JP5798962B2 - Separator for liquid lead acid battery and liquid lead acid battery - Google Patents

Separator for liquid lead acid battery and liquid lead acid battery Download PDF

Info

Publication number
JP5798962B2
JP5798962B2 JP2012071121A JP2012071121A JP5798962B2 JP 5798962 B2 JP5798962 B2 JP 5798962B2 JP 2012071121 A JP2012071121 A JP 2012071121A JP 2012071121 A JP2012071121 A JP 2012071121A JP 5798962 B2 JP5798962 B2 JP 5798962B2
Authority
JP
Japan
Prior art keywords
acid
resistant
separator
liquid lead
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012071121A
Other languages
Japanese (ja)
Other versions
JP2013206571A (en
Inventor
昌司 杉山
昌司 杉山
蔀 貴史
貴史 蔀
秀介 中川
秀介 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2012071121A priority Critical patent/JP5798962B2/en
Publication of JP2013206571A publication Critical patent/JP2013206571A/en
Application granted granted Critical
Publication of JP5798962B2 publication Critical patent/JP5798962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Description

本発明は、電解液を非流動化させてメンテナンスフリー化したいわゆる密閉型鉛蓄電池(制御弁式鉛蓄電池とも言う)ではなく、旧来の方式である流動性をもった電解液を有したいわゆる液式鉛蓄電池(ベント式鉛蓄電池、開放型鉛蓄電池とも言う)に用いるセパレータ及びそれを用いた液式鉛蓄電池に関する。また、本発明は、セパレータを極板とともに積層した極板群を形成してなる液式鉛蓄電池において、主として極板面の保護(活物質の脱落防止)と極板から発生するガスの良好な排出性(セパレータ内のガス滞留防止)の機能を持ち、良好な電解液保持性も併せ持つ新規なガラス繊維マット材(マット状不織布シート)を用いたセパレータとそれを用いた液式鉛蓄電池に関する。   The present invention is not a so-called sealed lead-acid battery (also referred to as a control valve-type lead-acid battery) in which the electrolyte is made non-fluidized to be maintenance-free, but is a so-called liquid having a fluid electrolyte that is a conventional method. The present invention relates to a separator used for a type lead acid battery (also referred to as a vent type lead acid battery or an open type lead acid battery) and a liquid type lead acid battery using the separator. Further, the present invention provides a liquid type lead-acid battery formed by forming a group of electrode plates in which separators are laminated together with electrode plates, mainly protecting the electrode plate surface (preventing falling off of the active material) and good gas generated from the electrode plates. The present invention relates to a separator using a novel glass fiber mat material (mat-like non-woven fabric sheet) having a function of discharging (preventing gas stagnation in the separator) and also having good electrolyte retention, and a liquid lead-acid battery using the separator.

従来、このような液式鉛蓄電池用のガラス繊維マット材としては、極板面保護(活物質脱落防止)と良好なガス排出性(ガス滞留防止)の機能を併せ持たせるために、ガラス長繊維(連続ガラス繊維を長繊維状にカットしたチョップドガラス繊維を含む)、特に、平均繊維径が13〜19μm程度(平均孔径130〜200μm程度)のガラス繊維を主体として、乾式法あるいは、湿式法(抄紙法)でマット状に成形され、アクリル樹脂で強化したものが主流として使用されている。   Conventionally, as a glass fiber mat material for such a liquid lead-acid battery, in order to have both functions of electrode plate surface protection (active material fall-off prevention) and good gas discharge (gas retention prevention), Fibers (including chopped glass fibers obtained by cutting continuous glass fibers into long fibers), particularly glass fibers having an average fiber diameter of about 13 to 19 μm (average pore diameter of about 130 to 200 μm) as a main component, a dry method or a wet method A material that is formed into a mat shape by the (paper making method) and reinforced with an acrylic resin is mainly used.

また、従来、密閉型鉛蓄電池(JIS C 8707(陰極吸収式シール形据置鉛蓄電池)またはJIS C 8704−2(制御弁式据置鉛蓄電池)に定義される)用セパレータとしては、リテーナ(電解液保持材)とセパレータ(隔離材)の機能を併せ持たせるために、微細ガラス繊維、特に、平均繊維径が1μm程度(平均孔径4.0μm程度)のガラス繊維を主体として構成した、不織布シート(湿式抄造シート)が主流として使用されている。   Conventionally, as a separator for a sealed lead-acid battery (defined in JIS C 8707 (cathode absorption sealed stationary lead-acid battery) or JIS C 8704-2 (controlled valve-type stationary lead-acid battery)), a retainer (electrolytic solution) A non-woven sheet (mainly composed of fine glass fibers, particularly glass fibers having an average fiber diameter of about 1 μm (average pore diameter of about 4.0 μm)) in order to have the functions of a holding material and a separator (separating material) Wet paper sheets are used as the mainstream.

最近のアイドリングストップアンドスタートシステム(停車時に自動でエンジンを停止させ発進時に自動でエンジンを再始動させるシステム)の自動車への採用により、自動車用電池の使用環境は、鉛蓄電池に対して、過充電状態から満充電に満たない状態での電池の充放電サイクルへと変化して来た。従来の液式鉛蓄電池では、セパレータを始めとする正負極板間の空間の機能として、電解液保持の機能がなく、電解液をフリー状態とし、過充電時の極板から発生するガスの抜けを良くすることで、ガッシング(過充電時に起きる水の電気分解に伴うガス発生)による電解液の攪拌により、電解液の成層化(充電時に極板から放出される高比重の硫酸が電池下部に移動することで起きる電池上下での電解液の濃淡現象)を防止していたが、アイドリングストップアンドスタートシステム搭載の自動車用途に対しては、電解液の成層化が早期に起こり、電池が短寿命になるという欠点が指摘されている。   By adopting the latest idling stop-and-start system (a system that automatically stops the engine when the vehicle is stopped and automatically restarts the engine when the vehicle is started) in an automobile, the usage environment of the automotive battery is overcharged compared to the lead-acid battery. It has changed from a state to a charge / discharge cycle of a battery in a state of less than full charge. In the conventional liquid lead-acid battery, the function of the space between the positive and negative plates such as the separator is not the function of holding the electrolyte, the electrolyte is free, and the gas generated from the electrode plate during overcharge is released. As a result, the electrolyte solution is stratified (high specific gravity sulfuric acid released from the electrode plate is charged at the bottom of the battery) by stirring the electrolyte solution by gassing (gas generation accompanying water electrolysis that occurs during overcharge). In the case of automobile applications with an idling stop-and-start system, stratification of the electrolyte occurs early and the battery has a short life. The disadvantage of becoming.

また、最近は、アイドリングストップアンドスタートシステムの自動車に、密閉型鉛蓄電池が搭載される傾向にあるが、密閉型鉛蓄電池は、液式鉛蓄電池に比べ、使用する鉛の量が多いため、電池コストが高く、また、電解液量が制限されるため、放電容量が低い。更に、密閉型鉛蓄電池は、エンジンルームに搭載すると電池がドライアップするという欠点があり、汎用あるいは小型の自動車には、液式鉛蓄電池の搭載が望まれている。   Recently, there has been a tendency for automobiles with an idling stop-and-start system to be equipped with sealed lead-acid batteries. However, sealed lead-acid batteries use more lead than liquid lead-acid batteries. Since the cost is high and the amount of electrolyte is limited, the discharge capacity is low. Furthermore, the sealed lead-acid battery has a drawback that the battery dries up when mounted in an engine room, and a liquid-type lead-acid battery is desired to be mounted on a general-purpose or small-sized automobile.

このため、液式鉛蓄電池にあっては、セパレータが担う機能として、従来の液式鉛蓄電池用のガラス繊維マット材の持つ、極板の活物質脱落を防止する極板保護の機能と極板から発生するガスをガラス繊維マット材に滞留させることなく速やかに電池上部へ逃がす良好なガス抜け性の機能を有しながら、電解液の成層化を防止する機能を有することが望まれている。また、最近の液式鉛蓄電池は、電池のコストダウンや電池の反応効率を向上させる目的で、鉛の使用量の少ないエキスパンド式格子体の極板を採用しており、鋳造式格子体の極板と比べて、電池の充放電サイクルによる極板の伸びが大きくなっており、よって、セパレータも袋加工が可能で伸びが良好な高密度ポリエチレン(特に、超高分子量ポリエチレン)を使用した微多孔性樹脂フィルムを採用するようになっている。従って、この微多孔性樹脂フィルムと組み合わせて用いるガラス繊維マット材も、極板の伸びに追従することができるようにできるだけ良好な伸びを有するものが望まれている。   For this reason, in the liquid lead-acid battery, as a function of the separator, the function of protecting the electrode plate and preventing the active material from falling off the active material of the glass fiber mat material for the conventional liquid lead-acid battery It is desired to have a function of preventing the stratification of the electrolyte solution while having a good gas releasing function of quickly releasing the gas generated from the gas to the upper part of the battery without staying in the glass fiber mat material. In addition, recent liquid lead-acid batteries employ an expanded grid electrode plate that uses less lead for the purpose of reducing battery costs and improving battery reaction efficiency. Compared to the plate, the electrode plate has a larger elongation due to the charge / discharge cycle of the battery. Therefore, the separator is also microporous using high-density polyethylene (especially ultra-high molecular weight polyethylene) that can be bagged and has good elongation. Adhesive resin film is adopted. Therefore, the glass fiber mat material used in combination with this microporous resin film is also desired to have as good elongation as possible so that it can follow the elongation of the electrode plate.

しかしながら、従来、液式鉛蓄電池用の主流のセパレータとしては、(1)高密度ポリエチレン(超高分子量ポリエチレン)を使用した微多孔性樹脂フィルムシート(いわゆるポリエチレンセパレータ)(例えば、特許文献1)、(2)高密度ポリエチレン(超高分子量ポリエチレン)を使用した微多孔性樹脂フィルムシートに、平均繊維径が13〜19μm程度のガラス長繊維(連続ガラス繊維を長繊維状にカットしたチョップドガラス繊維を含む)を主体とし乾式法または湿式法(抄紙法)で作られた極板保護用のマット状不織布シート(いわゆるSBA S 0401に定義される鉛蓄電池用ガラスマット)を積層状態に組み合わせたもの(例えば、特許文献2)、(3)高密度ポリエチレン(超高分子量ポリエチレン)を使用した微多孔性樹脂フィルムシートに、平均繊維径が1μm程度のガラス短繊維(ウール状ガラス繊維)を主体とし湿式法(抄紙法)で作られた電解液保持用のマット状不織布シート(いわゆるSBA S 0406に定義される鉛蓄電池用ガラス繊維リテーナマット=密閉型鉛蓄電池用セパレータ)を積層状態に組み合わせたもの(例えば、特許文献3)が提案され、前記(1)の基本技術に対して、電池性能を高める技術として、前記(2)や前記(3)のような改良技術が提案されているものの、前記(2)の改良技術では、高密度ポリエチレン(超高分子量ポリエチレン)を使用した微多孔性樹脂フィルムシート、平均繊維径が13〜19μm程度のガラス繊維主体のマット状不織布シートの何れも電解液保持の機能を有しない。また、前記(3)の改良技術においては、平均繊維径が1μm程度のガラス繊維主体のマット状不織布シートが、電解液保持の機能を有し、電解液成層化の防止に対して有効に機能するが、元々密閉型鉛蓄電池用セパレータとして用いられる仕様そのものであることから、つまり、できる限り平均孔径を小さくし毛細管作用を高め電解液保持機能を高めるよう設定されていることから、平均孔径はかなり小さく設計されており、極板から発生するガスがマット状不織布シートから排出されにくく(ガスがマット状不織布シート内に滞留しやすく)、電池の内部抵抗を高め、電池の充放電特性を低下させる原因になり得る。このように、前記(2)及び前記(3)の改良技術は、何れも、アイドリングストップアンドスタートシステム搭載の自動車用途に対しては、十分な電池特性を発揮することは困難であると考えられる。   However, conventionally, as a mainstream separator for a liquid lead acid battery, (1) a microporous resin film sheet (so-called polyethylene separator) using high-density polyethylene (ultra high molecular weight polyethylene) (for example, Patent Document 1), (2) Glass microfibers having an average fiber diameter of about 13 to 19 μm (chopped glass fibers obtained by cutting continuous glass fibers into long fibers) on a microporous resin film sheet using high-density polyethylene (ultra high molecular weight polyethylene). A combination of laminated non-woven sheets for electrode plate protection (so-called glass mats for lead-acid batteries defined in SBA S 0401) made mainly by a dry process or a wet process (papermaking process). For example, Patent Documents 2) and (3) Fineness using high density polyethylene (ultra high molecular weight polyethylene) A mat-like non-woven sheet for holding an electrolyte solution (so-called SBA S 0406) made mainly of short glass fibers (wool-like glass fibers) having an average fiber diameter of about 1 μm and a wet method (paper making method). A lead-acid battery glass fiber retainer mat (sealed lead-acid battery separator) defined in combination in a laminated state (for example, Patent Document 3) has been proposed. Improvement techniques such as (2) and (3) have been proposed as enhancement techniques, but in the improvement technique (2), a microporous resin using high-density polyethylene (ultra high molecular weight polyethylene). Neither a film sheet nor a mat-like nonwoven sheet mainly composed of glass fibers having an average fiber diameter of about 13 to 19 μm has a function of holding an electrolyte solution. In the improved technique of (3), the glass fiber-based mat-like non-woven sheet having an average fiber diameter of about 1 μm has a function of holding an electrolytic solution, and effectively functions to prevent stratification of the electrolytic solution. However, because it is originally a specification used as a sealed lead-acid battery separator, that is, it is set to reduce the average pore diameter as much as possible to enhance the capillary action and enhance the electrolyte holding function, so the average pore diameter is Designed to be quite small, the gas generated from the electrode plate is not easily discharged from the mat-like non-woven fabric sheet (the gas tends to stay in the mat-like non-woven fabric sheet), increases the internal resistance of the battery, and reduces the charge / discharge characteristics of the battery Can be a cause. As described above, it is considered that the improved technologies (2) and (3) are difficult to exhibit sufficient battery characteristics for automobile applications equipped with an idling stop-and-start system. .

また、前記(2)の改良技術で使用される極板保護用のマット状不織布シートは、伸びが小さく、電池反応による極板の伸びに追従することが困難であると考えられる。これは、極板保護用の従来のマット状不織布シート(鉛蓄電池用ガラスマット)は、元々連続ガラス繊維からなる直線性の高い繊維形状のガラス長繊維を主体としており、ガラス長繊維のみでは殆どマット状不織布シートとしての機械的強度を有しないため、シート強度を確保するために、繊維同士の交点をエマルジョン樹脂(主にアクリル樹脂)で硬化させているためである。特に、乾式法で作られる従来のマット状不織布シート(鉛蓄電池用ガラスマット)については、通常これと貼り合わせて用いるセパレータシートは合成繊維紙が用いられており、両者を貼り合わせた複合セパレータの機械的強度は、マット状不織布シートに委ねられていることから、マット状不織布シートを必要以上に硬化させる必要があった。そして、乾式法で作られる従来のマット状不織布シートは、その製法上の特徴から、0.5mm以下の厚さにおいて製造が非常に困難であるとともに、厚さのばらつきが大きく、適用した電池の充放電特性を大きくばらつかせる要因を含んでいる。   Further, the mat-like nonwoven sheet for protecting the electrode plate used in the improved technique (2) has a small elongation, and it is considered difficult to follow the elongation of the electrode plate due to the battery reaction. This is because the conventional mat-like non-woven sheet (lead-acid battery glass mat) for electrode plate protection is mainly composed of continuous glass fibers with a highly linear fiber shape, and the glass long fibers alone are mostly used. This is because the mat-like non-woven fabric sheet does not have mechanical strength, and the intersection of the fibers is cured with an emulsion resin (mainly acrylic resin) in order to secure the sheet strength. In particular, for a conventional mat-like non-woven sheet (lead-acid battery glass mat) made by a dry process, a synthetic fiber paper is usually used as a separator sheet to be bonded to this, and a composite separator made by bonding the two together. Since the mechanical strength is left to the mat-like non-woven sheet, it is necessary to cure the mat-like non-woven sheet more than necessary. The conventional mat-like non-woven sheet made by the dry method is very difficult to manufacture at a thickness of 0.5 mm or less due to the characteristics of the manufacturing method, and the variation in thickness is large. It includes factors that greatly vary the charge / discharge characteristics.

特開平02−155161号公報Japanese Patent Laid-Open No. 02-155161 特開平02−168555号公報Japanese Patent Laid-Open No. 02-168555 特開昭55−016364号公報Japanese Patent Laid-Open No. 55-016364

そこで、本発明は、前記従来の問題点に鑑み、微多孔性樹脂フィルムシートとガラス繊維マット状不織布シート(ガラス繊維マット材)を積層状態に組み合わせてなる液式鉛蓄電池用セパレータにおいて、ガラス繊維マット状不織布シートが、良好な極板活物質保護機能と良好なガス排出機能と良好な電解液成層化防止機能をもたらすことができ更に電池反応による極板の伸びに追従し得る良好な伸びを有するようにしたセパレータとそれを用いた液式鉛蓄電池を提供することを目的とする。   Therefore, in view of the above-described conventional problems, the present invention provides a liquid lead-acid battery separator in which a microporous resin film sheet and a glass fiber mat-like non-woven sheet (glass fiber mat material) are combined in a laminated state. The mat-like non-woven sheet can provide a good electrode plate active material protection function, a good gas discharge function, and a good electrolyte solution stratification prevention function, and also has a good elongation that can follow the elongation of the electrode plate due to the battery reaction. An object of the present invention is to provide a separator and a liquid lead-acid battery using the separator.

本発明者等は、前記目的を達成するため、鋭意検討した結果、以下の知見を得た。液式鉛蓄電池における電解液成層化は、極板から放出された高比重の硫酸がセパレータおよびマット材に保持されることなく下方に移動することで容易に起き得る現象であることから、極板から放出された硫酸を極板と接するマット材で下方に移動させることなくできるだけ保持するように改善できれば、電解液成層化防止効果をもたらすことができることに着目した。特に、この電解液成層化防止効果をもたらす技術的ポイントとして、マット材は、電解液吸収力(毛細管力)が強すぎると、つまり平均孔径が小さすぎると、逆にマット材に進入したガスを抱き込む(滞留させる)性質が強くなり、電解液吸収力(電解液保持力)とガス抜け性の相反する特性を如何に両立させるかがポイントとなることに着目した。   As a result of intensive studies to achieve the above object, the present inventors have obtained the following knowledge. Electrolyte stratification in liquid lead-acid batteries is a phenomenon that can easily occur when sulfuric acid with high specific gravity released from the electrode plate moves downward without being held by the separator and mat material. We focused on the fact that the electrolyte solution stratification prevention effect can be brought about if it can be improved so that the sulfuric acid released from the electrode can be held as much as possible without moving it downward with the mat material in contact with the electrode plate. In particular, as a technical point that brings about the effect of preventing stratification of the electrolyte solution, if the mat material absorbs the electrolyte solution (capillary force) too much, that is, if the average pore diameter is too small, the gas that has entered the mat material is reversed. It was noted that the embrace (retention) property became stronger, and the key point was how to make the opposite characteristics of the electrolyte absorption capacity (electrolyte retention capacity) and the gas releasing properties compatible.

また、従来のマット材は、強度の強い、伸びの無いものが使用されており、極板の伸びに追従する機能を一切有していないが、マット材として、電池組み立てに必要とされる強度を有し、かつ、極板の伸びに追従する伸びを如何に有するようにするかがポイントとなることにも着目した。   In addition, conventional mat materials are used that are strong and have no elongation, and have no function to follow the elongation of the electrode plate. It was also noted that the key point is how to have an elongation that follows the elongation of the electrode plate.

液式鉛蓄電池のフリー状態にある電解液の成層化防止効果をもたらすには、マット材に対して、主材料であるガラス繊維径を適度に細くし、平均孔径を小さくすることで、電解液保持力を高めることが有効である。従って、液式鉛蓄電池の電解液成層化防止効果をもたらすマット材を得る構想としては、主体として用いるガラス繊維材料として、従来の極板保護用マット材(鉛蓄電池用ガラスマット)に用いる平均繊維径が13〜19μm程度の直線性の高いガラス長繊維に対し、平均繊維径を4.5μm以下とし湾曲性の高いガラス短繊維(ウール状ガラス繊維)を用いるようにし、繊維同士の絡み合いを強め繊維間距離を狭めマット材の平均孔径を100μm以下に設定することで、フリー状態にある電解液の成層化防止効果を確保した。   In order to bring about the effect of preventing the stratification of the electrolyte in the free state of the liquid lead-acid battery, the electrolyte solution is made by appropriately reducing the diameter of the glass fiber as the main material and reducing the average pore diameter with respect to the mat material. It is effective to increase the holding force. Therefore, the concept of obtaining a mat material that has the effect of preventing the formation of an electrolyte layer in a liquid lead-acid battery is that the average fiber used for a conventional electrode plate-protecting mat material (lead-acid battery glass mat) is used as the glass fiber material. For long glass fibers with a high linearity of about 13 to 19 μm, the average fiber diameter is 4.5 μm or less and short glass fibers (wool-like glass fibers) with high curvature are used to strengthen the entanglement between the fibers. By narrowing the distance between the fibers and setting the average pore diameter of the mat material to 100 μm or less, the effect of preventing stratification of the electrolyte in the free state was secured.

一方で、液式鉛蓄電池の過充電時に極板より発生するガスを電池上部へ排出させるためのガス抜け性の効果をもたらすには、マット材に対して、主材料であるガラス繊維径を適度に太くし、平均孔径を大きくするとともに、厚さを小さくすることが有効である。従って、液式鉛蓄電池の良好なガス抜け性をもたらすマット材を得る構想としては、主体として用いるガラス繊維材料として、従来の電解液保持用マット材(鉛蓄電池用ガラス繊維リテーナマット)に用いる平均繊維径が1μm程度のガラス短繊維に対し、平均繊維径を2μm以上に設定し、マット材の平均孔径を20μm以上に設定するとともに、好ましくはマット材の厚さを0.5mm以下に設定し、マット材内のガスの滞留を防止する良好なガス抜け性を確保した。   On the other hand, in order to bring out the gas releasing effect for discharging the gas generated from the electrode plate to the upper part of the battery at the time of overcharge of the liquid lead acid battery, the diameter of the glass fiber which is the main material is appropriately set for the mat material. It is effective to increase the average pore diameter and to reduce the thickness. Therefore, as a concept to obtain a mat material that provides good outgassing properties of a liquid lead acid battery, as a glass fiber material used as a main component, an average used for a conventional electrolyte holding mat material (glass fiber retainer mat for lead acid battery) For short glass fibers having a fiber diameter of about 1 μm, the average fiber diameter is set to 2 μm or more, the average pore diameter of the mat material is set to 20 μm or more, and preferably the thickness of the mat material is set to 0.5 mm or less. In addition, good gas release properties that prevent gas from staying in the mat material were secured.

尚、マット材の主材料であるガラス繊維として平均繊維径が適度に太い繊維を用いることにより、マット材の強度低下が起こり得るが、バインダー効果のある有機繊維を5質量%以上(より好ましくは10質量%以上)使用することで、強度低下は解消される。また、バインダー効果のあるエマルジョン樹脂(アクリル樹脂)を10質量%以上使用することでも、強度低下は解消される。しかしながら、バインダー効果のあるエマルジョン樹脂を10質量%以上使用した場合は、マット材の製造過程において、マット材の主材料であるガラス繊維の表面にエマルジョン粒子が付着し、抄造後の乾燥工程でエマルジョン粒子がガラス繊維同士の交点に移動し、ガラス繊維同士を強く接着させることから、出来上がったマット材は硬くなり、伸びが著しく低下する。また、エマルジョン樹脂は、ガラス繊維表面にも多く付着するため、ガラス繊維の持つ親水性の特徴が失われ、エマルジョン樹脂の持つ撥水性の特徴が強まり、表面改質が起こり、電解液(硫酸水溶液)に濡れ難くなり電解液保持機能が損なわれる。従って、マット材を構成するガラス繊維として太繊維を用いたときに起こり得るマット材の強度低下を補うためには、バインダー効果のある有機繊維を5質量%以上(より好ましくは10質量%以上)使用した場合は、有機繊維の成分がガラス繊維表面の親水性を奪うことなくガラス繊維同士を有機繊維を介して適度に接着固定することができ、マット材は、硬くならず柔軟性を維持したまま適度な強度を確保でき、良好な伸びも確保することができることから、バインダー効果のある有機繊維を5質量%以上(より好ましくは10質量%以上)使用することが好ましい。ただし、バインダー効果のある有機繊維を多量に使用すると、マット材の疎水性が強まり、電解液保持力の低下が起こり得るが、この場合は、シリカゾルのような親水性のある無機微粒子を担持させることで、有機繊維の表面を親水性に改質させることも有効な手段である。   The use of fibers having a moderately large average fiber diameter as the glass fiber that is the main material of the mat material may cause a decrease in strength of the mat material. However, the organic fiber having a binder effect is 5% by mass or more (more preferably 10% by mass or more), the strength reduction is eliminated. Moreover, a strength fall is eliminated also by using 10 mass% or more of emulsion resin (acrylic resin) with a binder effect. However, when 10% by mass or more of an emulsion resin having a binder effect is used, emulsion particles adhere to the surface of the glass fiber, which is the main material of the mat material, in the mat material production process, and the emulsion is formed in the drying process after papermaking. Since the particles move to the intersections of the glass fibers and strongly bond the glass fibers, the finished mat material becomes hard and the elongation is significantly reduced. In addition, the emulsion resin adheres to the surface of the glass fiber so that the hydrophilic characteristic of the glass fiber is lost, the water repellency characteristic of the emulsion resin is strengthened, surface modification occurs, and the electrolytic solution (sulfuric acid aqueous solution) ) Becomes difficult to wet and the electrolyte holding function is impaired. Therefore, in order to compensate for the decrease in strength of the mat material that may occur when the thick fibers are used as the glass fibers constituting the mat material, the organic fiber having a binder effect is 5% by mass or more (more preferably 10% by mass or more). When used, glass fiber components can be appropriately bonded and fixed to each other via organic fibers without depriving the hydrophilicity of the glass fiber surface, and the mat material is not hard and maintains flexibility. It is preferable to use 5% by mass or more (more preferably 10% by mass or more) of an organic fiber having a binder effect, since an appropriate strength can be ensured and good elongation can be ensured. However, if a large amount of organic fiber having a binder effect is used, the hydrophobicity of the mat material may be increased and the electrolyte retention may be reduced. In this case, hydrophilic inorganic fine particles such as silica sol are supported. Thus, modifying the surface of the organic fiber to be hydrophilic is also an effective means.

本発明は、上記知見に基づきなされた発明であって、本発明の液式鉛蓄電池用セパレータは、前記目的を達成するべく、請求項1に記載の通り、水銀圧入法による平均細孔径が1μm以下で、水銀圧入法による空隙率が50〜90%である耐酸性微多孔性樹脂フィルムシートの少なくとも1層と、平均繊維径が2〜4.5μmのウール状ガラス繊維が50質量%以上で構成され、バブルポイント法による平均孔径が20〜100μmで、下記式1で規定される吸液速度が20mm/分以上である湿式抄造された耐酸性不織布シートの少なくとも1層とを、積層状態に構成したことを特徴とする。
吸液速度[mm/分]=幅25mm、長さ10cm以上の耐酸性不織布シートを試料とし、試料を垂直状態にして比重1.30の硫酸液中にその下端1cmを浸漬し、1分間に硫酸を吸い上げた高さ[mm]・・・(式1)
The present invention has been made on the basis of the above findings, and the liquid lead-acid battery separator according to the present invention has an average pore diameter of 1 μm by mercury porosimetry as described in claim 1 in order to achieve the above object. In the following, at least one layer of acid-resistant microporous resin film sheet having a porosity of 50 to 90% by mercury intrusion method and 50% by mass or more of wooly glass fibers having an average fiber diameter of 2 to 4.5 μm In a laminated state, at least one layer of a wet-made acid-resistant nonwoven fabric sheet that is configured and has an average pore diameter of 20 to 100 μm by the bubble point method and a liquid absorption speed defined by the following formula 1 of 20 mm / min or more It is characterized by comprising.
Liquid absorption rate [mm / min] = An acid-resistant non-woven sheet having a width of 25 mm and a length of 10 cm or more was used as a sample, and the sample was placed in a vertical state and its lower end 1 cm was immersed in a sulfuric acid solution having a specific gravity of 1.30. Height of sucked up sulfuric acid [mm] ... (Formula 1)

また、請求項2記載の液式鉛蓄電池用セパレータは、請求項1記載の液式鉛蓄電池用セパレータにおいて、前記耐酸性不織布シートは、熱接着性の耐酸性有機繊維及び/又はフィブリル状の耐酸性有機繊維を合計量で5〜35質量%含むことを特徴とする。   The separator for a liquid lead-acid battery according to claim 2 is the separator for a liquid lead-acid battery according to claim 1, wherein the acid-resistant nonwoven fabric sheet is a heat-adhesive acid-resistant organic fiber and / or a fibrillar acid-resistant separator. It is characterized by including 5 to 35 mass% of the organic organic fiber in a total amount.

また、請求項3記載の液式鉛蓄電池用セパレータは、請求項1または2記載の液式鉛蓄電池用セパレータにおいて、前記耐酸性不織布シートは、厚さが0.5mm以下であることを特徴とする。   Moreover, the separator for liquid lead acid batteries according to claim 3 is the separator for liquid lead acid batteries according to claim 1 or 2, wherein the acid-resistant nonwoven fabric sheet has a thickness of 0.5 mm or less. To do.

また、請求項4記載の液式鉛蓄電池用セパレータは、請求項1乃至3の何れか1項に記載の液式鉛蓄電池用セパレータにおいて、前記耐酸性微多孔性樹脂フィルムシートは、重量平均分子量が100万以上のポリオレフィン系樹脂を20質量%以上含むことを特徴とする。   Moreover, the separator for liquid lead acid batteries of Claim 4 is a separator for liquid lead acid batteries of any one of Claims 1 thru | or 3, The said acid-resistant microporous resin film sheet is a weight average molecular weight. Contains 20% by mass or more of a polyolefin-based resin having 1 million or more.

また、請求項5記載の液式鉛蓄電池用セパレータは、請求項1乃至4の何れか1項に記載の液式鉛蓄電池用セパレータにおいて、前記耐酸性微多孔性樹脂フィルムシートは、BET法による比表面積が100m/g以上の無機質微粉体を30質量%以上含むことを特徴とする。 Moreover, the separator for liquid lead-acid batteries according to claim 5 is the separator for liquid lead-acid batteries according to any one of claims 1 to 4, wherein the acid-resistant microporous resin film sheet is obtained by a BET method. 30% by mass or more inorganic fine powder having a specific surface area of 100 m 2 / g or more is included.

また、請求項6記載の液式鉛蓄電池用セパレータは、請求項1乃至5の何れか1項に記載の液式鉛蓄電池用セパレータにおいて、前記セパレータは、前記耐酸性微多孔性樹脂フィルムシートの1層と、前記耐酸性不織布シートの1層とを、積層状態に構成した2層構造のセパレータであることを特徴とする。   Moreover, the separator for liquid lead acid batteries of Claim 6 is a separator for liquid lead acid batteries of any one of Claims 1 thru | or 5, The said separator is the said acid-resistant microporous resin film sheet. It is a separator having a two-layer structure in which one layer and one layer of the acid-resistant nonwoven fabric sheet are configured in a laminated state.

また、本発明の液式鉛蓄電池は、前記目的を達成するべく、請求項7に記載の通り、正極板、負極板間にセパレータを配置して構成される液式鉛蓄電池において、前記セパレータが、水銀圧入法による平均細孔径が1μm以下で、水銀圧入法による空隙率が50〜90%である耐酸性微多孔性樹脂フィルムシートの少なくとも1層と、平均繊維径が2〜4.5μmのウール状ガラス繊維が50質量%以上で構成され、バブルポイント法による平均孔径が20〜100μmで、下記式1で規定される吸液速度が20mm/分以上である湿式抄造された耐酸性不織布シートの少なくとも1層とを、積層状態に構成してなることを特徴とする。
吸液速度[mm/分]=幅25mm、長さ10cm以上の耐酸性不織布シートを試料とし、試料を垂直状態にして比重1.30の硫酸液中にその下端1cmを浸漬し、1分間に硫酸を吸い上げた高さ[mm]・・・(式1)
In addition, in order to achieve the above object, the liquid lead storage battery of the present invention is a liquid lead storage battery configured by disposing a separator between a positive electrode plate and a negative electrode plate as described in claim 7, And at least one layer of acid-resistant microporous resin film sheet having an average pore diameter of 1 μm or less by mercury intrusion method and a porosity of 50 to 90% by mercury intrusion method, and an average fiber diameter of 2 to 4.5 μm Wet-made acid-resistant nonwoven fabric sheet comprising 50% by mass or more of wool-like glass fiber, an average pore diameter of 20 to 100 μm by a bubble point method , and a liquid absorption speed defined by the following formula 1 of 20 mm / min or more The at least one layer is configured in a laminated state.
Liquid absorption rate [mm / min] = An acid-resistant non-woven sheet having a width of 25 mm and a length of 10 cm or more was used as a sample, and the sample was placed in a vertical state and its lower end 1 cm was immersed in a sulfuric acid solution having a specific gravity of 1.30. Height of sucked up sulfuric acid [mm] ... (Formula 1)

また、請求項8記載の液式鉛蓄電池は、請求項7記載の液式鉛蓄電池において、前記耐酸性不織布シートが前記正極板及び前記負極板の少なくとも一方に当接していることを特徴とする。   The liquid lead acid battery according to claim 8 is the liquid lead acid battery according to claim 7, wherein the acid-resistant nonwoven fabric sheet is in contact with at least one of the positive electrode plate and the negative electrode plate. .

また、請求項9記載の液式鉛蓄電池は、請求項8記載の液式鉛蓄電池において、前記耐酸性不織布シートが前記正極板に当接していることを特徴とする。   The liquid lead acid battery according to claim 9 is the liquid lead acid battery according to claim 8, wherein the acid-resistant nonwoven fabric sheet is in contact with the positive electrode plate.

本発明によれば、微多孔性樹脂フィルムシートとガラス繊維マット状不織布シート(ガラス繊維マット材)を積層状態に組み合わせてなる液式鉛蓄電池用セパレータにおいて、ガラス繊維マット状不織布シートが、良好な極板活物質保護機能と良好なガス排出機能と良好な電解液成層化防止機能をもたらすことができ更に電池反応による極板の伸びに追従し得る良好な伸びを有するようにしたセパレータとそれを用いた液式鉛蓄電池を提供することが可能となる。よって、アイドリングストップアンドスタートシステム搭載自動車用の液式鉛蓄電池にも十分適用可能となる。   According to the present invention, in a separator for a liquid type lead storage battery in which a microporous resin film sheet and a glass fiber mat-like nonwoven sheet (glass fiber mat material) are combined in a laminated state, the glass fiber mat-like nonwoven sheet is good. A separator having a good elongation that can provide an electrode plate active material protection function, a good gas discharge function, and a good electrolyte layer stratification prevention function, and can follow the elongation of the electrode plate due to a battery reaction, and It becomes possible to provide the used liquid lead acid battery. Therefore, it can be sufficiently applied to a liquid lead-acid battery for an automobile equipped with an idling stop-and-start system.

本発明の液式鉛蓄電池用セパレータは、水銀圧入法による平均細孔径が1μm以下で、水銀圧入法による空隙率が50〜90%である耐酸性微多孔性樹脂フィルムシートの少なくとも1層と、平均繊維径が2〜4.5μmのウール状ガラス繊維が50質量%以上で構成され、バブルポイント法による平均孔径が20〜100μmで、吸液速度が20mm/分以上である湿式抄造された耐酸性不織布シートの少なくとも1層とを、積層状態に構成したことを条件とする。ここで言う吸液速度(mm/分)は、幅25mm、長さ10cm以上の耐酸性不織布シートを試料とし、試料を垂直状態にして比重1.30の硫酸液中にその下端1cmを浸漬し、1分間に硫酸を吸い上げた高さ(mm)を言う。以下の記載についても同様である。 The separator for a liquid lead-acid battery of the present invention has an average pore diameter of 1 μm or less by a mercury intrusion method and at least one layer of an acid-resistant microporous resin film sheet having a porosity of 50 to 90% by a mercury intrusion method, Wet-processed acid-resistant paper having an average fiber diameter of 2 to 4.5 μm composed of 50% by mass or more, an average pore diameter of 20 to 100 μm by a bubble point method, and a liquid absorption speed of 20 mm / min or more. The condition is that at least one layer of the porous nonwoven fabric sheet is configured in a laminated state. The liquid absorption speed (mm / min) here refers to an acid-resistant non-woven sheet having a width of 25 mm and a length of 10 cm or more, and the lower end of the sample is immersed in a sulfuric acid solution having a specific gravity of 1.30 in a vertical state. This refers to the height (mm) at which sulfuric acid is sucked up in one minute. The same applies to the following description.

また、本発明の液式鉛蓄電池は、正負極板間に配置されるセパレータが、水銀圧入法による平均細孔径が1μm以下で、水銀圧入法による空隙率が50〜90%である耐酸性微多孔性樹脂フィルムシートの少なくとも1層と、平均繊維径が2〜4.5μmのウール状ガラス繊維が50質量%以上で構成され、バブルポイント法による平均孔径が20〜100μmで、吸液速度が20mm/分以上である湿式抄造された耐酸性不織布シートの少なくとも1層とを、積層状態に構成してなることを条件とする。   In addition, the liquid lead-acid battery of the present invention has a separator disposed between the positive and negative electrode plates having an acid-resistant fine powder having an average pore diameter of 1 μm or less by the mercury intrusion method and a porosity of 50 to 90% by the mercury intrusion method. At least one layer of a porous resin film sheet and wool glass fibers having an average fiber diameter of 2 to 4.5 μm are composed of 50% by mass or more, the average pore diameter by the bubble point method is 20 to 100 μm, and the liquid absorption speed is It is a condition that at least one layer of wet-made acid-resistant nonwoven fabric sheet of 20 mm / min or more is formed in a laminated state.

耐酸性不織布シート(マット材)を平均繊維径2〜4.5μmのウール状ガラス繊維50質量%以上で構成し平均孔径を20〜100μmとすることで、耐酸性不織布シートに電解液吸液性と電解液保液性が付与される。好ましくは、平均孔径が20〜80μmである。よって、電池の充電時に極板より放出される硫酸液を耐酸性不織布シートが吸収・保持することができるため、電解液成層化防止効果がもたらされる。ただ、耐酸性不織布シートの平均孔径を小さくすると耐酸性不織布シートに吸液性(保液性)を付与することができるが、平均孔径が20μm未満になると、吸液性が強くなり過ぎ、成層化防止の面だけで見れば機能の向上が図れるが、逆に、電解液の流動性が阻害され、過充電時に極板から発生するガスの電池上部への排出がされにくくなり、耐酸性不織布シートにガスが滞留しやすくなる。耐酸性不織布シートにガスが滞留すると、耐酸性不織布シートの電気抵抗値が上昇するため、電池の充放電反応が阻害され、最終的には、電池性能の低下を引き起こす。よって、ウール状ガラス繊維は平均繊維径を2μm以上とする。   The acid-resistant nonwoven fabric sheet (mat material) is composed of 50% by mass or more of wool-like glass fibers having an average fiber diameter of 2 to 4.5 μm, and the average pore diameter is 20 to 100 μm. And electrolyte solution retention is imparted. Preferably, the average pore diameter is 20 to 80 μm. Therefore, since the acid-resistant non-woven fabric sheet can absorb and retain the sulfuric acid solution released from the electrode plate when the battery is charged, the effect of preventing the stratification of the electrolyte is brought about. However, if the average pore size of the acid-resistant nonwoven fabric sheet is reduced, the acid-resistant nonwoven fabric sheet can be provided with liquid absorbency (liquid retention). However, if the average pore size is less than 20 μm, the liquid absorbency becomes too strong, and stratification is caused. The function can be improved by looking only at the prevention of oxidation, but conversely, the fluidity of the electrolyte is hindered, and it is difficult for the gas generated from the electrode plate to be discharged to the upper part of the battery during overcharging, and the acid-resistant nonwoven fabric. Gas tends to stay in the sheet. When gas stays in the acid-resistant nonwoven fabric sheet, the electrical resistance value of the acid-resistant nonwoven fabric sheet increases, so that the charge / discharge reaction of the battery is inhibited, and eventually the battery performance is lowered. Therefore, the wooly glass fiber has an average fiber diameter of 2 μm or more.

耐酸性不織布シートに付与される電解液吸液性と電解液保液性(ひいては電解液成層化防止効果)は、前述の通り、耐酸性不織布シートを平均繊維径2〜4.5μmのガラス繊維50質量%以上で構成し平均孔径を20〜100μmとしたことが要因であるが、耐酸性不織布シートが前記構成であることによる良好な電解液濡れ性を有していることも一因である。つまり、本発明の耐酸性不織布シートは、良好な電解液吸液性と電解液保液性を有することを条件とし、これを基に後述する実施例・比較例の検証結果に基づき、吸液速度が20mm/分以上であることを条件とする。   As described above, the electrolyte solution absorbability and the electrolyte solution retention property (and consequently the electrolyte solution stratification preventing effect) imparted to the acid resistant nonwoven fabric sheet are made of glass fibers having an average fiber diameter of 2 to 4.5 μm. The reason is that the composition is composed of 50% by mass or more and the average pore size is 20 to 100 μm, but the acid-resistant nonwoven fabric sheet has good electrolyte wettability due to the above-mentioned configuration. . That is, the acid-resistant non-woven fabric sheet of the present invention is provided on the condition that it has good electrolyte solution absorbability and electrolyte solution retention, and based on this, based on the verification results of Examples and Comparative Examples described later, The condition is that the speed is 20 mm / min or more.

耐酸性不織布シート(マット材)は、平均繊維径が2〜4.5μmのウール状ガラス繊維を50質量%以上含む、湿式抄造シートとして構成されるものであり、繊維径の細い繊維が主体の場合は、繊維の絡み合い効果により不織布シートの強度が得られ易いが、繊維径の太い繊維が主体の場合は、繊維の絡み合い効果のみでは不織布シートの十分な強度(例えば、電池組立工程に必要な強度)が得られない場合がある。そのような場合は、バインダー効果のある有機繊維、つまり、熱接着性の耐酸性有機繊維及び/又はフィブリル状の耐酸性有機繊維を合計量で5〜35質量%含むようにすることが好ましい。より好ましくは、10〜35質量%である。熱接着性の耐酸性有機繊維としては、高融点成分(ポリエチレンテレフタレート、ポリプロピレン等)を芯部とし低融点成分(共重合ポリエステル、ポリエチレン等)を鞘部とした芯鞘型複合繊維(モノフィラメント状)や、低融点成分(共重合ポリエステル、ポリエチレン等)からなる単一繊維(モノフィラメント状)等を使用できる。フィブリル状の耐酸性有機繊維としては、フィブリル状アクリル繊維等を使用できる。熱接着性の耐酸性有機繊維及び/又はフィブリル状の耐酸性有機繊維の合計量が35質量%を超える場合は、耐酸性不織布シートを得るための乾燥・熱処理工程において、シートが熱収縮を起こしシワが発生しやすくなるため、好ましくない。尚、シートの熱収縮が大きくなると、シワがシート全体に発生するようになり、耐酸性不織布シートの表面凹凸が大きくなり、耐酸性不織布シートの基本機能である極板活物質保護機能が低下するとともに、表面凹凸部に極板から発生したガスが滞留しやすくなり電池性能の低下の原因にもなり得る。また、熱接着性の耐酸性有機繊維及びフィブリル状の耐酸性有機繊維を始め有機材料の含有量が多くなると、耐酸性不織布シートにおける有機物の比率が高くなり、耐酸性不織布シートの疎水性が強くなり、電解液吸液性が低下するため、好ましくない。これを改善するには、親水性の無機微粒子(コロイダルシリカ、ナノシリカフレーク等)を1〜5質量%程度添加し、有機繊維の表面を疎水性から親水性へ表面改質させる方法が有効である。しかし、この親水性無機微粒子は高価であるため、多量に用いると耐酸性不織布シートの製品コストがアップするデメリットがある。よって、耐酸性不織布シートにおける有機材料の含有量は35質量%以下であることが好ましい。   The acid-resistant nonwoven fabric sheet (mat material) is a wet papermaking sheet containing 50% by mass or more of wool-like glass fibers having an average fiber diameter of 2 to 4.5 μm, and is mainly composed of fibers having a small fiber diameter. In this case, the strength of the nonwoven fabric sheet is easily obtained due to the fiber entanglement effect. However, when the fibers are mainly fibers having a large fiber diameter, the nonwoven fabric sheet has sufficient strength (for example, necessary for the battery assembly process). Strength) may not be obtained. In such a case, it is preferable that the total amount of organic fibers having a binder effect, that is, heat-adhesive acid-resistant organic fibers and / or fibrillated acid-resistant organic fibers is included. More preferably, it is 10-35 mass%. As heat-resistant, acid-resistant organic fibers, core-sheath type composite fibers (monofilament) with a high melting point component (polyethylene terephthalate, polypropylene, etc.) and a low melting point component (copolyester, polyethylene, etc.) as a sheath portion Alternatively, a single fiber (monofilament) made of a low melting point component (copolyester, polyethylene, etc.) can be used. As the fibrillar acid-resistant organic fiber, fibrillar acrylic fiber or the like can be used. When the total amount of heat-adhesive acid-resistant organic fibers and / or fibrillated acid-resistant organic fibers exceeds 35% by mass, the sheet undergoes thermal shrinkage in the drying / heat treatment process for obtaining an acid-resistant nonwoven fabric sheet. Since it becomes easy to generate wrinkles, it is not preferable. In addition, when the thermal contraction of the sheet increases, wrinkles are generated in the entire sheet, the surface unevenness of the acid-resistant nonwoven fabric increases, and the electrode plate active material protection function that is the basic function of the acid-resistant nonwoven sheet decreases. At the same time, the gas generated from the electrode plate easily accumulates on the surface irregularities, which may cause a decrease in battery performance. In addition, when the content of organic materials such as heat-adhesive acid-resistant organic fibers and fibrillar acid-resistant organic fibers increases, the ratio of organic matter in the acid-resistant nonwoven sheet increases, and the acid-resistant nonwoven sheet has strong hydrophobicity. This is not preferable because the electrolyte solution absorbability decreases. In order to improve this, it is effective to add about 1 to 5% by mass of hydrophilic inorganic fine particles (colloidal silica, nanosilica flakes, etc.) to modify the surface of the organic fiber from hydrophobic to hydrophilic. . However, since these hydrophilic inorganic fine particles are expensive, there is a disadvantage that the product cost of the acid-resistant nonwoven fabric sheet increases when used in a large amount. Therefore, the content of the organic material in the acid-resistant nonwoven fabric sheet is preferably 35% by mass or less.

耐酸性不織布シートの厚さは、極板から発生するガスを滞留させずスムーズに電池上部へ逃がす機能を良好に発揮させるため、0.5mm以下とすることが好ましい。また、耐酸性不織布シートの厚さは、本発明の耐酸性不織布シートの他の機能である良好な極板活物質保護機能と良好な電解液成層化防止機能を発揮し易くするため、また、後述するような耐酸性不織布シートの剛性を確保するため、0.1mm以上であることが好ましい。尚、前述したように、直線状の連続ガラス繊維(ガラス長繊維)を使って乾式法で作られる従来のガラス繊維マット材は、その製法上の特徴から、厚さを0.5mm以下に薄くすると、厚さのばらつきが大きく、適用した電池の充放電特性を大きくばらつかせる要因を招いていたが、本発明の耐酸性不織布シートは、ウール状ガラス繊維(ガラス短繊維)を使って湿式法(抄紙法)で作られることから、厚さを0.5mm以下に薄くしても、厚さのばらつきが少なく、電池の充放電特性を大きくばらつかせる要因を招くことはない。   The thickness of the acid-resistant nonwoven fabric sheet is preferably 0.5 mm or less in order to satisfactorily exert the function of smoothly releasing the gas generated from the electrode plate to the upper part of the battery without stagnation. In addition, the thickness of the acid-resistant non-woven fabric sheet is to make it easy to exhibit a good electrode plate active material protection function and a good anti-electrolyte stratification prevention function, which are other functions of the acid-resistant non-woven fabric sheet of the present invention. In order to ensure the rigidity of the acid-resistant nonwoven fabric sheet as will be described later, it is preferably 0.1 mm or more. As described above, the conventional glass fiber mat material made by a dry method using linear continuous glass fibers (long glass fibers) has a thickness of 0.5 mm or less because of its manufacturing characteristics. As a result, the variation in thickness was large, causing a large variation in the charge / discharge characteristics of the applied battery. The acid-resistant nonwoven fabric of the present invention was wet using wool glass fibers (short glass fibers). Therefore, even if the thickness is reduced to 0.5 mm or less, there is little variation in thickness, and there is no cause for a large variation in the charge / discharge characteristics of the battery.

前記ウール状ガラス繊維(ガラス短繊維)は、例えば、耐酸性のCガラスを、火炎法(溶融炉の底部のノズルから溶融ガラスを糸状に流下させ高速の火炎で吹き飛ばす方法)あるいは遠心法(溶融ガラスを高速回転するスピナーと呼ばれる周壁に多数のオリフィスを穿設した円筒容器へ供給し遠心力によって紡糸し高速気流で吹き飛ばす方法)といった方法によって繊維化、製造されたものであり、粒径30μm以上の粒状物及び直径10μm以上の繊維状物の含有率が0.3質量%以下とされたものであることが好ましい。前記ウール状ガラス繊維においては、本来のガラス繊維に混じって、繊維の端部に涙滴状の塊状物が付いたもの、繊維が部分的に太くなったもの、火炎や高速気流で吹き飛ばす前の太い繊維がそのまま残ったもの等の本来のガラス繊維に対して比較的大きなサイズを有した粒状物や繊維状物が少量混入する場合がある(通常これをショットと呼んでいる)。   The wool-like glass fiber (short glass fiber) may be formed by, for example, acid-resistant C glass using a flame method (a method in which molten glass is flown down from a nozzle at the bottom of a melting furnace into a filament and blown away with a high-speed flame) or a centrifugal method (melting). It is made by fiberizing and manufacturing by a method in which glass is supplied to a cylindrical container having a large number of orifices in a peripheral wall called a spinner that rotates at high speed, spun by centrifugal force and blown off by a high-speed air current, and has a particle size of 30 μm or more. It is preferable that the content of the granular material and the fibrous material having a diameter of 10 μm or more be 0.3% by mass or less. In the wool-like glass fiber, it is mixed with the original glass fiber, with a teardrop-like lump attached to the end of the fiber, partially thickened fiber, before being blown away with a flame or high-speed airflow There may be a case where a small amount of a granular material or a fibrous material having a relatively large size is mixed with an original glass fiber such as a thick fiber remaining as it is (this is usually called a shot).

耐酸性不織布シートは、従来の平均繊維径が13〜19μm程度のガラス繊維(直線状の剛直な長い繊維)を主体としたガラス繊維マットに対して、平均繊維径が2〜4.5μmのガラス短繊維(ウール状の柔軟な短い繊維)を主体とした好ましくは厚さが0.5mm以下の薄いガラス繊維マットであることから、前記従来のガラス繊維マットに比較してシートの剛性低下が起こり得る。耐酸性不織布シートの剛性を改善するため、高融点成分を有する耐酸性モノフィラメント状繊維を含有させることが好ましい。高融点成分を有する耐酸性モノフィラメント状繊維としては、高融点成分(ポリエチレンテレフタレート、ポリプロピレン等)を芯部とし低融点成分(共重合ポリエステル、ポリエチレン等)を鞘部とした芯鞘型複合繊維や、高融点成分(ポリエチレンテレフタレート、ポリプロピレン等)からなる単一繊維等の有機繊維、ガラス長繊維(チョップドガラス繊維)等の無機繊維を使用できる。耐酸性不織布シートの剛性改善効果を発揮するためには、高融点成分を有する耐酸性モノフィラメント状繊維を5質量%以上含有させることが好ましい。   The acid-resistant non-woven fabric sheet is a glass having an average fiber diameter of 2 to 4.5 μm, compared with a glass fiber mat mainly composed of glass fibers having a mean average fiber diameter of about 13 to 19 μm (straight and long straight fibers). Since it is a thin glass fiber mat mainly composed of short fibers (wool-like flexible short fibers), preferably having a thickness of 0.5 mm or less, the rigidity of the sheet is reduced as compared with the conventional glass fiber mat. obtain. In order to improve the rigidity of the acid resistant nonwoven fabric sheet, it is preferable to contain acid resistant monofilament-like fibers having a high melting point component. As the acid-resistant monofilament fiber having a high melting point component, a core-sheath type composite fiber having a high melting point component (polyethylene terephthalate, polypropylene, etc.) as a core and a low melting point component (copolyester, polyethylene, etc.) as a sheath, Organic fibers such as single fibers made of high melting point components (polyethylene terephthalate, polypropylene, etc.), and inorganic fibers such as long glass fibers (chopped glass fibers) can be used. In order to exhibit the effect of improving the rigidity of the acid-resistant nonwoven fabric sheet, it is preferable to contain 5% by mass or more of acid-resistant monofilament fiber having a high melting point component.

前記耐酸性不織布シートは、本発明の目的を損なわない範囲であれば、求められる仕様や要求特性に応じて、例えば、耐酸性不織布シートの親水性を高めるための無機微粒子(コロイダルシリカ、ナノシリカフレーク(AGCエスアイテック社「サンラブリー」)、合成スメクタイト(コープケミカル社「ルーセンタイト」、クニミネ工業社「スメクトン」)といったような各種副材料を混合使用することができる。また、例えば、耐酸性不織布シートのガス抜け性を高めるため、耐酸性不織布シートの一部もしくは全面に貫通孔を付与することができる。   The acid-resistant non-woven sheet is within the range that does not impair the object of the present invention, and according to the required specifications and required characteristics, for example, inorganic fine particles (colloidal silica, nano-silica flakes) for increasing the hydrophilicity of the acid-resistant non-woven sheet. (AGC S-Tech Co., Ltd. “Sun Lovely”), synthetic smectite (Coop Chemical Co., Ltd. “Lucentite”, Kunimine Kogyo Co., Ltd. “Smecton”) can be mixed and used. In order to enhance the gas release properties of the sheet, through holes can be provided on a part or the entire surface of the acid-resistant nonwoven fabric sheet.

前記耐酸性微多孔性樹脂フィルムシートは、水銀圧入法による平均細孔径が1μm以下である微細孔を全体に均一に有した水銀圧入法による空隙率が50〜90%のフィルムシートである。そして、重量平均分子量が100万以上のポリオレフィン系樹脂を20質量%以上含んでいることが好ましく、また、BET法による比表面積が100m/g以上の無機質微粉体を30質量%以上含んでいることが好ましい。前記耐酸性微多孔性樹脂フィルムシートは、一般的なポリエチレンセパレータと同等の従来法、例えば特開昭51−140135号公報に記載の方法にならって製造されるものでよい。また、前記耐酸性微多孔性樹脂フィルムシートは、例えば特開平9−097601号公報の従来技術に記載のように、リブを有するように構成してもよい。リブの有無、形状、大きさは限定されるものではない。また、前記耐酸性微多孔性樹脂フィルムシートは、例えば実開平7−036360号公報の従来技術に記載のように、袋状に加工されるように構成してもよい。また、前記耐酸性微多孔性樹脂フィルムシートの厚さは、特に限定されるものではないが、一般的なポリエチレンセパレータと同等の0.1〜0.3mm程度(リブを除く)でよい。 The acid-resistant microporous resin film sheet is a film sheet having a porosity of 50 to 90% by a mercury intrusion method having uniform uniform fine pores having an average pore diameter of 1 μm or less by a mercury intrusion method. And it is preferable to contain 20 mass% or more of polyolefin resin having a weight average molecular weight of 1,000,000 or more, and to contain 30 mass% or more of inorganic fine powder having a specific surface area of 100 m 2 / g or more by BET method. It is preferable. The acid-resistant microporous resin film sheet may be manufactured according to a conventional method equivalent to a general polyethylene separator, for example, a method described in JP-A-51-140135. Further, the acid-resistant microporous resin film sheet may be configured to have ribs as described in, for example, the prior art of JP-A-9-097601. The presence / absence, shape, and size of the ribs are not limited. Moreover, you may comprise the said acid-resistant microporous resin film sheet so that it may be processed into a bag shape, for example as described in the prior art of Japanese Utility Model Laid-Open No. 7-036360. The thickness of the acid-resistant microporous resin film sheet is not particularly limited, but may be about 0.1 to 0.3 mm (excluding ribs) equivalent to a general polyethylene separator.

本発明の液式鉛蓄電池用セパレータは、前述の通り、前記耐酸性微多孔性樹脂フィルムシートの少なくとも1層と、前記耐酸性不織布シートの少なくとも1層とを、積層状態に構成したセパレータであればよいが、得られるセパレータの効果とセパレータコストとのバランスを考慮すると、前記耐酸性微多孔性樹脂フィルムシートの1層と、前記耐酸性不織布シートの1層とを、積層状態に構成した2層構造のセパレータであることが好ましい。積層構造に構成される前記耐酸性微多孔性樹脂フィルムシートと前記耐酸性不織布シートとは、予め貼り合わせ等により一体化されていてもよいし、一体化されていなくてもよい。   As described above, the separator for a liquid lead-acid battery of the present invention is a separator in which at least one layer of the acid-resistant microporous resin film sheet and at least one layer of the acid-resistant nonwoven fabric sheet are configured in a laminated state. However, in consideration of the balance between the effect of the obtained separator and the separator cost, one layer of the acid-resistant microporous resin film sheet and one layer of the acid-resistant nonwoven fabric sheet are configured in a laminated state 2 A separator having a layer structure is preferable. The acid-resistant microporous resin film sheet and the acid-resistant nonwoven fabric sheet configured in a laminated structure may be integrated in advance by bonding or the like, or may not be integrated.

前記耐酸性微多孔性樹脂フィルムシートと前記耐酸性不織布シートとが積層構造に構成された液式鉛蓄電池用セパレータの極板との当接については、特に限定されるものではないが、前記耐酸性不織布シートがクッション性を有し極板との密着性が良好となることから、前記耐酸性不織布シートが電池の正極板及び負極板の少なくとも一方に当接されるように構成されることが好ましい。特に、比較的に正極板よりも電解液の拡散が少ない負極板とセパレータ間の間隙を埋めるため、前記耐酸性不織布シートが電池の負極板に当接されるように構成されることが好ましい。   The contact between the acid-resistant microporous resin film sheet and the acid-resistant non-woven fabric sheet and the electrode plate of the liquid lead-acid battery separator having a laminated structure is not particularly limited. Since the non-woven fabric sheet has cushioning properties and good adhesion to the electrode plate, the acid-resistant non-woven fabric sheet is configured to be in contact with at least one of the positive electrode plate and the negative electrode plate of the battery. preferable. In particular, the acid-resistant non-woven fabric sheet is preferably configured to abut against the negative electrode plate of the battery in order to fill a gap between the negative electrode plate and the separator, which has relatively less electrolyte diffusion than the positive electrode plate.

前記耐酸性微多孔性樹脂フィルムシートと前記耐酸性不織布シートとが積層構造に構成された液式鉛蓄電池用セパレータの厚さについては、特に限定されるものではないが、0.2〜0.8mm程度(リブを除く)とすることができる。   The thickness of the separator for a liquid lead-acid battery in which the acid-resistant microporous resin film sheet and the acid-resistant nonwoven fabric sheet are configured in a laminated structure is not particularly limited, but is 0.2 to 0. It can be about 8 mm (excluding ribs).

〈ガラス繊維マットの作製〉
(実施例1〜12)
表1に示す通り、平均繊維径が2〜4.5μm(2.3〜4.5μm)のウール状ガラス短繊維50〜95質量%と、平均繊維径が19μmのチョップドガラス長繊維0〜30質量%と、平均繊度が2dtex(平均繊維径が14μm)のポリエチレンテレフタレートを芯部とし共重合ポリエステルを鞘部とした芯鞘型複合繊維5〜30質量%とを混合し、湿式抄造し、乾燥・熱処理させて、実施例1〜12のガラス繊維マットを得た。
(比較例1〜5)
表2に示す通り、平均繊維径が2〜4.5μm(2.7〜4.0μm)のウール状ガラス短繊維20〜45質量%と、平均繊維径が19μmのチョップドガラス長繊維30〜50質量%と、平均繊度が2dtex(平均繊維径が14μm)のポリエチレンテレフタレートを芯部とし共重合ポリエステルを鞘部とした芯鞘型複合繊維20〜30質量%とを混合し、湿式抄造し、乾燥・熱処理させて、比較例1〜5のガラス繊維マットを得た。
(比較例6〜8)
表2に示す通り、平均繊維径が2μm未満(1.4〜1.8μm)のウール状ガラス短繊維85質量%と、平均繊度が2dtex(平均繊維径が14μm)のポリエチレンテレフタレートを芯部とし共重合ポリエステルを鞘部とした芯鞘型複合繊維15質量%とを混合し、湿式抄造し、乾燥・熱処理させて、比較例6〜8のガラス繊維マットを得た。
(比較例9)
表2に示す通り、平均繊維径が13μmのチョップドガラス長繊維を、湿式抄造し、アクリルエマルジョン樹脂液に含浸し、樹脂固形分15質量%を定着させ、乾燥・熱処理させて、比較例9のガラス繊維マットを得た。
(比較例10)
表2に示す通り、平均繊維径が19μmの束状の連続ガラス長繊維を、フェルト状に展開し、アクリルエマルジョン樹脂液に含浸し、樹脂固形分15質量%を定着させ、乾燥・熱処理させて、比較例10のガラス繊維マットを得た。
(比較例11)
表2に示す通り、平均繊維径が1μmのウール状ガラス短繊維を、湿式抄造し、乾燥させて、比較例11のガラス繊維マットを得た。
〈ポリエチレンセパレータの作製〉
重量平均分子量200万の超高分子量ポリエチレン樹脂粉体40質量部と、BET法による比表面積が200m/gのシリカ微粉体60質量部と、パラフィン系鉱物オイル120質量部とを混合し、加熱溶融混練しながらシート状に押し出し、ロール圧延により、厚さ0.20mmのシートに成形し、n−ヘキサン液中に浸漬してパラフィン系鉱物オイルの一部を抽出除去し、乾燥させて、ポリエチレン樹脂34質量%と、シリカ微粉体51質量%と、鉱物オイル15質量%とで構成される厚さが0.20mm、水銀圧入法による空隙率が60%、水銀圧入法による平均細孔径が0.1μmの微多孔性樹脂フィルムシートからなるポリエチレンセパレータを得た。
<Production of glass fiber mat>
(Examples 1-12)
As shown in Table 1, 50 to 95% by weight of wool glass short fibers having an average fiber diameter of 2 to 4.5 μm (2.3 to 4.5 μm) and chopped glass long fibers 0 to 30 having an average fiber diameter of 19 μm. 5% by mass and 5-30% by mass of a core-sheath type composite fiber having a core part of polyethylene terephthalate having an average fineness of 2 dtex (average fiber diameter of 14 μm) and a copolymer polyester as a sheath part, wet-made, and dried. -It heat-processed and the glass fiber mat of Examples 1-12 was obtained.
(Comparative Examples 1-5)
As shown in Table 2, 20 to 45% by weight of wool-like short glass fibers having an average fiber diameter of 2 to 4.5 μm (2.7 to 4.0 μm) and 30 to 50 chopped glass long fibers having an average fiber diameter of 19 μm. % By weight and 20-30% by weight of core-sheath type composite fiber having a core part of polyethylene terephthalate having an average fineness of 2 dtex (average fiber diameter of 14 μm) and a copolymer polyester as a sheath part, wet-made, and dried. -It heat-processed and the glass fiber mat of Comparative Examples 1-5 was obtained.
(Comparative Examples 6-8)
As shown in Table 2, the core part is 85% by mass of wool glass short fibers having an average fiber diameter of less than 2 μm (1.4 to 1.8 μm) and polyethylene terephthalate having an average fineness of 2 dtex (average fiber diameter of 14 μm). 15% by mass of the core-sheath composite fiber having the copolymer polyester as the sheath was mixed, wet-made, dried and heat-treated to obtain glass fiber mats of Comparative Examples 6 to 8.
(Comparative Example 9)
As shown in Table 2, the chopped glass long fibers having an average fiber diameter of 13 μm were wet-made, impregnated in an acrylic emulsion resin liquid, fixed with a resin solid content of 15% by mass, dried and heat-treated, A glass fiber mat was obtained.
(Comparative Example 10)
As shown in Table 2, bundle-like continuous glass long fibers having an average fiber diameter of 19 μm are spread in a felt shape, impregnated in an acrylic emulsion resin solution, fixed with a resin solid content of 15% by mass, dried and heat-treated. A glass fiber mat of Comparative Example 10 was obtained.
(Comparative Example 11)
As shown in Table 2, a short glass fiber with an average fiber diameter of 1 μm was wet-made and dried to obtain a glass fiber mat of Comparative Example 11.
<Production of polyethylene separator>
40 parts by mass of ultra high molecular weight polyethylene resin powder having a weight average molecular weight of 2 million, 60 parts by mass of silica fine powder having a specific surface area of 200 m 2 / g by BET method, and 120 parts by mass of paraffinic mineral oil are mixed and heated. Extruded into a sheet while melting and kneading, formed into a sheet having a thickness of 0.20 mm by roll rolling, immersed in n-hexane solution to extract and remove a part of paraffinic mineral oil, dried, polyethylene The thickness composed of 34% by mass of resin, 51% by mass of silica fine powder, and 15% by mass of mineral oil is 0.20 mm, the porosity is 60% by mercury intrusion method, and the average pore diameter is 0 by mercury intrusion method. A polyethylene separator made of a 1 μm microporous resin film sheet was obtained.

次に、上記にて得られた実施例1〜12、比較例1〜11の各ガラス繊維マット、ポリエチレンセパレータについて、以下の試験方法により、各種測定を行った。結果を表1及び2に示す。
〈厚さ〉
電池工業会規格SBA S 0406に準じた方法で測定した。
〈引張強度〉
電池工業会規格SBA S 0406に準じた方法で測定した。
〈伸び〉
電池工業会規格SBA S 0406に準じた方法で測定した。
〈吸液速度〉
幅25mm、長さ10cm以上のガラス繊維マットを試料とし、試料を垂直状態にして比重 1.30の硫酸液中にその下端1cmを浸漬し、1分間に硫酸を吸い上げた高さを測定し、吸液速度(mm/分)とした。
〈平均孔径〉
外層・中間層個別におのおの1.5mm厚さのガラス繊維マット試料に測定用液体を充分含ませ、Porous Material, Inc.社のCapillary Flow Porometer (型式CFP−1200AEC)で32mmΦの専用金網アダプターを使用し、測定した。
〈透気度〉
ガラス繊維マットを50mm×50mmのサイズに裁断して試験片とし、乾燥重量を測定後、30秒間水中に浸した。次に、試験片を水中から取り出し、圧縮試験機にて、約70kgfの荷重で圧縮し、水分量を調整した。このとき、含水状態の試験片の重量を測定しながら、試験片の含水率が約80重量%となるように調整した。次に、この試験片を使って、JIS P 8117に規定される通気度測定装置を用い、300mlの空気が通過するために必要な時間を計測し、透気度(秒)とした。
〈積層セパレータの作製〉
縦方向に長い長方形状にカットしたポリエチレンセパレータとガラス繊維マットを用意し、ポリエチレンセパレータに接着剤を塗布してガラス繊維マットを貼り合わせ、接着固定し、積層セパレータとした。尚、ガラス繊維マットの横方向寸法は、積層したポリエチレンセパレータを袋状に加工後に両側端をシールする必要があるため、ポリエチレンセパレータよりも20mm程度小さくした。
〈試験用電池の作製〉
極板は、定法により得たペースト式の正極板及び負極板を用いた(JIS D 5301に規定の36B20相当)。積層セパレータのポリエチレンセパレータ側を内側にして正極板をU字状に包み、この状態で積層セパレータの両側端部をシールし、袋状の積層セパレータで正極板を包み込むように構成した。このセパレータに包み込まれた正極板と負極板とを交互に積層し、正極板6枚と負極板7枚からなる極群を組み、所定の溶接を行って極群を作製した。この極群をポリプロピレン製の電槽へ挿入して、極群間と極柱を溶接した後、電槽蓋を熱圧着した。これに比重1.205(20℃)の希硫酸電解液を注液した後、40℃の恒温水槽中で、正極既化活物質理論容量の350%の電気量で18時間の電槽化成を行い、初充電して、試験用液式鉛蓄電池を完成させた。
〈電池寿命〉
上記試験用電池を用い、アイドリングストップアンドスタートシステム搭載の自動車用電池の寿命試験法(SBA S 0101)に準じて、寿命試験を行った。尚、表1及び2には、比較例1の電池寿命を100とした場合の相対値を表示した。
〈高率放電特性〉
上記試験用電池を用い、始動用鉛蓄電池の高率放電特性試験法(JIS D 5301)に準じて、高率放電特性を測定した。尚、表1及び2には、比較例1の高率放電持続時間を100とした場合の相対値を表示した。
Next, various measurements were performed on the glass fiber mats and polyethylene separators of Examples 1 to 12 and Comparative Examples 1 to 11 obtained above by the following test methods. The results are shown in Tables 1 and 2.
<thickness>
It measured by the method according to the battery industry association standard SBA S 0406.
<Tensile strength>
It measured by the method according to the battery industry association standard SBA S 0406.
<Elongation>
It measured by the method according to the battery industry association standard SBA S 0406.
<Liquid absorption speed>
A glass fiber mat having a width of 25 mm and a length of 10 cm or more is used as a sample, the sample is placed in a vertical state, 1 cm of its lower end is immersed in a sulfuric acid solution having a specific gravity of 1.30, and the height at which the sulfuric acid is sucked up for 1 minute is measured. The liquid absorption speed (mm / min) was used.
<Average pore diameter>
A glass fiber mat sample having a thickness of 1.5 mm for each of the outer layer and the intermediate layer is sufficiently contained in a measurement liquid, and Porous Material, Inc. Measurement was carried out using a 32 mmφ dedicated wire mesh adapter with a company's Capillary Flow Porometer (model CFP-1200AEC).
<Air permeability>
The glass fiber mat was cut into a size of 50 mm × 50 mm to obtain a test piece. After measuring the dry weight, the glass fiber mat was immersed in water for 30 seconds. Next, the test piece was taken out from the water, and compressed with a compression tester with a load of about 70 kgf to adjust the water content. At this time, it adjusted so that the moisture content of a test piece might be set to about 80 weight%, measuring the weight of the test piece of a water-containing state. Next, this test piece was used to measure the time required for 300 ml of air to pass through, using the air permeability measuring device defined in JIS P 8117, and set the air permeability (seconds).
<Preparation of laminated separator>
A polyethylene separator and a glass fiber mat cut into a rectangular shape that is long in the vertical direction were prepared, an adhesive was applied to the polyethylene separator, the glass fiber mat was bonded together, and bonded and fixed to obtain a laminated separator. The lateral dimension of the glass fiber mat was set to be about 20 mm smaller than that of the polyethylene separator because it was necessary to seal both ends after processing the laminated polyethylene separator into a bag shape.
<Preparation of test battery>
As the electrode plate, a paste-type positive electrode plate and negative electrode plate obtained by a conventional method were used (corresponding to 36B20 defined in JIS D 5301). The positive electrode plate was wrapped in a U shape with the polyethylene separator side of the multilayer separator inside, and the both side ends of the multilayer separator were sealed in this state, and the positive electrode plate was wrapped with a bag-shaped multilayer separator. The positive electrode plate and the negative electrode plate wrapped in this separator were alternately laminated, a pole group composed of six positive electrode plates and seven negative electrode plates was assembled, and predetermined welding was performed to produce a pole group. This electrode group was inserted into a battery case made of polypropylene and the electrode group and the pole column were welded, and then the battery case lid was thermocompression bonded. After pouring a dilute sulfuric acid electrolyte solution having a specific gravity of 1.205 (20 ° C.) into this, a battery case was formed in a constant temperature water bath at 40 ° C. for 18 hours with an electric quantity of 350% of the theoretical capacity of the positive electrode active material. Performed and charged for the first time to complete the test liquid lead acid battery.
<Battery life>
Using the test battery, a life test was performed in accordance with a life test method (SBA S 0101) for an automobile battery equipped with an idling stop and start system. In Tables 1 and 2, relative values when the battery life of Comparative Example 1 is set to 100 are shown.
<High rate discharge characteristics>
Using the test battery, high rate discharge characteristics were measured in accordance with a high rate discharge characteristic test method (JIS D 5301) for a lead-acid battery for starting. In Tables 1 and 2, the relative values when the high rate discharge duration of Comparative Example 1 is set to 100 are displayed.

Figure 0005798962
Figure 0005798962

Figure 0005798962
Figure 0005798962

表1及び2の結果から以下のことが分かった。
(1)実施例1〜12のガラス繊維マットは、比較例9〜10の従来の極板保護用マット材(鉛蓄電池用ガラスマット)に用いる平均繊維径が13〜19μm程度のガラス長繊維に対し、平均繊維径が2〜4.5μmのウール状ガラス繊維を50質量%以上用いることにより、繊維同士の絡み合いを強め繊維間距離を狭め平均孔径を100μm以下としたことで、吸液速度が20mm/分以上となり、液式鉛蓄電池のフリー状態にある電解液の成層化防止効果を確保することができるようになる。
(2)実施例1〜12のガラス繊維マットは、比較例11の従来の電解液保持用マット材(鉛蓄電池用ガラス繊維リテーナマット)に用いる平均繊維径1μm程度のウール状ガラス短繊維に対し、平均均繊維径を2〜4.5μmと太くし平均孔径を20μm以上としたことで、80%wet状態での透気度が30秒以下となり、液式鉛蓄電池における良好なガス抜け性を確保することができるようになる。
(3)実施例1〜12のガラス繊維マットは、比較例11の従来の電解液保持用マット材(鉛蓄電池用ガラス繊維リテーナマット)に用いる平均繊維径1μm程度のウール状ガラス短繊維に対し、これよりも太い平均繊維径が2〜4.5μmのウール状ガラス短繊維を主材料としているが、バインダー効果のある有機繊維を5質量%以上用いることで強度低下を抑制し、エマルジョン樹脂を使用した場合に生じる親水性の低下もなく、ガラス繊維同士を有機繊維を介して適度に接着固定することができ、硬くならず柔軟性を維持したまま適度な強度と良好な伸び(3%以上)を有し、液式鉛蓄電池における極板の伸びに対する追従性を確保することができる。
(4)実施例1〜12の積層セパレータを使用した液式鉛蓄電池は、成層化防止効果が優れるために、極板上の反応を阻害せず、サルフェージョン等の極板の劣化も防止できることから、電池寿命が160〜300%と改善されている。また、実施例1〜12の積層セパレータを使用した液式鉛蓄電池は、ガス抜け性が優れセパレータ内部にガスの滞留を生じにくいことから内部抵抗が低く、また成層化防止効果も優れることから、高率放電特性が120〜150%と改善されている。
(5)比較例1〜5、9、10の積層セパレータを使用した液式鉛蓄電池は、成層化防止効果が劣ることから、電池寿命は100〜150%とやや劣っている。また、比較例1〜5、9、10の積層セパレータを使用した液式鉛蓄電池は、ガス抜け性が優れセパレータ内部にガスの滞留を生じにくいことから内部抵抗が低いものの、成層化防止効果が劣ることから、高率放電特性は100%とやや劣っている。
(6)比較例6〜8、11の積層セパレータを使用した液式鉛蓄電池は、成層化防止効果が優れることから、電池寿命は300〜400%と良好である。また、比較例6〜8、11の積層セパレータを使用した液式鉛蓄電池は、成層化防止効果が優れるものの、ガス抜け性が悪くセパレータ内部にガスの滞留を生じやすいことから内部抵抗が高く、高率放電特性が30〜70%と劣っている。
From the results of Tables 1 and 2, the following was found.
(1) The glass fiber mats of Examples 1 to 12 are glass long fibers having an average fiber diameter of about 13 to 19 μm used for the conventional electrode plate protecting mat material (Lead storage battery glass mat) of Comparative Examples 9 to 10. On the other hand, by using 50% by mass or more of wool-like glass fibers having an average fiber diameter of 2 to 4.5 μm, the entanglement between the fibers is strengthened, the distance between the fibers is narrowed, and the average pore diameter is set to 100 μm or less. It becomes 20 mm / min or more, and it becomes possible to ensure the effect of preventing stratification of the electrolyte in the free state of the liquid lead-acid battery.
(2) The glass fiber mats of Examples 1 to 12 are compared with wool-like short glass fibers having an average fiber diameter of about 1 μm used for the conventional electrolyte solution holding mat material of Comparative Example 11 (glass fiber retainer mat for lead storage battery). In addition, the average uniform fiber diameter is increased to 2 to 4.5 μm and the average pore diameter is set to 20 μm or more, so that the air permeability in the 80% wet state is 30 seconds or less. It will be possible to secure.
(3) The glass fiber mats of Examples 1 to 12 are compared with the wool-like glass short fibers having an average fiber diameter of about 1 μm used for the conventional electrolyte solution holding mat material (glass fiber retainer mat for lead-acid battery) of Comparative Example 11. The main material is a short glass fiber having a larger average fiber diameter of 2 to 4.5 μm than this, but the use of an organic fiber having a binder effect of 5% by mass or more suppresses the strength reduction, and the emulsion resin There is no decrease in hydrophilicity that occurs when used, and glass fibers can be appropriately bonded and fixed to each other via organic fibers, with moderate strength and good elongation (3% or more while maintaining flexibility without becoming hard) ) And the followability to the elongation of the electrode plate in the liquid lead-acid battery can be ensured.
(4) Since the liquid lead-acid battery using the laminated separators of Examples 1 to 12 is excellent in the effect of preventing stratification, it does not inhibit the reaction on the electrode plate and also prevents deterioration of the electrode plate such as sulfation. As a result, the battery life is improved to 160 to 300%. In addition, the liquid lead-acid batteries using the laminated separators of Examples 1 to 12 have excellent gas release properties and are less likely to cause gas retention inside the separator, so that the internal resistance is low, and the anti-stratification effect is also excellent. High rate discharge characteristics are improved to 120-150%.
(5) Since the liquid type lead acid battery using the laminated separators of Comparative Examples 1 to 5, 9, and 10 has a poor anti-stratification effect, the battery life is slightly inferior to 100 to 150%. In addition, the liquid lead-acid batteries using the laminated separators of Comparative Examples 1 to 5, 9, and 10 have excellent gas release properties and are less likely to cause gas retention inside the separator, but have low internal resistance, but have an effect of preventing stratification. Since it is inferior, the high rate discharge characteristic is slightly inferior to 100%.
(6) Since the liquid lead acid battery using the laminated separators of Comparative Examples 6 to 8 and 11 has an excellent effect of preventing stratification, the battery life is as good as 300 to 400%. Moreover, although the liquid type lead acid battery using the laminated separators of Comparative Examples 6 to 8 and 11 is excellent in the effect of preventing stratification, the internal resistance is high because the gas release property is poor and gas stays easily inside the separator. The high rate discharge characteristic is inferior at 30 to 70%.

Claims (9)

水銀圧入法による平均細孔径が1μm以下で、水銀圧入法による空隙率が50〜90%である耐酸性微多孔性樹脂フィルムシートの少なくとも1層と、
平均繊維径が2〜4.5μmのウール状ガラス繊維が50質量%以上で構成され、バブルポイント法による平均孔径が20〜100μmで、下記式1で規定される吸液速度が20mm/分以上である湿式抄造された耐酸性不織布シートの少なくとも1層とを、積層状態に構成したことを特徴とする液式鉛蓄電池用セパレータ。
吸液速度[mm/分]=幅25mm、長さ10cm以上の耐酸性不織布シートを試料とし、試料を垂直状態にして比重1.30の硫酸液中にその下端1cmを浸漬し、1分間に硫酸を吸い上げた高さ[mm]・・・(式1)
At least one layer of an acid-resistant microporous resin film sheet having an average pore diameter of 1 μm or less by a mercury intrusion method and a porosity of 50 to 90% by a mercury intrusion method;
Wool-like glass fiber having an average fiber diameter of 2 to 4.5 μm is composed of 50% by mass or more, an average pore diameter by a bubble point method is 20 to 100 μm, and a liquid absorption speed defined by the following formula 1 is 20 mm / min or more. A liquid lead-acid battery separator characterized in that at least one layer of a wet-processed acid-resistant non-woven fabric sheet is formed in a laminated state.
Liquid absorption rate [mm / min] = An acid-resistant non-woven sheet having a width of 25 mm and a length of 10 cm or more was used as a sample, and the sample was placed in a vertical state and its lower end 1 cm was immersed in a sulfuric acid solution having a specific gravity of 1.30. Height of sucked up sulfuric acid [mm] ... (Formula 1)
前記耐酸性不織布シートは、熱接着性の耐酸性有機繊維及び/又はフィブリル状の耐酸性有機繊維を合計量で5〜35質量%含むことを特徴とする請求項1記載の液式鉛蓄電池用セパレータ。   2. The liquid lead acid battery according to claim 1, wherein the acid-resistant nonwoven fabric sheet includes 5 to 35 mass% in total of heat-resistant acid-resistant organic fibers and / or fibrillated acid-resistant organic fibers. Separator. 前記耐酸性不織布シートは、厚さが0.5mm以下であることを特徴とする請求項1または2記載の液式鉛蓄電池用セパレータ。   The separator for a liquid lead-acid battery according to claim 1 or 2, wherein the acid-resistant nonwoven fabric sheet has a thickness of 0.5 mm or less. 前記耐酸性微多孔性樹脂フィルムシートは、重量平均分子量が100万以上のポリオレフィン系樹脂を20質量%以上含むことを特徴とする請求項1乃至3の何れか1項に記載の液式鉛蓄電池用セパレータ。   The liquid lead acid battery according to any one of claims 1 to 3, wherein the acid-resistant microporous resin film sheet contains 20% by mass or more of a polyolefin resin having a weight average molecular weight of 1,000,000 or more. Separator for use. 前記耐酸性微多孔性樹脂フィルムシートは、BET法による比表面積が100m/g以上の無機質微粉体を30質量%以上含むことを特徴とする請求項1乃至4の何れか1項に記載の液式鉛蓄電池用セパレータ。 5. The acid-resistant microporous resin film sheet contains 30% by mass or more of an inorganic fine powder having a specific surface area of 100 m 2 / g or more according to the BET method. Liquid lead-acid battery separator. 前記セパレータは、前記耐酸性微多孔性樹脂フィルムシートの1層と、前記耐酸性不織布シートの1層とを、積層状態に構成した2層構造のセパレータであることを特徴とする請求項1乃至5の何れか1項に記載の液式鉛蓄電池用セパレータ。   The separator is a separator having a two-layer structure in which one layer of the acid-resistant microporous resin film sheet and one layer of the acid-resistant nonwoven fabric sheet are laminated. 5. The liquid lead-acid battery separator according to any one of 5. 正極板、負極板間にセパレータを配置して構成される液式鉛蓄電池において、前記セパレータが、水銀圧入法による平均細孔径が1μm以下で、水銀圧入法による空隙率が50〜90%である耐酸性微多孔性樹脂フィルムシートの少なくとも1層と、平均繊維径が2〜4.5μmのウール状ガラス繊維が50質量%以上で構成され、バブルポイント法による平均孔径が20〜100μmで、下記式1で規定される吸液速度が20mm/分以上である湿式抄造された耐酸性不織布シートの少なくとも1層とを、積層状態に構成してなることを特徴とする液式鉛蓄電池。
吸液速度[mm/分]=幅25mm、長さ10cm以上の耐酸性不織布シートを試料とし、試料を垂直状態にして比重1.30の硫酸液中にその下端1cmを浸漬し、1分間に硫酸を吸い上げた高さ[mm]・・・(式1)
In a liquid lead-acid battery configured by arranging a separator between a positive electrode plate and a negative electrode plate, the separator has an average pore diameter of 1 μm or less by a mercury intrusion method and a porosity of 50 to 90% by a mercury intrusion method. and acid-resistant microporous resin film sheet at least one layer of an average fiber diameter is constituted by wool-like glass fiber 2~4.5μm 50 mass% or more, the average pore diameter by the bubble point method at 20 to 100 [mu] m, below A liquid lead-acid battery comprising: a wet-made acid-resistant non-woven fabric sheet having a liquid absorption speed of 20 mm / min or more as defined by Formula 1 in a laminated state.
Liquid absorption rate [mm / min] = An acid-resistant non-woven sheet having a width of 25 mm and a length of 10 cm or more was used as a sample, and the sample was placed in a vertical state and its lower end 1 cm was immersed in a sulfuric acid solution having a specific gravity of 1.30. Height of sucked up sulfuric acid [mm] ... (Formula 1)
前記耐酸性不織布シートが前記正極板及び前記負極板の少なくとも一方に当接していることを特徴とする請求項7記載の液式鉛蓄電池。   8. The liquid lead acid battery according to claim 7, wherein the acid-resistant nonwoven fabric sheet is in contact with at least one of the positive electrode plate and the negative electrode plate. 前記耐酸性不織布シートが前記負極板に当接していることを特徴とする請求項8記載の液式鉛蓄電池。   The liquid lead-acid battery according to claim 8, wherein the acid-resistant nonwoven fabric sheet is in contact with the negative electrode plate.
JP2012071121A 2012-03-27 2012-03-27 Separator for liquid lead acid battery and liquid lead acid battery Active JP5798962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012071121A JP5798962B2 (en) 2012-03-27 2012-03-27 Separator for liquid lead acid battery and liquid lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012071121A JP5798962B2 (en) 2012-03-27 2012-03-27 Separator for liquid lead acid battery and liquid lead acid battery

Publications (2)

Publication Number Publication Date
JP2013206571A JP2013206571A (en) 2013-10-07
JP5798962B2 true JP5798962B2 (en) 2015-10-21

Family

ID=49525480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012071121A Active JP5798962B2 (en) 2012-03-27 2012-03-27 Separator for liquid lead acid battery and liquid lead acid battery

Country Status (1)

Country Link
JP (1) JP5798962B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864278A (en) * 2020-09-03 2020-10-30 厦门华海大正电池装备有限公司 Method for placing acid-proof sheet of lead-acid storage battery
US20210020883A1 (en) * 2015-02-26 2021-01-21 Daramic, Llc Vapor pressure barriers for lead acid batteries for improved water loss performance, separators, systems, and methods of manufacture and use thereof

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105794038B (en) 2013-11-29 2019-04-30 株式会社杰士汤浅国际 Lead storage battery
WO2015146919A1 (en) * 2014-03-27 2015-10-01 新神戸電機株式会社 Lead storage battery
KR102636109B1 (en) * 2014-05-05 2024-02-14 다라믹 엘엘씨 Improved lead-acid battery separators, electrodes, batteries, and methods of manufacture and use thereof
WO2017033497A1 (en) * 2015-08-24 2017-03-02 日立化成株式会社 Lead storage-battery separator, lead storage-battery, and method for producing same
JP2017045539A (en) * 2015-08-24 2017-03-02 日立化成株式会社 Lead acid storage battery
CN107949950A (en) * 2015-09-09 2018-04-20 株式会社杰士汤浅国际 Flooded lead-acid battery
JP6620579B2 (en) * 2016-02-08 2019-12-18 日立化成株式会社 Lead acid battery
JP7005130B2 (en) * 2016-09-01 2022-01-21 北越コーポレーション株式会社 A method for manufacturing a glass fiber sheet for a sealed lead-acid battery separator, a sealed lead-acid battery separator, and a glass fiber sheet for a sealed lead-acid battery separator.
CN106340606A (en) * 2016-10-19 2017-01-18 山东圣阳电源股份有限公司 Storage battery partition plate and pregnant solution type storage battery
JP6953821B2 (en) * 2017-06-15 2021-10-27 昭和電工マテリアルズ株式会社 Liquid lead-acid battery
US11349175B2 (en) 2017-12-05 2022-05-31 Hitachi Chemical Company, Ltd. Separator for lead acid storage batteries, and lead acid storage battery
JP6996264B2 (en) * 2017-12-06 2022-01-17 昭和電工マテリアルズ株式会社 Lead-acid battery
JP7274830B2 (en) * 2018-07-09 2023-05-17 エナジーウィズ株式会社 lead acid battery
WO2021049037A1 (en) * 2019-09-13 2021-03-18 昭和電工マテリアルズ株式会社 Lead-acid battery
WO2021049036A1 (en) * 2019-09-13 2021-03-18 昭和電工マテリアルズ株式会社 Lead storage battery
WO2021200290A1 (en) * 2020-03-30 2021-10-07 旭化成株式会社 Lead storage battery
JP7453094B2 (en) * 2020-08-20 2024-03-19 北越コーポレーション株式会社 Glass fiber sheet for sealed lead-acid battery separator, sealed lead-acid battery separator, and method for manufacturing glass fiber sheet for sealed lead-acid battery separator
EP4250427A1 (en) * 2020-11-20 2023-09-27 ENTEK Asia Inc Lead storage battery separator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2095341T3 (en) * 1991-03-09 1997-02-16 Daramic Inc LEAD / SULFURIC ACID BATTERY BATTERY.
JP3060694B2 (en) * 1991-05-23 2000-07-10 日本板硝子株式会社 Sheet separator and sealed lead-acid battery
JPH08195194A (en) * 1995-01-18 1996-07-30 Nippon Muki Co Ltd Separator for sealed lead-acid battery
JP3790339B2 (en) * 1997-09-29 2006-06-28 三菱製紙株式会社 Non-woven fabric for cleaning printing press blankets
JP2002110125A (en) * 2000-09-27 2002-04-12 Japan Storage Battery Co Ltd Lead-acid battery and its manufacturing method
JP2003077445A (en) * 2001-08-31 2003-03-14 Yuasa Corp Lead acid storage battery
PT1533861E (en) * 2003-11-19 2007-08-01 Tudor Acumulador High power lead-acid battery with enhanced cycle life

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210020883A1 (en) * 2015-02-26 2021-01-21 Daramic, Llc Vapor pressure barriers for lead acid batteries for improved water loss performance, separators, systems, and methods of manufacture and use thereof
US11916252B2 (en) * 2015-02-26 2024-02-27 Daramic, Llc Vapor pressure barriers for lead acid batteries for improved water loss performance, separators, systems, and methods of manufacture and use thereof
CN111864278A (en) * 2020-09-03 2020-10-30 厦门华海大正电池装备有限公司 Method for placing acid-proof sheet of lead-acid storage battery

Also Published As

Publication number Publication date
JP2013206571A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
JP5798962B2 (en) Separator for liquid lead acid battery and liquid lead acid battery
JP5432813B2 (en) Sealed lead-acid battery separator and sealed lead-acid battery
KR102130432B1 (en) Non-woven fabric separator for lead acid battery and lead acid battery using the same
JP5396399B2 (en) Sealed lead-acid battery separator and sealed lead-acid battery
CN107431173B (en) Battery separator comprising inorganic particles
JP5994714B2 (en) Lead acid battery
US20100196688A1 (en) Non-woven material with particle filling
WO2013151134A1 (en) Separator
US20050130031A1 (en) Mat of glass and other fibers and method for producing such mat
CN1276919A (en) Glass fibre separator and batteries including such separator
JP2022502813A (en) Lead acid battery containing fibrous mat
JPWO2013187458A1 (en) Lithium ion battery separator
JP6932247B2 (en) Porous media, separators for lead-acid batteries, and lead-acid batteries
JP6237922B2 (en) Lead acid battery
JP7314405B2 (en) lead acid battery
JP2019175827A (en) Separator for electrochemical device
KR101023677B1 (en) A support of activie material in polar plate used in lead-acid battery
JP7195763B2 (en) Alkaline battery separator
WO2018105060A1 (en) Liquid lead-acid battery
CN113711417A (en) Use of lignosulfonates and high surface area carbon in enhanced flooded and VRLA AGM batteries for battery separator members with high charge acceptance
CN211605259U (en) Lithium ion battery diaphragm
JP7152831B2 (en) lead acid battery
JP6769306B2 (en) Separator for lead-acid battery and lead-acid battery
CN117678088A (en) Pasting paper for lead storage battery
JPH0440830B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150824

R150 Certificate of patent or registration of utility model

Ref document number: 5798962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250