmアンダーの微粉を別途添加して整粒すればよい。該添加が不要な場合は、粉砕のみで整粒すればよい。
However, iron ore with a high crystal water content (3 mass% or more) whose supply amount has increased in recent years has a large amount of fine powder, and the problem of worsening the productivity of the sintered ore in the sintering machine becomes obvious.
Therefore, in the pretreatment method of the sintered raw material according to the fourth invention, for the purpose of improving the productivity of the sintered ore and suppressing or reducing the increase of the intermediate particles, the sieve mesh is 0.5 to 10 mm ( The lower limit is preferably 0.8 mm, and more preferably 1 mm. As a result, the yield of sintered ore is improved by optimizing the average fine powder adhesion thickness of the S-type granulated product, and the intermediate particles are pulverized and used as the raw material for the P-type granulated product to allow the air permeability of the sintering machine. Improved. In addition, it is not necessary to perform this sieving to all the iron ores supplied to the sintering machine, and it may be applied to at least one ore type or ore brand.
Moreover, as a sieving method, it can be performed using a conventionally known sieving machine.
The crushing under the sieve is not particularly limited as long as it is a method of reducing the particle diameter. It is preferable to use it. In this case, due to the pressing pressure of the roll, there is also an effect of granulation simultaneously with pulverization.
When the sieving iron ore after the pulverization does not have a predetermined particle size distribution, for example, when 22 μm under is less than 5 mass%, a fine powder with 22 μm under may be separately added and sized. When the addition is not necessary, the particles may be sized only by pulverization.
以上、第1、第2及び第4の発明に係る焼結原料の事前処理方法においては、それぞれ粗粒及び微粉を含む鉄鉱石(鉄鉱石種ともいう)として、例えば、マラマンバ鉱石(産地銘柄:ウエストアンジェラス)、ピソライト鉱石(産地銘柄:ヤンディー、ローブリバー)、高燐ブロックマン鉱石等を使用できる。なお一般に産地銘柄が異なると、成分構成や粒度構成が変わるため、産地銘柄が異なる場合を本願では異なる鉄鉱石種としている。
また、第1、第2の造粒装置としては、例えば、ドラムミキサー、アイリッヒミキサー、ディスクペレタイザー、プロシャミキサー等を使用できる。
As mentioned above, in the pre-processing method of the sintering raw material which concerns on 1st, 2nd and 4th invention, as an iron ore (also called iron ore seed | species) each containing a coarse grain and a fine powder, for example, a maramamba ore (local brand name: West Angelus), pisolite ore (local brands: Yandy, Robe River), high phosphorus Brockman ore, etc. can be used. In addition, since a component structure and a particle size structure will generally change if a production brand is different, the case where a production brand is different is made into a different iron ore kind in this application.
Moreover, as a 1st, 2nd granulator, a drum mixer, an Eirich mixer, a disk pelletizer, a Prosha mixer etc. can be used, for example.
第5の発明に係る焼結原料の事前処理方法は、第4の発明に係る焼結原料の事前処理方法において、前記造粒物Sの微粉付着平均厚さに応じて、前記篩目の大きさを変え、前記微粉付着平均厚さを目的所定範囲にする。
第5の発明に係る焼結原料の事前処理方法において、微粉付着平均厚さの目的所定範囲とは50〜300μm、好ましくは50〜250μm、更に好ましくは50〜220μmの範囲である。
The pretreatment method of the sintering raw material according to the fifth invention is the pretreatment method of the sintering raw material according to the fourth invention, wherein the size of the sieve mesh is determined according to the fine powder adhesion average thickness of the granulated product S. By changing the thickness, the average thickness of the fine powder adhesion is within a predetermined range.
In the sintering raw material pretreatment method according to the fifth invention, the target predetermined range of the fine powder adhesion average thickness is 50 to 300 μm, preferably 50 to 250 μm, and more preferably 50 to 220 μm.
第6の発明に係る焼結原料の事前処理方法は、第4の発明に係る焼結原料の事前処理方法において、前記篩目の大きさを変えて前記第2の造粒装置への前記篩下の鉄鉱石の供給量を変更する。これにより前記第2の造粒装置及び該第2の造粒装置前に備えられる事前処理装置のいずれか一方又は双方の製造能力に応じた生産ができる。
事前処理装置としては、例えば、篩選別機、粉砕機、撹拌装置等がある。
ここで、篩目の大きさを変えることで、第1、第2の造粒装置への鉄鉱石の供給量(例えば、鉄鉱石の供給割合)を制御できる。このとき、第1、第2の造粒装置へ供給する鉄鉱石の粒径調整も可能になる。
A sintering raw material pretreatment method according to a sixth invention is the sintering raw material pretreatment method according to the fourth invention, in which the size of the sieve mesh is changed and the sieve to the second granulating device is changed. Change the supply of iron ore below. Thereby, the production | generation according to the manufacturing capability of any one or both of the said 2nd granulation apparatus and the pre-processing apparatus with which this 2nd granulation apparatus is equipped can be performed.
Examples of the pretreatment device include a sieve sorter, a pulverizer, and a stirring device.
Here, the amount of iron ore supplied to the first and second granulators (for example, the iron ore supply ratio) can be controlled by changing the size of the sieve mesh. At this time, it is possible to adjust the particle size of the iron ore supplied to the first and second granulators.
第7の発明に係る焼結原料の事前処理方法は、第1〜第3の発明に係る焼結原料の事前処理方法において、前記造粒物Pの原料となる微粉は粉砕し、500μmアンダーが90mass%以上、かつ22μmアンダーが80mass%を超えるように整粒され、更に水分の存在下で造粒する。
第8の発明に係る焼結原料の事前処理方法は、第4〜第6の発明に係る焼結原料の事前処理方法において、粉砕して整粒した前記篩下の鉄鉱石の所定粒度は500μmアンダーが90mass%以上、かつ22μmアンダーが80mass%超えであって、更に水分の存在下で造粒する。
The pretreatment method of the sintering raw material according to the seventh invention is the pretreatment method of the sintering raw material according to the first to third inventions, wherein the fine powder as the raw material of the granulated product P is pulverized, and an under 500 μm is present. Granulated in the presence of moisture after being sized so that 90 mass% or more and 22 μm under is more than 80 mass%.
The pretreatment method of the sintering raw material according to the eighth invention is the pretreatment method of the sintering raw material according to the fourth to sixth inventions, wherein the predetermined particle size of the sieving iron ore crushed and sized is 500 μm. Granulation is performed in the presence of 90 mass% or more of the under and more than 80 mass% of the 22 μm under and further in the presence of moisture.
第9の発明に係る焼結原料の事前処理方法は、第1〜第3の発明に係る焼結原料の事前処理方法において、前記造粒物Pの原料となる微粉は粉砕され、500μmアンダーが80mass%以上、かつ22μmアンダーが70mass%を超え80mass%以下となるように整粒され、更に水分の存在下で造粒した後に乾燥する。
第10の発明に係る焼結原料の事前処理方法は、第4〜第6の発明に係る焼結原料の事前処理方法において、粉砕して整粒した前記篩下の鉄鉱石は500μmアンダーが80mass%以上、かつ22μmアンダーが70mass%を超え80mass%以下であって、更に水分の存在下で造粒した後に乾燥する。
The pretreatment method of the sintering raw material according to the ninth invention is the pretreatment method of the sintering raw material according to the first to third inventions, wherein the fine powder used as the raw material of the granulated product P is pulverized and an under 500 μm is present. The particles are sized so that 80 mass% or more and 22 μm under is more than 70 mass% and not more than 80 mass%, further granulated in the presence of moisture, and then dried.
The sintering raw material pretreatment method according to a tenth aspect of the invention is the sintering raw material pretreatment method according to the fourth to sixth aspects of the invention, wherein the iron ore under the sieve that has been crushed and sized has an underside of 500 μm and 80 mass. % And 22 μm under is more than 70 mass% and not more than 80 mass%, and is further granulated in the presence of moisture and then dried.
第11の発明に係る焼結原料の事前処理方法は、第1〜第3の発明に係る焼結原料の事前処理方法において、前記造粒物Pの原料となる微粉は粉砕し、500μmアンダーが40mass%以上、かつ22μmアンダーが5mass%以上70mass%以下となるように整粒され、更に水分及びバインダーの存在下で造粒した後に乾燥する。
第12の発明に係る焼結原料の事前処理方法は、第4〜第6の発明に係る焼結原料の事前処理方法において、粉砕して整粒した前記篩下の鉄鉱石は500μmアンダーが40mass%以上、かつ22μmアンダーが5mass%以上70mass%以下であって、更に水分及びバインダーの存在下で造粒した後に乾燥する。
The pretreatment method of the sintering raw material according to the eleventh aspect of the invention is the pretreatment method of the sintering raw material according to the first to third aspects of the invention. The particles are sized so that 40 mass% or more and 22 μm under is 5 mass% or more and 70 mass% or less, further granulated in the presence of moisture and a binder, and then dried.
The pretreatment method of the sintering raw material according to the twelfth invention is the pretreatment method of the sintering raw material according to the fourth to sixth inventions, wherein the iron ore under the sieve that has been pulverized and sized is under 500 μm and 40 mass. % And under 22 μm is 5 mass% or more and 70 mass% or less, and further granulated in the presence of moisture and a binder and then dried.
以上、第7〜第12の発明に係る焼結原料の事前処理方法において、P型造粒物は原料として微粉のみで又は微粉を主体として用いるので、P型造粒物の強度(圧潰強度)を適正な値まで強くしておくことが必要である。例えば、造粒物の搬送には、複数のベルトコンベアが使用され、その乗り継ぎ部で造粒物が粉化し、これが焼結機に装入されて焼結機の通気性を阻害したり、また焼結機のパレット中で造粒物が崩壊して通気性を阻害する恐れがある。
このような状況は、S型造粒物よりもP型造粒物に顕著に見られるため、特にP型造粒物において対策を取る必要がある。
As mentioned above, in the pre-processing method of the sintering raw materials according to the seventh to twelfth inventions, the P-type granulated material uses only the fine powder as the raw material or mainly uses the fine powder. It is necessary to increase the value to an appropriate value. For example, a plurality of belt conveyors are used to convey the granulated material, and the granulated material is pulverized at the connecting portion, and this is inserted into the sintering machine to impede the air permeability of the sintering machine. The granulated material may collapse in the pallet of the sintering machine and impair air permeability.
Such a situation is more prominent in the P-type granulated product than in the S-type granulated product. Therefore, it is necessary to take measures particularly in the P-type granulated product.
一般に、液体の存在下で微粒子を造粒する場合、造粒物の強度は、Rumpfの式より、液体の表面張力(大ほど強度大)と粒子径(小ほど強度大)に依存することが知られている。
本発明者等は、上記した公知事項に加え、鉄鉱石の粒子中に内蔵される極めて微細な粒子に新たに着目し、この極めて微細な粒子が造粒物の強度向上に有効に利用できることを新たに見出した。
近年、供給量が増加している結晶水含有率が高い(3mass%以上)鉄鉱石の50μm〜1mmの鉄鉱石粒子を調査したところ、22μmアンダーからサブミクロンクラスの粒径を持つ極めて微細な粒子を多く内蔵する場合がある鉄鉱石種があることがわかった(例えばマラマンバ鉱石、高燐ブロックマン鉱石等)。
このことから、内蔵した極めて微細な粒子を取り出すため上記した鉄鉱石を粉砕して整粒し、(a)500μmアンダーが40mass%以上かつ22μmアンダーが5mass%以上、(b)好ましくは500μmアンダーが80mass%以上、かつ22μmアンダーが70mass%を超える、(c)更に好ましくは500μmアンダーが90mass%以上、かつ22μmアンダーが80mass%を超える粒度分布とすることで、極めて微細な粒子を存在させ、水を介在させた造粒物の更なる強度向上を見込むことができる。
In general, when fine particles are granulated in the presence of a liquid, the strength of the granulated product may depend on the surface tension of the liquid (larger strength) and the particle diameter (smaller strength) from the Rumpf equation. Are known.
In addition to the above-mentioned known matters, the present inventors have newly paid attention to extremely fine particles incorporated in iron ore particles, and that these extremely fine particles can be effectively used to improve the strength of the granulated product. Newly found.
In recent years, when the iron ore particles of 50 μm to 1 mm of iron ore having a high content of crystallization water with an increased supply amount (3 mass% or more) were investigated, extremely fine particles having a particle size of submicron class from under 22 μm It has been found that there are iron ore species that may contain a lot of (for example, Maramamba ore, high phosphorus block man ore, etc.).
From this, the iron ore described above is pulverized and sized to take out the extremely fine particles contained therein, and (a) 500 μm under is 40 mass% or more and 22 μm under is 5 mass% or more, and (b) preferably 500 μm under. 80 mass% or more, and 22 μm under exceeds 70 mass%, (c) More preferably, 500 μm under is 90 mass% or more and 22 μm under exceeds 80 mass% particle size distribution, so that extremely fine particles are present, It is possible to expect further improvement in strength of the granulated product with the intervening.
なお、前記した極めて微細な粒子による強度向上は、粒度が500μmアンダーが80mass%以上、かつ22μmアンダーが70mass%を超え80mass%以下であれば発現するが、更に小さい粒度であれば更なる強度向上が見込める。
そこで、第7及び第8の発明に係る焼結原料の事前処理方法においては、鉄鉱石の粒度を500μmアンダーが90mass%以上、かつ22μmアンダーが80mass%を超えるようにして水分の存在下で造粒することで、目的とする強度を得ることができる。
また、第9及び第10の発明に係る焼結原料の事前処理方法においては、鉄鉱石の粒度を500μmアンダーが80mass%以上、かつ22μmアンダーが70mass%を超え80mass%以下にしたことによる平均粒径の上昇を、水分の存在下で造粒した後に行う乾燥によって補い、更なる強度向上を図っている。
In addition, the above-mentioned improvement in strength by extremely fine particles is manifested when the particle size is 80 mass% or more when the particle size is 500 μm and more than 70 mass% and less than 80 mass% when the particle size is 22 μm. Can be expected.
Therefore, in the pretreatment method of the sintered raw material according to the seventh and eighth inventions, the iron ore is prepared in the presence of moisture so that the particle size of the iron ore is not less than 90 mass% for 500 μm under and over 80 mass% for 22 μm under. The desired strength can be obtained by granulating.
In the pretreatment method of the sintered raw material according to the ninth and tenth inventions, the average particle size of the iron ore is such that the particle size of the iron ore is not less than 80 mass% for 500 μm under and more than 70 mass% for under 22 μm. The increase in the diameter is compensated by drying performed after granulation in the presence of moisture to further improve the strength.
そして、第11及び第12の発明に係る焼結原料の事前処理方法においては、鉄鉱石の粒度を500μmアンダーが40mass%以上かつ22μmアンダーが5mass%以上70mass%以下にしたことによる平均粒径の上昇を、水分及びバインダーを使用して補い、これを造粒した後、乾燥によって補うことで、更なる強度向上を図っている。
なお、バインダーは、造粒物の強度向上に寄与するが、従来の生石灰、石灰岩等の無機物系バインダーは、造粒物に混入させる必要があるので、粉砕する必要があるため、例えば、パルプ廃液、コーンスターチ等の水溶液やコロイドである有機質、固体架橋を促進する分散剤(分散剤を添加した水溶液やコロイドを含む)等をバインダーとして使用(前記した無機系バインダーとの併用を含む)すると、より好適である。
And in the pre-processing method of the sintering raw material which concerns on 11th and 12th invention, the particle size of the iron ore is the average particle diameter by having made 500 micrometer under 40 mass% or more and 22 micrometer under 5 mass% or more and 70 mass% or less. The increase is compensated by using moisture and a binder, and after granulating this, it is compensated by drying to further improve the strength.
Although the binder contributes to the improvement of the strength of the granulated product, the conventional inorganic binders such as quick lime and limestone need to be mixed in the granulated product, and thus need to be pulverized. When using a binder such as an aqueous solution such as cornstarch or a colloidal organic substance, a dispersant that promotes solid crosslinking (including an aqueous solution or colloid added with a dispersant), etc. Is preferred.
第13の発明に係る焼結原料の事前処理方法は、第9〜第12の発明に係る焼結原料の事前処理方法において、前記造粒物Pの乾燥温度は40℃以上250℃以下である。第13の発明に係る焼結原料の事前処理方法において、P型造粒物の原料である鉄鉱石には、例えば、結晶水含有率が高い(3mass%以上)ものが使用されるため、結晶水の分解を抑制、更には防止する乾燥温度の設定を行っている。 A sintering raw material pretreatment method according to a thirteenth invention is the sintering raw material pretreatment method according to the ninth to twelfth inventions, wherein the drying temperature of the granulated product P is 40 ° C. or higher and 250 ° C. or lower. . In the pretreatment method of the sintering raw material according to the thirteenth invention, the iron ore that is the raw material of the P-type granulated material is, for example, one having a high crystallization water content (3 mass% or more). The drying temperature is set to suppress and further prevent water decomposition.
第14の発明に係る焼結原料の事前処理方法は、第1〜第13の発明に係る焼結原料の事前処理方法において、前記造粒物Pの大きさは1〜10mmの範囲にある。
第14の発明に係る焼結原料の事前処理方法において、P型造粒物の大きさが10mmを超える場合、焼結鉱の製造時に、P型造粒物の中央部まで焼結させることができず、焼結鉱の品質が低下する。一方、P型造粒物の大きさが1mm未満の場合、焼結機に装入したときに密に充填され、焼結機の通気性の向上が期待できない。
従って、P型造粒物の大きさの下限を1mm、好ましくは2mm、更に好ましくは3mm、上限を10mm、好ましくは9mm、更に好ましくは8mmの範囲に規定することで、焼結機内でのP型造粒物の焼結を、その内部まで適正に行い、良好な品質の焼結鉱を製造することが可能になる。
The sintering raw material pretreatment method according to a fourteenth aspect of the present invention is the sintering raw material pretreatment method according to the first to thirteenth aspects of the invention, wherein the size of the granulated product P is in the range of 1 to 10 mm.
In the pretreatment method of the sintering raw material according to the fourteenth invention, when the size of the P-type granulated product exceeds 10 mm, the center of the P-type granulated product can be sintered at the time of producing the sintered ore. This is not possible and the quality of the sintered ore is reduced. On the other hand, when the size of the P-type granulated product is less than 1 mm, it is densely filled when charged into the sintering machine, and improvement in the air permeability of the sintering machine cannot be expected.
Therefore, the lower limit of the size of the P-type granulated product is defined as 1 mm, preferably 2 mm, more preferably 3 mm, and the upper limit is defined as 10 mm, preferably 9 mm, more preferably 8 mm. It is possible to appropriately sinter the mold granulated material up to the inside thereof to produce a sintered ore of good quality.
第15の発明に係る焼結原料の事前処理方法は、第1〜第14の発明に係る焼結原料の事前処理方法において、前記原料には、更に実質的に微粉のみからなる含鉄原料が加えられている。第15の発明に係る焼結原料の事前処理方法において、微粉のみからなる含鉄原料としては、例えば、粒径が100μm以下程度のダスト(混練ダスト、粉塵ダスト)、250μm以下程度のペレット原料(ペレットフィード:PF)等を使用できる。 The pretreatment method of the sintering raw material according to the fifteenth aspect of the invention is the pretreatment method of the sintering raw material according to the first to fourteenth aspects of the invention, wherein the raw material is further added with an iron-containing raw material consisting essentially of fine powder. It has been. In the sintering raw material pretreatment method according to the fifteenth aspect of the present invention, examples of the iron-containing raw material consisting of only fine powder include dust having a particle size of about 100 μm or less (kneaded dust, dust dust), pellet raw material having about 250 μm or less (pellet) Feed: PF) or the like can be used.
前記目的に沿う第16の発明に係る焼結原料の事前処理方法は、結晶水含有率が3mass%以上の鉄鉱石を少なくとも一部に含み、水分の存在下で造粒した造粒物を、焼結機に装入する前に乾燥する際に、40℃以上250℃以下で乾燥する。
第16の発明に係る焼結原料の事前処理方法において、結晶水含有率が3mass%以上の鉄鉱石としては、例えば、マラマンバ鉱石、ピソライト鉱石、高燐ブロックマン鉱石等がある。このように、結晶水含有率が高い(3mass%以上)鉄鉱石の造粒物においては、結晶水が分解すると造粒物が崩壊、粉化する。
このため、第13及び第16の発明に係る焼結原料の事前処理方法においては、乾燥温度の下限を40℃、好ましくは100℃、上限を250℃、好ましくは240℃、更には結晶水が分解する理論温度239℃にすることが好ましい。
In the pretreatment method of the sintering raw material according to the sixteenth aspect of the present invention, the granulated product containing at least a portion of iron ore having a crystallization water content of 3 mass% or more and granulated in the presence of moisture, When drying before charging into the sintering machine, drying is performed at 40 ° C. or more and 250 ° C. or less.
In the pretreatment method of the sintering raw material according to the sixteenth invention, examples of the iron ore having a crystal water content of 3 mass% or more include maramamba ore, pisolite ore, and high phosphorus block man ore. Thus, in the granulated product of iron ore having a high crystallization water content (3 mass% or more), when the crystallization water is decomposed, the granulated product is disintegrated and powdered.
For this reason, in the pretreatment method of the sintering raw materials according to the thirteenth and sixteenth inventions, the lower limit of the drying temperature is 40 ° C., preferably 100 ° C., the upper limit is 250 ° C., preferably 240 ° C. The theoretical temperature for decomposition is preferably 239 ° C.
前記目的に沿う第17の発明に係る焼結原料の事前処理方法は、第1〜第15の発明に係る焼結原料の事前処理方法において、結晶水含有率が3mass%以上の鉄鉱石を前記原料の一部又は全部に用いる。
第17の発明に係る焼結原料の事前処理方法において、結晶水含有率が3mass%以上の鉄鉱石としては、例えば、マラマンバ鉱石(産地銘柄:ウエストアンジェラス)、ピソライト鉱石(産地銘柄:ヤンディー、ローブリバー)、高燐ブロックマン鉱石等が使用できる。なお一般に産地銘柄が異なると成分構成や粒度構成が変わるため、産地銘柄が異なる場合は異なる鉄鉱石種と扱うと良い。
更に結晶水含有率が3mass%以上の鉄鉱石を用いる割合としては、鉄鉱石の新原料(焼結機を経た後に原料として使用される返鉱等を除いたもの)の内、40mass%以上を結晶水含有率が3mass%以上の鉄鉱石とすると良い。40mass%以上になると微粉の増加が顕著となり発明の効果が顕著となるためである。40mass%未満では発明の効果はあるが、著しいものではないためである。
A sintering raw material pretreatment method according to a seventeenth aspect of the present invention in accordance with the above object is the sintering raw material pretreatment method according to the first to fifteenth aspects of the invention, wherein the iron ore having a crystal water content of 3 mass% or more is used. Used for some or all of the raw materials.
In the pretreatment method of the sintering raw material according to the seventeenth invention, examples of the iron ore having a crystallization water content of 3 mass% or more include, for example, maramamba ore (local brand: West Angelus), pisolite ore (local brand: Yandy, Low ribber), high phosphorus block man ore, etc. can be used. In general, since the composition of constituents and the composition of grain sizes change when the production brand is different, it is better to treat it as a different iron ore species when the production brand is different.
Furthermore, as a ratio of using iron ore with a crystal water content of 3 mass% or more, 40 mass% or more of new raw materials of iron ore (excluding return ore used as raw materials after passing through a sintering machine) An iron ore with a crystal water content of 3 mass% or more is preferable. This is because when the amount is 40 mass% or more, the increase in fine powder becomes remarkable and the effect of the invention becomes remarkable. This is because if it is less than 40 mass%, the effect of the invention is obtained, but not significant.
第1の発明及びこれに従属する第7、第9、第11、及び第13〜第15、第17の発明に係る焼結原料の事前処理方法は、造粒物Sの核粒子への微粉付着平均厚さが最適化されるように、第1の造粒装置への微粉配合量を調整するので、良好な品質を備えた焼結鉱を製造可能である。また、第1の造粒装置に供給しない残部の微粉を第2の造粒装置の原料として使用するので、造粒性及び強度を従来よりも向上させた造粒物を容易に製造できる。
このように、従来よりも多量の微粉を含む鉄鉱石の原料に対応可能な焼結原料の事前処理方法を提供できる。
The pretreatment method of the sintering raw material according to the first invention and the seventh, ninth, eleventh, thirteenth to fifteenth, and seventeenth inventions subordinate thereto is the fine powder into the core particles of the granulated product S. Since the amount of fine powder blended into the first granulator is adjusted so that the average adhesion thickness is optimized, a sintered ore with good quality can be produced. Moreover, since the remainder fine powder which is not supplied to the 1st granulator is used as a raw material of a 2nd granulator, the granulated material which improved granulation property and intensity | strength compared with the past can be manufactured easily.
In this way, it is possible to provide a sintering raw material pretreatment method that can cope with iron ore raw materials containing a larger amount of fine powder than before.
第2の発明及びこれに従属する第3、第7、第9、第11、及び第13〜第15、第17の発明に係る焼結原料の事前処理方法は、造粒物Sの核粒子への微粉付着平均厚さが最適化されるように、第1の造粒装置への粗粒配合量を調整するので、従来よりも多量の微粉を含む鉄鉱石の原料に対応でき、良好な品質を備えた焼結鉱を製造可能である。
特に、第3の発明に係る焼結原料の事前処理方法は、造粒物Pを製造する第2の造粒装置へ供給される微粉を除いた鉄鉱石中の粗粒を第1の造粒装置に供給するので、造粒物S及び造粒物Pの製造に適した粒径の鉄鉱石を、例えば粉砕処理等を施すことなく使用でき、造粒物を経済的に製造できる。
The pretreatment method of the sintering raw material according to the second invention and the third, seventh, ninth, eleventh, thirteenth to fifteenth, and seventeenth inventions subordinate thereto is the core particle of the granulated product S. Since the amount of coarse particles blended in the first granulator is adjusted so that the average fine powder adhesion thickness is optimized, it can cope with iron ore raw materials containing a larger amount of fine powder than before, It is possible to produce sintered ore with quality.
In particular, the pretreatment method of the sintering raw material according to the third invention is the first granulation of coarse particles in the iron ore excluding fine powder supplied to the second granulating apparatus for producing the granulated product P. Since it supplies to an apparatus, the iron ore of the particle size suitable for manufacture of the granulated material S and the granulated material P can be used, for example, without performing a grinding | pulverization process etc., and a granulated material can be manufactured economically.
第4の発明及びこれに従属する第5、第6、第8、第10、及び第12〜第15、第17の発明に係る焼結原料の事前処理方法は、篩分けを行った篩上の鉄鉱石により、S型造粒物の微粉付着平均厚さの最適化を図り、焼結鉱の歩留りを向上させることができる。また、篩分けを行った篩下の鉄鉱石を粉砕整粒し、P型造粒物の原料に使用することで、焼結機の通気性を向上させることができる。 The pretreatment method of the sintering raw material according to the fourth invention and the fifth, sixth, eighth, tenth, twelfth to fifteenth, and seventeenth inventions subordinate thereto is the sieving on the sieve With this iron ore, the average fine powder adhesion thickness of the S-type granulated product can be optimized, and the yield of sintered ore can be improved. Moreover, the air permeability of a sintering machine can be improved by grind | pulverizing and sizing the iron ore under the sieve which performed sieving, and using it for the raw material of a P-type granulated material.
第5の発明に係る焼結原料の事前処理方法は、造粒物Sの微粉付着平均厚さに応じて篩目の大きさを変えるので、例えば、使用する鉄鉱石の粒度分布の変化が生じた場合においても、焼結機の通気性を向上させることが可能な造粒物を容易に製造できる。 Since the pretreatment method of the sintering raw material according to the fifth invention changes the size of the sieve according to the average fine powder adhesion thickness of the granulated product S, for example, a change in the particle size distribution of the iron ore used occurs. Even in such a case, a granulated product capable of improving the air permeability of the sintering machine can be easily produced.
第6の発明に係る焼結原料の事前処理方法は、篩目の大きさを変え、第2の造粒装置への篩下の鉄鉱石の供給量を変更するので、例えば、造粒物Pの第2の造粒装置及び事前処理装置の製造能力に応じた生産ができ、使用する鉄鉱石の粒度分布の変化が生じた場合においても、造粒物Pを安定して製造できる。 Since the pretreatment method of the sintering raw material according to the sixth invention changes the size of the sieve mesh and changes the supply amount of the iron ore under the sieve to the second granulation apparatus, for example, the granulated material P The production according to the production capacity of the second granulation apparatus and the pretreatment apparatus can be performed, and the granulated product P can be produced stably even when the particle size distribution of the iron ore used changes.
第7及び第8の発明に係る焼結原料の事前処理方法は、鉄鉱石の粒度を500μmアンダーが90mass%以上、かつ22μmアンダーが80mass%を超えるようにして水分の存在下で造粒することで、液体の表面張力及び粒子径によって、目的とする強度を備えた造粒物Pを製造できる。 In the pretreatment method of the sintered raw material according to the seventh and eighth inventions, the iron ore is granulated in the presence of water so that the particle size of the iron ore is 90 mass% or more for 500 μm under and 80 mass% for 22 μm under. Thus, a granulated product P having a desired strength can be produced depending on the surface tension and particle diameter of the liquid.
第9及び第10の発明に係る焼結原料の事前処理方法は、鉄鉱石の粒度を500μmアンダーが80mass%以上、かつ22μmアンダーが70mass%を超え80mass%以下となるようにしたことによる平均粒径の上昇を、水分の存在下で造粒した後に行う乾燥によって補い、更なる強度向上を図った造粒物Pを製造できる。 In the pretreatment method of the sintered raw material according to the ninth and tenth inventions, the average grain size of the iron ore is such that the particle size of iron ore is 80 mass% or more for 500 μm under and more than 70 mass% for 80 μ% or less for 22 μm under. The increase in the diameter can be compensated by drying performed after granulation in the presence of moisture, and a granulated product P with further improved strength can be produced.
第11及び第12の発明に係る焼結原料の事前処理方法は、鉄鉱石の粒度を500μmアンダーが40mass%以上、かつ22μmアンダーが5mass%以上70mass%以下となるようにしたことによる平均粒径の上昇を、水分及びバインダーを使用して補い、これを造粒した後、乾燥によって補うことで、更なる強度向上を図った造粒物Pを製造できる。 In the pretreatment method of the sintered raw material according to the eleventh and twelfth inventions, the average particle size of the iron ore is such that the particle size of iron ore is 40 mass% or more of 500 μm under and 5 mass% or more and 70 mass% or less of 22 μm under. It is possible to manufacture a granulated product P that is further improved in strength by supplementing the increase in water using moisture and a binder, granulating this, and then compensating by drying.
第13及び第16の発明に係る焼結原料の事前処理方法は、乾燥温度を40℃以上250℃以下にしているので、結晶水の分解を抑制、更には防止して、造粒物が崩壊、粉化することを抑制、更には防止できる。 Since the sintering raw material pretreatment method according to the thirteenth and sixteenth inventions has a drying temperature of 40 ° C. or higher and 250 ° C. or lower, the decomposition of the crystal water is suppressed and further prevented, and the granulated material collapses. It is possible to suppress and further prevent powdering.
第14の発明に係る焼結原料の事前処理方法は、造粒物Pの大きさを1〜10mmの範囲に規定するので、焼結機内での造粒物Pの焼結を、その内部まで適正に行い、良好な品質の焼結鉱を製造することが可能になり、従来よりも焼結鉱の歩留りを向上させることが可能になる。 Since the pretreatment method of the sintering raw material according to the fourteenth invention regulates the size of the granulated product P in the range of 1 to 10 mm, the sintering of the granulated product P in the sintering machine can be performed up to the inside. Properly, it becomes possible to produce a sintered ore of good quality, and it becomes possible to improve the yield of the sintered ore than before.
第15の発明に係る焼結原料の事前処理方法は、従来使用量が制約されがちな微粉、例えば、ダスト、ペレット原料等の鉄鉱石を、制約なしに使用することができる。 The pretreatment method of the sintering raw material according to the fifteenth aspect of the present invention can use fine powder, for example, iron ore such as dust, pellet raw material, etc., which tends to be restricted in conventional usage, without restriction.
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係る焼結原料の事前処理方法の説明図、図2はコークス燃焼指数に及ぼすS型造粒物の微粉付着厚さの影響を示す説明図、図3はP型造粒物の崩壊抑制に要する圧潰強度を示す説明図、図4は圧潰強度に及ぼすP型造粒物の製造条件の影響を示す説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is an explanatory view of a sintering raw material pretreatment method according to an embodiment of the present invention, and FIG. 2 is an explanatory view showing the influence of the fine powder adhesion thickness of the S-type granulated product on the coke combustion index. FIG. 3 is an explanatory diagram showing the crushing strength required for suppressing the collapse of the P-type granulated product, and FIG. 4 is an explanatory diagram showing the influence of the production conditions of the P-type granulated product on the crushing strength.
図1に示すように、本発明の一実施の形態に係る焼結原料の事前処理方法は、それぞれ粗粒及び微粉を含む3種の鉄鉱石、即ち、ピソライト鉱石、マラマンバ鉱石、及び高燐ブロックマン鉱石を原料とし、核粒子となる粗粒に微粉を付着させたS型造粒物(造粒物S)と、微粉を主体として造粒するP型造粒物(造粒物P)とを製造する方法である。なお、原料には、更に実質的に微粉のみからなる鉄鉱石、即ち、製鉄所内で発生する混練ダスト、ペレットフィード(鉱石種:MBR−PF)、及びその他の鉄鉱石が加えられている。以下、詳しく説明する。 As shown in FIG. 1, the sintering raw material pretreatment method according to one embodiment of the present invention includes three types of iron ore containing coarse grains and fine powder, that is, a psolite ore, a maramamba ore, and a high phosphorus block. S-type granulated product (granulated product S) made of man ore as raw material and fine particles adhering to coarse particles as core particles, and P-type granulated product (granulated product P) granulated mainly with fine powders It is a method of manufacturing. In addition, iron ore substantially consisting only of fine powder, that is, kneaded dust generated in the steel mill, pellet feed (ore type: MBR-PF), and other iron ores are further added to the raw material. This will be described in detail below.
マラマンバ鉱石、ピソライト鉱石、及び高燐ブロックマン鉱石は、共に褐鉄鉱(Fe2O3・nH2O)とも呼ばれ、結晶水含有率が3mass%以上となった鉄鉱石であり、例えば10mm程度(本実施の形態においては8mm程度)の粗粒から250μm以下の微粉まで有したものである。
このピソライト鉱石、粉コークス、その他の鉄鉱石、及び石灰石を使用してS型造粒物を製造し、マラマンバ鉱石、高燐ブロックマン鉱石、混練ダスト、及びペレットフィードを使用してP型造粒物を製造する。
Maramamba ore, pisolite ore, and high phosphorus block man ore are also called limonite (Fe 2 O 3 · nH 2 O), and are iron ores with a crystal water content of 3 mass% or more. In this embodiment, it has a coarse particle of about 8 mm) to a fine powder of 250 μm or less.
S-type granulation is produced using this pisolite ore, fine coke, other iron ores, and limestone, and P-type granulation using maramamba ore, high phosphorus blockman ore, kneaded dust, and pellet feed Manufacturing things.
まず、S型造粒物の製造方法について説明する。
図1に示すように、粗粒及び微粉を含むピソライト鉱石を篩選別機10により篩分けする。なお、本実施の形態においては、篩選別機10の篩目として3mmのものを使用したが、これに限定されるものではない。
篩分けされた篩上の鉄鉱石は粗粒であるため、処理することなくそのままの状態で核粒子として使用される。一方、篩下の鉄鉱石は、アイリッヒミキサー11に装入され、例えば石灰石等のバインダー等と共に混練されて造粒される。
First, the manufacturing method of S type granulated material is demonstrated.
As shown in FIG. 1, pisolite ore containing coarse particles and fine powder is sieved by a
Since the iron ore on the sieved sieve is coarse, it is used as the core particle as it is without being treated. On the other hand, the iron ore under the sieve is charged into the
上記した混練造粒物は、粉コークス、その他の鉄鉱石、及び石灰石と共にS型用ドラムミキサー(第1の造粒装置の一例)12に装入され、核粒子の周囲に、粉コークス、その他の鉄鉱石、及び石灰石中に含まれる微粉(例えば、250μm以下)を付着させる。これにより、核粒子の周囲に付着した微粉の平均厚さが、50〜300μmとなったS型造粒物を製造する。なお、S型造粒物の製造時においては、粉コークス、その他の鉄鉱石、及び石灰石中に含まれる粒径が250μmを超える粒子の一部が、S型造粒物と共にS型用ドラムミキサー12内から排出される。 The above-mentioned kneaded granulated material is charged into an S-type drum mixer (an example of a first granulating device) 12 together with powdered coke, other iron ores, and limestone, and powdered coke, etc. around the core particles Iron ore and fine powder (for example, 250 μm or less) contained in limestone are adhered. Thereby, the S type granulated product in which the average thickness of the fine powder adhered to the periphery of the core particle is 50 to 300 μm is manufactured. At the time of production of the S-type granulated product, some of the particles having a particle size exceeding 250 μm contained in the powdered coke, other iron ores, and limestone, together with the S-type granulated product, are drum mixers for S type. 12 is discharged from the inside.
ここで、S型造粒物の微粉付着平均厚さを、50〜300μmの範囲に規定した理由について、図2を参照しながら説明する。
図2の横軸である微粉付着平均厚さは、製造したS型造粒物を使用し、以下の手順で算出した。
(1)まず、対象原料を水洗などによって微粉や粗粒等の各粒子に完全に分離し、5mm、2mm、1mm、0.5mm、0.25mmの篩目の篩い順で篩下を篩分けていき、各粒度区間の重量比率を求めた(全体を100gとした場合の各粒度区間の重量g)。
Here, the reason why the average fine powder adhesion thickness of the S-shaped granule is defined in the range of 50 to 300 μm will be described with reference to FIG.
The average fine powder adhesion thickness, which is the horizontal axis in FIG. 2, was calculated by the following procedure using the produced S-shaped granulated product.
(1) First, the target raw material is completely separated into fine particles, coarse particles, etc. by washing with water, etc., and sieved under the sieve order of 5 mm, 2 mm, 1 mm, 0.5 mm, and 0.25 mm. Then, the weight ratio of each particle size section was obtained (weight g of each particle size section when the whole is 100 g).
(2)核粒子となる5mm以上、5mm未満2mm以上、及び2mm未満1mm以上の各区間の代表粒子径(それぞれ7.5mm、3.5mm、1.5mm)を決めて、全体を100gとした場合の各粒度区間重量比率から、前記代表粒径毎の核粒子の個数を計算した。その際、核粒子密度を4g/cm3とした。
(3)核粒子への付着粉となる0.25mm以下の微粉を上記の各核粒子区間毎に分配するに際し、上記の各核粒子区間の核粒子重量比率に比例させて、各核粒子区間に分配する微粉重量を決定した。
(4)(2)で算出した核粒子の各区間代表粒子径の粒子個数と、(3)で算出決定した分配する微粉重量から、各核粒子の付着厚さを計算した。その際、付着粉層の嵩密度を2g/cm3とした。
(5)そして各核粒子区間の付着粉厚さを、各粒度区間重量比率で加重平均し、微粉付着平均厚さとした。
(2) The representative particle diameter (7.5 mm, 3.5 mm, and 1.5 mm, respectively) of each section of 5 mm or more, less than 5 mm, 2 mm or more, and less than 2 mm, or 1 mm or more to be the core particles was determined to be 100 g as a whole. The number of core particles for each representative particle size was calculated from the weight ratio of each particle size section. At that time, the core particle density was set to 4 g / cm 3 .
(3) When distributing fine powder of 0.25 mm or less, which becomes a powder adhering to the core particles, for each core particle section, each core particle section is proportional to the core particle weight ratio of each core particle section. The weight of fines to be dispensed was determined.
(4) The adhesion thickness of each core particle was calculated from the number of core representative particle diameters of the core particle calculated in (2) and the fine powder weight distributed and determined in (3). At that time, the bulk density of the adhered powder layer was set to 2 g / cm 3 .
(5) The weight of the adhered powder in each core particle section was weighted and averaged with the weight ratio of each particle section to obtain the fine powder deposited average thickness.
図2の縦軸であるコークス燃焼指数は、S型造粒物を焼結させて得られる焼結鉱の歩留りに対応するものであり、コークス燃焼指数が高くなるに伴って、焼結鉱の歩留りも向上することを現している。
図2は、粒度分布を種々変更させた原料を造粒した後に鍋試験にて焼結させたテストにおいて、微粉付着厚さ(μm)とコークス燃焼指数の関係を示したものである。
図2に示すように、コークス燃焼指数は、微粉付着厚さが100μmになるまで厚さの増加に伴って上昇し、その後厚さの増加に伴って低下していく傾向が得られた。
以上のことに焼結鉱の歩留り悪化に影響を及ぼさないことを考慮して、微粉付着平均厚さを、50〜300μmに規定し、好ましくは上限を250μm、更に望ましくは220μmとするものである。
The coke combustion index on the vertical axis in FIG. 2 corresponds to the yield of sintered ore obtained by sintering the S-type granulated product, and as the coke combustion index increases, Yield is also improved.
FIG. 2 shows the relationship between the fine powder adhesion thickness (μm) and the coke combustion index in a test in which raw materials having various particle size distributions were granulated and then sintered in a pan test.
As shown in FIG. 2, the coke combustion index increased with increasing thickness until the fine powder adhesion thickness reached 100 μm, and thereafter decreased with increasing thickness.
Considering that the above does not affect the yield deterioration of the sintered ore, the average fine powder adhesion thickness is defined as 50 to 300 μm, preferably the upper limit is 250 μm, more desirably 220 μm. .
上記知見を元に、現状操業に使用されている微粉付着平均厚さが204μmのもの(現状)と、これより付着厚さが薄い88μmのもの、及び付着厚さが厚い327μmの3種類のS型造粒物を準備し、この各S型造粒物を、焼結機にそれぞれ装入し、焼結鉱歩留りへの影響を調査した。
なお、各S型造粒物は、鉄鉱石の原料量が一定の下で製造しているため、327μmのS型造粒物(粉砕のみ)は、不足する微粉量を鉄鉱石を粉砕して核粒子の周囲に付着させることで製造して焼結機に装入し、88μmのS型造粒物は、S型造粒物に使用されなかった残部の微粉を造粒して製造したP型造粒物(ペレット化)と共に焼結機に装入している。ここで、88μmのS型造粒物の調査結果は、S型造粒物のみの結果ではないが、P型造粒物の配合量は少なく(例えば、S型造粒物とP型造粒物の合計量の20〜30mass%程度)、しかも熱源となる粉コークスがP型造粒物中に含まれていないため、得られた結果はS型造粒物の結果に略対応できるものと考えられる。
上記前提の調査の結果、図2の鍋試験結果のコークス燃焼指数に沿う焼結鉱歩留りが得られた。
Based on the above knowledge, there are three types of S that have a fine powder adhesion average thickness of 204 μm (current situation), a thinner adhesion thickness of 88 μm, and a thicker adhesion thickness of 327 μm. Mold granulated materials were prepared, and each S-shaped granulated material was charged into a sintering machine, and the influence on the yield of sintered ore was investigated.
In addition, since each S type granulated material is manufactured under a fixed amount of iron ore, the 327 μm S type granulated material (only pulverized) is obtained by pulverizing iron ore with an insufficient amount of fine powder. It was manufactured by adhering to the periphery of the core particles and charged into a sintering machine. The 88 μm S-type granulated product was produced by granulating the remaining fine powder not used in the S-type granulated product. The mold is granulated (pelletized) and charged into the sintering machine. Here, the survey result of the 88 μm S-type granulated product is not only the result of the S-type granulated product, but the blending amount of the P-type granulated product is small (for example, S-type granulated product and P-type granulated product). 20-30 mass% of the total amount of the product), and since powder coke as a heat source is not contained in the P-type granulated product, the obtained result can substantially correspond to the result of the S-type granulated product Conceivable.
As a result of the above investigation, the yield of sintered ore along the coke combustion index of the result of the pan test in FIG. 2 was obtained.
次に、P型造粒物の製造方法について説明する。
図1に示すように、それぞれ粗粒及び微粉を含むマラマンバ鉱石及び高燐ブロックマン鉱石を篩選別機13により篩分けする。なお、篩選別機13の篩目は、0.5〜10mmの範囲(本実施の形態では3mm)に設定されている。篩選別機13で篩分けされた篩下の鉄鉱石は、粉砕機15で粉砕され混練ダスト及びペレットフィード(MBR−PF)と共に混合機17に装入され混合される。なお、篩選別機13及び粉砕機15が、事前処理装置をそれぞれ構成する。
このとき、P型造粒物を製造するために使用した鉄鉱石の粉砕整粒した粒径分布に応じて、その後の処理が行われる。
Next, the manufacturing method of P type granulated material is demonstrated.
As shown in FIG. 1, the maramamba ore and the high phosphorus block man ore containing coarse particles and fine powder are sieved by a
At this time, subsequent processing is performed according to the pulverized particle size distribution of the iron ore used to produce the P-type granulated product.
P型造粒物の原料となる篩下鉄鉱石を粉砕し、500μmアンダーが90mass%以上、かつ22μmアンダーが80mass%を超えるように整粒した場合、P型用ドラムミキサー(第2の造粒装置の一例)18に装入され、水(例えば、外分で5〜15mass%)を使用して造粒された後、篩選別機19で篩分けされる。また、P型造粒物の原料となる篩下鉄鉱石を粉砕し、500μmアンダーが80mass%以上、かつ22μmアンダーが70mass%を超え80mass%以下となるように整粒した場合、P型用ドラムミキサー18に装入され、水(例えば、外分で5〜15mass%)を使用して造粒された後、篩選別機19で篩分けされ、更に乾燥機20で乾燥処理される。
そして、P型造粒物の原料となる篩下鉄鉱石を粉砕し、500μmアンダーが40mass%以上、かつ22μmアンダーが5mass%以上70mass%以下となるように整粒した場合、P型用ドラムミキサー18に装入され、例えば、パルプ廃液、コーンスターチ等の有機質のバインダー(例えば、外分で0.01〜3mass%とすることが好ましく、更には0.1〜3mass%とすることが好ましい)及び水(例えば、外分で5〜15mass%)を使用して造粒された後、篩選別機19で篩分けされ、更に乾燥機20で乾燥処理される。
なお、乾燥は、40℃以上250℃以下に設定された雰囲気中で、例えば20〜60分間程度行う。また、500μmアンダー、22μmアンダー等の微粉粒子のmass%の測定に際しては、レーザー回折散乱法の測定機器(日機装株式会社製 MICROTRAC FRA型、測定範囲:0.1〜700μm)を、用いた。
When sieving iron ore that is the raw material of P-type granulated material is pulverized and sized so that 500 μm under 90% or more and 22 μm under 80% by mass, P-type drum mixer (second granulation An example of an apparatus) 18 is charged, granulated using water (for example, 5 to 15 mass% in an external portion), and then sieved by a
And when sieving iron ore that is the raw material of P-type granulated material, and sized so that 500 μm under is 40 mass% or more and 22 μm under is 5 mass% to 70 mass%, P
In addition, drying is performed in an atmosphere set to 40 ° C. or higher and 250 ° C. or lower, for example, for about 20 to 60 minutes. Moreover, when measuring mass% of fine powder particles such as 500 μm under and 22 μm under, a laser diffraction scattering measuring instrument (MICROTRAC FRA type, measurement range: 0.1 to 700 μm manufactured by Nikkiso Co., Ltd.) was used.
ここで、鉄鉱石の粉砕整粒した粒径分布に応じて、その後の処理をそれぞれ変えた理由について説明する。
P型造粒物(以下、ペレットともいう)の原料として微粉を用いる場合、P型造粒物の強度(圧潰強度)は低いため、この強度を適正な値まで高めることが必要である。このため、この必要な強度を、ベルトコンベア(図示しない)の乗り継ぎが5回(実機乗り継ぎ相当)以上でも問題ない程度の強度を備えることを考慮して規定すると、図3に示すように、直径10mmのP型造粒物1個あたり2kgf(2kgf/10mmφ・1個)以上の強度が必要であることが分かる。
そこで、この2kgf/10mmφ・1個以上を満足する処理方法を、図4を参照しながら説明する。なお、使用した原料は、マラマンバ鉱石を3mm以下を粉砕したもの、ペレットフィード、及び混練ダストである。
Here, the reason why each of the subsequent processes is changed according to the particle size distribution of the crushed and sized iron ore will be described.
When fine powder is used as a raw material for a P-type granulated product (hereinafter also referred to as pellets), the strength (crushing strength) of the P-type granulated product is low, and it is necessary to increase this strength to an appropriate value. For this reason, if this necessary strength is defined in consideration of having a strength that does not cause any problem even if the belt conveyor (not shown) is connected five times or more (equivalent to an actual machine connection), the diameter is as shown in FIG. It turns out that the intensity | strength of 2 kgf (2kgf / 10mmphi * 1 piece) or more is required per 10 mm P-type granulated material.
Therefore, a processing method that satisfies this 2 kgf / 10 mmφ · 1 or more will be described with reference to FIG. In addition, the used raw material is what crushed 3 mm or less of maramamba ore, pellet feed, and kneaded dust.
図4に示すように、(1)粉砕処理のみ、(2)粉砕処理及び乾燥処理、(3)粉砕処理、乾燥処理、及びバインダーの添加処理において、同じ平均粒度では(1)→(2)→(3)となるにつれて、ペレットの圧潰強度が上昇する傾向が得られた。なお、造粒に使用した水分量は外分で10mass%、バインダー(パルプ廃液)の添加量は外分で1mass%、そして、乾燥は、250℃で30分間行い、造粒物中に含まれる水分量を外分で5mass%まで低下させた。ここで、鉄鉱石に粉砕処理のみを施した場合、平均粒度が20μm以下(500μmアンダーが90mass%以上、かつ22μmアンダーが80mass%を超え)であれば、製造したペレットが2kgf/10mmφ・1個以上の条件を満足できる。 As shown in FIG. 4, (1) pulverization treatment only, (2) pulverization treatment and drying treatment, (3) pulverization treatment, drying treatment, and binder addition treatment, (1) → (2) → The tendency of the crushing strength of the pellets to increase as (3) was obtained. The amount of water used for granulation is 10% by mass in the outer portion, the amount of binder (pulp waste liquid) added is 1% by mass in the outer portion, and drying is performed at 250 ° C. for 30 minutes, and is contained in the granulated product. The amount of water was reduced to 5 mass% with an external component. Here, when the iron ore is only pulverized, if the average particle size is 20 μm or less (500 μm under is 90 mass% or more and 22 μm under is over 80 mass%), the produced pellet is 2 kgf / 10 mmφ × 1 piece. The above conditions can be satisfied.
また、この造粒物に更に乾燥処理を施した場合、平均粒度を大きくし、100μm以下(500μmアンダーが80mass%以上、かつ22μmアンダーが70mass%を超え80mass%以下)としても、製造したペレットが2kgf/10mmφ・1個以上の条件を満足できる。
更に、バインダーが添加された造粒物に乾燥処理を施した場合、平均粒度を更に大きくし、700μm以下(500μmアンダーが40mass%以上、かつ22μmアンダーが5mass%以上70mass%以下)としても、製造したペレットが2kgf/10mmφ・1個以上の条件を満足できる。
以上のことから、粉砕粒径に応じて、前記した処理を施した。
Further, when this granulated product is further subjected to a drying treatment, the average particle size is increased to 100 μm or less (500 μm under is 80 mass% or more and 22 μm under is more than 70 mass% and 80 mass% or less). The condition of 2 kgf / 10 mmφ · 1 or more can be satisfied.
Furthermore, when the granulated product to which the binder has been added is subjected to a drying treatment, the average particle size is further increased to 700 μm or less (500 μm under is 40 mass% or more and 22 μm under is 5 mass% or more and 70 mass% or less). The satisfied pellets can satisfy the condition of 2 kgf / 10 mmφ · 1 or more.
From the above, the above-described treatment was performed according to the pulverized particle size.
P型用ドラムミキサー18で造粒された造粒物を篩分けする篩選別機19の篩目は、粒径が1〜10mmの範囲になった造粒物を篩分けできるように調整されている。なお、粒径が1mm未満の造粒物は、処理されることなく再度混合機17に装入され、また粒径が10mmを超える造粒物は、解砕機(図示しない)で解砕され再度混合機17に装入されて、粒度調整される。
これにより、粒径が1〜10mmの範囲に調整された造粒物は、前記したように、必要に応じて乾燥処理を行いP型造粒物になる。
The sieve mesh of the
Thereby, as described above, the granulated product whose particle diameter is adjusted to the range of 1 to 10 mm is subjected to a drying treatment as necessary to become a P-type granulated product.
なお、P型造粒物の製造に際し、マラマンバ鉱石及び高燐ブロックマン鉱石を、篩選別機13の0.5mm〜10mmの範囲に設定された篩目により篩分けて発生した篩上の鉄鉱石は、P型造粒物の原料には適さない。これは、前記したように、粉砕処理を施さなければ、製造されたP型造粒物の強度が確保しにくく、また篩下鉄鉱石と比べて相対的に大きな粉砕の負荷があり、操業に負荷がかかるためである。従って、篩上の鉄鉱石を、粉砕処理を施すことなく主としてS型造粒物の核粒子として使用する。
このように、マラマンバ鉱石及び高燐ブロックマン鉱石に含まれる微粉は、篩選別機13の篩目によって微粉配合量を調整、即ちS型用ドラムミキサー12に供給しないという状態に調整し、S型用ドラムミキサー12に極力供給しない残部、即ちほぼ全ての微粉を、P型用ドラムミキサー18の原料として使用する。
In addition, the iron ore on the sieve generated by sieving the maramamba ore and the high phosphorus block man ore with the sieve mesh set in the range of 0.5 mm to 10 mm of the
Thus, the fine powder contained in the Mara Mamba ore and the high phosphorus block man ore is adjusted to a state in which the fine powder blending amount is adjusted by the mesh of the
ここで、篩選別機13の篩目は、S型造粒物の微粉付着平均厚さに応じて、その大きさを変え、P型用ドラムミキサー18に供給する微粉を除いた鉄鉱石中の粗粒のS型用ドラムミキサー12への配合量を調整することで、微粉付着平均厚さを目的所定範囲である50〜300μmにできる。
例えば、使用する鉄鉱石の粒度分布の変化により、S型造粒物の微粉付着平均厚さが増加する場合、1mm以上の範囲で1mmに近い篩目を用い、S型用ドラムミキサー12に供給されるS型造粒物の核粒子量を増加させることで、微粉付着平均厚さの最適化を図ることができる。一方、例えば、使用する鉄鉱石の粒度分布の変化により、S型造粒物の微粉付着平均厚さが減少する場合、10mmに近い篩目を用い、S型用ドラムミキサー12に供給されるS型造粒物の核粒子量を減少させることで、微粉付着平均厚さの最適化を図ることができる。
Here, according to the fine powder adhesion average thickness of the S-type granulated product, the sieve mesh of the
For example, when the fine powder adhesion average thickness of the S-type granulated product increases due to the change in the particle size distribution of the iron ore used, it is supplied to the S-
また、篩選別機13の篩目は、P型用ドラムミキサー18及び事前処理装置のいずれか一方又は双方の製造能力に応じて、その大きさを変え、各装置への鉄鉱石の供給量を制御(変更)できる。
例えば、使用する鉄鉱石の粒度分布の変化により、P型造粒物を製造する各装置の製造能力に余裕がある場合は、10mmに近い篩目を用い、P型造粒物を製造する原料の供給量を増加させることができる。一方、例えば、使用する鉄鉱石の粒度分布の変化により、P型造粒物を製造する各装置の製造能力が不足する場合は、0.5mmに近い篩目を用い、P型造粒物を製造する原料の供給量を減少させることができる。このとき、篩下の鉄鉱石を一時的にストック(貯留)し、P型造粒物を製造する各装置の能力に余裕がある場合に、ストックした鉄鉱石の処理を実施する等の対策を、必要に応じて使用することも可能である。
Further, the sieve mesh of the
For example, if there is a margin in the production capacity of each device for producing P-type granulated material due to changes in the particle size distribution of the iron ore used, the raw material for producing P-type granulated material using a sieve mesh close to 10 mm The supply amount of can be increased. On the other hand, for example, when the production capacity of each device for producing a P-type granulated product is insufficient due to a change in the particle size distribution of the iron ore to be used, a sieve mesh close to 0.5 mm is used, and the P-type granulated product is used. The amount of raw material to be manufactured can be reduced. At this time, when the iron ore under the sieve is temporarily stocked (stored) and the capacity of each device for producing the P-type granulated material is sufficient, measures such as processing the stocked iron ore should be taken. It can also be used as necessary.
また、篩選別機13の篩目の調整に際し、篩上の鉄鉱石中に含まれる核粒子になりにくい中間粒子(例えば、250μmを超え1mm以下)は、S型造粒物に付着することなくS型用ドラムミキサー12から排出される場合が多い。なお、この中間粒子は、粉砕処理を施すことで、P型造粒物の原料として使用することも、またS型造粒物の付着微粉として使用することも可能である。
以上の方法により製造したS型造粒物とP型造粒物とを、例えば、その合計量の70〜80mass%がS型造粒物になるように、混合することなく重ねながら焼結機21に装入して焼結鉱を製造する。
これにより、従来よりも多量の微粉を含む鉄鉱石の原料に対応可能で、造粒性及び強度を従来よりも向上させた造粒物を製造し、良好な品質を備えた焼結鉱を製造できる。
Moreover, when adjusting the sieve mesh of the
The S-type granulated product and the P-type granulated product produced by the above method are sintered without being mixed so that, for example, 70 to 80 mass% of the total amount becomes the S-type granulated product. 21 is charged to produce sintered ore.
As a result, it is possible to cope with iron ore raw materials containing a larger amount of fine powder than before, producing granulated products with improved granulation properties and strength, and producing sintered ores with good quality. it can.
以上、本発明を、一実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の焼結原料の事前処理方法を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態においては、それぞれ粗粒及び微粉を含む3種の鉄鉱石として、ピソライト鉱石、マラマンバ鉱石、及び高燐ブロックマン鉱石を使用した場合について説明したが、それぞれ粗粒及び微粉を含む2種以上の鉄鉱石であればよく、例えば、ピソライト鉱石及びマラマンバ鉱石を使用することも、また、他の鉄鉱石、例えば、磁鉄鉱(Fe3O4)、赤鉄鉱(Fe2O3)等を使用することも可能である。なお、これらの鉄鉱石に、他の鉄源、例えば製鉄所内で発生する鉄源等を加えることで、原料を構成することも勿論可能である。
そして、前記実施の形態においては、P型造粒物の製造に際し、微粉の粉砕整粒後の粒径を500μmアンダーが90mass%以上、かつ22μmアンダーが80mass%超えとした場合、バインダーを添加することなく造粒し、乾燥処理を施すことなく焼結機に装入したが、必要に応じてバインダーの添加及び乾燥処理のいずれか一方又は双方の処理を施すことも可能である。また、微粉の粉砕整粒後の粒径を500μmアンダーが80mass%以上、かつ22μmアンダーが70mass%を超え80mass%以下とした場合、バインダーを添加することなく造粒し、乾燥処理を施して焼結機に装入したが、必要に応じてバインダーを添加することも可能である。
As described above, the present invention has been described with reference to one embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and is described in the claims. Other embodiments and modifications conceivable within the scope of the above are also included. For example, a case in which the sintering raw material pretreatment method of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the present invention.
Moreover, in the said embodiment, although the case where a pisolite ore, a maramamba ore, and a high phosphorus block man ore were used as three types of iron ores containing a coarse grain and a fine powder, respectively, a coarse grain and a fine powder were respectively used. 2 or more types of iron ores may be used, for example, use of pisolite ore and maramamba ore, and other iron ores such as magnetite (Fe 3 O 4 ), hematite (Fe 2 O 3 ) Etc. can also be used. Of course, it is also possible to configure the raw materials by adding other iron sources, for example, iron sources generated in the ironworks, to these iron ores.
And in the said embodiment, when manufacturing the P-type granulated product, when the particle size after pulverization and pulverization of the fine powder is set to 90 mass% or more for 500 μm under and 80 mass% for 22 μm under, a binder is added. However, it is also possible to perform either one or both of binder addition and drying treatment as necessary. In addition, when the particle size after pulverization and pulverization of the fine powder is 80 mass% or more for 500 μm under and more than 70 mass% and not more than 80 mass% for 22 μm under, granulation is performed without adding a binder, followed by drying treatment and baking. Although it was charged into the kneading machine, it is possible to add a binder as required.
10:篩選別機、11:アイリッヒミキサー、12:S型用ドラムミキサー(第1の造粒装置)、13:篩選別機、15:粉砕機、17:混合機、18:P型用ドラムミキサー(第2の造粒装置)、19:篩選別機、20:乾燥機、21:焼結機 10: Sieve sorter, 11: Eirich mixer, 12: S-type drum mixer (first granulator), 13: Sieve sorter, 15: Crusher, 17: Mixer, 18: P-type drum Mixer (second granulator), 19: sieve sorter, 20: dryer, 21: sintering machine
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006186893A JP4786441B2 (en) | 2004-05-13 | 2006-07-06 | Pretreatment method of sintering raw material |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004143821 | 2004-05-13 | ||
JP2004143821 | 2004-05-13 | ||
JP2006186893A JP4786441B2 (en) | 2004-05-13 | 2006-07-06 | Pretreatment method of sintering raw material |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005137474A Division JP3902629B2 (en) | 2004-05-13 | 2005-05-10 | Pretreatment method of sintering raw materials |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2006312786A true JP2006312786A (en) | 2006-11-16 |
JP2006312786A5 JP2006312786A5 (en) | 2008-06-19 |
JP4786441B2 JP4786441B2 (en) | 2011-10-05 |
Family
ID=37534383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006186893A Active JP4786441B2 (en) | 2004-05-13 | 2006-07-06 | Pretreatment method of sintering raw material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4786441B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006152367A (en) * | 2004-11-29 | 2006-06-15 | Jfe Steel Kk | Method for manufacturing sintered ore |
JP2008174763A (en) * | 2007-01-16 | 2008-07-31 | Nippon Steel Corp | Method for producing sintered ore |
JP2008261016A (en) * | 2007-04-12 | 2008-10-30 | Nippon Steel Corp | Method for manufacturing sintered ore |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000087150A (en) * | 1998-09-16 | 2000-03-28 | Kobe Steel Ltd | Production of iron ore pellet |
JP2002322514A (en) * | 2001-02-22 | 2002-11-08 | Nippon Steel Corp | Pelletizing treating agent for manufacturing iron and pelletizing treating method using the same |
-
2006
- 2006-07-06 JP JP2006186893A patent/JP4786441B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000087150A (en) * | 1998-09-16 | 2000-03-28 | Kobe Steel Ltd | Production of iron ore pellet |
JP2002322514A (en) * | 2001-02-22 | 2002-11-08 | Nippon Steel Corp | Pelletizing treating agent for manufacturing iron and pelletizing treating method using the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006152367A (en) * | 2004-11-29 | 2006-06-15 | Jfe Steel Kk | Method for manufacturing sintered ore |
JP4501656B2 (en) * | 2004-11-29 | 2010-07-14 | Jfeスチール株式会社 | Method for producing sintered ore |
JP2008174763A (en) * | 2007-01-16 | 2008-07-31 | Nippon Steel Corp | Method for producing sintered ore |
JP2008261016A (en) * | 2007-04-12 | 2008-10-30 | Nippon Steel Corp | Method for manufacturing sintered ore |
Also Published As
Publication number | Publication date |
---|---|
JP4786441B2 (en) | 2011-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3902629B2 (en) | Pretreatment method of sintering raw materials | |
KR100943359B1 (en) | Method for pretreatment of raw materials for sintering | |
JP4786508B2 (en) | Pretreatment method of sintering raw material | |
KR102189069B1 (en) | Method for manufacturing sintered ore | |
JP2007247020A (en) | Method for kneading raw fine powder | |
RU2676378C1 (en) | Method of obtaining reduced iron | |
JP4786760B2 (en) | Pretreatment method of sintering raw material | |
JP2006312786A (en) | Method for pretreating raw material for sintering | |
JP2007077512A5 (en) | ||
KR101328305B1 (en) | Method for manufacturing sintered iron ore using pellet feed | |
JP6369113B2 (en) | Method for producing sintered ore | |
JP6380762B2 (en) | Method for producing sintered ore | |
WO2010114152A1 (en) | Method for adding binder, device for adding binder, kneading machine and kneading method | |
CN114934173A (en) | Reinforced sintering method for fuel fractional addition | |
JP2014201763A (en) | Method for producing granulation raw material for sintering | |
JP2000290732A (en) | Method for granulating raw material for sintering, excellent in combustibility | |
WO2015152112A1 (en) | Device for manufacturing pelletized sinter feed | |
JP5979382B2 (en) | Manufacturing method and apparatus for granulating raw material for sintering | |
JP2009052087A (en) | Method of pretreating raw material for sintering | |
JP6954236B2 (en) | Manufacturing method and manufacturing equipment for coal interior sintered ore | |
JP5983949B2 (en) | Method for producing granulated raw material for sintering | |
EP2829619B1 (en) | Method for adjusting precursor powder for sintering, and precursor powder for sintering | |
JP2013241651A (en) | Method for pretreating sintering raw material | |
JPH05195088A (en) | Pre-treatment of raw sintered ore for blast furnace | |
JP2000303121A (en) | Pretreatment of sintering raw material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080408 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080424 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100601 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100629 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100729 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110705 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110713 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4786441 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140722 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140722 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140722 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |